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Abstract

We study markets where heterogeneous agents first make investment decisions
and then engage in costly search to form productive matches. The trading process
is random search and bargaining with explicit search costs. Despite potential hold-
up and matching problems, we prove that the constrained efficient allocation is an
equilibrium: the agents’ private incentives to invest and to accept/reject potential
partners as they search are perfectly aligned with the social benefit. Furthermore,
we establish a new sorting result for two-sided markets, equilibrium existence, and
conditions for uniqueness.

1 Introduction
This paper studies markets in which participants first make investment decisions and
then engage in costly search to form productive matches. These are two central features
in various settings. For example, in the marriage market, individuals make premarital in-
vestments in their education and career before looking for a partner. In the labor market,
workers acquire human capital before searching for jobs, while firms adopt technologies
before hiring workers. Likewise, in the real estate market, developers often build before
finding prospective buyers; in venture capital markets, entrepreneurs invest time and
money developing start-ups prior to seeking funding; and in product markets, buyers
and sellers make ex-ante investments before meeting.

In such settings, agents are usually heterogeneous, and the output each pair pro-
duces depends on their prior investments. Therefore, the investment and search deci-
sions should be studied together in equilibrium as they are mutually dependent. For
example, when workers acquire skills for the job market, they consider the technologies
that firms adopt and how long it will take to find jobs. In turn, the firms’ investment
and hiring decisions depend on the skills in the hiring pool, which itself depends on the
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workers’ investments. We aim to address fundamental questions for such settings: How
do agents invest? Who matches with whom and how long do they search? When is the
market efficient?

There are two main obstacles to efficiency. Since agents invest before meeting their
partners, a potential hold-up problem may reduce the incentive to invest. In addition,
since the investment decisions vary across agents in the population, there is a potential
matching problem: some agents may search too little and accept inefficient matches
or search too much and reject efficient matches or both. Building on the foundational
Diamond-Mortensen-Pissarides model , the prevailing view in the literature is that ef-
ficiency fails in markets with search frictions: there is under-investment (see, e.g., Ace-
moglu 1996) and mismatching (see, e.g., Shimer and Smith 2001).

In this paper, we contribute to the literature by developing a tractable model to study
investment, search, and matching together. We depart from those papers by considering
an explicit cost per search rather than discounting. Contrary to the common view in
the literature, we prove a new efficiency result: the constrained efficient allocation is
an equilibrium outcome. The agents’ private incentives to invest and to accept/reject
potential partners as they search are perfectly aligned with the social benefit. We then
turn to analyzing the equilibrium structure: we prove a new sorting result, establish
equilibrium existence and uniqueness results. The model and results show that our
framework can serve as a workhorse for studying these markets.

In our model, there are two populations of agents, which we call buyers and sellers,
but one can equally consider workers and firms, men and women, or any other two
groups that invest and then match. What is important is that output is produced by
pairs of agents, one from each side of the market. The model has two key ingredients.
First, agents invest in skills before entering the market and they are heterogeneous in
their investment costs. Second, buyer-seller pairs produce output according to the skills
that they have acquired, but there is some sand in the wheels of the market: to form
productive matches, the agents must engage in costly search.

We consider the standard random search and bargaining process with an explicit
cost per search and without discounting, as in Atakan [2006]. Time is discrete and utility
is transferrable. In every period, a new cohort of agents is born, acquires skills, and then
enters the market. When two agents meet in the matching market, they can either accept
each other and Nash bargain over the joint output or reject and continue searching for a
better match. We analyze a steady-state equilibrium where, for every skill, the inflow of
agents to the market equals the outflow.

The term ”skill” refers to investments that enhance productivity. For instance, in the
labor market, a worker’s skill is their education level, while a firm’s skill is their technol-
ogy. In a product market, a seller’s investment reduces their production cost, a buyer’s
investment increases their utility, and the match output is the buyer’s utility minus the
seller’s cost. In the marriage market, we assume that men and women are ex-ante iden-
tical – they can acquire the same skills and have the same cost distribution.
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The market is competitive in that every skill has a value and agents optimize given
these values. The key feature is that these values serve double duty: creating incentives
to invest and to accept/reject matches as they search. First, regarding investment, each
agent compares their marginal cost of acquiring a skill to its marginal value in the mar-
ket. Second, regarding search, two agents will accept (or reject) each other whenever the
match output is greater (resp. smaller) than the sum of their values. As is standard, in an
equilibrium, these values are endogenously determined and must be self-consistent.

Despite the potential inefficiencies, we prove that every constrained efficient allo-
cation is an equilibrium outcome.1 The proof constructs market values that satisfy the
standard equilibrium conditions while perfectly aligning the agents’ incentives with the
planner. These values simultaneously solve the investment and matching problems.
This theorem also establishes the existence of equilibrium.

Notice that agents’ decisions impose externalities on each other. Regarding invest-
ment, when the social planner increases some agents’ investments, it directly affects
their productivity and search costs, but there is also an indirect effect on other agents
via the change in the steady-state skill composition. Regarding matching, when the
planner decides that two skills should reject rather than accept, the planner forgoes their
match output and incurs a higher search cost to form more productive partnerships,
but must also consider the change in the steady-state skill composition. In contrast, in
equilibrium, each agent invests and accepts or rejects partners solely by their private
incentives, as determined by the value of each skill in the market. Remarkably, the
equilibrium values make the agents internalize the direct and indirect effects.

Our second main result is that the equilibria have a clear and simple structure. We
prove that there is assortative matching if the production function is super/submodular.
Furthermore, if the production function is additively separable, then the equilibrium is
unique and it achieves the first-best allocation. Economies with non-separable produc-
tion functions can have multiple equilibria and the agents may fail to coordinate on the
efficient one and so there is scope for policy interventions.2

Finally, we generalize our model by considering different search costs and bargaining
weights, and any constant-returns-to-scale meeting function. Even in economies with
homogeneous agents and no investments, it is well known that unless the bargaining
weight satisfies Hosios’ [1990] condition, the market is imbalanced with too many buyers
relative to sellers or vice-versa. The same applies to our model. However, we prove this
is the only inefficiency in the market: given the market’s balance ratio, there exists an
equilibrium where the investments and matching decisions are socially efficient. Thus,
our main result establishing efficient investments and matching are independent of the
bargaining weight and search cost parameters, and the Hosios condition.

1The constrained efficient allocation solves the problem faced by a social planner who controls the
agents’ decisions while respecting the steady-state condition. Since utility is transferable, the Pareto-
optimal outcomes are the constrained efficient ones.

2For example, a no-investment equilibrium may occur if not investing is self-reinforcing: agents do not
invest because all others do not.
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Related Literature
Our paper is the first to provide a general and tractable model incorporating three com-
ponents: (i) random search and bargaining, (ii) matching between heterogeneous agents,
and (iii) pre-entry investments. These three components have not been studied together.
Table 1 summarizes the models and results of the central papers in the strands of the
literature most closely related to our work: models with transferable utility and either
random search or frictionless matching.

Group Papers Search Matching Investment Results

1
Cole et al. [2001]

Noldeke and Samuelson [2015]
No Yes Yes Efficiency

2
Shimer and Smith [2000]

Atakan [2006]
Yes Yes No

Sorting (single

population)

Shimer and Smith [2001] Yes Yes No Inefficiency

3
Acemoglu [1996]

Masters [1998]

Acemoglu and Shimer [1999]

Yes No Yes Inefficiency

4 Hosios [1990] Yes No No
Efficiency (for a specific

bargaining weight)

5
Gale [1987]

Mortensen and Wright [2002]

Lauermann [2013]

Yes No No
Convergence to First

Best

6 This paper Yes Yes Yes
Constrained Efficiency +

Sorting + Robustness

Table 1: Literature Comparison

The papers in group 1 extend the classical assignment model of Shapley and Shu-
bik [1971] to settings with ex-ante investments. These models have perfect frictionless
matching and typically find that the first-best allocation is a competitive equilibrium
outcome, but there may exist additional inefficient equilibria (see also Mailath et al.
2013, Dizdar 2018, Chade and Lindenlaub 2022).3 We show that the constrained efficient
allocation is an equilibrium outcome in a model with search frictions.

The papers in group 2 study the random search and bargaining model with hetero-
geneous agents but without investment (see also Burdett and Coles 1999). As in Atakan
[2006], we consider an explicit cost per search and no discounting. Our efficiency, sort-
ing, and existence results contribute to this literature. In particular, our sorting result is
for matching markets with two different populations, such as labor and product markets,
whereas the sorting results in Atakan [2006] and Shimer and Smith [2000] are not.4 In

3In Chade and Lindenlaub [2022], utility is not perfectly transferable and therefore the first-best is
generally unattainable but there does exist a Pareto efficient equilibrium. In Elliott and Talamàs [2023],
investments are typically inefficient because payoffs cannot depend upon investment costs, and thus can’t
simultaneously provide incentives for both sides.

4Atakan [2006]’s proof relies on three assumptions: i) a symmetric production function, ii) the two
sides of the market are identical, and iii) symmetric equilibrium; and therefore does not extend to our
environment which does not impose any symmetry assumptions on the populations, production function,
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addition, establishing existence is difficult (see, e.g., Manea 2017 and Lauermann et al.
2020) and standard techniques don’t apply to our model with an endogenous inflow.

Our efficiency result stands in contrast to previous results in the search literature.
First, in the standard random search and bargaining model, Shimer and Smith [2001]
show that agents mismatch: low-types reject too frequently while high-types accept too
often. Second, in economies with homogeneous agents, the hold-up problem leads to
under-investment (see group 3). The key difference between those models and ours is
that we have an explicit cost per search whereas those models have time discounting.
The discount factor introduces implicit search costs as the agents’ payoffs are delayed.
Since higher types have higher continuation values, they also have higher implicit search
costs, which reduces their relative bargaining position and inefficiently distorts the in-
centive to invest and to accept/reject matches. Our results suggest that the hold-up and
matching problems are not due to search frictions per se, but rather due to discounting.

Hosios [1990] considers a search model with homogeneous agents except that the
two sides of the market may meet partners at different rates depending on the balance
ratio in the market - the relative size of each side. In equilibrium, the balance ratio
depends on the bargaining weights and a specific weight perfectly balances the market.
This applies to our model as well. However, our paper is about a different problem: we
study the investment and matching decisions in a model with heterogeneous agents. Our
efficiency result is robust to the bargaining and search cost parameters: these parame-
ters mechanically determine the balance ratio in the market, but the investment and
matching decisions are constrained efficient for this balance ratio (see Theorem 3).

The papers in group 5 study whether the random search and bargaining model con-
verges, as the discount factor δ→ 1, to the frictionless Walrasian outcome.5 Our paper
shows that the constrained efficient allocation is achieved in a market with investment,
search, and matching (and additive search costs). There is a large literature on search
with non-transferable utility, and on directed search, but these models are less relevant
to ours. Burdett and Coles [2001] consider a marriage market with premarital invest-
ments, but they assume a very specific form of non-transferable utility and homogeneous
investment costs. They show that an equilibrium exists and that it is inefficient.6 In the
literature on directed search, sellers post prices to attract buyers, and the equilibrium
can achieve an efficient allocation (see, e.g., Acemoglu and Shimer 1999, Shi 2001, Jerez
2017) and sorting (see, e.g., Shimer 2005, Eeckhout and Kircher 2010, Cai et al. 2025).
However, the matching process and the price-determination mechanism are substan-
tially different than in the random search and bargaining model.

or agents’ behavior. We have provided a novel argument to establish sorting without any symmetry
assumptions. Shimer and Smith (2000) consider a one-population model, and their proof of equilibrium
existence and sorting uses the above symmetry assumptions. We are unaware of any paper that extends
their proofs to a model with two different populations, and whether doing so is merely a technical exercise
or not. In particular, the equilibria of the two-population model may qualitatively differ from the one-
population model: even if the production function is symmetric and the two populations are ex-ante
identical, they may invest and match differently, which cannot occur in the one-population model.

5Elliott and Nava [2019] investigate conditions for efficiency in thin markets.
6In the non-trivial case of high investment costs, agents overinvest to appeal to better partners, and they

search too much. Antler et al. [2025] find inefficient matching in a marriage model with NTU.
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2 The Model

There is a continuum population of buyers with types β ∼ F b and sellers with types
σ∼ F s . Each buyer chooses one skill from a finite set I ⊂N and each seller chooses one
skill from a finite set J ⊂ N. The cost of skill i to buyer β is C b(i ,β) and the cost of skill
j to seller σ is C s( j ,σ). Output is produced by buyer-seller pairs according to their skills
and is summarized by the matrix G = [gi j ], where the entry gi j ≥ 0 denotes the output of
a pair with skills i , j . Agents have transferable utility and incur a fixed per-period search
cost c > 0.

The type distributions F b and F s are continuous and strictly increasing over their
connected supports: B = supp(F b) ⊆ R and S = supp(F s) ⊆ R. The match output gi j

is strictly increasing in skills. The cost functions are non-negative, strictly increasing in
both arguments, bounded and continuous in the second argument. Furthermore, they
satisfy increasing differences: the difference C b(i ′,β)−C b(i ,β) is strictly increasing in β
whenever i ′ > i and the difference C s( j ′,σ)−C s( j ,σ) is strictly increasing in σwhenever
j ′ > j . That is, a higher skill enhances match output, but is more costly to acquire, and
higher types have higher costs and higher marginal costs.

Definition. An economy is a tuple 〈F b ,F s , I , J ,C b ,C s ,G ,c〉 consisting of prior distribu-
tions, skill sets, investment cost functions, the output function, and a search cost. The
economy is symmetric if F b = F s , I = J , C b =C s , and gi j = g j i ,∀i , j .

Timing. Search and matching takes place in discrete time periods over an infinite hori-
zon. In every period, a unit measure of buyers and a unit measure of sellers are born.
Each newborn agent chooses a skill and then enters the matching market. Each agent
in the market incurs the search cost c and randomly meets a partner. When two agents
meet, they can either accept the match or continue searching in the hope of finding a
better partner. If both agents accept the match, then they exit the market and divide
their output according to Nash bargaining. If at least one rejects, then they both remain
in the market. In the next period, a new cohort enters the market and the process repeats
itself. We refer to the agents in the market as the stock population, the agents entering
the market as the inflow population, and the agents exiting the market as the outflow
population.

Steady State. The economy is in a steady state if in the stock population the measure of
agents with each skill is constant over time. Therefore, for each skill, the inflow of agents
equals the outflow. In a steady state, we denote the measures of skill i buyers and skill j
sellers in the stock population by bi and s j . The total measures of buyers and sellers in
the market are B =∑

i∈I bi and S =∑
j∈J s j , and the proportions of skill i buyers and skill

j sellers are xi = bi /B and y j = s j /S (notice that B ≥ 1 and S ≥ 1). The notation (xi ) and
(y j ) denotes the profile of buyer and seller proportions. We let z = 〈(xi ), (y j ),B ,S〉 be the
state variable where the set of all state variables is Z =∆(I )×∆(J )× [1,∞)2.

Meetings. An agent can meet at most one partner in each period and pairs meet at
random. The total number of meetings per period is µ(B ,S) = min(B ,S). Therefore, if the
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market is balanced, i.e. B = S, then every agent randomly draws a partner in each period.
For now, we will assume that the market is balanced, and denote the market size by
N = B = S and the state by z = 〈(xi ), (y j ), N〉. If the market is unbalanced, agents on the
long side of the market would need to be rationed, but this cannot occur in equilibrium
(see Lemma 1). In Section 6.2, we extend the analysis to consider more general meeting
functions.

Strategies. An agent’s strategy specifies their choice of skill and which agents they ac-
cept. We assume Markov strategies. The investment strategy of buyer β is Iβ : Z → I
and that of seller σ is Iσ : Z → J . The acceptance strategy of a buyer with skill i is
Ab

i : Z × J → [0,1], which specifies the probability she accepts a seller with skill j upon
meeting. For a seller with skill j , it is As

j : Z × I → [0,1]. Note that the acceptance
strategies do not depend on the agents’ identities because the match output depends
only on skills. To simplify, we will suppress the state variable in the strategies. It will
be convenient to summarize the acceptance strategies by a matching matrix M = [mi j ],
where the element mi j = Ab

i ( j ) · As
j (i ) is the probability that buyer i and seller j both

agree to match, conditional on meeting.

Remark 1. The search cost c captures various costs incurred explicitly from search. These
include the opportunity cost of time (think of the man-hours firms spend screening
and interviewing candidates; while candidates forgo some income, say from driving
an Uber, as they go through ads, apply, and prepare to interview); flow payments and
fees (subscriptions to online search platforms, hiring talent recruiters, or advertisement
fees); cognitive effort costs (browsing and comparing products online for hours, or the
negative mental health impact of unemployment); or even singles paying per date. In
contrast, in a model with time discounting, agents incur an implicit search cost as their
payoffs are delayed. Which costs are more salient depends upon the economic situation
being modeled, but there are certainly situations where additive costs are predominant.7

2.1 Equilibrium

Every skill has a value in the market and agents optimize given the values and the steady
state. We denote the values of a skill i buyer by vi , and of a skill j seller by w j . The
profiles of buyer and seller values are (vi ) and (w j ), respectively. As is standard in the
search and matching literature, we define an equilibrium using the matching matrix and
values, rather than the strategies.

Definition. A steady state equilibrium 〈z, M , (vi ), (w j )〉 consists of a state variable, a match-
ing matrix, and market values satisfying conditions (1), (3), and (4) below.

The first condition is that acceptance decisions are individually optimal. When two
agents with skills i and j meet, the surplus is si j = gi j − vi − w j , and the acceptance
decisions satisfies the Individually Rational Matching condition (IR Matching):

7For example, when search transpires over a short period of time and does not affect the consumption
date (think of the time spent searching online for a product that will be delivered tomorrow or college
students applying for jobs which they will take after graduation).
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mi j =
{

1 if si j > 0

0 if si j < 0
(1)

The condition is intuitive because an agent will accept a match precisely when her payoff
from doing so is greater than her continuation value. When the surplus is negative, i.e.
vi +w j > gi j , the match is always rejected because both agents cannot receive at least
their value, while when the surplus is positive, the agents will reach a mutually beneficial
agreement. If the surplus is exactly zero, then mi j is unrestricted, i.e. 0 ≤ mi j ≤ 1.

When two agents accept each other, each receives their own value and half of the
match surplus. This division rule is the Nash bargaining solution and also is a subgame
perfect equilibrium of a strategic bargaining game (see, e.g., Atakan 2006). The second
condition is that the values are self-consistent, and therefore satisfy the following recur-
sive equation:

vi =
∑
j∈J

y j

[
mi j

(
vi + si j

2

)
+ (1−mi j )vi

]
− c, ∀i (2)

w j =
∑
i∈I

xi

[
mi j

(
w j + si j

2

)
+ (1−mi j )w j

]
− c,∀ j

That is, in every period, buyer i pays the search cost c and meets seller j with probability
y j . If a match is accepted, the buyer receives her continuation value and half of the sur-
plus, whereas if the match is rejected, she attains her continuation value vi . Simplifying,
we obtain the Constant Surplus equations:∑

j∈J
y j mi j si j = 2c,∀i (3)∑

i∈I
xi mi j si j = 2c,∀ j

The investment decisions are individually optimal: Iβ ∈ argmax
i∈I

vi −C b(i ,β),∀β and

Iσ ∈ argmax
j∈J

w j −C s( j ,σ),∀σ. Since the cost function satisfies strictly increasing differ-

ences, the set of cost types who choose each skill is an interval (and hence measurable).
Furthermore, at most one type can be indifferent between any two skills,8 and thus the
values (vi ) and (w j ) uniquely determine the inflows (up to measure zero). Formally,
we denote by F b(A) = ∫

A dF b the measure of set A according to F b . The measure of
buyers who choose skill i is F b

({
β : Iβ = i

}) = F b
({
β : i ∈ argmax

i ′∈I
vi ′ −C b(i ′,β)

})
, and

analogously for sellers.
The final set of conditions is that the economy is in a steady state. We refer to Equa-

tions (4) as the Inflow=Outflow equations:

8If buyer β̂ is indifferent between acquiring skills i and i ′, where i ′ > i , then all buyersβ< β̂ strictly prefer
skill i ′ to skill i and all buyers β> β̂ strictly prefer skill i to skill i ′.
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i n f l ow︷ ︸︸ ︷
F b

({
β : i ∈ argmax

i ′∈I
vi ′ −C b(i ′,β)

})
=

out f l ow︷ ︸︸ ︷
N xi

∑
j∈J

y j mi j ,∀i ∈ I (4)

F s
({
σ : j ∈ argmax

j ′∈ j
w j ′ −C s( j ′,σ)

})
= N y j

∑
i∈I

xi mi j ,∀ j ∈ J

The inflow is the measure of buyers who choose skill i . The outflow is the measure of
skill i buyers in the market, N xi , times the probability of exiting (each buyer meets a
skill j with probability, y j , and they accept each other with probability, mi j ). The seller
Inflow=Outflow equations are analogous.

2.2 Equilibrium Properties

The next two lemmas will be useful. The first states that unbalanced states do not occur
in equilibria.

Lemma 1. (No Rationing) In any equilibrium, B = S.

Proof. WLOG, suppose that B ≥ S. Then, a buyer meets a seller with probability ρ = S/B ,
and a seller meets a buyer with probability 1. Therefore, the values satisfy:

∀i : vi =ρ
∑
j∈J

y j

[
mi j

(
vi +

si j

2

)
+ (1−mi j )vi

]
+ (1−ρ)vi − c ⇒ ∑

j∈J
y j mi j si j = 2c

ρ

∀ j : w j =
∑
i∈I

xi

[
mi j

(
w j +

si j

2

)
+ (1−mi j )w j

]
− c ⇒ ∑

i∈I
xi mi j si j = 2c

Therefore, since
∑

i∈I xi =∑
j∈J y j = 1:

2c

ρ
= ∑

i∈I
xi

∑
j∈J

y j mi j si j =
∑
j∈J

y j

(∑
i∈I

xi mi j si j

)
= 2c ⇒ B = S

The next lemma states that, in equilibrium, the agents’ values are increasing and the
marginal values are bounded by the expected marginal productivity.

Lemma 2. In any equilibrium,∑
j∈J y j mi ′ j (gi ′ j − gi j )∑

j∈J y j mi ′ j
≥ vi ′ − vi ≥

∑
j∈J y j mi j (gi ′ j − gi j )∑

j∈J y j mi j
> 0, ∀i ′ > i

∑
i∈I xi mi j ′(gi j ′ − gi j )∑

i∈I xi mi j ′
≥ w j ′ −w j ≥

∑
i∈I xi mi j (gi j ′ − gi j )∑

i∈I xi mi j
> 0, ∀ j ′ > j

In particular, if mi j = 1, ∀i , j , then the marginal value equals the expected marginal
productivity: vi ′ − vi =∑

j∈J y j (gi ′ j − gi j ) and w j ′ −w j =∑
i∈I xi (gi j ′ − gi j ).
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Proof. The Constant Surplus and IR Matching conditions imply that:∑
j∈J

y j mi j si j = 2c = ∑
j∈J

y j mi ′ j si ′ j ≥
∑
j∈J

y j mi j si ′ j

Subtracting the RHS from the LHS, and normalizing:

vi ′ − vi ≥
∑

j y j mi j (gi ′ j − gi j )∑
j y j mi j

> 0

The upper bound is derived analogously by switching i and i ′.

These two Lemmas follow from the Constant Surplus Equations. Lemma 2 also implies
that there is a uniform bound on marginal values: max j gi ′ j − gi j ≥ vi ′ − vi ≥ min j gi ′ j − gi j .

Remark 2. The Constant Surplus equations have two further implications: First, they
determine the values for unchosen (measure 0) skills, and therefore we are not free to
set those values arbitrarily (for instance, to minus infinity). Second, every agent has at
least one partner with whom the surplus is positive. Furthermore, that partner is not
of measure 0, which implies that there are no pathological equilibria where an agent
searches forever.

Remark 3. If 〈z, M , (vi ), (w j )〉 is an equilibrium, then so is 〈z, M , (vi + t ), (w j − t )〉 for
any transfer t ∈ R. Therefore, there is at least one degree of freedom in the equilibrium
values. We now show that there is in fact exactly one degree of freedom. This is because
the marginal values, i.e. ∆vi , are uniquely pinned down by the investment decisions and
a Constant Surplus equation imposes an additional condition on the value functions.

3 Illustrative Example

Consider a symmetric economy with two skills, I = J = {0,1}. Each agent can either invest
and become skilled, i = j = 1, or not invest and remain unskilled, i = j = 0. The cost of
becoming skilled is the agent’s type, which is uniformly distributedβ,σ∼U [0,3]. Denote
by x = x1 and y = y1 the proportion of skilled buyers and skilled sellers. Production is
supermodular:

G sup =
[

g00 g01

g10 g11

]
=

[
1 2
2 4

]
That is, skilled-skilled pairs produce g11 = 4, unskilled-unskilled pairs produce g00 = 1,
and skilled-unskilled pairs produce g10 = g01 = 2. Notice that the marginal productivity
of becoming skilled is greater when matched with a skilled agent than when matched
with an unskilled agent, g11 − g01 = 2 > 1 = g10 − g00.
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Equilibrium

In any equilibrium, buyers with costs β ≤ ∆v := v1 − v0 invest and become skilled, and
sellers with costsσ≤∆w := w1−w0 invest and become skilled. By Lemma 2, the marginal
values satisfy ∆v,∆w ∈ [1,2]. Therefore, buyers/sellers with costs β,σ below 1 always
invest and those with costs above 2 never invest. The question is: What happens for
agents whose costs are between 1 and 2 and who matches with whom? There are two
natural candidates for equilibria: All Skills Match, where all agents accept each other,
and Positive Assortative Matching (PAM), where each agent matches only with the same
skill.

Claim 1. (i) There exists an equilibrium where All Skills Match iff c ≥ 1/8. (ii) There
exists an equilibrium with PAM iff c ≤ 1/8. In both cases: x = y = 1

2 and the threshold
investment types are β1 =σ1 = 3

2 .

Proof. The equilibrium conditions are specified in the following table:

All Skills Match PAM

IR Matching
mi j = 1 ⇒ si j ≥ 0 m11 = m00 = 1 ⇒ s11, s00 ≥ 0

m10 = m01 = 0 ⇒ s10, s01 ≤ 0

Constant Surplus Equations

y s11 + (1− y)s10 = 2c y s11 = 2c
y s01 + (1− y)s00 = 2c (1− y)s00 = 2c
xs11 + (1−x)s01 = 2c xs11 = 2c
xs10 + (1−x)s00 = 2c (1−x)s00 = 2c

Inflow=Outflow

F (∆v) = N x F (∆v) = N x y
1−F (∆v) = N (1−x) 1−F (∆v) = N (1−x)(1− y)

F (∆w) = N y F (∆w) = N x y
1−F (∆w) = N (1− y) 1−F (∆w) = N (1−x)(1− y)

Table 2: Equilibrium Conditions

Part (i): Consider an equilibrium where All Skills Match. By Lemma 2, the marginal
values equal the marginal productivities:

∆v = y(g11 − g01)+ (1− y)(g10 − g00) = 1+ y

∆w = x(g11 − g10)+ (1−x)(g10 − g00) = 1+x

Since the market clears in every period: F (∆v) = x and F (∆w) = y . Thus, F (1+ y) = x
and F (1+ x) = y ⇒ x = y = 1/2. This condition is necessary but not sufficient for an
equilibrium: we must find supporting values that solve the CS equations and satisfy the
matching conditions.

Since ∆v = ∆w = 1.5 and g10 = g01, we have s10 = s01, and s11 − s10 = g11 − g10 −∆v
= 2−∆v = 1

2 , and s00 − s10 = g00 − g10 +∆v = 1
2 . Thus, skilled-unskilled pairs generate

the lowest match surplus, and the CS equation 1
2 (s11 + s10) = 1

2 (s10 + s10 + 0.5) = 2c ⇒
s10 = 2c− 1

4 . Thus, the matching condition s10 ≥ 0 is equivalent to c ≥ 1/8. The values can
be derived from the CS equations: v1 = w1 = 15

8 − c and v0 = w0 = 3
8 − c.
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Part (ii): In any PAM equilibrium, the Constant Surplus Equations imply that the steady
state must be symmetric x = y and the Inflow=Outflow conditions imply∆v =∆w. Thus,
subtracting the two CS equations, s11 = 2c

x and s00 = 2c
1−x , and rearranging: ∆v +∆w =

2∆v = g11−g00− ( 2c
x − 2c

1−x ) and so ∆v = 1.5− c
x + c

1−x . Adding the inflow equations yields
1 = N x2 +N (1−x)2, so N = 1

x2+(1−x)2 . This gives a fundamental equation:

inflow︷ ︸︸ ︷
F (∆v) = F

(
3

2
− c

x
+ c

1−x

)
=

outflow︷ ︸︸ ︷
x2

x2 + (1−x)2 (5)

In this case, the fundamental equation has a unique solution x = 1/2 that satisfies the
equilibrium conditions. Like in part (i), we need to find supporting values that solve the
CS equations, and satisfy the matching conditions.

As in Part (i), since ∆v = ∆w = 1.5 and g10 = g01, it holds that: s10 = s01, s11 =
s00 = s10 + 1

2 , and skilled-unskilled pairs generate the lowest match surplus. From the
CS equations, 1

2 s11 = 2c and so s10 = 4c − 1
2 . Clearly, 4c − 1

2 ≤ 0 is equivalent to c ≤ 1
8 . The

supporting values are v1 = w1 = 2− c
x and v0 = w0 = 1

2 − c
1−x .

Remark 4. In this example, the equilibrium is unique for c = 1/8. However, there may be
coordination issues for other cost-type distributions. If the support of F were smaller, say
F = U [1.2,1.8], then in addition to the two equilibria above, there are two non-interior
equilibria where: i) everyone invests and ii) no one invests. In both, all skills match.
The median cost type was fixed at 3/2, which exactly equals (g11 − g00)/2. If this were
not the case, say F =U [0.8,2.8], then the above analysis still applies but there are three
qualitative differences. First, in the PAM equilibrium, the solution to the fundamental
equation (5) will depend on c, and as a result, both the steady state x(c) = y(c) and the
investment thresholds β1(c) = σ1(c) depend on c. The All Skills Match equilibrium is
essentially the same only xal l = y al l = 0.2. Second, these two equilibria both exist over
a non-trivial region of costs. Third, there might be one additional equilibrium, where
skilled-unskilled agents match with some interior probability.

Efficiency

Comparing the equilibria above illustrates a basic tradeoff: skilled-unskilled pairs are
willing to settle and accept less productive matches if the search cost is high c > 1/8;
whereas they reject these matches and search for better ones if c < 1/8. Is this socially
efficient in terms of the search and investment decisions?

To address this, consider a social planner who controls the agents’ decisions and
wants to maximize total welfare subject to steady state conditions. Formally, the plan-
ner controls the investment thresholds, matching decisions, and state to maximize per-
period welfare:9

9First term: N xi y j mi j is the measure of accepted matches between skills i , j and gi j is their output.
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W (x, y, N , [mi j ],β1,σ1) =

Productivity︷ ︸︸ ︷
1∑

i=0

1∑
j=0

N xi y j mi j gi j −

Search Cost︷︸︸︷
2N c −

Investment Cost︷ ︸︸ ︷∫ β1

0
βdF (β)−

∫ σ1

0
σdF (σ)

subject to the steady state constraints:

N x
1∑

j=0
y j m1 j = F (β1), N (1−x)

1∑
j=0

y j m0 j = 1−F (β1),

N y
1∑

i=0
xi mi 1 = F (σ1), N (1− y)

1∑
i=0

xi mi 0 = 1−F (σ1)

Consider two simple policies.

1) All Skills Match: If the planner decides mi j = 1,∀i , j , then the steady state market size

is N = 1, x = F (β1) = β1

3 and y = F (σ1) = σ1
3 . Total welfare is

W = 4x y +2y(1−x)+2x(1− y)+ (1−x)(1− y)−2c −
∫ 3x

0

β
3 dβ−

∫ 3y

0

σ
3 dσ

= y +x +1+x y −2c −1.5x2 −1.5y2

The planner would always want agents with cost below 1 to invest because their marginal
productivity (MP) outweighs marginal investment cost (MC). Starting at that point, the
planner increases the investment threshold up to the point where MP = MC which
yields the optimal state, x = y = 1/2 and hence the optimal thresholds are β1 =σ1 = 3/2.

2)PAM: If the planner decides m11 = m00 = 1 and m01 = m10 = 0, then the steady state
equations are:

N x y = F (β1) = β1

3 , N (1−x)(1− y) = 1−F (β1)

N y x = F (σ1) = σ1
3 , N (1− y)(1−x) = 1−F (σ1)

which imply N = 1
x y+(1−x)(1−y) , β1 =σ1 = 3N x y and so the planner’s optimization prob-

lem is two dimensional in (x, y). Total welfare is

W PAM = N
[
4x y + (1−x)(1− y)

]−2N c −
∫ β1

0
βdF (β)−

∫ σ1

0
σdF (σ)

= 1+ 3x y(1−x)(1− y)

(x y + (1−x)(1− y))2 − 2c

x y + (1−x)(1− y)

If c < 3/8, the optimum is interior at x = y = 1/2 and β1 = 3/2 and N = 2.

To sum up, the welfare under these two policies are

W All = 2.25−2c −0.75

W PAM = 2.5−4c −0.75

The Planner can choose many other policies: they can use a probabilistic matching
rule or another pure matching rule, they can change the investment thresholds and the
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steady state. However, any other policy is dominated by one of these two. Consequently,
the upper envelope of these two lines is the value of the planner’s problem: the planner
chooses the above All Skills Match policy if c > 1/8 and chooses the above PAM policy if
c < 1/8. Figure 1 depicts the welfare of these two policies as a function of the search cost
c. The trade-off is between higher productivity (PAM) and lower search costs (All Skills
Match). The shaded regions are where each allocation is an equilibrium. This figure
visually demonstrates a Second Welfare Theorem: the upper envelope is an equilibrium.

0 0.125

1.25

1.5

1.75

c

W
el

fa
re

Equilibrium

W PAM

W All

Figure 1: Equilibrium and Welfare

4 A Second Welfare Theorem for Search

To simplify notation, we label the skills as I = {0,1, . . . , |I |−1} and J = {0,1, . . . , |J |−1}. The
constrained efficient allocation is the solution to the problem of a social planner who
chooses the investment and acceptance strategies and sets the stock in the matching
market, in order to maximize per-period total welfare, subject to the condition that the
economy is in a steady state. Without loss of generality: i) the planner chooses a bal-
anced state,10 B = S = N ; ii) the matching strategies are represented by a matching ma-
trix; and iii) since the investment cost functions satisfy strictly increasing differences, the
planner’s optimal investment strategies can be defined by thresholds β0 ≥ β1 ≥ . . . ≥ βI

and σ0 ≥σ1 ≥ . . . ≥σJ , so that all buyers of type β ∈ (βi+1,βi ) choose skill i and all sellers
of type σ ∈ (σ j+1,σ j ) choose skill j . Notice that the thresholds are descending because
costs increase with type, so higher types choose lower skills. The planner chooses a tuple
〈z, M , (βi ), (σ j )〉 of steady state, matching matrix, and investment thresholds in order to
maximize:

10If B > S, then there exists another state with lower total search cost and identical output and investment
cost.
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W
(〈z, M , (βi ), (σ j )〉)=∑

i∈I

∑
j∈J

N xi y j mi j gi j −2N c −∑
i∈I

∫ βi

βi+1

C b(i ,β) f b(β)dβ (6)

−∑
j∈J

∫ σ j

σ j+1

C s( j ,σ) f s(σ)dσ

subject to
f lowb

i :=
(
F b(βi )−F b(βi+1)

)
−N xi

∑
j∈J

y j mi j = 0,∀i (7)

f low s
j := (

F s(σ j )−F s(σ j+1)
)−N y j

∑
i∈I

xi mi j = 0,∀ j (8)

xi ≥ 0,∀i (9)

y j ≥ 0,∀ j (10)

X := 1−∑
i∈I

xi = 0 (11)

Y := 1− ∑
j∈J

y j = 0 (12)

1 ≥ mi j ≥ 0,∀i , j (13)

F b(β|I |) = F s(σ|J |) = 0 (14)

F b(β0) = F s(σ0) = 1 (15)

The first term in the objective function is per-period total output (the measure of formed
matches between buyer i and seller j is N xi y j mi j and the match output is gi j ), the
second term is the per-period total search cost, and the last two terms are the per-period
total investment costs. The first constraint is that inflow equals outflow. The other con-
ditions stipulate that xi , y j are proportions, mi j are probabilities, and that the planner
must assign a skill to every agent.

Remark 5. Notice that the maximization problem does not explicitly require that β0 ≥
β1 ≥ . . . ≥βI and σ0 ≥σ1 ≥ . . . ≥σJ , nor that N > 0, because these conditions are implied
by the other constraints (see proof).

Theorem 1. (Second Welfare Theorem) For every economy 〈F b ,F s , I , J ,C b ,C s ,G ,c〉:
i) There exists an optimal policy 〈z, M , (βi ), (σ j )〉.
ii) Every optimal policy 〈z, M , (βi ), (σ j )〉 can be decentralized. That is, there are values

(v∗
i ), (w∗

j ), and a matching matrix M∗ such that 〈z, M∗, (v∗
i ), (w∗

j )〉 is an equilibrium,
where m∗

i j = mi j for all i , j such that xi , y j > 0.

The theorem demonstrates that any optimum policy can be decentralized as an equi-
librium. The proof shows that the equilibrium values that decentralize the optimal allo-
cation are the shadow values of the flow constraints in the dual problem. We show that
these values are internally self-consistent with the bargaining procedure, that is, they
satisfy the Constant Surplus equations; and also motivate the agents to invest and match
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efficiently. For instance, if the planner wants buyer β and seller σ to choose skill i∗ and
j∗, then i∗ ∈ argmaxi∈I vi −C b(i ,β) and j∗ ∈ argmax j∈J w j −C s( j ,σ); and if the planner
wants them to accept (reject) each other, then vi∗ +w j∗ ≤ gi∗ j∗ (vi∗ +w j∗ ≥ gi∗ j∗).

Proof. First, we show that the constraints of the problem imply that N > 0, and βi ≥βi+1

for all i , and σ j ≥σ j+1 for all j . To see this, observe that F b(β|I |) = 0 and F b(β0) = 1, and
so there exists a skill i such that F (βi ) > F (βi+1). By constraint f lowb

i , it must be that
N xi

∑
j∈J y j mi j > 0. Since xi , y j ,mi j are all non-negative, it follows that N > 0. Thus,

the outflow of every skill is non-negative, and from the flow conditions, it must be that
βi ≥βi+1 for all i , and likewise σ j ≥σ j+1 for all j .

(i) Existence: To demonstrate existence, since the objective is continuous, all we need
to show is that the policy space is compact. First, there is a uniform upper bound N
so that in any optimum, N ≤ N (recall that N ≥ 0). For the upper bound, notice that
the Inflow=Outflow constraints imply

∑
i∈I

∑
j∈J N xi y j mi j = 1, and therefore the first

term in the welfare expression is a convex combination of gi j and therefore is uniformly
bounded by max gi j . Thus, lim

N→∞
W = −∞ and so the optimal policy cannot involve

arbitrarily large N . The planner can choose quantiles F (βi ) instead of thresholds βi , and
since the objective is also continuous in the quantiles and the quantile space is bounded,
a maximum indeed exists.

(ii) Decentralizing optimal allocations: The dual problem is

L
(〈z, M , (βi ), (σ j )〉)= ∑

i∈I

∑
j∈J

N xi y j mi j gi j −2N c

−∑
i∈I

∫
Bi

C b(i ,β) f b(β)dβ− ∑
j∈J

∫
S j

C s( j ,σ) f s(σ)dσ

+∑
i∈I

vi · f lowb
i + ∑

j∈J
w j · f low s

j +
∑

i
φi xi +

∑
j
ψ j y j +γX +λY

+∑
i∈I

∑
j∈J

(
ηi j mi j + η̂i j (1−mi j )

)
We will first show that a constraint qualification holds and then construct an equilibrium
using the shadow values from the KKT conditions.

1) The Constraint Qualifications: Since the problem is not convex, we use the constant
rank regularity condition, which requires that for each subset of the gradients of the
active inequality constraints and the equality constraints, the rank in the vicinity of the
optimal point is constant (Janin [1984]). The formal proof is in Lemma 3 in the Appendix.

2) Deriving values from the KKT conditions: Due to the constraint qualification above,
the first order conditions (FOC) of the dual problem L are necessary at any optimum:

FOC(N):
∑
i∈I

∑
j∈J

xi y j mi j gi j −2c −∑
i∈I

vi

(
xi

∑
j∈J

y j mi j

)
− ∑

j∈J
w j

(
y j

∑
i∈I

xi mi j

)
= 0
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⇐⇒ ∑
i

∑
j

xi y j mi j (gi j − vi −w j ) = 2c

FOC(xi ): N
∑

j
y j mi j gi j − vi N

∑
j

y j mi j −N
∑

j
w j mi j y j −γ+φi = 0

⇐⇒ N
∑

j
y j mi j

(
gi j − vi −w j

)= γ−φi

FOC(y j ): N
∑

i
xi mi j gi j −N

∑
i

vi xi mi j −w j N
∑

i
mi j xi −λ+ψ j = 0

⇐⇒ N
∑

i
xi mi j

(
gi j − vi −w j

)=λ−ψ j

Complementary slackness: φi xi = 0 and y jψ j = 0 and φi ,ψ j ≥ 0.

FOC(mi j ): N xi y j gi j − vi N xi y j −w j N xi y j +ηi j − η̂i j = 0

⇐⇒ N xi y j (gi j − vi −w j ) =−ηi j + η̂i j

Complementary slackness: ηi j mi j = 0 and η̂i j (1−mi j ) = 0 and ηi j , η̂i j ≥ 0.

FOC(βi ): f b(βi )(vi − vi−1) = f b(βi )
(
C b(i ,βi )−C b(i −1,βi )

)
, for i ∈ {1, . . . , I −1}

FOC(σ j ): f s(σ j )(w j −w j−1) = f s(σ j )
(
C s( j ,σ j )−C s( j −1,σ j )

)
, for j ∈ {1, . . . , J −1}

We now show that the shadow values vi , w j , together with the matching matrix M and
state z, constitute an equilibrium.

Decentralizing the constrained optimal allocation when z is interior (ii): To verify the
Constant Surplus equations, notice that:

N ·2c = N
∑

I

∑
J

xi y j mi j (gi j − vi −w j ) =∑
I

xi N
∑

J
y j mi j (gi j − vi −w j )

=∑
I

xi (γ−φi ) =∑
I
γxi −φi xi =

∑
I
γxi = γ

The first line uses FOC(N ), while the second line uses FOC(xi ), complementary slack-
ness (φi xi = 0), and the condition

∑
I xi = 1. Therefore γ= 2cN . Since z is interior,φi = 0,

and the FOC(xi ) is
∑

J y j mi j
(
gi j − vi −w j

)= 2c, which is the Constant Surplus equation
for skill i . An analogous argument holds for the sellers’ Constant Surplus equations.

To verify the IR Matching conditions, notice that if gi j − vi −w j > 0, the FOC for mi j

requires that η̂i j > 0 and therefore mi j = 1. Similarly, if gi j −vi −w j < 0, the FOC for mi j

requires that ηi j > 0 and therefore mi j = 0.
To verify that the investments are incentive compatible, we show that for any type

β ∈ [βi+1,βi ], their most preferred skill is i . To see this, for any lower skill, i ′ ≤ i , the
FOC for the threshold βi ′ is f (βi ′)(vi ′ − vi ′−1) = f (βi ′)(C b(i ′,βi ′)−C b(i ′−1,βi ′)) and re-
call that βi ′ ≥ β. Since f > 0 everywhere, this can be simplified to vi ′ −C b(i ′,βi ′) =
vi ′−1−C b(i ′−1,βi ′). Since type βi ′ is indifferent between the skills i ′ and i ′−1, by single-
crossing, type β weakly prefers skill i ′ to skill i ′−1. Thus, type β weakly prefers i to any
lower skill i ′. An analogous argument applies for higher skills.

The case of a non-interior z can be found in the Appendix.
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The proof of this welfare theorem uses the oldest trick in the book: to find the market
values (or prices), we look at the shadow values of the inflow=outflow constraints in
the planner’s problem. Surprisingly, these shadow values satisfy the Constant Surplus
equations. It immediately follows from Theorem 1 that an equilibrium exists.

Corollary 1. An equilibrium exists.

The following proposition demonstrates some comparative statics for welfare.

Proposition 1. The welfare function W is continuous, strictly decreasing, and convex in
c. Moreover, the population size N is weakly decreasing in c.

The proof is in the Appendix. It relies on the observation that ∂W /∂c = −2N , which
follows immediately from the envelope theorem, implying that a shock to c has greater
impact on welfare when c is small than when c is large.

Remark 6. (Matching and Values of Unrealized Skills) Theorem 1 proves that any opti-
mum can be decentralized (modulo matching between unrealized skills). The planner
can match unrealized types in any fashion because they have no impact on welfare, and
thus the optimization problem places no restriction on their matching. However, the
equilibrium conditions (the Constant Surplus equations and IR Matching conditions)
apply for all skills, including unrealized ones. In the Appendix, we construct the match-
ing and values for these unrealized skills.

4.1 Outside Options and Endogenous Entry

We now extend the efficiency result to the case where agents have outside options. Sup-
pose that every new-born agent can either invest and enter the market or opt out and
receive the outside payoff equal to ub for buyers and us for sellers. In equilibrium, buyer
β enters the market if and only if maxi vi −C b(i ,β) ≥ ub , and seller σ enters if and only
if max w j −C s( j ,σ) ≥ us . We focus on the interesting case where there are gains to trade,
and so for at least two types,β andσ, maxi∈I , j∈J gi j −2c−C b(i ,β)−C s( j ,σ) > ub+us . The
only difference from the baseline model is that the planner now also chooses the entry
thresholds β0 and σ0 in order to maximize:

W = N
∑
i∈I

∑
j∈J

xi y j mi j gi j −2N c −∑
i∈I

∫ βi

βi+1

C b(i ,β) f b(β)dβ− ∑
j∈J

∫ σ j

σ j+1

C s( j ,σ) f s(σ)dσ

+
∫ ∞

β0

ub f b(β)dβ+
∫ ∞

σ0

us f s(σ)dσ

and the boundary conditions F b(β0) = 1 and F s(σ0) = 1 are removed.

Corollary 2. In a model with outside options, the constrained efficient outcome is an
equilibrium.

The proof shows that the shadow values still constitute an equilibrium (see Appendix).
As before, v0 is the shadow value of the skill 0 flow constraint. However, there is an
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additional first-order condition since β0 is now endogenous: v0−C b(0,β0) = ub which is
precisely the equilibrium entry condition for buyers. An analogous argument holds for
sellers.

Remark 7. In the baseline model, there is exactly one degree of freedom in the equilib-
rium values (see Remark 3). In the model with outside options, there is an additional
entry condition and thus the values are unique.

5 Equilibrium Sorting and Uniqueness

In this section, we show that the equilibria have a clear and simple structure: Section 5.1
shows that every equilibrium exhibits assortative matching if the production function is
super/submodular. Section 5.2 considers an additively separable production function
(product market) and shows that the equilibrium is unique. Furthermore, these results
show that for our second welfare theorem, the efficient allocation is not caught in a
widely cast net.

5.1 Assortative Matching

Denote the matching set of skill-i buyers by Mi = { j : mi j > 0} ⊆ J , this is the set of
seller skills with whom buyer i matches. Similarly, for sellers, M j = {i : mi j > 0} ⊆ I . The
maxima and minima of these sets are denoted mi = max Mi , mi = min Mi , m j = max M j

and m j = min M j . We say that a buyer’s matching set Mi is convex if mi < j < mi

implies that mi j = 1 (this is stronger than stating that the matching sets are intervals
because it requires that only boundary types can match probabilistically). Convexity
is defined analogously for sellers. A matching matrix M exhibits positive assortative
matching (PAM) if the matching sets are convex and the maxima/minima are weakly
increasing. Likewise, M exhibits negative assortative matching (NAM) if the matching
sets are convex and the maxima/minima are weakly decreasing. Finally, we say that All
Skills Match if mi j = 1 for all i , j .

mi j j1 j2 j3 j4 j5

i1

i2

i3

i4

i5

Table 3: A PAM matrix: mi j = 1 (blue), 0 < mi j < 1 (green), and mi j = 0 (blank)

In Table 3, we depict a matching matrix that satisfies PAM. To maintain PAM, this
matrix cannot be modified so that buyer 1 matches with seller 3 (pure or mixed) because
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that would violate the convexity condition for buyer 1. Likewise, it cannot be that buyer
2 matches with seller 5 because that would violate monotonicity.

The production function G is supermodular (submodular) if the marginal productiv-
ity of every skill i , g(i+1) j − gi j , is strictly increasing (decreasing) in j , and the marginal
productivity of every skill j , gi ( j+1) − gi j , is strictly increasing (decreasing) in i ; G is
separable if the marginal productivity of every skill i is constant in j , and the marginal
productivity of every skill j is constant in i .

Previous work established sufficient conditions for positive/negative assortative match-
ing for a single population of agents (Shimer and Smith [2000], Atakan [2006]). However,
the single population model is restrictive and does not cover many important settings
where there are two different populations, such as labor and product markets. An open
question in the literature is whether assortative matching holds when the two popu-
lations are not identical.11 The next result shows that the answers is a firm yes. To
our knowledge, this is the first paper which establishes assortativity beyond the single-
population framework.

Theorem 2. (Sorting) In equilibrium, there is PAM whenever G is supermodular, NAM
whenever G is submodular, and All Skills Match whenever G is separable.

To outline the argument, we first show that the surplus function si j inherits super/
submodularity from G . We use this observation and Lemma 2 to establish that the bounds
of the matching sets are monotonic. We prove convexity from algebraic manipulations
of the Constant Surplus equations. In contrast, existing proofs rely heavily on symmetry
(Shimer and Smith 2000; Atakan 2006). In the discounting case, to show that the match-
ing sets are convex, Shimer and Smith [2000] place further restriction on the production
function which imply that the surplus function si j is convex12 whereas our proof works
without further restrictions.

Proof. Demonstrating PAM requires demonstrating two components, that the bounds of
the matching set are weakly increasing and that the matching set is convex. Throughout,
we will use the following key fact: if G is supermodular, then so are the surpluses [si j ].

Increasing Upper Bounds: Fix two buyer skills i2 > i1. Suppose that mi2 < mi1 . Denote
these as j2 = mi2 and j1 = mi1 . By IR Matching, it must be that si1 j1 ≥ 0 ≥ si2 j1 . By
supermodularity, then it must be that for every j < j1 it is the case that si1 j > si2 j . This
violates the Constant Surplus equations because

2c = ∑
j∈J

y j mi2 j si2 j =
∑

j∈Mi2

y j si2 j <
∑

j∈Mi2

y j si1 j ≤
∑

j∈Mi1

y j si1 j =
∑
j∈J

y j mi1 j si1 j = 2c

The case for lower bounds and for submodular G are analogous.

11Furthermore, even when the populations are ex-ante symmetric, their investments may be asymmetric
and hence the equilibrium will not be symmetric (see Example 2).

12In fact, there are examples where G is supermodular and si j is not convex, and yet there is PAM.
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Convexity: Suppose not. That is, there is a buyer i and sellers j1 < j < j2 such that
mi j < 1, and mi j1 ,mi j2 > 0. Then, it must be the case that seller j has a strictly positive
surplus with a lower buyer and that buyer is present with non-zero measure. Otherwise

2c = ∑
i ′>i ,i ′∈M j

xi ′ si ′ j <
∑

i ′>i ,i ′∈M j

xi ′ si ′ j2 ≤ 2c

The middle inequality follows from si ′ j2 ≥ si j + si ′ j2 > si j2 + si ′ j ≥ si j2 for every i ′ > i due
to the supermodularity of s. Therefore, there is some i ′ < i such that xi ′ > 0 and si ′ j > 0.

An analogous argument demonstrates that there is:
1. A higher buyer i ′ > i such that xi ′ > 0 and si ′ j > 0.
2. A lower seller j ′ < j such that y j ′ > 0 and si j ′ > 0.
3. A higher seller j ′ > j such that y j ′ > 0 and si j ′ > 0.

Let j = argmax j ′≤ j si j ′ and likewise j = argmax j ′≥ j si j ′ . Similarly, let i = argmaxi ′≤i si ′ j

and likewise i = argmaxi ′≥i si ′ j . See below for an illustration of the matching matrix.

. . . j . . . j . . . j . . .

. . . 0
i 1

. . .
i 0 1 mi j < 1 1 0

. . .

i 1
. . . 0

Table 4: Convex Matching Sets

Define y = y j , y =∑
j ′< j , j ′∈Mi

y j ′ and y =∑
j ′> j , j ′∈Mi

y j ′ . Similarly, x = xi , x =∑
i ′<i ,i ′∈M j

xi ′ ,
and x =∑

i ′>i ,i ′∈M j
xi ′ . Notice that x, x, y , y > 0 as shown above.

By the supermodularity of s, for any i ′ > i , it is the case that si ′ j + si j > si ′ j + si j and
since si j ≤ 0, it follows that si ′ j > si ′ j + si j . Thus,

2c ≥ ∑
i ′≥i ,i ′∈M j

xi ′ si ′ j >
∑

i ′≥i ,i ′∈M j

xi ′(si ′ j + si j ) =
( ∑

i ′≥i ,i ′∈M j

xi ′ si ′ j

)
+ (x +x)si j (16)

The strict inequality use the fact that xi ′ > 0 for some i ′ > i .
Next, notice that si j ≥ si ′ j for all i ′ < i . Therefore,

xsi j =
∑

i ′<i ,i ′∈M j

xi ′ si j ≥
∑

i ′<i ,i ′∈M j

xi ′ si ′ j (17)

Adding equations (16) and (17) gives

2c +xsi j >
∑

i ′∈M j

xi ′ si ′ j + (x +x)si j

And therefore, xsi j > (x +x)si j (18)

Similarly:
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si j ′ > si j ′ + si j for all j > j ′

si j ′ > si j ′ + si j for all j ′ > j

si ′ j > si ′ j + si j for all j ′ < j

Repeating the same arguments: y si j > (y + y)si j (19)

y si j > (y + y)si j (20)

xsi j > (x +x)si j (21)

As shown earlier, all of the surpluses, si j , si j , si j , si j are positive. Taking the product of
Inequalities (18)–(21) and dividing by the surpluses yields:

xx y y > (x +x)(x +x)(y + y)(y + y)

which is a contradiction due to the strict inequality.

Separability Implies All Skills Match: By Lemma 2, it is the case that for any two sellers,
w j ′ −w j = g j ′ − g j . Therefore, the surplus function is constant si j ′ = gi + g j ′ − vi −w j ′ =
gi + g j − vi −w j and by the Constant Surplus equations, it must be that si j = 2c for all
i , j . So, every pair of agents accept their match.

Remark 8. The assortative matching result is useful for numerical analysis. For example,
in the 5×5 case depicted in Table 3, there are 225 ≈ 33.6 million pure matching matrices,
but only 2,762 of them satisfy PAM. In the 5 × 7 case, there are 235 ≈ 34 trillion pure
matching matrices, of which only 21,659 satisfy PAM.13

5.2 Uniqueness: Separable Production

We now demonstrate that when the production function is separable, i.e. gi j = gi + g j ,
there is a unique equilibrium. To relate to previous work, e.g. Rubinstein and Wolinsky
[1985], Gale [1987], we phrase this subsection in the language of a product market. Each
seller can produce one unit of a homogeneous good and each buyer desires a single
unit. A buyer that invests in skill i receives the payoff αi from consuming the good
and a seller that invests in skill j can produce the good at a cost κ j . The consumption
value αi is increasing in i and the cost κ j is decreasing in j . When a buyer and seller
meet, their output is gi j = αi −κ j . This production function is separable because the
marginal productivity gi ′ j − gi j is independent of j . As in Gale [1987], we allow for
endogenous entry, with outside payoffs equal to ub for buyers and us for sellers. To
focus on the interesting case, we ignore the trivial equilibrium where no agent enters,
and we assume that there are gains to trade, and so for at least two types, β and σ,
maxi∈I , j∈J gi j − 2c −C b(i ,β)−C s( j ,σ) > ub +us and that not all agents enter, so there
are at least two types for which the opposite inequality holds.

13At 1000 calculations per second, the difference is between a program taking a millennium and 21 seconds.
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Proposition 2. Any economy with a separable production function (with or without out-
side options) has a unique equilibrium and its allocation achieves the first best: all skills
match and all transactions occur at one price, p =α1 − v1 − c.

Theorem 2 demonstrates that with a separable production function, in any equilib-
rium, All Skills Match. The rest of the proof immediately follows from Lemma 2: since
All Skills Match, the marginal values equal marginal productivities, and by separability,
∆vi =∆αi and ∆w j =−∆κ j . Thus, the flows and stocks are uniquely pinned down, and
the surpluses si j are constant. As a result, a law of one price prevails (all trades occur
at one price) and endogenous entry uniquely pins down the price that equates supply
and demand. Finally, the agents’ private incentives to invest are exactly aligned with the
planner, so the equilibrium achieves the first-best. For a formal proof, see Appendix.

6 Robustness

In this section, we extend the baseline model in several directions: Section 6.1 considers
asymmetric search costs and bargaining weights, and Section 6.2 considers other CRS
meeting functions. We will show that our main results regarding efficient investment, ef-
ficient matching, sorting, and existence are robust to modifying the bargaining weights,
search costs, and meeting function (satisfying CRS).

6.1 Asymmetric Search Costs and Bargaining Weights

We extend the baseline model by allowing asymmetric search costs and bargaining weights.
In every period, each buyer incurs the search cost cb > 0 and each seller incurs the search
cost c s > 0. When a buyer with skill i and a seller with skill j accept each other, the buyer
receives vi +αsi j and the seller receives w j + (1−α)si j .

In the baseline model, cb = c s = c and α = 1−α = 1/2, and Lemma 1 established
that in any equilibrium, the number of buyers B equals the number of sellers S. When
the bargaining weights or search costs are asymmetric, the equilibrium state can be
unbalanced, B 6= S. Recall that in an unbalanced market, the long side of the market
is rationed, e.g., if B < S, then in each period, every buyer meets a seller with probability
1 and every seller meets a buyer with probability B/S (and vice-versa if B > S).

Theorem 3. For every economy 〈F b ,F s , I , J ,C b ,C s ,G ,cb ,c s ,α〉, let r ≡ α
1−α

c s

cb :
1. Every equilibrium has the same balance ratio r = B/S.
2. Given the balance ratio r , the constrained efficient investments, matching, and steady

state are an equilibrium outcome. That is, let 〈z, M , (βi ), (σ j )〉 maximize total welfare
under the previous constraints (7)-(15) and the additional constraint r = B/S. There
are values (v∗

i ), (w∗
j ), and a matching matrix M∗ such that 〈z, M∗, (v∗

i ), (w∗
j )〉 is an

equilibrium, where m∗
i j = mi j for all i , j such that xi , y j > 0.

Proof. Define µ= mi n(B ,S). In equilibrium, the values satisfy:
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vi =
(
µ/B

)(∑
j∈J

y j
[
mi j

(
vi +αsi j

)+ (1−mi j )vi
])+ (

1−µ/B
)

vi − cb ,∀i

w j =
(
µ/S

)(∑
i∈I

xi
[
mi j

(
w j + (1−α)si j

)+ (1−mi j )w j
])+ (1−µ/S)w j − c s ,∀ j

Rewriting, we obtain the modified Constant Surplus equations:∑
j∈J

y j mi j si j = cb

α
(
µ/B

) ,∀i (22)

∑
i∈I

xi mi j si j = c s

(1−α)
(
µ/S

) ,∀ j

⇒ cb

α
(
µ/B

) = ∑
i∈I

xi
∑
j∈J

y j mi j si j =
∑
j∈J

y j
∑
i∈I

xi mi j si j = c s

(1−α)
(
µ/S

)
⇒ B

S
= α

1−α · c s

cb
(23)

The rest of the proof follows a similar argument as the proof of Theorem 1. For the
formal argument, see Appenix .

Therefore, the search costs and bargaining weights uniquely pin down the balance
ratio r = c s

cb
α

1−α . The market is balanced B = S if and only if the bargaining weight

equals the search cost ratio α= cb

cb+c s . Under any other bargaining weight, the market is
imbalanced which is inefficient because one side of the market is rationed. However, im-
balance is the only inefficiency: given the balance ratio, there are values that decentralize
the efficient investment decisions, search decisions, and steady state as an equilibrium.

Existence and sorting hold as is.

Corollary 3. An equilibrium exists.

Theorem 4. For any economy 〈F b ,F s , I , J ,C b ,C s ,G ,cb ,c s ,α〉, in equilibrium, there is PAM
whenever G is supermodular, NAM whenever G is submodular, and All Skills Match when-
ever G is separable.

The proof of Theorem 4 is essentially the same as the proof of Theorem 2 using the
modified constant surplus equations. Finally, the next Proposition states that any econ-
omy with asymmetric search costs and bargaining weights has an equivalent economy
with symmetric bargaining weights and search costs.

Proposition 3. Given the economy E as ym with asymmetric search costs cb and c s and
bargaining weightα, let E s ym denote the same economy only with a symmetric bargaining

weight and symmetric search costs c = max{ cb

2α , c s

2(1−α) }. These two economies have the
same equilibrium allocations and welfare.

Proof. Notice that the constant surplus equations of both economies are the same.
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We find the results in this section surprising. A key observation is that if one side of
the market has a beneficial position due to a higher bargaining weight or lower search
cost, then in equilibrium they will be rationed, and thus effectively incur a higher search
cost because they may fail to find a partner in each period. This force effectively equal-
izes the search costs between the two sides of the market, whereupon the market be-
haves like our baseline model modulo this imbalance due to rationing.

6.2 Meeting Function

Finally, we consider a general meeting function where µ(B ,S) is the total number of
meetings in a period. In every period, each agent can meet at most one other agent,
and so µ(B ,S) ≤ min{B ,S}. Meetings are still random and the probability that a buyer
meets a seller is µ(B ,S)/B , while the probability that a seller meets a buyer is µ(B ,S)/S.
As is standard, we take µ to be homogeneous of degree 1.

Corollary 4. For every economy 〈F b ,F s , I , J ,C b ,C s ,G ,cb ,c s ,α,µ〉, let r ≡ α
1−α

c s

cb

1. Every equilibrium has the same balance ratio r = B/S.
2. Given the balance ratio r , the constrained efficient investments, matching, and steady

state are an equilibrium outcome. That is, let 〈z, M , (βi ), (σ j )〉 maximize total welfare
under the previous constraints (7)-(15) and the additional constraint r = B/S. There
are values (v∗

i ), (w∗
j ), and a matching matrix M∗ such that 〈z, M∗, (v∗

i ), (w∗
j )〉 is an

equilibrium, where m∗
i j = mi j for all i , j such that xi , y j > 0.

The proof closely follows that of Theorem 1. For the formal argument, see Appendix.
This result clarifies the relationship between our work and Hosios’ condition. In

every generalized economy, for the state B ,S to constitute an equilibrium, it must be
that

α= Bcb

Bcb +Sc s
(Equilibrium condition)

In the constrained efficient allocation, the states B∗,S∗ must satisfy the optimality con-
dition

Bcb

Bcb +Sc s
= ∂µ(B ,S)/∂B

µ(B ,S)/B
(Optimality condition)

To decentralize the efficient allocation, it must be that the constrained efficient alloca-
tion satisfies the equilibrium condition:

α= B∗cb

B∗cb +S∗c s
(Optimal B∗ substituted into Equilibrium condition)

This yields the usual Hosios condition:

α= ∂µ(B ,S)/∂B |B ,S=B∗,S∗

µ(B∗,S∗)/B∗

As previously mentioned, our result and Hosios’ [1990] result are complementary. Ho-
sios considers a model with homogeneous agents and shows that there exists a specific
bargaining weight that efficiently balances the market. The same applies here. The
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bargaining weight mechanically pins down the equilibrium balance ratio by r = c s

cb
α

1−α .
Our result is about decentralizing the efficient investment and matching decisions and
it does not depend on the bargaining weights or search costs.

7 Discussion

This paper developed and analyzed a model where heterogeneous agents acquire skills
and then engage in costly search to form productive matches in the market. Despite
potential hold-up and matching problems, the main result is that the constrained ef-
ficient allocation is an equilibrium of the decentralized market. In addition, regarding
the equilibrium structure: we established assortative matching for super/submodular
production functions and uniqueness for separable production functions. Importantly,
the sorting result applies to two-population models, such as the labor market. Our main
results regarding efficient investment, efficient matching, and sorting are robust: they do
not depend on the search costs nor the bargaining weights. We mention below several
implications and takeaways from our model and results.

Search Externalities: A key tension underlying the efficiency result is that the decisions
to acquire skills and to accept or reject potential partners impose externalities on other
agents. For instance, if less buyers acquire skill i and more buyers acquire skill i +1, then
the pool of agents in the market changes: the number of buyers with skill i decreases, the
number of buyers with skill i + 1 increases, and the number of buyers and sellers with
other skills may also change because the relative size of their matching partners may
increase or decrease. Alternatively, if buyers with skill i accept more partners, then their
number in the search pool decreases, and subsequently the number of agents with other
skills may increase or decrease since the relative size of their matching partners may
change. The planner’s solution takes such steady-state search externalities into account.
In contrast, in equilibrium, each agent invests and accepts or rejects partners simply by
their private incentives, as determined by the value of each skill in the market. In order to
achieve the efficient outcome, the equilibrium values must make the agents internalize
these externalities.

Discounting: The search literature has considered two types of search costs: explicit
search costs, which reflect costs people incur per unit of time as they search, and im-
plicit search costs due to discounting as payoffs are delayed. When agents discount
time, higher skills have higher continuation values and hence higher implicit search
costs, which affects the bargaining outcomes. As a result, in equilibrium, the discount
factor reduces the incentive to invest, mismatching can occur and sorting may fail for
super/submodular production functions (see Shimer and Smith 2000, 2001). By severing
the implicit link between values and search costs, our model delivers powerful results:
general efficiency and sorting results, existence, and the equilibria have a clear and intu-
itive structure.

Rubinstein [1982]: Rubinstein’s seminal paper studied a bilateral bargaining game with
(i) discounting and (ii) explicit time costs. The model with discounting has a unique
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SPE that depends smoothly and intuitively on the discount factors, whereas the model
with explicit costs has a stark SPE: the player with the smaller cost receives almost the
entire pie, and if both players have the same cost, then almost any split of the pie is
an SPE. The bargaining literature naturally gravitated towards the discounting model.
However, our paper finds the opposite when agents search and bargaining in a market:
the explicit search cost model is simple, tractable, and delivers sharp results, whereas the
discounting model is more cumbersome to analyze.

Applications: The model is tractable and applicable to various settings. A fundamental
question in the labor market is about sorting – when will high-tech firms match with
high-skill workers? Theorem 2 establishes a new sorting result in a two-population model.
In product markets, match output is typically taken to be the gains from trade, gi j =
ui −c j , i.e. the buyer’s utility minus the seller’s cost, which is additively separable. Propo-
sition 2 establishes that there is a unique equilibrium and it achieves the first-best al-
location. For the marriage market, we should consider a symmetric economy (as in
the example in Section 3), and our model may shed new light on questions regarding
premarital investments and sorting patterns.

Policy Intervention: In our model, there are two types of inefficiencies. First, there can
be multiple equilibria and agents may fail to coordinate on the efficient one. A policy in-
tervention may move the economy away from an inefficient equilibrium. Second, in the
case of asymmetric bargaining weights or search costs, the market can be imbalanced,
B 6= S. In this case, a small search cost subsidy for the short side of the market is generally
net beneficial, but a search subsidy targeted at the long side never is (see Proposition 3).

Applications and Simulations: The welfare and sorting results are useful for computa-
tional analyses. In particular, solving the planner’s problem solely requires finding an
allocation whereas solving for an equilibrium also requires finding values . Notice that
for an n-skill economy, the endogenous variables N , (xi ), (y j ), (βi ), (σ j ) are of order n,
but the matching matrix [mi j ] is of order n2. The assortative matching result reduces
the number of matching variables from n2 to 2n, which brings the dimensionality of
the whole problem from O(n2) to O(n). A further advantage of the welfare theorem is
that seeing the economy through the planner’s lens may provide intuition that is not
evident from the equilibrium conditions. Calibration of the model to fit empirical data
lies beyond the scope of the current paper, but the theoretical results found here offer
promise.
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8 Appendix

8.1 Remaining Proofs for Theorem 1:

We first prove the non-interior case and then the constant rank constraint qualification.

Proof. z is non-interior:
Given any optimal policy 〈z, M , (βi ), (σ j )〉, the FOCs imply that there are shadow

values (vi ), (w j ) such that (see proof of Theorem 1 in text):∑
j

y j mi j
(
gi j − vi −w j

)≥ 2c with equality when xi > 0∑
i

xi mi j
(
gi j − vi −w j

)≥ 2c with equality when y j > 0

N xi y j (gi j − vi −w j ) =−ηi j + η̂i j

where ηi j mi j = 0 and η̂i j (1−mi j ) = 0 and ηi j , η̂i j ≥ 0.

The above equations demonstrate the Constant Surplus equations for all i where
xi > 0. But, the Constant Surplus equation may not hold for skills i where xi = 0. There-
fore, for any skill i where xi = 0, we define v∗

i to be the unique value which solves∑
j y j max{gi j − v∗

i −w j ,0} = 2c. For any skill i where xi > 0, we define v∗
i = vi . Likewise,

for sellers j where y j = 0, define w∗
j to be the unique value which solves∑

i xi max{gi j − vi − w∗
j ,0} = 2c. For sellers j where y j > 0, define w∗

j = w j . Define a
matching matrix by m∗

i j = 1gi j−v∗
i −w∗

j >0 whenever xi = 0 or y j = 0 and setting m∗
i j = mi j

otherwise.
It now remains to be seen that 〈z, M∗, (v∗

i ), (w∗
j )〉 satisfies the equilibrium constraints.

The Constant Surplus Equations hold: For any skill i where xi > 0, from the above, we

have that
∑

j y j m∗
i j

(
gi j − v∗

i −w∗
j

)
= ∑

j y j mi j
(
gi j − vi −w j

) = 2c because v∗
i = vi and

whenever y j > 0, then mi j = m∗
i j and w j = w∗

j . For any skill i where xi = 0,∑
j

y j m∗
i j

(
gi j − v∗

i −w∗
j

)
=∑

j
y j max

(
gi j − v∗

i −w∗
j ,0

)
=∑

j
y j max

(
gi j − v∗

i −w j ,0
)= 2c

because w∗
j = w j whenever y j > 0. The same argument demonstrates the Constant

Surplus equations for the sellers.

IR Matching holds: For any two skills i , j where xi = 0 or y j = 0, the IR Matching condi-
tion holds by definition. For any two skills i , j where xi > 0 and y j > 0, then v∗

i = vi ,
w∗

j = w j , and m∗
i j = mi j and the IR Matching condition is a direct consequence of

FOC(mi j ).

Optimal Investments: Regarding optimal investments, just as in the proof in the main
section, here the values (vi ) satisfy incentive compatibility for investments. However,
it is not readily evident that the values (v∗

i ) satisfy incentive compatibility because the
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values for unrealized skills are modified, and may be increased. We now show that for all
unrealized skills vi ≥ v∗

i .
Since mi j xi y j = m∗

i j xi y j for any two skills i , j , the policy 〈z, M∗, (βi ), (σ j )〉 is ad-
missible and optimal. By the constraint qualifications, there are values (v̂i ), (ŵ j ) which
satisfy the FOCs for 〈z, M∗, (βi ), (σ j )〉. From FOC(βi ), we have that the marginal values
are equal for all i , v̂i − v̂i−1 =C b(i ,βi )−C b(i −1,βi ) = vi −vi−1. Likewise, for all sellers j ,
ŵ j − ŵ j−1 = w j −w j−1. Thus, there is a constant t such that v̂i + ŵ j = vi +w j + t for all
i , j . For any skill i such that xi > 0,

2c =∑
j

y j m∗
i j (gi j − v̂i − ŵ j ) =∑

j
y j m∗

i j (gi j − vi −w j − t )

=∑
j

y j mi j (gi j − vi −w j − t ) = 2c − t
∑
i j

y j mi j

Therefore, t = 0 and so v̂i + ŵ j = vi +w j for all i , j .
For any unchosen skill i ,∑

j
y j m∗

i j

(
gi j − v∗

i −w j
)= 2c ≥∑

j
y j m∗

i j

(
gi j − v̂i − ŵ j

)=∑
j

y j m∗
i j

(
gi j − vi −w j

)
Therefore, we can conclude that vi ≥ v∗

i . This demonstrates incentive compatibility.
For every skill i , vi ≥ v∗

i with equality if xi > 0. As (vi ) satisfied incentive compatibility
and (v∗

i ) differs by only lowering the value of unrealized skills, the values (v∗
i ) also satisfy

incentive compatibility. This establishes that for the values (v∗
i ), (w∗

j ), no agent wishes
to choose any unchosen skill and completes the proof.

Constraint Qualification

Lemma 3. The planner’s optimization problem satisfies the Constant Rank Constraint
Qualification.

Proof. We show that for each subset of the gradients of the active inequality constraints
and the equality constraints, the rank in a vicinity of the optimal point is constant (Janin
[1984]).
There is an immediate linear dependency among the gradients:∑

i∈I
α∇ f lowb

i − ∑
j∈J
α∇ f low s

j = 0

which follows from ∑
i∈I

f lowb
i − ∑

j∈J
f low s

j = 0

We will show that this is the only linear dependency, which suffices for the constant rank
constraint qualification. Suppose that

∑
nαn∇n = 0 where the summation is over all the

active gradients. To simplify notation, we label the skills as I = {0, . . . ,k} and J = {0, . . . , l }.
Notice first that (βi ) and (σ j ) appear only in the flow constraints:
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∇ β1 β2 β3 . . . βk N
σ j , xi ,
y j ,mi j

∇ f lowb
0 − f b(β1) 0 0 0 0 −x0

∑
j∈J y j m0 j . . .

∇ f lowb
1 f b(β1) − f b(β2) 0 0 0 −x1

∑
j∈J y j m1 j . . .

∇ f lowb
2 0 f b(β2) − f b(β3) 0 0 −x2

∑
j∈J y j m2 j . . .

. . . 0 0 . . . . . . . . . . . . . . .
∇ f lowb

k−1 0 0 0 f b(βk−1) − f b(βk ) −xk−1
∑

j∈J y j mk−1, j . . .
∇ f lowb

k 0 0 0 0 f b(βk ) −xk
∑

j∈J y j mk, j . . .

Since βi only shows up in up in f lowb
i , f lowb

i−1 it must be that

0 =∑
n
αn

∂ fn

∂βi ′
= ∑

i∈I
αi
∂ f lowb

i

∂βi ′
= f b(βi ′)αi ′ − f b(βi ′)αi ′−1 for all i ′

Thus, there is an α such that αi = α for all the coefficients of the constraints ∇ f lowb
i .

Similarly, there is a χ so that α j = χ for all the coefficients of the constraints ∇ f low s
j .

Furthermore, N only shows up in the flow constraints, so it must be that

−α∑
i

xi
∑

j
y j mi j −χ

∑
j

y j
∑

i
xi mi j = 0

which implies χ=−α (notice that
∑

i xi
∑

j y j mi j = 1/N ). Therefore, there is exactly one
linear dependency∑

αi∇ f lowb
i +∑

j
α j∇ f low s

j =α
(∑

i
∇ f lowb

i −∑
j
∇ f low s

j

)
= 0

Second, the coefficients on ∇(xi ≥ 0) and ∇X are all zeros. The reason is that xi appears
in the flow constraints and the constraints xi ≥ 0 and X = 0. By the previous step, in any
linear dependence, the flow constraints cancel each other out, so only the constraints
xi ≥ 0 and X = 0 are relevant. Therefore, if

∑
i ξi∇(xi ≥ 0)+ξ∇X = 0, then 0 = ξi

∂xi
∂xi

+ξ ∂X
∂xi

=
ξi −ξ, and so ξi = ξ for all i . If ξ 6= 0, then it must be that every inequality on x is active,
so xi = 0 for every i , contradicting 0 = X = 1−∑

i xi , which holds in any admissible tuple.
The same argument applies to the y j . So ξi = ξ= ξ j = 0 for all i , j .

Third, the coefficients on the mi j constraints are zeros. The reason is that the vari-
able mi j appears only in the flow equations and the inequality constraints on mi j . The
flow constraints cancel each other out. For the mi j constraints, ∇(1 ≥ mi j ≥ 0) =
(0, . . .0,±1,0. . .) and at most one of the mi j constraints can be active where the only non-
zero element is in the mi j coordinate and so these gradients coefficients must be 0.

8.2 Proof of Proposition 1:

Proof. Consider the economies Γc = 〈F b ,F s , I , J ,C b ,C s ,G ,c〉 indexed by their search cost
c and denote its constrained efficient welfare as Wc . Denote an optimal allocation as xc

with associated population Nc (there may be multiple optimal allocations). Notice that
by an imitation argument, Wc ≥Wc ′+2N (c ′)(c ′−c) because the planner could implement
xc ′ when faced with the economy xc . This implies that welfare is decreasing in c, as
expected. Reversing c and c ′ gives 2N (c)(c ′−c)+Wc ′ ≥Wc . Taking c ′ > c. this implies that
|Wc −Wc ′ | ≤ 2N (c)(c ′− c). That is, when N (c) is unique, it is the case that ∂Wc

∂c = −2N (c).
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Otherwise, N (c) can take a set of values, and the left-derivative is −2sup N (c) and the
right-derivative is −2inf N (c). To see convexity of Wc , it suffices to demonstrate that N
is non-increasing in c. Take c ′ > c. Since Wc ≥ Wc ′ + 2N (c ′)(c ′ − c), and similarly Wc ′ ≥
Wc +2N (c)(c − c ′). Adding these two equations together gives 0 > 2(N (c ′)−N (c))(c ′− c)
and therefore N (c) ≥ N (c ′).

8.3 Proof of Proposition 2:

Proof. The first-best allocation is unique and satisfies:

First-Best Matching: All pairs match. Since the marginal productivity of an agent is not
affected by the skills of her partner, all pairs match to minimize the search cost.

First-Best Investment: Buyer β and seller σ acquire the skills: i∗(β) = argmaxi αi −
C b(i ,β) and j∗(σ) = argmax j −κ j −C s( j ,σ). Denote by C b∗(β) =C b(i∗(β),β) the invest-
ment cost buyer β pays to acquire the efficient skill, and likewise C s∗(σ) =C s( j∗(σ),σ).

The social welfare of a match between buyer β and seller σ is ω(β,σ) = αi∗(β) −
C b∗(β)−κ j∗(σ) −C s∗(σ)− 2c. The assumption before the proof implies that there are
types, β′,σ′, β̂, σ̂ such that ω(β′,σ′) > ub +us >ω(β̂, σ̂). So, in the first-best, some agents
enter and others don’t.14

First-Best Entry: Buyer β and seller σ enter iff β ≤ β0 and σ≤ σ0. The entry thresholds
are pinned down by15 F b(β0) = F s(σ0) and ω(β0,σ0) = ub +us .

Since g is separable, Lemma 2 implies that in equilibrium, the marginal value equal
the marginal productivity: ∆vi =αi+1−αi , for every i , and∆w j =−(κ j+1−κ j ), for every j .
Therefore, the match surplus si j =αi −κ j − vi −w j is constant. As a result:

Equilibrium Matching: Theorem 2 demonstrates that in every equilibrium, all skills
match.

Equilibrium Investment: The individually optimal investments satisfy

argmax
i

{
vi −C b(i ,β)

}
= argmax

i

{
αi −C b(i ,β)

}
, for evey β

argmax
j

{
w j −C s( j ,σ)

}= argmax
j

{−κ j −C s( j ,σ)
}

, for every σ

The maximizers are equal because αi − vi and −κ j −w j are constant

Equilibrium Entry: First, we show that there is entry. If not, then vi∗(β) −C b∗(β) ≤ ub

and w j∗(σ) −C s∗(σ) ≤ us , for all β,σ, and so vi∗(β) −C b∗(β)+w j∗(σ) −C s∗(σ) ≤ ub +us .
Substituting in the Constant Surplus equations, it follows that, αi∗(β) −C b∗(β)−κ j∗(σ) −
C s∗(σ)−2c ≤ ub +us , which violates the assumption that there are types, β′,σ′ such that
ω(β′,σ′) > ub +us . By a similar argument, it cannot be that all agents enter. Second,
since some agents enter and others do not, denote by β,σ the threshold types for whom

14The case where everyone enters is trivial.
15Since buyers and sellers exit in equal numbers, in a steady state they must also enter in equal numbers.
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the entry constraints hold with equality, notice that

ub +us = v
i∗

(
β
)−C b∗

(
β
)
+w j∗(σ) −C s∗ (

σ
)

=α
i∗

(
β
)−C b∗

(
β
)
−κ j∗(σ) −C s∗ (

σ
)−2c =ω(β,σ)

The second equality follows from the Constant Surplus equation, vi +w j =αi −κ j −2c.
In a steady state, the same measure of buyers and sellers enter, F b(β) = F s(σ). These two
equations are the same as the equations that characterized the first-best entry decisions,
and therefore it must be that β=β0 and σ=σ0.

8.4 Proof of Theorem 3 and Corollaries 2 and 4

This subsection proves Theorem 3 and Corollaries 2 and 4. We extend the baseline model
to the generalized economy E = 〈F b ,F s , I , J ,C b ,C s ,G ,cb ,c s ,α,µ,ub ,us〉 by adding the
following additional features:
◦ Asymmetric search costs cb and c s and bargaining weight α (as in Section 6.1).
◦ A meeting function µ(B ,S) specifying the total number of meetings in each period and

satisfying constant returns to scale (as in Section 6.2).
◦ Agents have outside options ub and us and so entry is endogenous (as in Section 4.1).

To avoid trivial outcomes, we maintain the assumption that there are gains to trade for
at least two types, β and σ, so that

max
i∈I , j∈J

µ(1,1)gi j − cb − c s −C b(i ,β)−C s( j ,σ) > ub +us

We will now prove a more general version of the the previous results.

Corollary. For every generalized economy, let r ≡ α
1−α

c s

cb :

1. Every equilibrium has the same balance ratio B
S = r .

2. Given the balance ratio r , the constrained efficient investments, matching, and steady
state are an equilibrium outcome. That is, let 〈z, M , (βi ), (σ j )〉 maximize total welfare
under the previous constraints (7)-(15) and the additional constraint B

S = r . There
are values (v∗

i ), (w∗
j ), and a matching matrix M∗ such that 〈z, M∗, (v∗

i ), (w∗
j )〉 is an

equilibrium, where m∗
i j = mi j for all i , j such that xi , y j > 0.

Proof. 1) Let µ = µ(B ,S). As we previously showed in Section 6.1, in equilibrium, the
values satisfy:

vi =
(
µ/B

)(∑
j∈J

y j
[
mi j

(
vi +αsi j

)+ (1−mi j )vi
])+ (

1−µ/B
)

vi − cb ,∀i

w j =
(
µ/S

)(∑
i∈I

xi
[
mi j

(
w j + (1−α)si j

)+ (1−mi j )w j
])+ (1−µ/S)w j − c s ,∀ j
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Rewriting, we obtain the modified Constant Surplus equations:

∑
j∈J

y j mi j si j = cb

α
(
µ/B

) ,∀i (24)

∑
i∈I

xi mi j si j = c s

(1−α)
(
µ/S

) ,∀ j

⇒ cb

α
(
µ/B

) = ∑
i∈I

xi
∑
j∈J

y j mi j si j =
∑
j∈J

y j
∑
i∈I

xi mi j si j = c s

(1−α)
(
µ/S

)
⇒ B

S
= α

1−α · c s

cb
(25)

2) Decentralizing the efficient allocation given r . To simplify, we focus on the case where
the state is interior and the proof repeats that argument with the appropriate modifi-
cations. The same could be done for the boundary case as well. The original planner’s
problem 6 is modified because the agents have an outside option and there is a general
meeting function, and so the measure of buyers B need not equal the measure of sellers
S. The planner now chooses the state z = (

B ,S, (xi ), (y j )
)

instead of z = (
N , (xi ), (y j )

)
, the

investment thresholds, and the matching rule to maximize

W =µ(B ,S)
∑
i∈I

∑
j∈J

xi y j mi j gi j −Bcb −Sc s −∑
i∈I

∫ βi

βi+1

C b(i ,β) f b(β)dβ

− ∑
j∈J

∫ σ j

σ j+1

C s( j ,σ) f s(σ)dσ+
∫ ∞

β0

ub f b(β)dβ+
∫ ∞

σ0

us f s(σ)dσ

subject to the steady state conditions,

f lowi =
∫ βi

βi+1

f b(β)dβ−xiµ(B ,S)
∑
j∈J

y j mi j = 0,∀i

f low j =
∫ σ j

σ j+1

f s(σ)dσ− y jµ(B ,S)
∑
i∈I

xi mi j = 0,∀ j

B ,S ≥ 0

xi ≥ 0,∀i

y j ≥ 0,∀ j

X = 1−∑
i∈I

xi = 0

Y = 1− ∑
j∈J

y j = 0

1 ≥ mi j ≥ 0,∀i , j

F b(β|I |) = F s(σ|J |) = 0

B − r S = 0
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Notice that taking weighted sums of the flow conditions implies that F b(β0) = F s(σ0).
The planner’s problem is modified in four ways: i) agents can take an outside option
which is included in the objective function and the conditions F (β0) = 1 and F (σ0) = 1
are removed; ii) the measure of buyers B and sellers S may differ and since we assumed
that the are gains to trade, the conditions B ,S ≥ 0 will not bind at the efficient solution;
iii) we add the balance ratio constraint B

S = r ; and iv) the Inflow=Outflow equations are
modified because the outflow of buyers and sellers is

(B xi )

(
µ(B ,S)

B

) ∑
j∈J

y j mi j = xiµ(B ,S)
∑
j∈J

y j mi j , ∀i

(
Sy j

)(µ(B ,S)

S

)∑
i∈I

xi mi j = y jµ(B ,S)
∑
i∈I

xi mi j , ∀ j

The KKT regularity conditions continue to hold, by the same arguments as in Theorem 1
(because the linear dependencies of the gradients do not change).

Replacing B = r S in the objective:

W =µ(r S,S)
∑
i∈I

∑
j∈J

xi y j mi j gi j − r Scb −Sc s −∑
i∈I

∫ βi

βi+1

C b(i ,β) f b(β)dβ

− ∑
j∈J

∫ σ j

σ j+1

C s( j ,σ) f s(σ)dσ+
∫ ∞

β0

ub f b(β)dβ+
∫ ∞

σ0

us f s(σ)dσ

= Sµ(r,1)
∑
i∈I

∑
j∈J

xi y j mi j gi j − r Scb −Sc s −∑
i∈I

∫ βi

βi+1

C b(i ,β) f b(β)dβ

− ∑
j∈J

∫ σ j

σ j+1

C s( j ,σ) f s(σ)dσ+
∫ ∞

β0

ub f b(β)dβ+
∫ ∞

σ0

us f s(σ)dσ

As in the proof of Theorem 1, we define the Lagrangian and taking the FOC we get:

FOC(S): µ(r,1)

(∑
i∈I

∑
j∈J

xi y j mi j
(
gi j − vi −w j

))− r cb − c s = 0

(Recall that S > 0 and so the multiplies on this constraint is 0).
So, ∑

i∈I

∑
j∈J

xi y j mi j si j = r cb + c s

µ(r,1)

FOC(xi): µ(r S,S)
∑
j∈J

y j mi j gi j − viµ(r S,S)
∑
j∈J

y j mi j −µ(r S,S)
∑
j∈J

w j y j mi j −γ−φi = 0

where φi xi = 0. Analogously to the proof of Theorem 1:

Sµ(r,1)
∑

j
y j mi j si j = γ+φi (26)

Multiplying by xi and summing, γ= Sµ(r,1)
∑
i∈I

∑
j∈J

xi mi j y j si j
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Substituting in from FOC (S):

γ= Sµ(r,1)
r cb + c s

µ(r,1)
= S(r cb + c s) = Bcb +Sc s

Therefore, from equation (26) we get that∑
j

y j mi j si j = Bcb +Sc s

µ(r S,S)
= Bcb +Sc s

µ(B ,S)
(27)

Likewise:

FOC(yi): µ(r S,S)
∑
i∈I

xi mi j gi j −w jµ(r S,S)
∑
i∈I

xi mi j −µ(r S,S)
∑
i∈I

vi xi mi j −η−ψ j = 0

∑
i∈I

xi mi j si j =
λ+ψ j

µ(r S,S)

Using the previous two equations and multiplying by y j and then summing, we obtain:

Bcb +Sc s

µ(r S,S)
= ∑

i∈I

∑
j∈J

xi y j mi j si j = λ

µ(r S,S)

Therefore, for interior allocations, ψ j = 0 and:∑
i

xi mi j si j = Bcb +Sc s

µ(r S,S)
= Bcb +Sc s

µ(B ,S)
(28)

To decentralize the optimal allocation, we show that the shadow values of the flow
constraints (vi ), (w j ) together with the matching matrix M and state z constitute an

equilibrium. Notice that the balance ratio B
S = r ≡ αc s

(1−α)cb ⇐⇒ α= Bcb

Bcb+Sc s

We first show that the equilibrium constant surplus equations 24 hold, that is,∑
j∈J

y j mi j si j = Bcb

αµ(B ,S)
,∀i

∑
i∈I

xi mi j si j = Sc s

(1−α)µ(B ,S)
,∀ j

Notice that these equations coincide with equations 27 and 28 whenever α= Bcb

Bcb+Sc s .
The FOC(β0) condition is precisely the equilibrium entry condition for buyers, v0 −

C b(0,β0) = ub , that is, the shadow value v0 makes the threshold type β0 indifferent.
Likewise, the FOC(σ0) condition is precisely the equilibrium entry condition for sellers.

The rest of the proof uses the same argument as in Theorem 1: the FOC[mi j ] and
the complementary slackness conditions imply that the values and matching matrix
satisfy the equilibrium matching conditions si j > 0 → mi j = 1 and si j < 0 → mi j = 0;
and FOC[βi ] and FOC[σ j ] imply that the constrained efficient investments are incentive
compatible.
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