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1 Introduction

In academic and policy circles, there is an active debate about the implications of

introducing sovereign digital currency as a payment instrument alongside or instead

of physical currency. The literature has identified a number of benefits and costs of

digital currency. Benefits include lower transaction costs, increased competition in

the banking sector, and lower tax evasion. Costs include privacy breach, infringement

of personal freedom, and risk of disintermediation. Neither the benefits nor the costs

are strictly connected with the monetary nature of the instrument, which is often

conceived simply as an intangible version of cash.

In this paper, we identify a single intrinsic difference between digital and physical

currencies and show how it matters for optimal monetary policy. To make it trans-

parent that this is the only driving force, we contrast two pure currency economies

that are identical except for the type of currency that is used, either physical or digi-

tal, comparing their functioning and identifying the optimal monetary policy in each

case. The only difference between the two instruments is that with digital currency

the monetary authority can keep track of flows of money balances in and out of the

accounts, while with physical currency this is not possible.1 The extra information

collected through the digital technology can always be ignored, hence, any allocation

attainable with physical currency can be reached with digital currency, but there are

robust circumstances in which digital currency improves strictly upon cash.

We consider a monetary search economy à la Lagos and Wright (2005), in which

the velocity of circulation of currency is endogenous, since the traders choose their

search intensity, as in Rocheteau and Wright (2005). In the basic framework, we

adopt the matching technology of Lagos and Rocheteau (2005) and Kalai’s bargaining

protocol. We characterize the equilibrium and identify the optimal intervention by the

monetary authority with physical and digital currencies, respectively. With physical

currency, the optimal intervention is the Friedman rule, which, however, does not

always achieve efficient search intensity. Moreover, any deviation from the Friedman

rule always reduces the search intensity and the velocity of money. With digital

currency, instead, when the equilibrium search intensity is below its efficient level,

1This difference in the record-keeping possibilities with different types of payment instruments
is in the spirit of Kocherlakota (1998). A real world counterpart would be the digital euro that is
being designed by the ECB with traceability of digital currency flows; See the website of the ECB
on the digital euro.
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efficiency can be restored, paying interest to stimulate the velocity of circulation of

currency, with a policy that deviates from the Friedman rule. When the equilibrium

search intensity is excessive relative to efficiency, the allocation can still be improved

paying interest on idle balances to reduce the velocity of circulation of currency, thus

discouraging participation. Except in the knife-edge case that corresponds to the

Hosios condition of labor economics, the additional information available with digital

currency makes a difference for optimal policy.

We show that the result holds in a robust set of circumstances, beyond the specific

trading arrangement adopted in the basic framework. Following Gu and Wright

(2016), we generalize the trading protocol to a mechanism that subsumes, among

other schemes, Kalai and Nash’s bargaining protocols. We also show that the result

survives when the taxation of balances is not feasible, as in Hu, Kennan, and Wallace

(2009). Finally, the result continues to hold if the agents can try to manipulate the

system at a cost, opening ”shadow accounts” to obtain interest on balances that are

not truly active.

There is a large literature on monetary models with trading externalities and ex-

tensive margins, going back to Li (1994, 1995), including, among others, the work

of Lagos and Rocheteau (2005), Liu, Wang and Wright (2011), and Hu and Zhang

(2019). The book by Nosal and Rocheteau (2011) contains a thorough discussion of

the issues at stake. A growing literature examines the impact of digital currencies.

For example, recent papers that adopt the Lagos and Wright (2005) framework in-

clude Williamson (2022), Chiu et al. (2023), and Keister and Sanches (2023). In

these papers, interest can be paid with digital currency unlike with physical currency

but uniformly on all balances.2 Restricting the scheme to the payment of interest

uniformly on all balances, both active and idle, digital currency cannot enlarge the

set of implementable allocations relative to physical currency, as the optimal alloca-

tion coincides with the one achieved under the Friedman rule in the corresponding

physical currency economy. However, uniform interest is suboptimal, as it does not

take into account the additional information about monetary flows available through

digital currency, which helps alter the velocity of currency as required by efficiency.

The welfare enhancing role of paying interest on currency has been examined

in the monetary literature by Andolfatto (2010), Wallace (2014), and Bajaj et al.

2A scheme with uniform interest payment on privately issued digital currency is also examined
by Chiu and Wong (2022).
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(2017), among others. It is well known that interest-bearing money is not essential

if lump-sum taxes are available. In particular, the Friedman rule can be achieved

with a zero nominal interest rate if the monetary authority can implement a deflation

financed by a lump-sum tax that contracts the money supply at the appropriate

rate. A key novelty of our approach consists in showing that this result applies to

physical currencies but does not extend to digital currencies when extensive margin

considerations matter. This is because in a digital currency economy the monetary

authority can exploit the traceability of digital currency to directly affect the extensive

margin by rewarding active or idle balances with interest as needed. A lump-sum tax

instrument, being unconditional, cannot alter participation and affect the extensive

margin in such a manner. The implication is that, with digital currency, interest-

bearing money is essential even if a lump-sum tax instrument is available.

The paper proceeds as follows. Section 2 introduces the model. Section 3 presents

the results, and Section 4 compares them with the literature. Section 5 presents three

extensions, and Section 6 concludes. The appendix contains the omitted proofs.

2 Model

The model is a version of Lagos and Wright (2005) with an endogenous participation

decision, as in Rocheteau and Wright (2005) and Lagos and Rocheteau (2005). In

this section, we describe the fundamentals, how trade occurs, and derive the efficient

benchmark.

2.1 Fundamentals

Time is discrete. Each period is divided into two sub-periods, called day and night.

There is a continuum of infinitely lived agents who discount the future at a rate β ∈
(0, 1). At night, all agents meet in a centralized Walrasian market where a commodity

is traded that serves as the unit of account and can be produced and consumed by all

agents, with linear payoffs. During the day, agents meet in a decentralized market to

trade another commodity, whose non-negative quantity is denoted by q. A measure

πs of these agents are sellers of this commodity that, to be produced, requires a cost

represented by a twice differentiable, strictly increasing, and convex function c(q). In

turn, a measure πb of the agents are potential consumers of this product. Consumption
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of the commodity gives utility represented by a twice differentiable strictly increasing

and strictly concave function, u(q). We assume u(0) = c(0) = u′(∞) = c′(0) = 0,

and u′(0) = ∞. Define the net gain during the day as U(q) ≡ u(q)− c(q). Potential

consumers choose the search intensity α ∈ [0, 1], incurring a cost represented by a

twice differentiable, strictly increasing, and strictly convex function k(α). We assume

k(0) = k′(0) = 0. We denote by α the average search intensity of buyers.

2.2 Trade

During the day, in the decentralized market, buyers and sellers meet bilaterally ac-

cording to the matching function ζ(απb, πs) that is homogeneous of degree one, twice

continuously differentiable, strictly increasing and strictly concave in each argument.

Suppose also that ζ(0, πs) = ζ(ᾱπb, 0) = 0 and ζ(απb, πs) ≤ min{πb, πs} for any

α ≥ 0. Define ζ(απb, πs)/απb ≡ µ(πs/απb). We assume that µ(·) takes values in the

unit interval for any value of πs/απb and approaches unity when πs/απb diverges to

infinity.3. The probability of a buyer individual meeting is given by αµ(πs/απb). In

what follows, we normalize the population sizes to one, that is, πb = πs = 1. The

elasticity of the matching function with respect to the average participation rate α is

given by the function

ϵ(1/α) ≡ 1− µ′(1/α)

αµ(1/α)
,

that takes values in the unit interval. To ensure that the efficient benchmark is well

defined, we assume that ϵ(·) is not decreasing in its argument, hence not increasing

in α. The terms of trade within the meetings are determined with the Kalai protocol,

where θ ∈ (0, 1] denotes the bargaining power of the buyer.4 Traders cannot commit

to future actions and are anonymous during the day. Trades are not observable by

outsiders.

2.3 Efficiency

Due to the linearity of the payoffs, utility is transferable at night and has no impact

on welfare. Hence, we focus on day-time decisions. The efficient allocation is a

participation rate α and a day quantity q that maximize αµ(1/α)U(q)−k(α) subject

3This is the same matching function used by Lagos and Rocheteau (2005).
4See Kalai (1977). Lagos and Wright (2005) used the Nash protocol. In section 5.3, we show

that our results hold in a larger class of trading protocols, including Nash bargaining.
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to α ≤ 1. To avoid having to deal with the corner solution for the participation rate

in efficient allocation, we make the following assumption.5

Assumption 1 k′(1) > µ(1)ϵ(1)U(q∗).

The optimality condition for α is

µ(1/α)ϵ(1/α)U(q) = k′(α), (1)

that equates the expected gains from trade to the marginal cost of participation. The

optimality condition for q is

αµ(1/α)U ′(q) = 0, (2)

that equates the expected marginal benefit and the cost of production. Efficient

allocations, denoted with a star, satisfy equations (1) and (2). For any positive

participation rate, there is a unique q∗ that satisfies U ′(q) = 0, since U ′(0) = ∞,

U ′(∞) < 0 and U ′′(q) < 0, by the properties of the fundamentals. The difference in

LHS and RHS of equation (1) with q = q∗ has the following characteristics. First,

it is strictly positive for α = 0, by the properties of the matching function. Second,

it is negative for α = 1, by Assumption 1. Finally, it strictly decreases in α, by

the properties of the matching and cost functions. Hence, a unique positive α∗ < 1

satisfies (1). We conclude that there exists a unique efficient allocation (α∗, q∗).

Henceforth, we shall denote ϵ∗ ≡ ϵ(1/α∗).

3 Physical vs Digital Currency

The lack of monitoring and limited commitment prevent trade during the day in the

absence of a trading instrument. We consider two alternative economies, one in which

the trading instrument is physical currency and another with digital currency. These

economies are identical except for the use of the trading instrument. In particular,

in both economies, currency is introduced through accounts open by the monetary

authority for each agent at the beginning of the first period. We distinguish trading

instruments by the record-keeping technology embedded in the accounts. In the phys-

ical currency economy, the monetary authority only keeps track of the current balance

5Later in the paper, we examine the opposite assumption. The main result extends to this case.
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in the account, whereas in the digital currency economy the monetary authority keeps

track of both the current balance and all past balances.6 In both economies, we re-

strict attention to stationary symmetric equilibria with time-invariant real balances.

Throughout, we denote by ϕ the price of the currency in the night market.

3.1 Physical Currency

We begin with the physical currency economy. We characterize the equilibrium and

then determine the optimal policy.

3.1.1 Equilibrium

Consider meetings between buyers and sellers in the day market. Under Kalai bar-

gaining, buyers holding an amountm of currency choose a payment d ≤ m in exchange

for a quantity q to maximize u(q)− ϕd, subject to the constraint

(1− θ)[u(q)− ϕd] = θ[ϕd− c(q)]. (3)

Note that the real balances of the sellers do not affect the terms of trade. Moreover,

since sellers have no use for real balances in the day market, in equilibrium it is never

the case that they strictly prefer to bring currency. We assume that buyers spend all

their balances during the day. In the following, we will show that this is, in fact, the

optimal choice of buyers. This implies d = m, and we can rewrite (3) as

ϕm = (1− θ)u(q) + θc(q) ≡ g(q), (4)

6The assumption that the monetary authority only tracks the current balance in the account in
the physical currency economy implies that policy can depend solely on the current balance and not
on past balances; that is, information released by the record-keeping technology in previous periods
cannot be used. An equivalent alternative would be to assume that agents do not have accounts at
the central bank in the physical currency economy. In that case, given agents’ anonymity, even if the
monetary authority observes an agent’s current balance in each period, it cannot identify the same
agent in multiple periods and, therefore, cannot implement policies that condition on information
about past balances. We adopted the former specification only to facilitate a direct comparison
between the physical and digital currency economies. Moreover, if the monetary authority can levy
lump-sum taxes, the actual observation of current balances in the physical currency economy is
not necessary for our results. As shown in Section 4.2, this assumption is introduced to facilitate
comparison with Andolfatto (2010), Wallace (2014), and Bajaj et al. (2017), which study policies
in physical currency economies when lump-sum taxes are not feasible.
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which determines the quantity produced by sellers as a function of buyers’ real bal-

ances.

Consider now the participation decision of buyers with real balances ϕm at the

beginning of the day. Choosing α, buyers incur the cost k(α) and meet sellers with

probability αµ(1/α), in which case they spend all their balances. If buyers do not meet

sellers, they keep their balances. Buyers choose α ≤ 1 to maximize αµ(1/α)u(q)+[1−
αµ(1/α)]ϕm− k(α). Using (4), and ignoring for the moment the corner solution for

the participation rate, we obtain the following optimality condition for participation

µ(1/α)θU(q) = k′(α), (5)

which equates the expected buyers’ surplus to the marginal cost of participation.

We now move to the night market and consider the buyers’ choice of the amount

of balances to bring into the day market. Buyers choose m to maximize −ϕm +

β{−k(α) + αµ(1/α)u(q) + [1 − αµ(1/α)]ϕ+1m}. Using equation (4), we obtain the

inter-temporal condition for the optimum

ϕ = βϕ+1

[
αµ(1/α)

u′(q)

g′(q)
+ 1− αµ(1/α)

]
. (6)

In words, an extra unit of currency acquired presently can be spent next period on

day consumption if the agents turn out to be buyers and are matched to sellers or

kept idle until the night market otherwise.

In an economy with physical currency, the monetary authority can inject or tax

currency in a lump-sum fashion. If we let M denote the quantity of currency and τ

denote the growth rate of currency stock, we have M+1 = (1+ τ)M . The stationarity

of real balances implies ϕ/ϕ+1 = M+1/M = 1 + τ , and we can rewrite (6) as follows

u′(q)

g′(q)
=

τ + 1− β + αµ(1/α)β

αµ(1/α)β
. (7)

The existence of a monetary equilibrium requires τ ≥ β − 1 to prevent an infinite

demand for money. This condition also ensures that it is never strictly optimal for

the buyers to bring balances they do not plan to use, hence vindicating our initial

assumption that the buyers spend all their balances. A stationary symmetric physical

currency equilibrium is a pair (α, q), such that α = α and (5) and (7) are satisfied
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for τ ≥ β − 1. The existence of equilibrium for any feasible policy is established as

in Lagos and Rocheteau (2005), giving (α(τ), q(τ)).

3.1.2 Optimal Policy

The right-hand side of (7) increases in τ . Since the function u′(q)/g′(q) decreases in

q, due to the strict concavity of the utility function and the convexity of the cost

function, q′(τ) < 0. Since g′(q) = u′(q)−θU ′(q), by the equilibrium condition (7), the

efficient quantity q∗ is only achieved if we set τ = β−1. This is the policy known as the

Friedman rule. The participation condition (5) is affected by policy only indirectly

and the participation rate decreases with policy, α′(τ) < 0. If θ = ϵ∗, conditions

(5) and (1) coincide at the Friedman rule and therefore equilibrium participation is

efficient, i.e., α = α∗. In this non-generic case, which corresponds to what is known in

the labor literature as the Hosios condition, buyers choose to participate in the exact

right amount so that the first-best is achieved with τ = β − 1. When θ ̸= ϵ∗, at the

Friedman rule that achieves q = q∗, conditions (5) and (1) do not coincide, and by the

properties of the functions k′(α) and µ(1/α) it immediately follows that equilibrium

participation is inefficient, i.e., α ̸= α∗. In particular, since k′(α)/µ(1/α) is increasing

monotonically in α, if θ < ϵ∗, participation is inefficiently small, i.e., α < α∗, while if

θ > ϵ∗, it is inefficiently large, i.e., α > α∗. The next Lemma summarizes the result.

Lemma 1 Efficiency at the intensive margin is only achieved at the Friedman rule. If

θ = ϵ∗, the Friedman rule achieves efficiency in the intensive and extensive margins;

if θ ̸= ϵ∗, the Friedman rule achieves efficiency only in the intensive margin: for

θ < ϵ∗, participation is inefficiently low, for θ > ϵ∗, inefficiently high.

The Friedman rule drives the intensive margin to efficiency rewarding balances at the

rate of time preference to compensate for the elapse of time. However, it is unable to

drive the participation decision towards full efficiency, as it lacks the tools to stimulate

or discourage buyers’ participation.7 When θ < ϵ∗, there is a thick market externality

at work, according to which an increase in the search intensity of buyers increases

the matching probability of sellers. When θ > ϵ∗, there is a congestion externality at

work, according to which an increase in the search intensity of buyers decreases their

7To emphasize the role of trading externalities in preventing the Friedman rule from achieving
full efficiency, in the Appendix we consider an economy where the decentralized market is replaced
by a Walrasian market where there is no externality. The Friedman rule achieves the first-best.
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matching probability. In order to internalize these externalities, the buyers would

need to receive a share of the surplus commensurate with their contribution to the

matching process, which requires θ = ϵ∗.

3.2 Digital Currency

With digital currency, record-keeping technology allows the monetary authority to

track the flows of balances in and out of the accounts. In what follows, we use

this information to separate balances in the end-of-the-day market into two groups,

labeled passive and active. A balance in an account at the end of the day market is

passive if it was already in the account at the beginning of the day market; while a

balance in an account at the end of the day market is active if it was transferred into

the account during the day market. We consider interventions where the monetary

authority treats these balances differently, offering two distinct nominal interest rates,

ip for passive balances and ia for active balances. We will also use the net interest

i ≡ ia − ip. We proceed by first determining the equilibrium and then characterizing

the optimal policy.

3.2.1 Equilibrium

Consider a meeting between sellers and buyers with m units of digital currency in

the day market. If buyers transfer d balances to sellers and receive q units of goods,

the buyer’s surplus is Sb = u(q) − ϕ(1 + ip)d, while the seller’s surplus is Ss =

−c(q) + ϕ(1 + ia)d. Observe that the buyer’s surplus includes the interest lost on

the currency that was transferred to sellers, and correspondingly, the seller’s surplus

includes the interest gained in the process. The total surplus is S = U(q) + ϕid, that

is, the gain from trade and the net interest payment to the transferred balances.

With Kalai bargaining, buyers holding an amount m of currency choose d ≤ m

in exchange for a quantity q to maximize u(q)− ϕ(1 + ip)d subject to the constraint

(1 − θ)Sb = θSs. As with physical currency, the real balances of the sellers do not

affect the terms of trade. However, sellers may want to bring real balances to the

day market, depending on the nominal interest rate paid on idle balances. We will

examine this incentive below, showing that it is never part of the optimal policy to

give sellers the incentive to bring balances into the day market. We will also show

that, as in the case of physical currency, buyers spend all their balances during the
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day. This allows us to rewrite the constraint (1− θ)Sb = θSs as

ϕm ≡ g(q)

1 + ip + θi
. (8)

Consider now the participation decision of buyers with balances m at the beginning

of the day market. Choosing α, buyers incur a cost k(α), meet sellers with probability

αµ(1/α), and spend all their balances. If buyers do not meet sellers, they keep their

balances until the night market and receive an interest payment ip. Formally, buyers

choose α ≤ 1 to maximize αµ(1/α)u(q) + [1 − αµ(1/α)](1 + ip)ϕm − k(α). Define

δ(q) ≡ u(q)/U(q) and F (q, i, ip) ≡ [1+ ip+δ(q)i]/(1+ ip+θi). Using (8) and ignoring

for the moment the corner solution for the participation rate, we obtain the optimality

condition for participation

µ(1/α)θF (q, i, ip)U(q) = k′(α), (9)

which equates the expected buyers’ surplus to the marginal cost of participation. We

now move to the night market. Buyers choosem to maximize −ϕm+β[αµ(1/α)u(q)+

(1−αµ(1/α))(1+ ip)ϕ+1m−k(α)]. Using (8), we obtain the inter-temporal condition

for the optimum

ϕ = βϕ+1

{
αµ(1/α)

u′(q)

g′(q)
(1 + ip + θi) + (1− αµ(1/α))(1 + ip)

}
. (10)

In words, an extra unit of currency acquired presently can be spent next period on

day consumption if the agents turn out to be buyers and are matched to sellers or

kept idle until the night market otherwise. In either case, the agents receive interest

payments for actively using the balances or keeping them idle.

The monetary authority can inject or tax currency in a lump-sum manner. It

can also inject or tax currency using the nominal interest rates ip and i. If we let τ

denote the rate at which money is injected or taxed in the economy by lump sum,

we have M+1 = [1 + τ + ip + αµ(1/α)i]M . The stationarity of real balances implies

ϕ/ϕ+1 = M+1/M . Therefore, we can rewrite (10) as

u′(q)

g′(q)
=

τ + [1− β + αµ(1/α)β](1 + ip) + αµ(1/α)i

αµ(1/α)β (1 + ip + θi)
≡ G(α, τ, i, ip). (11)
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The existence of a monetary equilibrium requires ϕ ≥ βϕ+1(1 + ip), otherwise an

agent would have the incentive to demand an infinite amount of currency. Thus, we

obtain the following condition

τ ≥ −[(1− β)(1 + ip) + αµ(1/α)i]. (12)

A stationary symmetric digital currency equilibrium is a pair (α, q) such that α = α

and (9) and (11) are satisfied for policy (τ, i, ip) that satisfies (12). In the appendix,

we provide sufficient conditions for the existence of an equilibrium.

An increase in τ has no direct impact on the participation of buyers; but it reduces

the surplus, with a negative impact on the quantity produced in trade meetings. In

contrast, changes in the nominal interest rates on active and idle balances impact

both the extensive and the intensive margins. Let us compare these effects with the

physical currency economy in which there are no interest payments.

We start with the intensive margin. Fixing the extensive margin, an increase

in interest rates leads to money creation, which negatively impacts the real rate of

return on balances. This reduces the demand for real balances and the quantity in

trade meetings, as captured in the numerator of G(α, τ, i, ip). However, an increase

in interest rates increases the quantity traded for any given real balances. This is so

because an increase in interest rates increases the trade surplus, which leads to an

increase in the quantity produced in the meetings. This positive effect is captured in

the denominator of G(α, τ, i, ip). The overall effect is ambiguous.

Consider now the extensive margin. Fixing the intensive margin, if the net interest

payment is nil F (q, 0, ip) = 1. Thus, rewarding idle balances alone cannot stimulate

participation. Instead, if the interest payment on the passive balances is nil but

i > 0, we have F (q, i, 0) > 1, since δ(q) > 1 ≥ θ. Thus, an interest payment on active

balances has a positive impact on the extensive margin. It does so by increasing the

participation of buyers. Intuitively, an increase in i encourages participation due to

its direct positive effect on trade surplus.

3.2.2 Optimal Policy

In the digital currency economy, in addition to impacting the overall return on cur-

rency through changes in τ , the monetary authority can use i and ip to target how the

return on currency will be distributed between agents holding idle balances and agents
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holding active balances. In what follows, we will show that the availability of these

additional instruments allows the monetary authority to implement the first-best in

many circumstances. A policy is a triple (τ, i, ip). Consider first the knife-edge case

with θ = ϵ∗. Since F (q∗, 0, 0) = 1, first-best is achieved with τ = β− 1 and i = ip = 0

as in the physical currency economy.

Proposition 1 If θ = ϵ∗, the Friedman rule achieves the first-best.

When the Hosios condition is satisfied, efficiency is obtained without interest

payment through the Friedman rule. Next, we distinguish two cases on either side

of the Hosios condition, the case in which the thick market externality prevails, with

θ < ϵ∗, and the case in which the congestion externality prevails, with θ > ϵ∗.

3.2.2.1 Thick Market Externality

Let us begin with the case in which the thick market externality prevails, with θ < ϵ∗.

Since g′(q) = u′(q)− θU ′(q), to induce efficient production q∗ within trade meetings,

given the interest payments, the monetary authority sets τ so that G(α∗, τ, i, ip) = 1,

that is,

τ = −[(1− β) (1 + ip) + α∗µ(1/α∗) (1− βθ) i]. (13)

Using (13), the condition (12) with α = α∗, which guarantees the existence of mon-

etary equilibrium, boils down to i ≥ 0. Regarding efficient participation, given τ ,

the monetary authority sets the interest payments to ensure that the equilibrium

participation condition (9) replicates the efficient participation condition (1), both

evaluated in efficient allocation (α∗, q∗). Given τ , the monetary authority sets the

interest payments (i, ip) to achieve the following condition

θF (q∗, i, ip) = ϵ∗. (14)

The idea is that the nominal interest payments should compensate whenever possible

for the insufficient bargaining power of buyers, increasing the trade surplus as needed

to achieve the first best.

A natural candidate for the implementation of the first-best through equation (14)

has ip = 0 and the optimal net interest payment

i∗ =
ϵ∗ − θ

θ[δ(q∗)− ϵ∗]
, (15)
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which is positive since θ < ϵ∗ and δ(q∗) > 1 > ϵ∗. Using (13), we obtain

τ ∗ = β − 1− α∗µ(1/α∗)(1− βθ)(ϵ∗ − θ)

θ[δ(q∗)− ϵ∗]
. (16)

Since i∗ > 0, condition i ≥ 0 is satisfied. Moreover, i∗ > 0 = i∗p implies ϕ > βϕ+1,

so the economy is away from the Friedman rule. There is money creation under the

optimal policy if τ ∗ + α∗µ(1/α∗)i∗ > 0, which can be rewritten as

β >
δ(q∗)− ϵ∗

δ(q∗)− ϵ∗ + α∗µ(1/α∗)(ϵ∗ − θ)
,

where the lower bound is smaller than 1 since δ(q∗) > 1 > ϵ∗ and θ < ϵ∗. The next

proposition summarizes the result.

Proposition 2 If θ < ϵ∗, there exist policy schemes that deviate from the Friedman

rule and implement the first-best rewarding active balances with positive interest and

passive balances with zero interest.

This is the main result of the paper. When there are distortions that would imply

inefficiencies in both intensive and extensive margins, the optimal monetary policy in

the physical-currency economy, which is the Friedman rule, achieves efficiency along

the intensive, but not the extensive margin. In the corresponding digital currency

economy, the optimal policy also achieves efficiency along the extensive margin, stim-

ulating the participation of the buyers in the process of trade through the payment

of interest on active but not idle balances when the thick market externality prevails.

As can be seen in (10), the optimal policy is different from the Friedman rule. In fact,

if the authority chooses the Friedman rule, efficiency along the intensive margin re-

quires i = 0, otherwise there would be an infinite demand for money. However, i = 0

does not incentivize the participation of buyers, which is inconsistent with efficiency

at the extensive margin if there is a thick market externality. Unlike in the physical

currency economy, the optimal policy is feasible in the digital currency economy, since

the technology allows the authority to observe the flows of balances in and out of the

accounts, opening up the possibility to distinguish active and idle balances.

Clearly, the optimal interest rate on active balances (15) is a decreasing function of

θ. When buyers have more bargaining power in negotiations with sellers, they acquire

a larger share of the gains from trade, which increases their willingness to participate
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in trade. Therefore, a smaller interest payment is needed to achieve efficiency.

Another interesting result of comparative statics concerns productivity. Suppose

that the cost function is scaled by a factor 1/z, where z reflects productivity. The

condition determining the first-best production is u′(q) = c′(q)/z, giving q∗(z) and,

by equation (15), i∗(z). By implicit differentiation, we obtain the following condition

∂q∗(z)

∂z
=

q∗(z)

z

[
c′′(q∗(z))q∗(z)

c′(q∗(z))
− u′′(q∗(z))q∗(z)

u′(q∗(z))

]−1

,

which is strictly positive by the strict concavity of the utility function and the con-

vexity of the cost function. The derivative of the optimal interest rate on i∗(z) with

respect to z is

∂i∗(z)

∂z
= −i∗(z)

z

u(q∗(z))

c(q∗(z))/z

u′(q∗(z))q∗(z)

u(q∗(z))

∂q∗(z)

∂z

z

q∗(z)
,

which is strictly negative, since the elasticity of first-best output is strictly positive.

Thus, the optimal interest payment on active balances is countercyclical.

3.2.2.2 Congestion Externality

Next, we consider the case in which the congestion externality prevails, with θ > ϵ∗,

making participation excessive relative to efficiency. This scenario is examined by

Lagos and Rocheteau (2005) in a cash economy. They find that if θ = 1 and buyers

have all the bargaining power, the optimal policy is the Friedman rule. The same

result holds in our physical currency economy, as the two economies are identical

if θ = 1.8 In what follows, we show that although the first best can no longer

be achieved, digital currency achieves a strictly larger welfare compared to physical

currency.

First, note that efficient participation in q = q∗ requires F (q∗, i, ip) = ϵ∗/θ < 1,

which, in turn, requires i < 0. However, if i < 0, q = q∗ violates the condition for

the existence of a monetary equilibrium. Intuitively, if q = q∗ there is no liquidity

premium. In this case, if i < 0 and idle balances pay a higher interest rate than

active balances, buyers strictly prefer to keep their balances. In other words, q must

be strictly lower than q∗ if i < 0. Hence, when the congestion externality prevails,

8Lagos and Rocheteau (2004) generalize this result for arbitrary values of θ. They consider Nash
bargaining, but it is straightforward to adapt their proof to the case of Kalai bargaining.
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the scheme with interest payments on active and passive balances does not attain the

first-best.

However, it is still possible to show that paying positive interest on passive bal-

ances and using τ to implement the Friedman rule strictly improves upon the policy

τ = β − 1 and i = ip = 0. In particular, consider the policy i = −σip with σ ∈ (0, 1)

and τ = −(1−β)(1+ ip)−αµ(1/α)σip. This policy satisfies (12) at equality, so it im-

plements the Friedman rule in the digital currency economy. Denote by (α(ip), q(ip))

the equilibrium allocation as a function of policy. Under this policy, the derivative of

the welfare W (ip) = α(ip)µ(1/α(ip))U(q(ip))− k(α(ip)) with respect to ip is

∂W (ip)

∂ip
= µ(1/α)

[
ϵ∗U(q)− θ

(1 + ip)U(q)− u(q)σip
1 + (1− θσ) ip

]
∂α

∂ip
+ U ′(q)

∂q

∂ip
.

If ip = 0, we have ia = 0 and τ = −(1 − β). This intervention corresponds to the

optimal policy in the physical currency economy. Evaluating the derivative of welfare

at ip = 0, we obtain

∂W (0)

∂ip
= (θ − ϵ∗)

U(q∗) [(1− θ)u(q∗) + θc(q∗)] θσ
k′(α)
α

[
1− ϵ∗ + k′′(α)α

k′(α)

] ,

where we used the fact that q(0) = q∗. The implication is that if θ > ϵ∗, ip = 0 is

not optimal. In particular, there is an improvement under digital currency away from

ip = 0 if we set ip > ia > 0. The next proposition follows.

Proposition 3 If θ > ϵ∗, there exist policy schemes that improve upon the Friedman

rule and zero interest payment that rewards passive balances with higher interest than

active balances.

In this case, paying higher interest on passive balances relative to the interest paid

on active balances provides an improvement. This is because rewarding idle relative

to active balances discourages participation that is excessive relative to efficiency.

3.2.3 Hosios Condition

We can summarize the results obtained so far as follows. As regards participation, two

externalities are at work in this model, known in labor economics as the thick mar-

ket and the congestion externality, respectively. Due to these externalities, traders
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do not correctly incorporate the effect of their participation decision on the equilib-

rium. When the thick market externality prevails, traders under participate; when

the congestion externality prevails, traders over participate. Whether the former or

the latter externality prevails depends on the bargaining power θ, which determines

how trades split the day surplus, relative to the elasticity of the matching function

in efficient participation ϵ∗, which determines the correct split of the surplus. In the

knife-edge case in which the bargaining power coincides with the elasticity of the

matching function evaluated at efficient participation, that is, the Hosios condition

of labor economics θ = ϵ∗, the two externalities exactly offset each other and the

first-best allocation for extensive and intensive margins is achieved by setting lump-

sum taxation appropriately according to the well-known Friedman rule. For lower

values of the bargaining power θ < ϵ∗, the thick market externality prevails, and,

as a consequence, the equilibrium participation is too small relative to efficiency. In

this case, paying higher interest on active than passive balances, something that can

be done with digital but not with physical currency, increases the day trade surplus,

providing an additional incentive to participate in day trade. Setting the net inter-

est rate and lump-sum taxation appropriately, the first-best can be restored in the

digital currency economy. For higher values of the bargaining power θ > ϵ∗, conges-

tion externality prevails and, as a consequence, equilibrium participation is too large

relative to efficiency. In this case, participation should be discouraged by rewarding

passive balances relatively more than active balances. Although full efficiency cannot

be obtained in this case, the interest payments available with digital currency can

help improve the allocation relative to the optimal policy benchmark with physical

currency.

3.2.4 Velocity of Circulation

It is well known from the work of Levine (1991), Kehoe, Levine, and Woodford (1992)

and Wallace (2014) that extensive margins play a key role in monetary economies.

In our framework, the extensive margin is captured by the endogenous participation

decision of the buyers. Observing the flows of digital currency allows the implemen-

tation of intervention schemes that improve welfare by giving additional incentives

to participate in trade, thus increasing the velocity of money. With both physical

and digital currency, a fraction α of traders end up at meetings in which the currency

changes hands for sure, with unit velocity of circulation, and a fraction 1−α of traders
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keep their currency in the account, in which case the velocity is nil. Therefore, the

velocity of circulation in both economies is α. If θ < ϵ∗, the velocity of circulation is

inefficiently low in equilibrium relative to efficiency since the thick market externality

prevails. Stimulating the velocity by paying a premium for active balances relative

to idle ones helps improve the allocation. Under the optimal policy, the first-best is

achieved. If θ > ϵ∗, the velocity of circulation of currency needs to be discouraged,

being too large at equilibrium relative to efficiency, since the congestion externality

prevails. Reducing the velocity by paying a premium for holding idle balances relative

to active ones helps improve the allocation.

3.2.5 Friedman Rule

With physical currency, when the only policy instrument is τ , the optimal monetary

policy is the Friedman rule. There is no role for raising the currency growth rate

above the Friedman rule even when the Hosios condition does not hold and the

search intensity is inefficiently high or low, since the currency growth rate affects

search intensity through the match surplus, which is maximal at the Friedman rule

under Kalai bargaining.

However, if the extensive margin was captured as a choice by agents to participate

in the decentralized market as buyer or seller (e.g., Rocheteau and Wright (2009)),

then inflation would have a first-order effect on the participation decision, even in

the physical currency economy. In such a model, a deviation from the Friedman

rule would increase welfare when congestion externality prevails (e.g., Nosal and Ro-

cheteau (2011)). We have shown that, with digital currency, a deviation from the

Friedman rule can be optimal if there is a congestion externality, but it can also be

optimal when there is a thick market externality.

3.2.6 Complete Participation

Finally, consider what happens when Assumption 1 is violated, that is, k′(1) ≤
µ(1)ϵ(1)U(q∗). In this case, the first-best participation is always complete, α∗ = 1

and ϵ(1) = ϵ∗. Since efficient participation is complete, there cannot be excessive

participation relative to efficiency; hence, the only relevant case is when the thick

market externality prevails, with θ < ϵ∗. Define θ∗ ≡ k′(1)/[µ(1)U(q∗)]. In this case,

given τ , the interest rates are chosen to satisfy the inequality θF (q∗, i, ip) ≥ θ∗. There
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are two cases. If θ ≥ θ∗, since F (q∗, 0, 0) = 1, the first-best can be achieved without

interest payments, i = ip = 0. With zero interest payments, the optimal policy is

τ = β − 1. In this case, the first-best can be achieved in the physical currency econ-

omy by the Friedman rule. Next, consider θ < θ∗ < 1. A natural policy candidate for

the implementation of the first-best involves setting ip = 0. The net interest payment

satisfies the following condition

i ≥ θ∗ − θ

θ[δ(q∗)− θ∗]
≡ i∗∗,

where i∗∗ > 0, since θ < θ∗ < 1 and δ(q∗) > 1. We take the smallest interest payment

i∗∗ as the natural policy choice. Using (13) and i∗∗, we obtain

τ ∗∗ = β − 1− µ (1− βθ) (θ∗ − θ)

θ[δ(q∗)− θ∗]
.

Since i∗∗ > 0, i ≥ 0 is satisfied. Moreover, i∗∗ > 0 = i∗∗p implies ϕ > βϕ+1. The

optimal policy is away from the Friedman rule. In fact, money is created under the

optimal policy if τ ∗∗ + µi∗∗ > 0, that is, when the agents are sufficiently patient.

Therefore, our results extent to the case in which efficiency requires complete partic-

ipation.

4 Constrained Intervention

In this section, we compare our results with the literature by exploring constrained

intervention schemes. First, we examine interventions that pay the same interest rate

on idle and active balances. Second, we examine interventions that do not involve the

taxation of balances. For simplicity, from now on we assume a degenerate matching

function with unit elasticity.

4.1 Uniform Interest on Balances

The existing literature distinguishes sovereign digital currency and cash assuming

that they are imperfect substitutes as means of payment. In particular, sovereign

digital currency is a closer substitute for bank-issued debt than cash. Except for

this difference, sovereign digital currency is treated as a digital form of cash and the
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only notable difference between them is the fact that uniform interest can be paid on

sovereign digital currency.

In our model, treating digital currency as physical currency in digital form means

assuming that the former embeds the same record-keeping technology as the latter,

which implies that the monetary authority can no longer distinguish between passive

and active balances and must set ia = ip, that is, i = 0. Setting i = 0 in (11),

we obtain a condition whose only difference from the equilibrium condition in the

physical currency economy (7) is that in the digital currency economy with uniform

interest, the policy instrument is given by τ divided by the gross nominal interest

rate. Consider now the extensive margin of the digital currency economy. If i = 0

in (9), we obtain a condition which coincides with (5), the extensive margin in the

physical currency economy. The next proposition follows.

Proposition 4 With i = 0, an outcome (α, q) is an equilibrium in the physical cur-

rency economy if and only if it is an equilibrium in the digital currency economy.

Therefore, assuming that digital currency is simply a digital form of physical cur-

rency, the differences between these instruments must be related to extrinsic features

of the economy that make physical and digital currencies imperfect substitutes as

means of payments rather than intrinsic features.

4.2 No Taxation of Balances

The taxation of balances may not be feasible in pure currency economies. The idea

is that the same frictions on commitment and monitoring that make money essential

also prevent the working of lump-sum taxation schemes.9 In our case, this translates

into a restriction on policies with τ ≥ 0. Even if balances cannot be taxed, there

still exists an open region of parameters that replicates the results obtained in the

previous section, that is, the observation of balance flows still allows digital currency

to dominate physical currency and implement the first-best.

To see the point, assume that the monetary authority transfers τ(ϕm) ≥ 0 real

balances to each account with ϕm real balances at the end of the day market for all

9This has been pointed out, among others, by Hu, Kennan, and Wallace (2009), Andolfatto
(2010), Wallace (2014), and Bajaj et al. (2017)
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m ≥ 0.10 Thus, if buyers give ϕm real balances to sellers with zero balances during the

day market, sellers anticipate that they will receive a transfer of τ(ϕm) real balances

at the end of the day market. Under Kalai bargaining, the quantity produced in the

meetings satisfies

ϕm+ τ(ϕm) = (1− θ)u (q) + θc(q) ≡ g(q). (17)

In the physical currency economy, consider a transfer scheme where the monetary

authority makes a transfer of real balances to each account that conditions on the

real balance in the account. The optimal scheme compensates for the inflation tax

accounts with real balances larger than or equal to the socially optimal amount, that

is, the amount of real balances that induces the sellers to produce the efficient quan-

tity. The transfer is τg(q∗)/(1+ τ) if ϕm ≥ g(q∗)/(1+ τ) and nil otherwise. Provided

τ is large enough and traders are patient enough, this scheme ensures that efficient

quantities are produced. In particular, the transfer scheme replicates the allocation

achieved under the optimal policy in the physical currency economy with taxation.

However, since this transfer scheme cannot separate idle and active balances, it does

not directly give buyers the incentive to participate. Hence, also without taxation,

participation remains inefficiently low in the physical currency economy.

Consider the digital currency economy. Since flows in and out of accounts are

observed by the authority, the optimal scheme compensates for the inflation tax only

active balances. This ensures not only efficient production at trade meetings but also

efficient participation of buyers. In particular, the transfer scheme gives a positive

transfer τ(ϕm) = τg(q∗)/(1 + τ) exclusively to active balances that are at least

the socially optimal amount ϕm ≥ g(q∗)/(1 + τ). This is the case of the balances

held by sellers who participated in a trade meeting in which the buyers brought

the socially optimal amount of real balances. Sellers reciprocate by producing the

efficient quantity in exchange for these balances. Buyers who brought g(q∗)/(1 + τ)

real balances choose α to maximize αu(q∗) + (1 − α)g(q∗)/(1 + τ) − k(α). Ignoring

the corner solution, the optimum satisfies u(q∗)− g(q∗)/(1 + τ) = k′(α). In the night

10The transfer scheme we use is adapted from Bajaj et al. (2017). This transfer scheme is feasible
because balances can be observed in a physical currency economy. In Bajaj et al. (2017) transfers
are given to agents at the beginning of the day market, while we are considering a slightly modified
version, where agents receive their transfers at the end of the day market. This is immaterial in the
physical currency economy but it matters in the digital currency economy.
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market, there are two possibilities. If buyers bring ϕm < g(q∗)/(1 + τ), their payoff

is

V = −ϕ−1m+ β [αu(q) + (1− α)g(q)− k(α)] ,

where α = k′−1(θU(q)). If, instead, buyers bring g(q∗)/(1 + τ) real balances, their

payoff is

V = −g(q∗) + β [u(q∗)− k(α∗)] .

In the appendix, we prove that if τ is sufficiently large and traders sufficiently patient,

we have V ≥ 0 ≥ V .

Proposition 5 There are lower bounds τ and β, such that if τ ≥ τ and β ≥ β, the

transfer scheme τ(ϕm) replicates the allocation achieved under the optimal policy in

the digital currency economy with the taxation of balances.

Proof. Since ϕ → 0 when τ → ∞, (17) implies that q → 0 when τ → ∞. Thus,

there exists τ such that V ≤ 0 for all τ ≥ τ . If τ ≥ τ , a sufficient condition for

buyers to bring real balances g(q∗)/(1 + τ) is V ≥ 0, which can be rewritten as

β ≥ g(q∗)/[g(q∗) + k′(α∗)− k(α∗)] ≡ β where β < 1 since k′(α∗) > k(α)/α∗ ≥ k(α∗)

by the properties of the function k(·) and α∗ ≤ 1.

The only substantial difference between these schemes and the optimal interven-

tions considered in the case where real balances can be taxed is that agents must be

sufficiently patient, both in the physical currency and in the digital currency econ-

omy. This is so because, unlike the scenario where real balances can be taxed and the

optimal intervention can condition on the agent’s discount factor, here the injection

of real balances must be sufficiently large to convert the decision of a buyer on how

much real balances to bring, into a binary choice between bringing the socially opti-

mal amount and bringing zero balances. Sufficient patience is required for the former

option to dominate.

5 Robustness

In this section, we extend the result to a larger class of bargaining procedures than just

Kalai bargaining, to a modified environment in which trade occurs simultaneously in

decentralized and centralized markets, and show that the scheme with the payment
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of interest on active balances is robust to manipulation attempts that involve the

opening of shadow accounts.

5.1 General Trading Mechanism

We have adopted the Kalai bargaining procedure for simplicity as it makes compu-

tations easier. Other bargaining schemes could be used without altering the main

results. Next, we adapt to our setting the monetary mechanisms proposed by Gu

and Wright (2016). We then show that our main result holds, that is, the observa-

tion of balance flows makes it possible to achieve first-best. Consider the following

trading mechanism Γ(ϕm) = (Γp(ϕm),Γq(ϕm)), where Γp(ϕm) sets the real balances

transferred from buyers to sellers, and is given by

Γp(ϕm) =

{
ϕm if ϕm < p∗

p∗ if ϕm ≥ p∗
,

where p∗ is defined as the minimum payment required for a buyer to receive q∗ units

of goods from the seller; while Γq(ϕm) sets the quantity produced by the sellers and

is given by

Γq(ϕm) =

{
v−1((1 + i)ϕm) if ϕm < p∗

1+i

q∗ if ϕm ≥ p∗

1+i

,

where v(·) is a strictly increasing, twice continuously differentiable function, with

v(0) = 0 and v(q∗) = p∗

1+i
. This coincides with the trading mechanism in Gu and

Wright (2016) for i = 0. In the digital currency economy, we need to take into

account that, if buyers transfer ϕm real balances to sellers during the day market,

at the beginning of the night market, sellers will have (1 + i)ϕm real balances. Note

that the terms of trade do not depend on the real balances of sellers, and the efficient

quantity is produced if (1 + i)ϕm ≥ p∗. With Kalai bargaining, the function v(·) is
given by

v(q) =
(1 + i) [(1− θ)u(q) + θc(q)]

1 + θi
;

with Nash bargaining, the function is given by

v(q) =
(1 + i) [(1− θ)u(q)c′(q) + θc(q)u′(q)]

θ(1 + i)u′(q) + (1− θ)c′(q)
;
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and with competitive pricing, the function is v(q) = pq, where p is taken as given by

the traders but is equal to c′(q) in equilibrium, giving v′(q) = c′(q).

Without loss of generality as far as efficient allocations are concerned, henceforth,

we restrict attention to interventions that pay zero interest on passive balances. This

implies that, in equilibrium, sellers do not bring balances, and buyers do not bring

balances they are not planning to use. We start with the participation decision of

buyers with real balances ϕm at the beginning of the day market. Buyers choose

α ≤ 1 to maximize αu(q) + (1 − α)ϕm − k(α). Ignoring the corner solution, the

optimality condition for the participation choice is

u (q)− v(q)

1 + i
= k′(α).

Note that, given q, an increase in i increases the incentive of buyers to participate

in the trade. Consider now the night market. Buyers choose z to maximize −ϕm +

β[αu(q) + (1− α)ϕ+1m− k(α)]. The intertemporal condition for the optimum is

u′(q)

v′(q)
=

τ + 1− β + αβ + αi

αβ(1 + i)
.

where we have used M+1 = (1 + τ + αi)M and the stationarity of real balances. We

now determine the optimal intervention. Under Assumption 1 with µ = ϵ = 1, first-

best (α∗, q∗) satisfies u′(q∗) = c′(q∗) and u(q∗)− c(q∗) = k′(α∗). To achieve first-best,

we set (τ, i) so that
u′(q∗)

v′(q∗)
=

τ + 1− β + α∗β + α∗i

α∗β(1 + i)
, (18)

holds, together with

u (q∗)− v(q∗)

1 + i
= k′(α∗).

If i = 0, efficient participation requires v(q∗) = c(q∗), which is not generically satisfied.

For example, if v(q) is determined by Kalai or Nash bargaining, this is only possible

if θ = 1, that is, the buyer has full bargaining power. Thus, in general, the first-best

cannot be implemented if the authority cannot distinguish between active and passive

balances. If, instead, i > 0, we can achieve efficient participation by setting

i∗ =
v(q∗)

c(q∗)
− 1,
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which is positive if and only if v(q∗) > c(q∗). For example, with Kalai and Nash

bargaining, the optimal interest payment is

i∗ =
1− θ

θ[δ(q∗)− 1]

, which is positive if and only if θ < 1. With competitive pricing, the optimal interest

payment is i∗ = c′(q∗)q∗/c(q∗)−1, which is strictly positive if and only if the elasticity

of the cost function at first-best is greater than 1, that is, when the cost function is

strictly convex. Using (18), we determine the optimal τ , which is given by

τ ∗ = −(1− α∗)(1− β)− α∗v(q
∗)

c(q∗)

[
1− β

u′(q∗)

v′(q∗)

]
.

The existence of a monetary equilibrium requires τ ∗ ≥ −(1−β)+α∗−α∗v(q∗)/c(q∗).

Therefore, the first-best can be implemented by the policy (τ ∗, i∗) if and only if

c′(q∗)q∗

c(q∗)
≥ v′(q∗)q∗

v(q∗)
. (19)

Define the elasticity of the function h(x) with respect to x as ηh(x) ≡ h′(x)x/h(x).

Thus, we immediately have the following proposition.

Proposition 6 If the function v(q) satisfies v(q∗) > c(q∗) and ηc(q
∗) ≥ ηv(q

∗), there

exist policy schemes that implement the first-best rewarding active balances with pos-

itive interest and passive balances with zero interest.

With Kalai bargaining, computing the derivative v′(q) and evaluating it at first-

best, condition (19) becomes (1 − θ)u(q∗)/δ(q∗) ≥ 0 that is always satisfied. With

Nash bargaining, computing the derivative v′(q) and defining the elasticity of h′(x)

as ηh′(x) ≡ |h′′(x)x/h′(x)|, (19) is satisfied if [ηc′(q
∗) + ηu′(q∗)][δ(q∗)− 1] ≤ q∗, which

holds if the sum of the curvatures of the utility and cost functions is bounded above.

With competitive pricing, the condition is automatically satisfied since the elasticity

of the cost function is never less than unity, being strictly increasing, convex, and nil

at zero production.
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5.2 Alternating Markets

The alternating market structure with decentralized and centralized trade character-

istic of Lagos and Wright (2005) makes it especially easy to separate active and idle

balances. One may wonder if our result would survive in an environment in which

such separation is not so easy to accomplish.

Consider, for instance, the following variation of the baseline model.11 Suppose

that some agents trade in the decentralized market in odd periods and in the cen-

tralized market in even periods, while others trade in the decentralized market in

even periods and in the centralized market in odd periods. In this set up, the task

of separating active and passive balances is more difficult: both buyers entering the

centralized market without money and leaving it with money, and sellers entering the

decentralized market without money and leaving it with money have positive inflows

into their accounts. As a result, if the monetary authority maintains the same pol-

icy used in the baseline model, it pays interest to active accounts in the centralized

market, which have no bearing on the incentives of agents to participate in the de-

centralized market. However, in this variation of the baseline model, this issue can be

solved if the authority considers the balance information of the last two periods. In

fact, if the authority observes at the beginning of the period t that there was an inflow

into the account in period t− 1, and the account had no balances at the beginning of

the period t− 2, then this account belongs to a seller who participated in the decen-

tralized market in period t − 1, and not a buyer who participated in the centralized

market in period t − 1. This is so because, if a buyer participates in the centralized

market in period t−1, it must have participated in the decentralized market in period

t− 2, and buyers always bring a positive balance to the decentralized market.

More generally, in settings with more complicated trading structures, the en-

tire histories of monetary flows can be used to stimulate participation. The idea

would be to exploit the higher correlation between sequences of monetary flows and

participation decisions relative to the correlation between spot monetary flows and

participation decisions.

11We thank an anonymous referee for suggesting this thought experiment.
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5.3 Manipulation

Agents could try to manipulate the system to obtain undue interest on idle balances.

If agents were allowed to open additional accounts, they could use them to transfer

unused balances between accounts and receive interest payments on those balances.

So far, we have avoided this possibility by assuming that each agent can have only one

account with the monetary authority. Next, we introduce the possibility of manipu-

lation by assuming that agents can open shadow accounts that the authority cannot

associate with the owner of any existing account. However, in order to open a shadow

account, agents have to incur a cost κ > 0 during the night market. The account can

then be used in the next day market to transfer balances to receive interest ia.

Consider the incentive for a buyer to open a shadow account at a cost κ. With

the unit elastic matching function, the optimal policy is given by i∗p = 0, ia = i∗ > 0

given by (15) and τ = τ ∗ given by (16). Such a buyer holding an amount m̃ of

currency chooses q̃ and d̃ ≤ m̃ to maximize u(q̃)−ϕ(1+ i∗)d̃ subject to the constraint

(1 − θ)S̃b = θS̃s, where S̃b = u(q̃) − ϕ(1 + i∗)d̃ and S̃s = −c(q̃) + ϕ(1 + i∗)d̃. Note

that the buyer receives interest i∗ on passive balances. This allows us to rewrite the

constraint (1 − θ)S̃b = θS̃s as ϕm̃ = g(q̃)/(1 + i∗). Consider now the participation

decision. Optimization leads to the optimality condition for participation

θU(q̃) = k′(α̃). (20)

Moving to the night market, the intertemporal condition for the optimum can be

written as
u′(q̃)

g′(q̃)
= 1− 1− α∗θ

α̃

1− θ

θ[δ(q∗)− 1] + 1− θ
≡ H(θ). (21)

The equations (20) and (21) jointly determine (α̃(θ), q̃(θ)). If buyers choose not to

open the account, the participation is given by (9) and the intertemporal condition is

given by (11), both evaluated in the optimal policy. The net benefit of not opening

the account is β[α∗u(q∗)−k(α∗)−g(q∗)], while the net benefit of opening an additional

account is −κ+β[α̃(θ)u(q̃(θ))−k(α̃(θ))−H(θ)g(q̃(θ))]. Therefore, the condition that

ensures that buyers have no incentive to open an additional account is

β[α∗u(q∗)− k(α∗)− g(q∗)− α̃(θ)u(q̃(θ)) + k(α̃(θ)) +H(θ)g(q̃(θ))] + κ ≥ 0. (22)
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Notice that the function H(θ) ≤ 1 with H(1) = 1. Since the allocation for a deviating

buyer has q̃(1) = q∗ and α̃(1) = α∗, we see that the LHS of (22) is equal to κ > 0

for θ = 1. By continuity, there is an interval of values of θ close to, but strictly

smaller than 1 such that the incentive condition is still satisfied. To ensure that

agents do not create shadow accounts even if they do not want to participate in the

trade, (1 + τ ∗)(1 + κ) ≥ β(1 + i∗) is required, which is strictly satisfied for θ = 1. By

continuity, there exist values of θ close to, but strictly smaller than 1 such that this

incentive condition is also satisfied. The next proposition follows.

Proposition 7 Suppose that the system can be manipulated at a cost κ > 0. There

exists an open interval of values of θ in which the optimal policy with digital currency

(τ ∗, i∗, 0) is incentive compatible.

The optimal policy that reproduces the Friedman rule and achieves the best alloca-

tion attainable with physical currency is always available. Hence, for any positive cost

of manipulation, the optimal policy with digital currency can always at least repli-

cate the outcome with physical currency and, in an open set of economies, strictly

improve upon it. Intuitively, this is achieved when the interest payments that induce

efficiency can be kept small. If it is even slightly costly to manipulate the system,

there are robust circumstances in which the extra information provided by the digital

technology can be exploited to achieve efficiency while discouraging manipulation.

In principle, agents could try to manipulate the system by forming partnerships

with other agents to transfer balances between accounts and get undue interest pay-

ments. However, in our economy, by assumption, agents meet randomly and bilater-

ally and cannot commit to future actions. These frictions, which are key to generating

an essential role for currency as a medium of exchange, prevent the formation of part-

nerships of this type, as well as market trade and group interactions in general. In

fact, if traders could establish long-term trading relations with each other, good al-

locations could be supported by reputation, as in repeated games. This would make

the currency redundant as a trading instrument. Since we consider the essentiality of

currency a key requirement in a fundamental theory of monetary trade, we exclude

these types of partnership. Therefore, the only feasible manipulation schemes are

individual.

28



6 Conclusion

We have argued that the key difference between digital currency and cash is in the

technological ability to trace currency flows. Since additional information collected

with digital technology can be ignored, any allocation achieved with cash can also be

achieved with digital currency. However, if additional information is used to affect

extensive margins, there are robust circumstances in which digital currency can help

improve the best allocation that would be achieved with cash. The availability of this

information makes the difference in the design of optimal policy.12

When the thick market externality prevails, the payment of interest on active bal-

ances outperforms other reward schemes that have been identified as welfare improv-

ing in physical currency economies, such as the payment of interest on idle balances.

This occurs because the positive interest differential between active and idle balances

stimulates participation through its effect on the extensive margin, while rewarding

idle balances affects the intensive, but not the extensive margin.13 When the con-

gestion externality prevails, rewarding idle balances more than active balances helps

discourage participation. In economies with extensive margin distortions, digital cur-

rency can help restore or at least approach efficiency in a robust set of circumstances.

In our setting, efficient allocations can be achieved without banks. However,

this does not mean that the adoption of sovereign digital currency would necessarily

lead to disintermediation. In contrast, banks could play a key role in the actual

implementation of the system, as digital payments could continue to work exactly as

they do with the interest on active balances being paid through the banking system.

12In systems theory à la Wiener and Shannon, information is defined as ”the difference that makes
a difference”, e.g. Bateson (1972), a definition we alluded to playfully in the title.

13As in Berentsen, Camera and Waller (2007), Ferraris and Watanabe (2008) and Geromichalos
and Herrenbrueck (2016, 2017).
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7 Appendix

7.1 Existence of the Digital Currency Equilibrium

We show that there are values θ < θ ≤ 1 such that if θ ∈ [θ, θ], a digital currency

equilibrium exists. The proof runs as follows. Define γ ≡ (τ, i, ip) and u′(q)/g′(q) ≡
f(q). The function f(q) is continuous in q with f(∞) = 0, f(0) = (1 − θ)−1 and

f ′(q) < 0 by the properties of the fundamentals. Since G(α, γ) > 0, there exists a

unique q̃ ∈ (0,∞) that satisfies (11) for any (α, γ) provided G(α, γ) ≤ (1 − θ)−1.

Since G(α, γ) < ∞ is greater than unity for any θ and strictly decreasing in θ while

(1 − θ)−1 ∈ [1,∞) is strictly increasing in θ, there is a unique value θ ∈ (0, 1) such

that for θ ≥ θ the inequality is satisfied. Define q = f−1(G(α, γ)) ≡ φ(α) and plug it

into (9), obtaining the function Φ(α) ≡ µ(1/α)θU(φ(α))F (φ(α), i, ip)− k′(α), which

is continuous in α, with Φ(0) > 0, by the properties of the fundamentals; Φ(1) ≤ 0,

if ϵ(1) ≥ θF (φ(1), i, ip) under Assumption 1. Notice that this gives an upper bound

θ that can be made to be compatible with θ rescaling ϵ(1) appropriately. By the

intermediate value theorem, there exists α̃ ∈ (0, 1] that satisfies Φ(α) = 0.

7.2 Walrasian Equilibrium

Consider the physical currency economy without trading externality. Replace the

frictional decentralized market with a centralized Walrasian market, interpreting the

buyers’ search intensity as the probability of participation. Let q denote the quantity

consumed by buyers during the day. Welfare is αu(q) − c(αq) − k(α). The efficient

allocation (α̂, q̂) solves u(q̂) − c′(α̂q̂)q̂ = k′(α̂), and α̂[u′(q̂) − c′(α̂q̂)] = 0. Let p

denote the price of day good in units of the night good. During the day, sellers

choose qs to maximize pqs − c(qs), which gives p = c′(qs). Buyers with m units of

money choose α to maximize αu(ϕm/p) + (1−α)ϕm− k(α), which gives u(ϕm/p)−
ϕm = k′(α). In the previous night, buyers chose m to maximize −ϕm + β{−k(α) +

αu(ϕ+1m/p) + (1− α)ϕ+1m}, whose solution is ϕ = βϕ+1[1− α + αu′(q)/p], which,

using p = c′(qs) = c′(αq) and the stationarity of the real balances, can be written as

(1+τ)/β = αu′(q)/c′(αq)+1−α. Using p = ϕm/q, the optimal buyer search intensity

is u (q)− c′(αq)q = k′(α). The Friedman rule, τ = β − 1, achieves the first-best.

30



References

[1] Andolfatto David (2010), Essential Interest-bearing Money, Journal of Economic

Theory 145, 1495-1507

[2] Andolfatto, David (2021), Assessing the Impact of Central Bank Digital Cur-

rency on Private Banks, Economic Journal 131, 525-540

[3] Aruoba, Boragan, Rocheteau, Guillaume, and Chris Waller (2007), Bargaining

and the Value of Money, Journal of Monetary Economics, 54, 2636-2655

[4] Bajaj Ayushi, Tai-Wei Hu, Guillaume Rocheteau and Mario Rafael Silva (2017),

Decentralizing constrained-efficient allocations in the Lagos–Wright pure cur-

rency economy, Journal of Economic Theory, 167, 1-13

[5] Bateson, Gregory (1972), Steps to an Ecology of Mind, University of Chicago

Press

[6] Berentsen Alex, Camera Gabriele and Chris Waller (2007), Money, Credit and

Banking, Journal of Economic Theory, 135, 171-195

[7] Chiu Jonathan, Davoodalhosseini Seyed Mohammadreza, Jiang Janet and Yu

Zhu (2023), Bank Market Power and Central Bank Digital Currency: Theory

and Quantitative Assessment. Journal of Political Economy, forthcoming

[8] Chiu Jonathan and Tsz-Nga Wong (2022), Payments on Digital Platforms: Re-

siliency, Interoperability and Welfare, Journal of Economic Dynamics and Con-

trol, 142, 1041-1073

[9] Ferraris Leo and Makoto Watanabe (2008), Collateral Secured Loans in a Mon-

etary Economy, Journal of Economic Theory, 143, 405-424

[10] Geromichalos, Athanasios and Lucas Herrenbrueck (2016), Monetary Policy, As-

set Prices, and Liquidity in over-the-counter Markets, Journal of Money, Credit

and Banking, 48, 35–79

[11] Geromichalos Athanasios and Lucas Herrenbrueck (2017), A tractable Model of

Indirect Asset Liquidity, Journal of Economic Theory, 168, 252-260

31



[12] Gu, Chao and Randall Wright (2016), Monetary mechanisms, Journal of Eco-

nomic Theory, 163, 644-657

[13] Hu Tai-Wei, John Kennan, and Neil Wallace (2009), Coalition-Proof Trade and

the Friedman Rule in the Lagos-Wright Model, Journal of Political Economy,

117, 116-137

[14] Hu, Tai-Wei and Guillaume Rocheteau (2020), Bargaining under Liquidity Con-

straints: Unified Strategic Foundations of the Nash and Kalai Solutions, Journal

of Economic Theory, 189, 105098

[15] Hu, Tai-Wei and Kathy Zhang (2019), Responding to the Inflation Tax, Macroe-

conomic Dynamics, 23, 2378-2408

[16] Kalai Ehud (1977), Proportional solutions to bargaining situations: interpersonal

utility comparisons, Econometrica, 45, 1623-1630

[17] Kehoe Tim, Levine David and Mike Woodford (1992), The Optimum Quantity

of Money Revisited, in Partha Dasgupta, Douglas Gale, Oliver Hart, and Eric

Maskin (eds.), The Economic Analysis of Markets and Games: Essays in Honor

of Frank Hahn, Cambridge, MA: MIT Press, 501–526

[18] Keister Todd and Daniel Sanches (2023), Should Central Banks Issue Digital

Currency? Review of Economic Studies, forthcoming

[19] Kocherlakota Narayana (1998), Money is Memory, Journal of Economic Theory,

81, 232-251

[20] Lagos Ricardo and Guillaume Rocheteau (2005), Inflation, Output and Welfare,

International Economic Review, 46, 495-522

[21] Lagos Ricardo and Randall Wright (2005), A Unified Framework for Monetary

Theory and Policy Analysis, Journal of Political Economy, 113, 463-484

[22] Levine David (1991), Asset Trading Mechanisms and Expansionary Policy, Jour-

nal of Economic Theory, 54, 148-164

[23] Li, Victor (1994), Inventory Accumulation in a Search-based Monetary Economy,

Journal of Monetary Economics, 34, 511-536

32



[24] Li, Victor (1995), The Optimal Taxation of Fiat Money in Search Equilibrium,

International Economic Review, 36, 927-942

[25] Liu Lucy, Liang Wang and Randall Wright (2011), On the Hot Potato Effect of

Inflation: Intensive vs Extensive Margins, Macroeconomic Dynamics, 15, 191-216

[26] Nosal, Ed and Guillaume Rocheteau (2011), Money, Payments and Liquidity,

MIT Press

[27] Rocheteau Guillaume and Ranadall Wright (2005), Money in Search Equilibrium,

in Competitive Equilibrium, and in Competitive Search Equilibrium, Economet-

rica, 73, 175-202

[28] Rocheteau Guillaume and Randall Wright (2009), Inflation and Welfare in Mod-

els with Trading Frictions, in Monetary Policy in Low Inflation Economies, Ed

Nosal and Dave Altig eds, Cambridge University Press

[29] Wallace Neil (2014), Optimal Money-creation in ‘Pure-Currency’ Economies: a

Conjecture, Quarterly Journal of Economics, 129, 259-274

[30] Williamson Sthephen (2022), Central Bank Digital Currency: Welfare and Policy

Implications, Journal of Political Economy, 130, 2829-2861

33


