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1 Introduction

This paper develops a model of strategic disclosure of veri…able information through inter-

mediaries. Further, by embedding the disclosure game in a network framework, I explore

the intersection of two key areas in economic theory: information transmission in networks

and strategic communication.

In a basic strategic disclosure game à la Milgrom (1981), there is an expert who knows

the state of the world—an element of the real line—and an uninformed decision maker.

Before the decision is made, the expert may disclose her information. The decision maker

seeks to match her choice to the true state, while the expert prefers a biased outcome.

Although the expert cannot lie, she can withhold information. Nevertheless, full disclosure

occurs in equilibrium. This outcome is sustained by “worst-case” beliefs o¤ the equilibrium

path: if the expert were to withhold any information, the decision maker would presume

the state most unfavorable to the biased expert, consistent with the information disclosed.

Section 2 of this paper studies the strategic disclosure of veri…able information through

intermediaries. Disclosure occurs sequentially, beginning with the expert and proceeding

along a path of intermediaries until it reaches the decision maker. Players have misaligned

preferences, in the sense that each seeks to persuade the decision maker to choose a di¤erent

action, given the same state of the world.1

My main result, Proposition 1, shows that the expert’s information reaches the decision

maker in equilibrium if and only if the expert and all intermediaries are biased in the same

direction relative to the decision maker. Only then do all players precisely transmit the

expert’s information along the path, and Milgrom’s (1981) logic extends to communication

through intermediaries. The reason is straightforward: no o¤-path beliefs can simulta-

neously punish both the expert and all intermediaries for withholding information when

some are biased to the right and others to the left. To punish the former, the decision

maker’s choice would need to be as left-leaning as possible, given the information received,

while also being as right-leaning as possible to punish the latter. But, of course, this is

1To simplify the exposition, I rule out the possibility of partial information disclosure. Further, I assume
that players’ payo¤s follow a quadratic loss function with misaligned bliss points, as is common in strategic
communication games. I relax these assumptions in Section 4 and show that my results remain qualitatively
unchanged when generalizing players’ payo¤s, when partial disclosure is allowed, and when the expert lacks
direct knowledge of the state and relies on noisy signals.
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impossible.

In Section 3, I embed the above analysis of indirect strategic disclosure in a network

framework, and provide a model of strategic communication in networks. An expert and

a decision maker are randomly selected from among the network’s players, each pair with

positive probability. Once chosen, their identities become common knowledge, and a dis-

closure game is played within the network. The expert’s information is transmitted to the

decision maker through any connecting path of players.2

For each network and realized expert–decision maker pair, I determine the value of

the most informative equilibrium in the resulting disclosure game. The average value of

these equilibria, weighted by the ex-ante probability of each pair, determines the value that

each player assigns to the network. These values are then used to assess the network’s

optimality and endogenous formation. This simple, micro-founded construction captures

the key features of both communication in networks—where each player bene…ts from the

information she may receive from any other player—and strategic transmission of veri…able

information, where players may withhold information to in‡uence decision makers’ choices.

Given any network and expert–decision maker pair, Proposition 1 applies. If the expert

is connected to the decision maker through a unique path of players in the network, the

state is disclosed if and only if all the players on the path are biased in the same direc-

tion, relative to the decision maker. This result has important implications for the study

of communication in networks. Existing analyses based on information di¤usion models

assume that players learn information from those they are linked with, but abstract from

the possibility that information is strategically misrepresented.

These implications are underscored when examining network optimality and endogenous

formation. I …nd that the unique optimal network is a line in which each player forms links

only with those who have the closest bliss points. This ordered line also arises as the unique

equilibrium of a bilateral link sponsorship game à la Myerson (1991) that is immune to

coalitional deviations. These …ndings complement fundamental results in network theory

(e.g., Jackson and Wolinsky, 1996). If communication is non-strategic and subject to

2To simplify the exposition, my analysis abstracts from non-strategic communication constraints and
assumes a single expert and a single decision maker. I relax these assumptions in Section 4 and show
that my results remain qualitatively unchanged in settings with multiple experts and decision makers,
and also when network transmission decays independently of communication choices, as long as the decay
probability is su¢ciently small relative to the misalignment of players’ bliss points.
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technological constraints such as information decay, it is well established that the optimal

networks are stars. This di¤erence is especially pronounced in terms of network centrality:

while the star is the most centralized minimally connected network, the line is the most

decentralized.3

The complementarity with models of non-strategic information di¤usion in networks

is also re‡ected in di¤erent applications. Information di¤usion models naturally apply to

economic settings where there are no action externalities or where agents share similar

goals.4 Instead, my paper examines networks in which agents have a strategic incentive to

mislead one another because each is a¤ected by everyone else’s decisions, and their prefer-

ences are not aligned. The primary motivation and application of my work are networks of

political decision makers. Social connections are widely recognized as an important, if not

fundamental, feature of politics.5 While a large empirical literature on political networks

has emerged, systematic theoretical modeling—such as that developed through network

economics—remains in its early stages.6

A key feature of politics is the divergence in preferences among agents, driven by ide-

ological di¤erences that often lead them to try and mislead one another. Furthermore,

career politicians are typically well acquainted with each other’s personal ideological views

and committed platforms.7 Political agents also tend to form alliances with those who

are ideologically closest to them, as predicted by my analysis. My …ndings suggest that—

perhaps unexpectedly—this network structure is optimal for ensuring the transmission of

information, at least when such information is veri…able. Only then can a political decision

maker identify who is to blame if information is withheld. Information from left- (or right-

) leaning politicians travels through like-minded agents. If it fails to arrive, the decision

maker assumes it was opposing evidence and responds by choosing the most extreme posi-

3Further, my results hold even though, unlike in Galeotti, Goyal, and Kamphorst (2006), and Calvó,
de Martí, and Prat (2015), for example, the cost of linking is the same across all pairs, and each player’s
information holds equal value for others. The optimality of linking with those closest in bliss points is not
due to homophily (e.g., McPherson, Miller, and Cook, 2001). Rather, it minimizes aggregate connection
costs while ensuring that Milgrom’s (1981) equilibrium disclosure results apply.

4For example, they have been used to study …rms and other organizations in business economics, where
di¤erent groups within an organization pursue the same objectives (e.g., pro…t maximization).

5This has been acknowledged as early as Routt (1938).
6A comprehensive review is provided in the handbook edited by Victor, Montgomery, and Lubell (2017).
7This assumption is supported by a vast empirical literature dedicated to estimating such political views

and platforms, following the foundational work of Poole and Rosenthal (1996) and the Manifesto Project
by Budge et al. (2001). It is also standard in political economy models, such as those studying information
aggregation in committees or legislatures.

3



tion consistent with what she knows. This discourages other politicians from withholding

information.8

1.1 Related Literature

Within the extensive literature developed over the years in network theoretical economics,

one important focus is information transmission in networks.9 The di¤usion approach com-

monly adopted applies to communication among agents who have no incentive to strate-

gically mislead one another. This is also the case in ‘Bayesian learning’ models, where

each player learns through equilibrium inference based on their neighbors’ choices, either

via explicit communication or by observing actions. These models assume there are no

externalities across agents’ decisions and that their preferences are aligned.10

Speci…cally, Bala and Goyal (1998) studied a pioneering model in which there is no ex-

plicit information transmission; players observe their neighbors’ choices and thus indirectly

learn. Acemoglu, Bimpikis, and Ozdaglar (2014) introduced a model with explicit informa-

tion transmission.11 In all these models, there are no externalities across players’ choices,

and their preferences are aligned. Consequently, players have no incentive to strategically

manipulate information or mislead one another—precisely the focus of this paper.

Most importantly, a key assumption in existing network models is that the value of

connecting two agents, i and j, is independent of the characteristics of other players along

the connecting path. However, this assumption does not hold in the full-‡edged analysis of

strategic communication presented in this paper. While this result is established here for

veri…able information transmission, Ambrus, Azevedo, and Kamada (2013) and Mahzoon

(2025) prove an analogous …nding in the cases of cheap talk and Bayesian persuasion,

respectively. These …ndings clarify the limitations of existing network models in accounting

for strategic information transmission and underscore the opportunity to develop a new

8The insights provided here about political networks are further developed in a previous version of this
paper, Squintani (2018).

9This literature is so vast that a comprehensive survey is beyond the scope of this paper. For a detailed
review, see the handbook edited by Bramoullé, Galeotti, and Rogers (2017).

10A fortiori, strategic information transmission in networks is also not addressed in ‘naive learning’
models, where players’ learning is not based on equilibrium beliefs. For example, Golub and Jackson
(2010) study a model in which players’ beliefs are assumed to be weighted averages of their neighbors’.

11While in these papers information originates solely among players in the network, Galperti and Perego
(2025) examine a model in which a biased outside sender may also transmit a signal to the players. Still,
there is no strategic information transmission within the network, as preferences remain aligned.
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class of models.

Building on the seminal works of Milgrom (1981) and Crawford and Sobel (1982),

strategic information transmission has become one of the central topics in the economics

of information. While communication of unveri…able information (cheap talk) generally

leads to imprecise decisions, veri…able information can be fully disclosed in equilibrium.

My analysis o¤ers a di¤erent perspective on this insight. When an expert communicates

with a decision maker through intermediaries, veri…able information is fully disclosed in

equilibrium if and only if all players on the communication path are biased in the same

direction relative to the decision maker.12

While the literature on strategic information transmission has branched out theoretically

in several directions, the study of indirect communication through intermediaries remains

underdeveloped.13 Ambrus, Azevedo, and Kamada (2013) study the case of cheap talk and

show that the analysis is signi…cantly more complex than in the case of veri…able informa-

tion disclosure considered here. The result that intermediation cannot improve information

transmission holds only for pure strategy equilibria. They provide a partial characteriza-

tion of mixed strategy equilibria, show instances in which intermediation improves upon

direct communication, and provide necessary conditions.14 For the case of veri…able infor-

mation disclosure I consider here, instead, intermediation cannot ever improve upon direct

communication, in equilibrium.

Closer to my work, Gieczewski (2022) studies a model of learning in networks with the

transmission of veri…able information among agents with misaligned preferences. Unlike

my paper, he does not consider network formation, or optimality. Experts learn the state

12Here, each player’s bias relative to the decision maker is independent of the state of the world, and
equilibrium full disclosure fails due to communication through intermediaries. Instead, Giovannoni and
Seidmann (1997) study disclosure games with one expert and one decision maker, where the expert’s bias
is state-dependent. They show that full disclosure occurs in equilibrium if and only if the expert is biased
in the same direction for all states of the world. Onuchic and Ramos (2025) study multi-agent disclosure
protocols ranging from unilateral to consensual, …nding that full disclosure occurs only when members
can unilaterally disclose output. None of these papers study strategic disclosure in networks, or through
intermediaries.

13Most studies of communication are staged in two-player models with one expert and one decision maker.
Exceptions include Battaglini (2002) on many-to-one communication, Farrell and Gibbons (1989) on one-
to-many communication, and Galeotti, Ghiglino, and Squintani (2013) on many-to-many communication.
None of these papers address indirect communication through intermediaries or communication in networks.

14Further, Ivanov (2010) studies cheap talk via a strategic mediator; Bloch, Demange, and Kranton
(2018) examine the spread of possibly false information by agents with diverse motives, without addressing
network optimality; and Migrow (2019) explores optimal hierarchies of biased agents reporting unveri…able
information to a single decision maker.
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with probability less than one, which prevents full information disclosure. He …nds that full

learning requires su¢ciently dense networks. When agents are forward-looking, concerns

about learning cascades lead players to divide into like-minded, non-communicating groups.

2 Strategic Disclosure through Intermediaries

This section formulates and solves a simple model of strategic disclosure through inter-

mediaries, based on the seminal work by Milgrom (1981) on direct strategic disclosure. I

show that the state of the world is relayed to the decision maker if and only if all the other

players wish to bias her decision in the same direction.

The Model An expert e knows the state of the world x 2 X = [x, x] ½ R.15 Every other

player only knows the distribution F of x, which I assume has a continuous density f that

is strictly positive on X.

The state x can be disclosed along a …nite ordered sequence, or directed path, p =

(e, ..., d) of players, of length l ¸ 1.16 The path p starts from the expert e, terminates with

a decision maker d, and (possibly) includes l¡1 intermediaries. In each period t = 0, ..., l¡1,

the t + 1-th player i on p is called to act. If i knows x, then she may disclose x to the

t + 2-th player on p, her immediate successor. If i does not disclose x, then none of her

successors will learn anything about it.

Formally, let ωi(h
t) 2 ffxg,Xg be the information held by i at any history ht.17 In

period t = 0, given the null history h0, the expert’s information is ωe(h
0) = fxg, while

every other player i has ωi(h
0) = X. For any period t = 0, ..., l ¡ 1 and history ht, the

t + 1-th player i on p sends a message m̂t
ij 2 ffxg,Xg to her successor j on p, subject to

the restriction that if ωi(h
t) = X, then m̂t

ij = X.18 As a result, for any period t = 1, . . . , l

and history ht, the information of the t+1-th player i on p is ωi(h
t) = X unless, in history

ht, all of i’s predecessors j on the path p played m̂τ
jk = fxg for all τ = 0, . . . , t ¡ 1.

15In Milgrom (1981), the state space X consists of the positive reals. Following Seidman and Winter
(1997), I assume X to be a closed interval as this simpli…es subsequent analysis.

16For any path p, its length l(p) is the number of elements of p minus 1.
17As is standard, ωi(ht) refers to what player i knows at ht through direct observation. This is distinct

from equilibrium beliefs, which are based on knowledge of the equilibrium strategies.
18Milgrom (1981) also allows for partial disclosure, i.e., a player i who knows x at a history ht, ωi(h

t) =
fxg, may send messages m̂t

ij µ X such that x 2 m̂t
ij 6= X. To simplify the exposition, I do not consider

partial disclosure here, and defer it to Section 4.
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At the terminal period T = l, after receiving message m̂l
id from her predecessor i on

p, the decision maker d chooses an action ŷ 2 R, based on her information ωd(h
T ) at any

history hT , and her equilibrium beliefs. As is standard, players’ strategies are measurable

functions of the game’s histories. I denote player d’s pure strategy by yd and each other

player i’s disclosure strategy by mi. Mixed strategies are de…ned in the usual way, and I

denote mixed disclosure strategy pro…les by µ.

Following the strategic disclosure game speci…cation of Seidmann and Winter (1997),

each player i’s payo¤ is maximized if the decision ŷ matches a bliss point x + bi. The

“relative bliss point” bi 2 R represents player i’s idiosyncratic preference relative to the

common state x. Player i’s payo¤ from decision ŷ is given by:

Li(ŷ, x) = ¡(ŷ ¡ x ¡ bi)
2.

This description of the game is common knowledge, and I study (pure and mixed strategy)

Perfect Bayesian Equilibrium.

Equilibrium in the Disclosure Game I begin with two simple results that follow

directly from the players’ quadratic loss functions. In every pure or mixed strategy equi-

librium, at any history hT , the decision maker d plays:

yd(h
T ) = E[xjωd(h

T ), µ] + bd,

and thus each player i’s ex-ante expected equilibrium payo¤ is:

¡E(yd(h
T )¡ x ¡ bi)

2 = ¡E[Var(xjωd(h
T ), µ)] + (bi ¡ bd)

2. (1)

The decision d equals the expected value E[xjωd(h
T ), µ] + bd of the decision maker’s bliss

point x + bd, conditional on her information ωd(h
T ) and on knowledge of equilibrium

strategies µ. Of course, if d knows x at history hT , i.e., ωd(h
T ) = fxg, her decision

is yd(h
T ) = x + bd. If instead d knows nothing, i.e., ωd(h

T ) = X, then she chooses

yd(h
T ) = x̂ + bd, where x̂ denotes her equilibrium expectation E[xjX,µ] upon not being

disclosed x.

Further, each player i’s expected loss E(yd(h
T )¡ x ¡ bi)

2 can be decomposed into the

expected residual variance E[Var(xjωd(h
T ), µ)], and the squared bias (bi ¡ bd)

2 of player i

relative to d. As a consequence, the players’ ex-ante payo¤s are aligned in every disclosure
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game. They all wish to minimize d’s expected residual variance, meaning they prefer that

x be disclosed to d so that she chooses ŷ with the most precise information possible.

I now introduce the following concept: a path p from an expert e to a decision maker

d has bias reversals if there exist players i, j on p such that bi < bd < bj .

The next result shows that the state x is disclosed through the path p connecting

e to d if and only if p has no bias reversals. Further, if the bias reversals are suf-

…ciently large,19 then no information reaches the decision maker—completely overturn-

ing full-disclosure results. Finally, we characterize the equilibrium when the path p has

bias reversals. Let  be the player i with the minimal bliss point bi on p, and h be

the player i with the maximal bi. De…ne the mapping U : X ! P(X) as: U(x) =

(maxfx, x ¡ 2(bh ¡ bd)g,minfx+ 2(bd ¡ b), xg) .20

Proposition 1 In any equilibrium (µ, yd) of the disclosure game through intermediaries

played on a path p from expert e to decision maker d:

a. If p has no bias reversals, then every state x is disclosed to d, who then plays ŷd =

x+ bd, and thus E[Var(xjωd(h
T ), µ)] = 0;

b. If p has bias reversals, then no state x 2 U(x̂) is disclosed to d, who plays ŷd = x̂+ bd

with x̂ = E[xjU(x̂)], and hence E[Var(xjωd(h
T ), µ)] > 0;

c. If there exist players i, j such that bi ¡ bd > 0 and bd ¡ bj > 0 are su¢ciently large,

then d never learns x and plays ŷd = E[x] + bd, so that E[Var(xjωd(h
T ), µ)] = Var(x).

These result are intuitive. Suppose the path p has no bias reversals, for instance, bi > bd

for all i 6= d. Then, as in Milgrom (1981), there exists a Perfect Bayesian Equilibrium in

which every player i transmits x along the path p, i.e., m̂ij = ωi(h
t) for all i 6= d and

histories ht at which i is called to play. As a result, the decision maker d learns x precisely

and chooses ŷ = x+ bd, so that E[Var(xjωd(h
T ), µ)] = 0.

This equilibrium is supported by ‘worst-case’ o¤-path beliefs, which interpret withheld

information as evidence contrary to the players’ biases, thereby deterring information with-

holding. Formally, these beliefs assign probability one to x = minωd(h
t) for any terminal

19This situation corresponds to ‘transparent motives’ as de…ned in Lipnowski and Ravid (2020), and
originally studied by Milgrom (1981).

20P(X) denotes the set of subsets of X.
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history hT . Due to these o¤-path beliefs, any player i 6= d knows that withholding x can

only shift d’s choice ŷ leftward, against her bias bi¡bd > 0. So she discloses x in equilibrium.

Further, it cannot be that E[Var(xjωd(h
T ), µ)] > 0 in equilibrium, unless there are bias

reversals. This follows from a generalized ‘unraveling’ argument similar to that in Milgrom

(1981). If such an equilibrium existed, then there would be histories hT where the decision

maker d does not know x. Formally, the set X̂ of states for which ωd(h
T ) = X for some

hT would have strictly positive measure. Hence, we would have x̂ < sup X̂. For states x

close to the upper bound of X̂, all players i 6= d would strictly prefer to reveal x rather

than withhold it—since doing so would move d’s action closer to their bliss points. But

this contradicts the de…nition of X̂.

However, both the worst-case beliefs and unraveling arguments break down when the

path p has bias reversals. Plainly, there cannot exist o¤-path beliefs and corresponding

ŷ decisions that simultaneously punish both players biased to the right (bi > bd) and

players biased to the left (bj < bd) for withholding information. As a result, there exists no

equilibrium in which d learns x precisely. That is, E[V ar(xjωd(h
T ), µ)] > 0.21

To illustrate this, consider the following three-player example.

Example 1 (Three Players) There are three players: an expert e, an intermediary i,

and a decision maker d, with bliss points bi < bd < be. That is, e is right-biased and i is

left-biased. At time t = 1, the expert e may disclose x to i or send m̂1
ei = X. If i receives

x, she may disclose it to d at time t = 2, or instead send m̂2
id = X. If i is not informed by

e, she can only send X. At time t = 3, player d chooses y 2 R.

Suppose i knows x at history h2—i.e., ωi(h
2) = fxg. If she withholds x and sends X,

then d plays yd(X) = x̂+ bd, and i’s payo¤ is ui = ¡(x̂+ bd ¡x¡ bi)
2. If i discloses x, then

d plays yd(x) = x+ bd, and i’s payo¤ is ui = ¡(bd¡ bi)
2. Therefore, i withholds x whenever

x 2 (x̂, x̂ ¡ 2(bd ¡ bi)), ignoring ties for simplicity. Intuitively, the left-biased i withholds

the state if (i) withholding results in a more favorable (i.e., leftward) decision, and (ii) that

leftward decision is closer to her bliss point than the full disclosure decision would be.

Now consider the expert e. If she withholds x and sends X, player d ultimately plays

x̂+ bd, giving e a payo¤ of ¡(x̂+ bd ¡ x¡ be)
2. If e discloses x and i relays it to d, then d

plays x+bd, and e’s payo¤ is ¡(bd¡be)
2. Thus, e withholds x when x 2 (x̂¡2(be¡bd), x̂), if

21See the proof of Proposition 1 in Appendix A for the exact bound.
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she anticipates that i will relay it to d in the considered equilibrium. Of course, the expert

e’s choice is irrelevant for any state she anticipates i will withhold from d. In any case, d

will not receive x for any x 2 (x̂¡ 2(be ¡ bd), x̂).

By joining the sets of states withheld by either i or e, we …nd that d will not be informed

of any x 2 U(x̂), except possibly x̂ itself. To complete the equilibrium construction, d’s

belief x̂ must be consistent with this set: x̂ = E [xjU(x̂)] . For all x 2 U(x), the decision

maker plays ŷ = x̂ + bd. (Hence, it is immaterial whether the state x̂ is conveyed to d or

withheld.) ¦

Beyond the three-player case, the analysis mirrors Example 1. Consider any player i

with bi > bd who knows the state x at a history ht where she is called to play. Pick any

state x that she expects will be relayed to the decision maker d by her successors j on the

path p, in equilibrium, if she discloses it. Player i withholds x when x 2 (x̂¡ 2(bi ¡ bd), x̂).

For any x that i expects at least one of her successors will withhold, her own decision

is irrelevant. Hence, none of the states in x 2 (x̂ ¡ 2(bi ¡ bd), x̂) will be disclosed to d.

Likewise, for every i with bi < bd, the states x 2 (x̂, x̂ ¡ 2(bd ¡ bi)) will be withheld from

d. Applying this reasoning to all players i 6= d, we conclude that the states x 2 U(x̂) are

not disclosed to d in equilibrium. Consequently, d chooses ŷ = E [xjU(x̂)] + bd, and the

expected residual variance is E[Var(xjωd(h
T ), µ)] > 0.

If the biases bi ¡ bd > 0 and bd ¡ bj > 0 are su¢ciently large, then i attempts to push ŷ

rightward and j leftward, regardless of the state x. In this case, the set of states U(x̂) covers

the entire state space X, and the expected residual variance becomes E[Var(xjωd(h
T ), µ)] =

Var(x).

To provide a concrete illustration, I conclude the section with the case of a uniformly

distributed state, where the equilibria are calculated in closed form.

Example 2 (Uniform State Distribution) Suppose that X = [0, 1], x » U([0, 1]) and

the path p has bias reversals. Then, the equilibrium is generically as follows:

a. If bd ¡ b < minf1/4, bh ¡ bdg, then x̂ = 2(bd ¡ b), the set of undisclosed states is

U (x̂) = [0, 4(bd ¡ b)] and d plays ŷ = 3bd ¡ 2b for x 2 U (x̂) ;

b. If bh ¡ bd < minf1/4, bd ¡ bg, then x̂ = 1¡ 2(bh ¡ bd), U(x̂) = [1¡ 4(bh ¡ bd), 1] and

d plays ŷ = 1¡ 2bh + 3bd for x 2 U (x̂) ;
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c. Else, if minfbd ¡ b, bh ¡ bdg > 1/4, then x̂ = 1/2, U (x̂) = [0, 1] = X and d plays

ŷ = 1/2 + bd for all x.

This follows from Part b of Proposition 1, together with the following arguments.

There can be no generic equilibrium where 0 < x̂ ¡ 2(bh ¡ bd) and x̂ + 2(bd ¡ b) < 1,

because the condition x̂ = E [xjU(x̂)] becomes x̂ = [x̂¡ 2(bh ¡ bd) + x̂+ 2(bd ¡ b)]/2, i.e.,

bh ¡ bd = bd ¡ b: a knife-hedge condition on b, bd and bh.

When x̂ ¡ 2(bh ¡ bd) < 0 and x̂ + 2(bd ¡ bl) < 1, the condition x̂ = E [xjU(x̂)] yields

x̂ = 2(bd ¡ b). Consistency thus requires that x̂¡ 2(bh ¡ bd) = 2(bd ¡ b)¡ 2(bh ¡ bd) < 0,

i.e., that bh ¡ bd > bd ¡ b. Player h must be more biased to the right than l is biased to the

left. The other consistency requirement is that x̂+ 2(bd ¡ b) < 1, i.e., that bd ¡ b < 1/4.

Conversely, when x̂¡2(bh¡bd) > 0 and x̂+2(bd¡b) > 1, the condition x̂ = E [xjU(x̂)]

yields x̂ = 1¡2 (bh ¡ bd) . Consistency then requires that bh¡bd < bd¡b and bh¡bd < 1/4.

Finally, when x̂¡ 2(bh ¡ bd) < 0 and x̂+2(bd ¡ b) > 1, then U (x̂) = [0, 1] and x̂ = 1/2,

so that consistency requires bh ¡ bd > 1/4 and bd ¡ b > 1/4. ¦

3 Strategic Disclosure in Networks

In order to explore strategic information transmission in networks, I embed the strategic

disclosure framework presented in Section 2 into a network setting inspired by the model

of ‘social communication’ by Jackson and Wolinsky (1996).22 The analysis shows that

the unique ex-ante optimal network—once strategic incentives to withhold information are

accounted for—is a line in which players are ordered by their bliss points. This is also the

only network that is immune to coalitional deviations in a bilateral sponsorship game of

network formation.

The Model Suppose that a set N of n players is embedded in an undirected network

N , a symmetric n £ n matrix, with Nij 2 f0, 1g and Nii = 1 for all i, j 2 N . For any

i 6= j, the notation Nij = 1 indicates that i is linked to j, meaning i can disclose x to j if

she knows it. After network N is formed, a pair of players d and e is randomly selected

22A key aspect of their model is communication decay: even if a player attempts to transmit her infor-
mation, it may be lost with positive probability. To simplify the exposition, I assume no decay here and
defer its consideration to Section 4.
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from N according to a full-support probability distribution P . Player d takes the role of

the decision maker, while e is the informed expert—the only player who knows the state

of the world x 2 X. Their identities become common knowledge among all players in N

after selection.

Player e’s information may travel to d through the network N along any (directed) path

p that connects e and d.23 If e and d are not connected in N , then e’s signal cannot reach

d. As will become clear later, my results hold for any communication protocol where, if e

and d are connected by a unique path p, communication proceeds step by step along p as

in the model of Section 2.

A simple protocol with these properties is as follows. Letting ¹l denote the length of

the longest path p from e to d, there are T = ¹l periods of information transmission. At

time t = 0, the expert e’s information is ωe(h
0) = fxg, while every other player i has

ωi(h
0) = X. Fix any path p from e to d. At time t = 0, . . . , l(p) ¡ 1, the t + 1-th player

i on p sends a private message m̂t
ij 2 ffxg,Xg to the t + 2-th player j.24 As in Section 2,

each message m̂t
ij is subject to the restriction that, if ωi(h

t) = X, then m̂t
ij = X, for any

i, j and ht.

At time T , given any terminal history hT , player d chooses ŷd 2 R based on her infor-

mation ωd(h
T ) and her equilibrium beliefs.25 In line with payo¤ speci…cations in Section 2,

each player i su¤ers a quadratic loss if player d’s choice ŷd diverges from her realized bliss

point x + bi. To capture more realistic preferences, I allow each player i to weight some

decision makers’ choices more heavily than others. Player i’s payo¤ for decision ŷd is given

by:

Li(ŷd, x) = ¡αid(ŷd ¡ x ¡ bi)
2,

where the utility weights αid satisfy αid > 0 for all i, d and
P

d2N αidP (d) = 1 for all i. I

assume that the ex-ante bliss points are ordered as b1 < ¢ ¢ ¢ < bn and that they are common

knowledge, consistent with the motivating applications presented in the Introduction.

Given a network N , an expert e, and a decision maker d, let µedN denote a (possibly

23Two players i and j are linked by the path p = (i, h1, . . . , hl¡1, j) of length l in network N if i is linked
to h1, hk is linked to hk+1 for every k = 1, . . . , l ¡ 2, and hl¡1 is linked to j.

24Under this protocol, players may need to send or receive messages multiple times if there are multiple
paths from e to p in network N. Nevertheless, information updating along histories and strategy de…nitions
follow the standard rules of extensive-form games.

25As in the model of Section 2, we abstract from the possibility that players could further communicate
by cheap talk to players that are not neighbors in N , or to immediate predecessors in a path p from e to d.
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mixed) equilibrium strategy pro…le of the players i 6= d along any path p from e to d, and

let yd denote the associated pure equilibrium strategy of player d. Hence, each player i’s

expected payo¤ in the strategic disclosure game, given N , e, and d, under the equilibrium

(µedN , yd), is

ui(µedN , yd; e, d,N) = ¡αidE[(yd(h
T ;µedN , N)¡ x ¡ bi)

2],

where the expectation is taken over hT and x. If multiple equilibria (µedN , yd) exist, I select

the one that yields the highest expected payo¤ ui(µedN , yd; e, d,N) for all players i. (I will

later show that the equilibria (µedN , yd) are Pareto-ranked ex ante for all e, d,N .) I refer

to this equilibrium as the ‘most informative equilibrium’ and denote it by (µ¤edN , y
¤
d).

Aggregating across all possible realizations of expert–decision maker pairs (e, d), we

obtain each player i’s ex-ante value of network N , including the costs of the links in N :

Ui(N) = ¡
X

(e,d)2N2:e 6=d

αidE[(y
¤
d(h

T ;µ¤edN , N)¡ x¡ bi)
2]P (e, d)¡

X

j2Nnfig

Nijc.

As in the social communication game introduced by Jackson and Wolinsky (1996), I de…ne

the welfare of each network N as the sum of the players’ ex-ante values: W (N) =
P

i Ui(N).

Later, I will relate this utilitarian welfare concept to network information transmission

e¢ciency and aggregate link costs. Indeed, we will …nd that the optimal network here

achieves full disclosure—that is, the state x is disclosed from every expert e to any decision

maker d for every x 2 X—at minimal aggregate link cost c(N) =
P

(i,j)2N 2:j 6=iNijc.

Network Optimality Proposition 1 has important implications for the study of infor-

mation transmission in networks. With few exceptions (see Section 1.1), existing models

of information di¤usion in networks abstract from strategic communication incentives. In

these models, the value of connecting players in a network N is determined by network-

theoretical characteristics. The value of a path connecting a pair of players i and j is

typically assumed to depend on its length, the number of connecting links, or the sum of

the weights of those links, as in the learning model by De Groot (1974). In some cases,

the network communication model is extended to include characteristics of the connected

players i and j when determining the value of their connection (see, for example, Galeotti,

Goyal, and Kamphorst, 2006).

The analysis of the full model of strategic disclosure in Section 2 shows that the value

of a path p connecting e and d also depends on the characteristics of all intermediate
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players i 6= e, d along path p. This highlights that models of communication in networks

that do not explicitly incorporate strategic communication cannot adequately capture such

strategic incentives. The model of network communication must be further augmented to

include the biases of all players i 6= e, d along path p, and to account for whether p exhibits

bias reversals.

The next part of this section builds on the results of Section 2 to study optimal networks

for the strategic disclosure of information. I show that the unique optimal network N is

the line in which players are ordered according to their bliss points, which I de…ne as the

ordered line. Formally, this is the network N such that Nij = 1 if and only if ji ¡ jj = 1.

Proposition 2 below holds for all meaningful link costs c—speci…cally, costs c that are (i)

strictly positive, and (ii) not so large that the optimal network would not be connected

even if information ‡owed freely and strategic disclosure were irrelevant.26 Speci…cally, I

de…ne the cost threshold ¹c as the largest value of c, as a function of P and α, such that

the optimal network N would be connected if signal x were disclosed along any path p

connecting any pair of players e and d.

Proposition 2 For any link cost c 2 (0, ¹c), utility weights ® > 0, and full-support selection

probability P , the unique optimal network N is the ordered line: It achieves disclosure of

every signal x to every decision maker d from every expert e, at minimal aggregate link cost

c(N).

To build intuition for this result, consider minimally connected networks (i.e., trees):

networks where every pair of players is connected by a unique path. The proof of Propo-

sition 2 shows that the ordered line is the unique tree to establish full disclosure—that is,

the state x of every expert e is relayed to every decision maker d via the unique path p that

connects them. In any other tree N , there exists at least one pair e, d connected through

a path p with bias reversals. Proposition 1 then implies that x will not be disclosed to d.

As a result, the ordered line is the unique optimal tree.

Next, consider any network that is not a tree. Since the link cost satis…es c < ¹c,

disconnected networks (i.e., networks with pairs of players not connected by any path) are

suboptimal, by de…nition of ¹c. Further, because c > 0, non-minimally connected networks

26A network N is connected if every pair i, j is connected by some path in N.
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2 = d

3 = e4

2

3 = d

4 = e1

Figure 1: Four-player stars

(i.e., connected networks with loops) are also suboptimal. While they may also yield full

disclosure in equilibrium, they do so at a higher aggregate link cost.

Although intuitive, Proposition 2 is not an immediate consequence of the notion of bias

reversal. For example, one can construct paths such as p = (2, 1, 3), in which players are

not ordered by bliss points and yet no bias reversal occurs, since both players 2 and 1 are

biased leftwards relative to the decision maker, player 3.

I present the proof in the main text, as it is both informative and fairly straightforward.

Proof of Proposition 2. Suppose for the moment that the optimal network is a tree.

The ordered line clearly has no bias-reversal paths. For any pair of realized decision maker

d and expert e with be < bd, it must be that bi < bd for each player i on the path p from

e to d, and vice versa when be > bd. By Proposition 1, the state x is always relayed along

path p from e to d regardless of their realized identities.

Now consider any other tree N and focus momentarily on the case with n = 4 players.

Up to relabeling of players, there are only two classes of trees: lines and stars. Of course,

any non-ordered line contains paths with bias reversals. Moreover, every 4-player star also

contains at least one bias-reversal path. If the center of the star is player i = 1 or i = 2,

then the path p from e = i+2 to d = i+1 has a bias reversal (see Figure 1). Symmetrically,

if the center is i = 3 or i = 4, the path p from e = i ¡ 2 to d = i ¡ 1 has a bias reversal.

For any number of players n ¸ 4, the only tree that contains neither a 4-player star nor

a ‘non-ordered line’ is the n-player ordered line. (The same is trivially true for n = 2, and

also for n = 3, where stars and lines coincide.) So, for every n, because ® > 0, the unique

tree N in which x is transmitted for every realized e, d is the ordered line. By Proposition

1, this is the unique tree N such that for all e, d, the expected variance of d’s decision is
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E[Var(xjωd(h
T );µ¤edN ,N)] = 0.

Using the mean-variance decomposition (1), welfare can be written as

W (N) = ¡n
X

(e,d):e6=d

E[Var(xjωd(h
T );µ¤edN , N)]P (e, d)¡

X

i2N

X

(e,d):e6=d

(bi¡bd)
2P (e, d)¡

X

(i,j):j 6=i

Nijc.

The aggregate link cost is c(N) = (n ¡ 1)c in every tree N . Hence, the tree N that

maximizes welfare W (N) is the one that minimizes the sum of expected residual variances

EV (N) = n
P

(e,d):e 6=d E[Var(xjωd(h
T );µ¤edN , N)]P (e, d). Since the ordered line is the unique

tree for which E[Var(xjωd(h
T );µ¤edN , N)] = 0 for all e and d, it is the unique optimal tree

for any full-support probability distribution P .

Now, consider networks that are not minimally connected. If a network N is connected

but not minimally connected, then its aggregate link cost is c(N) > (n ¡ 1)c. Because

c > 0, such a network is dominated by the ordered line, even if it achieves the same sum of

expected residual variances EV (N) = 0.

If the network N is not connected, then it is dominated by the ordered line for any

c < ¹c, by the de…nition of ¹c as the largest link cost such that the optimal network would

be connected if x were disclosed along any path p connecting any pair of players e and d.

This establishes that the ordered line is the unique optimal network.

Endogenous Network Formation I now turn to analyzing which networks arise en-

dogenously in a game where individual players pay the cost of their links. As in the welfare

analysis, the network formation game is formulated ex ante, i.e., before the identities of the

expert e and decision maker d are drawn and before the state x is realized.

Speci…cally, I model network formation as a ‘bilateral sponsorship’ game à la Myerson

(1991), in which both linked players i and j must pay the cost c for any link to form.

For any …xed selection probability P and utility weights ®, the network N is formed as

follows. Each player i 2 N simultaneously submits a list i 2 f0, 1gNnfig of players j 6= i

she is willing to link to at cost c, where ij = 1 indicates that i commits to paying. A link

between players i and j forms (Nij = Nji = 1) if and only if both players commit to pay,

i.e., ij = 1 = ji.

Once the network N is formed, an expert e and a decision maker d are drawn, the state

x is realized and revealed to e, and the disclosure game is played on N . It is evident that
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the bilateral sponsorship game permits miscoordination in Nash equilibrium: a player i

may choose ij = 0 solely because she anticipates that j will also play ji = 0, even though

connecting would bene…t both in the disclosure game. While Nash equilibrium identi…es

strategy pro…les ` that are immune only to individual deviations, I consider pro…les ` that

are also immune to coalitional deviations, in line with the concept of core in cooperative

games (Gillies, 1959). Speci…cally, I require that there does not exist any subset N 0 µ N

and list pro…le `0N 0 = (0i)i2N 0 such that the network N 0 induced by (`0N 0 , `NnN 0) satis…es
P

i2N 0 Ui(N
0) >

P
i2N 0 Ui(N). In other words, no coalition of players N 0 should be able

to change their sponsored links in a way that makes all its members strictly better o¤,

provided that transfers among them are possible.

With these de…nitions in place, I can now state my main result on endogenous network

formation.

Proposition 3 For any utility weights ® > 0 and full-support selection probability P ,

there exists a cost threshold ĉ such that for all c 2 (0, ĉ), the ordered line is the unique

network induced by a Nash equilibrium ` of the bilateral sponsorship game that is immune

to coalitional deviations.

Qualitatively, this result parallels the welfare …ndings in Proposition 2, and the proof

follows a similar logic. Because the ordered line guarantees that every decision maker d

receives the signal x from every possible expert e, no player or coalition of players is willing

to pay for additional links, given that c > 0; nor is any player or coalition willing to

delete links when c is smaller than a certain threshold ~c. Further, because the ordered line

is the unique optimal network for c 2 (0, ¹c), any other network would be overturned by

the coalition of all players deviating to form the ordered line. Letting ĉ be the minimum

between ~c and ¹c yields the desired result.

The range of link costs (0, ĉ) for which the ordered line arises in the bilateral sponsorship

game as the unique network immune to coalitional deviations can be signi…cantly smaller

than the range (0, ¹c) for which it is uniquely optimal. There, ¹c is the highest cost at which

the aggregate cost c(N) of a connected network N is o¤set by the collective bene…t of full

disclosure—the transmission of x between every e and d. Instead, ~c is the highest cost ~c at

which each adjacent pair i and i + 1, for i = 1, . . . , n ¡ 1, is willing to pay to form a link

ensuring full disclosure in the resulting ordered line. Players do not necessarily value each
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decision maker’s action equally, i.e., αid is not uniform across i and d. Some players may

be signi…cantly less willing to pay for ensuring that a particular d receives signals, and in

such a case it will be that ĉ = ~c < ¹c.27

4 General Results

Having presented the main results in a streamlined version of the model, this section turns

to generalizations.

4.1 Partial Disclosure and Decay

I develop a full-‡edged model of veri…able information transmission in networks, in which

players may choose to partially disclose their information. I also allow for transmission

decay—that is, information may be lost independently of the message sent. This extends

the model of Section 3 to include these features.

An expert e and decision maker d are randomly drawn from the players in a network

N. Player e observes the state x 2 X and may disclose it to d along any path in N . With

a unique path between e and d, the framework reduces to the disclosure game of Section 2,

augmented for partial disclosure and decay. Let T be the length of the longest path p from

e to d in N. At t = 0, the information is ωe(h
0) = fxg and ωi(h

0) = X for any i 6= e.

For any path p from e to d, at time t = 0, . . . , l(p) ¡ 1, the t + 1-th player i on p sends a

message ~mt
ij µ X to the t+ 2-th player j. Messages ~mt

ij are non-empty closed sets and are

veri…able, i.e., ωi(h
t) µ ~mt

ij. At time T , the decision maker d chooses ŷd 2 R.

Decay is modeled as follows. With probability 1 ¡ δ, independently across periods t,

histories, and player pairs i, j, the message ~mt
ij is lost in transmission, and player j learns

nothing about x. That is, she observes m̂t
ij = X, as if i had sent no information. Otherwise,

j observes m̂t
ij = ~mt

ij.

At every history ht, the information ωi(h
t) of any player i 6= e is updated in the standard

way. Suppose player i receives the vector of messages m̂i = (m̂
t
ji) at history ht from her

immediate predecessors j on paths p from e to d. Then, she updates her information at

27For example, suppose that α21 is small. Then, player 2 will only be willing to form the link with 1 if
the cosy c is small, thus making also ĉ = ~c small.
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ht+1 according to the rule:

ωi(h
t+1) = ωi(h

t) \j m̂
t
ji.

In words, at history ht, player i knows that x cannot be outside ωi(h
t). Because each

received message m̂t
ji is veri…able, she also learns at ht+1 that x cannot be outside any

set m̂t
ji. As a result, any message ~mt

ij disclosed by player i 6= e, d at history ht must be a

(possibly weak) superset of the intersection of the messages m̂τ
ji received at times τ < t in

the history ht.

The disclosure results in Proposition 1 and the optimal network results in Proposition

2 continue to hold in this setting—with some quali…cations. Most importantly, decay must

be small, meaning δ must be close to one. Formal statements are given in Propositions 5

and 6, in Appendix B.

The analysis underlying Proposition 5 di¤ers qualitatively from that in Section 2. To

illustrate this, …rst assume there is no decay, but partial disclosure is possible. This makes

equilibrium analysis signi…cantly more complex for several reasons. First, even a player i

who knows x at history ht, i.e., ωi(h
t) = fxg, may choose to send a neighbor j a message

~mt
ij that is neither fxg nor X. This ‡exibility gives players a continuum of messages to use,

potentially enhancing their ability to convey information in equilibrium by using di¤erent

messages to signal di¤erent states. Second, each intermediary i 6= e, d may possess partial

information about x, i.e., fxg ( ωi(h
t) ( X, which signi…cantly enriches the message

strategy space. Third, players other than d and her immediate predecessors must anticipate

how their messages will in‡uence subsequent players’ disclosure decisions along the unique

path p from e to d considered in Propositions 1 and 5.

These distinctions have no bearing on the proof that if p has no bias reversals, then

there exists an equilibrium (µ, yd) in which all players i 6= d disclose their full information,

i.e., ~mt
ij(h

t) = ωi(h
t), at every history ht where they act, so that every state x is disclosed

to d and E[Var(xjωd(h
T ), µ)] = 0.28 The analysis becomes more subtle when the path p

has bias reversals. In that case, for any belief x̂ held by the decision maker upon receiving

no information, full disclosure fails whenever x 2 U(x̂). However, partial disclosure may

still occur, and proving that E[Var(xjωd(h
T ), µ)] > 0 requires accounting for this.

The issue is addressed by considering two cases. Pick any player i on p such that bi > bd

28As in the proof of Proposition 1, the equilibrium is supported by worst-case beliefs: if bi > (<) bd, then
d believes x = minωd(h

T )—respectively, x = maxωd(h
T )—at every terminal history hT .
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(the case bi < bd is symmetric). First, suppose there exists a subset ~Xi µ (x̂¡ bi+ bd, x̂) of

positive measure such that, for all x0 2 ~Xi, player i learns at some ht that x 2 (x̂¡bi+bd, x̂).

Then, as in Proposition 1, player i is better o¤ if her information is withheld from player

d. Hence, d cannot be disclosed x at any terminal hT that includes such histories ht, and

Var(xjωd(h
T ), µ) > 0. In the second case, for almost all x 2 (x̂ ¡ bi + bd, x̂) and histories

ht on the equilibrium path, player i does not learn that x 2 (x̂ ¡ bi + bd, x̂) when this

is the case. As a result, i cannot disclose x, player d will not learn it at any subsequent

history hT , and again Var(xjωd(h
T ), µ) > 0. Integrating over all possible histories yields

E[Var(xjωd(h
T ), µ)] > 0.

While partial disclosure introduces only technical complexity, decay leads to structural

changes in the equilibrium, even when the path p has no bias reversals. The analysis draws

on Dye (1985), who studied strategic direct disclosure to a decision maker by an expert who

may be uninformed about the state. In fact, the equilibrium updating by d is analogous to

our setting, in which the expert’s message may be lost in transmission.

Suppose bi > bd for all i 6= d on the path p, and let x̂(δ) solve

(1¡ δT )E[x] + δTE[xjx · x̂(δ)] = x̂(δ). (2)

Because δ < 1, there exist terminal histories hT such that ωd(h
T ) = X. For every δ

su¢ciently close to one, an equilibrium (µδ, yδd) is shown to exist in which all players i 6= d

disclose x if and only if x > x̂(δ), and otherwise send ~mt
ij = X. Player d’s expectation of x

upon receiving no information equals the left-hand side of (2), so she chooses ŷ = x̂(δ)+ bd.

This gives each player i 6= d a strict incentive to disclose x if and only if x > x̂(δ), because

bi > bd, thereby con…rming the proposed strategy pro…le is an equilibrium. Further, it is

immediate that limδ!1 x̂(δ) = x, and thus limδ!1 E[Var(xjωd(h
T ), µ)] = 0.

Instead, if p has bias reversals, it is still the case that limδ!1 E[Var(xjωd(h
T ), µδ)] > 0 for

any sequence of equilibria (µδ, yδd), as when there is no decay. This completes the analysis

leading to Proposition 5.

With Proposition 5 in place, Proposition 6 follows by arguments parallel to those in

Section 3 used to establish Proposition 2. The conclusions, however, no longer hold across

the full cost range (0, ¹c) when decay is present. Because δ < 1, networks that are not

minimally connected can outperform the ordered line when c is very small. Also, when

c is near the upper bound ¹c, optimal networks may be disconnected. Nonetheless, for δ
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close to 1, there exists an “intermediate” cost range (c¡, c
+) with 0 < c¡ < c+ < 1 such

that the ordered line is the unique optimal network. As decay vanishes, i.e., as δ ! 1, this

intermediate range expands to encompass the entire interval (0, ¹c). Similar logic applies

when generalizing Proposition 3.

4.2 General Functional Forms

The analysis in Section 3 assumed that the expert e knew the state x precisely, and that

players’ loss functions Li took the quadratic form Li(y, x) = ¡ (y ¡ x ¡ bi)
2, with a state-

independent bias bi. I now show how to relax these assumptions and generalize the main

…ndings.

Suppose that e observes a signal s 2 S = [s, s] ½ R. The distribution of s given x

is determined by the density g(sjx), which is assumed to be strictly positive on S. The

signal s is informative about x in the sense that it satis…es the monotone likelihood ratio

property: if s0 > s and x0 > x, then g (s0jx0) /g (sjx0) > g (s0jx) /g (sjx).

Further, consider a general loss function Li(y, x) that is twice continuously di¤erentiable

and satis…es two properties: (i) concavity, so that ∂2Li/∂y
2 < 0; and (ii) supermodularity,

meaning ∂2Li/∂y∂x > 0 and ∂Li+1/∂y > ∂Li/∂y. Each player i’s expected value from

any equilibrium (µedN , yd) of the disclosure game—given network N , expert e, and decision

maker d—is:

ui(µedN , yd; e, d,N) = αid E
£
Li

¡
yd(h

T ;µedN , e), x
¢¤
.

The concavity of Li and the monotone likelihood ratio property ensure that, for any sig-

nal s 2 S, there exists a unique decision yi(s) that maximizes player i’s expected payo¤

E[Li(y, x)js]. Together with supermodularity, these properties imply that E[Li(y, x)js] is

strictly increasing (decreasing) in y for all y · (¸)yd(s) if i > (<) d. So, for any signal s,

player i > d prefers to bias d’s decision to the right, and vice versa. A path p from e to d

has bias reversals if there exist i, j on p such that i < d < j.

To capture the trade-o¤ between the overall quality of information disclosure and the

aggregate cost of links, I earlier measured a network’s e¢ciency as the probability-weighted

sum of players’ optimal equilibrium payo¤s ui(µ
¤
edN , y

¤
d; e, d,N) over expert–decision maker

pairs (e, d). Unlike in Section 3 however, the ex-ante equilibrium payo¤s ui(µedN , yd; e, d,N)

can no longer be decomposed into a common component—such as the residual variance
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E[Var(xjωd(h
T ), µ)]—and an idiosyncratic loss term (bi ¡ bd)

2 independent of equilibrium

choices. This lack of alignment in payo¤s across players makes the earlier e¢ciency measure

unsuitable. Here, I directly de…ne as optimal any network N that achieves disclosure of

each expert e’s signal s to every decision maker d while minimizing the aggregate link cost

c(N).29

The equilibrium disclosure results of Section 2, and the optimality results of Section 3

extend to this more general setting. The formal statements appear as Propositions 7 and 8

in Appendix B.

4.3 Many Experts and Decision Makers

I consider the case in which multiple players may have information about x and may be

called to make decisions. A non-empty set E µ N of experts and a non-empty set D µ N

of decision makers are randomly drawn from a full-support distribution P. Each expert

e 2 E holds a signal se 2 S, and each decision maker d 2 D chooses an action ŷd 2 R after

communication occurs over network N . Each player i’s loss function Li takes the quadratic

form of Section 3: Li(ŷD, x) = ¡
P

d2D αid(ŷd ¡ x ¡ bd)
2.

In line with the ideas of Jackson and Wolinsky (1996), I assume that the signal se of

each e is valuable to every d and cannot be replicated by the information of others in the

network. Speci…cally, for any set of experts E, I …rst assume that the distribution gE of

the signal pro…le sE satis…es the monotone likelihood ratio property. Furthermore, for any

signal pro…le sE, player e 2 E and signal se, and any set Se such that feg ( Se µ S, I

assume that knowing se is more informative than knowing only Se—in the sense that it

leads to a lower expected quadratic loss. This holds, for example, when the signals se are

i.i.d. conditional on x and the inference problem is not trivial.

Assumption 1 For any set of experts E µ N , the distribution gE satis…es:

a. if s0E ¸ sE and x0 > x, then gE (s
0
Ejx0) /gE (sEjx0) > gE (s

0
Ejx) /gE (sEjx) ,

b. for any pro…le sE, any player e 2 E and signal se and any set Se : fseg ( Se µ S,

E[Var(xjfsEnfegg £ Se)] > E[V ar(xjfsEg)]. (3)

29This de…nition is meaningful only if c is not so high that a disconnected network becomes preferable
despite the loss of disclosure.
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Given a network N with realized sets E and D, the transmission of signals se from

experts e 2 E to decision makers d 2 D follows the protocol considered earlier in this

section, with the quali…cation that each player i’s information set ωi(h
t) at any history ht

is a possibly proper subset of SE.30 Let T denote the length of the longest path p from

any e 2 E to any d 2 D. At t = 0, the information sets ωi(h
0) satisfy ωe(h

0)je = fseg

for all e 2 E, and ωi(h
0)jj = S for all other i, j, where the index j refers to information

about signal sj. For every pair (e, d) with e 2 E and d 2 D, and for any path p from e

to d, at each time t = 0, . . . , l(p)¡ 1, the t+ 1-th player i on p sends a veri…able message

m̂ij µ SE—that is, ωi(h
t) µ m̂ij—to the t+2-th player j. This allows for partial disclosure,

for generality. At every history ht, each player’s information set ωi(h
t) is updated in the

standard way. At time T , every decision maker d 2 D chooses her ŷd.

The next result restates Proposition 2 in this generalized environment.

Proposition 4 Suppose that ® > 0, non-empty sets E and D of experts and decision

makers are chosen with a full-support distribution P , and Assumption 1 holds: all signals

se are informative about x and none is redundant. Then, for any link cost c 2 (0, ¹c), the

ordered line is the unique optimal network.31

The core of the proof is to show that, for all realized sets E and D, the signals of all

experts reach all decision makers when the networkN is the ordered line. The logic is similar

to that of Proposition 1. Each decision maker d knows how to interpret the withholding of

a signal se. Signals from experts e > d, who are biased to the right, are transmitted to d

through intermediaries i with e ¸ i > d, who are also biased to the right. Suppose one such

signal se is not disclosed to d. Then d presumes that the withheld information supports a

more leftward action—she forms an o¤-path belief that se = minωd(h
T )je. This leads her

to choose the most rightward decision consistent with ωd(h
T )je, deterring all players i > d

from withholding any se with e ¸ i > d on the path from e to d. A symmetric argument

ensures that signals from experts e < d, who are biased to the left, are also disclosed to d.

These arguments imply that the signals se of all experts e reach all decision makers d

when N is the ordered line. The suboptimality of any other network, and hence the result

30This construction implies that both the content of each signal se and the identity of the expert e who
originated it are veri…able. Proposition 4 extends qualitatively to the case in which only the content of
each signal se is veri…able.

31As in Proposition 2, ¹c denotes the maximum link cost such that full disclosure of all signals se to every
decision maker justi…es the aggregate cost of a connected network.
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that only the ordered line is the unique network immune to coalitional deviations, follow

from the same arguments used in Section 3. These conclusions rely on the fact that the

distribution P has full support. In other words, any pair (E,D) with E = feg and D = fdg

can be selected with positive probability. By Proposition 2, the ordered line is the unique

tree that guarantees that the signal se of expert e reaches decision maker d regardless of

their realized identities. As a result, also here, the ordered line is the unique optimal tree.

And again, non-tree networks are suboptimal as long as c 2 (0, ¹c), link costs are positive,

and not too large.

5 Conclusion

This paper has studied the strategic transmission of veri…able information through interme-

diaries. I have shown that full disclosure occurs in equilibrium if and only if the expert and

all intermediaries along the information transmission path are biased in the same direction

relative to the decision maker.

By embedding this strategic disclosure framework into a network setting, this paper

bridges two major strands of economic theory: information transmission in networks and

strategic communication. When each player in the network may hold information rele-

vant for others’ decisions, I have found that the unique ex-ante optimal network is the

ordered line: the network where each player connects only to those with the most similar

preferences. This network structure prevents strategic information withholding, and thus

ensures e¢cient information ‡ow, at minimal aggregate link cost. Finally, the paper has

shown that the ordered line also arises endogenously as the unique network that is immune

to coalitional deviations in a bilateral link formation game à la Myerson (1991).

These …ndings have important implications for political economy, where strategic com-

munication often shapes interactions between political decision makers. When political

agents connect with those who share similar views, no veri…able information can be with-

held in equilibrium. If any information were withheld, decision makers would be able to

identify which political side was responsible and adjust their actions accordingly. By con-

trast, if agents are connected in any other con…guration within a minimally connected

network, full information disclosure cannot be sustained.

This study opens several avenues for future research. One promising direction concerns
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the optimality of networks under uncertainty about player preferences. Two cases are

of particular interest: (i) preferences are unknown ex-ante to the social planner but are

common knowledge among players in the disclosure game, and (ii) preferences are unknown

ex-ante and remain privately known to the individual players engaged in the disclosure

game.

The …rst case is simpler. Unless the link cost c is too large, if players’ bliss points bi

are unknown ex-ante, the optimal network N is complete (i.e., Nij = 1 for all pairs i, j).

This is the only network that guarantees full disclosure from every expert to every decision

maker. If Nij = 0 for any pair i, j, it is ex-ante possible that i is the most left-leaning

(or right-leaning) player and j is the second most left-leaning (or right-leaning). Since

they are not connected, any path from j to i would involve a bias reversal, preventing j’s

information from reaching i. I leave the analysis of the second case for future work.

Another promising direction is to investigate the implications of multidimensional states

and decisions. A more ambitious avenue would be to incorporate repeated models of strate-

gic communication and examine how networks evolve over time.
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Appendix A: Omitted Proofs

Proof of Proposition 1. Part a. Suppose the path p has no bias reversals, e.g., bi > bd

for all i 6= d. (The proof for bi < bd for all i 6= d is the mirror-like image.)

We construct the following strategy pro…le and verify that it constitutes a Perfect

Bayesian Equilibrium. The disclosure strategies µ are as follows. Every player i 6= d

who knows x—i.e., ωi(h
t) = fxg—at a history ht at which she is called to play discloses

x to her successor j on p, i.e., she plays mij(h
t) = fxg. Of course, if i does not know x,

so that ωi(h
t) = X, then she cannot disclose anything and must send mij(h

t) = X, her

beliefs are irrelevant. The decision maker d adopts the strategy yd(h
T ) = minωd(h

T ) + bd

for every history hT .

Under this pro…le, the message m̂ij = fxg travels along the path p from the expert e

to the decision maker d on the path of play. Consequently, d chooses yd(h
T ) = x+ bd, and

thus the expected residual variance satis…es E[Var(xjωd(h
T ), µ)] = 0.
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To verify this is an equilibrium, …rst note that all beliefs are admissible. Perfect Bayesian

Equilibrium requires beliefs to be consistent with Bayes rule only on information sets ωj(h
t)

on the equilibrium path. For every state x, the unique terminal information sets on path is

ωd(h
T ) = fxg and minωj(h

t) = x, consistently. Further, d’s strategy yd is clearly optimal

given her beliefs.

Now, note that by construction any player i 6= e does not know x, i.e., ωi(h
τ ) = X, at

any history hτ before she is called to play. Thus i’s information at any history ht she is

active coincides with the message m̂t¡1
ji received in the history ht at time t ¡ 1 from her

immediate predecessor j on path p: ωi(h
t) = m̂t¡1

ji . For the same reason, i knows x at a

history ht if and only if all her predecessors j on p disclosed x along that history ht—that

is, each sent m̂τ
jk = fxg to her immediate successor k on p at the time τ when she was

active. Hence, there exists a unique history ht in which i knows x.

Next, we verify that each player i 6= d has no incentive to deviate from the stipulated

strategy µ at any history ht she is active. Of course, if ωj(h
t) = X, then she can only send

m̂t
ij = X to her immediate successor j on p, consistently with µ. So, consider the history

ht such that ωi(h
t) = fxg. Player i anticipates that all her successors j 6= d on p will play

m̂τ
jk = ωj(h

τ ) at any history hτ that extends ht, by the imputation that they adhere to µ.

This, together with the results in the previous paragraph, implies that i anticipates that

d’s information at any terminal history hT that extends ht will coincide with the message

she sends to her immediate successor j on p, i.e., ωd(h
T ) = m̂t

ij.

If i sends m̂t
ij = X, then d plays yd(h

T ) = x + bd. If instead i sends m̂t
ij = fxg, then

d chooses yd(h
T ) = x + bd. Because i knows x at history ht, her payo¤ is Li (ŷ, x) =

¡ (ŷ ¡ x ¡ bi)
2 , which increases in ŷ for ŷ < x+ bi. As bi > bd, player i prefers the outcome

ŷ = x+ bd to the outcome ŷ = x+ bd. Hence, she does not deviate from sending m̂t
ij = fxg.

As the argument holds for all x 2 X, it concludes the veri…cation that (µ, yd) is a Perfect

Bayesian Equilibrium.

I now show that in every equilibrium (µ, yd), the message m̂ij = fxg travels from e

to d along path p, and d chooses ŷ = x + bd, so that E[Var(xjωd(h
T ), µ)] = 0. Suppose

not. Then there exist a non-null subset X̂ µ X such that yd(h
T ) 6= x+ bd and hence that

ωd(h
T ) 6= fxg, for all x 2 X̂ and some terminal histories hT containing x on the equilibrium

path. For all such x and hT , player d observes ωd(h
T ) = X and chooses y(hT ) = x̂ + bd,

where x̂ = E[xjX,µ].
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By the intermediate value theorem, there is a non-null subset ~X µ X̂ such that x > x̂

for all x 2 ~X. Pick any such an x, and proceed by backward induction, labelling the players

on p as i0 = e, i1, . . . , iT¡1, iT = d.

Start with iT¡1 at the history hT¡1 where ωiT¡1(h
T¡1) = fxg. Because x > x̂ and

biT¡1 > bd, player iT¡1 strictly prefers that d chooses x+ bd rather than x̂+ bd. Thus, she

strictly prefers sending m̂iT¡1,iT = fxg over m̂iT¡1,iT = X. Of course, at any other history

hT¡1, player iT¡1 sends m̂iT¡1,iT = X = ωi(h
T¡1).

Now consider any player it with t < T ¡ 1 at the history ht such that ωi(h
t) = fxg. Let

the induction hypothesis be that for any τ = 1, . . . , T ¡1¡t, player it+τ sends m̂it+τ it+τ+1 =

ωit+τ (h
t+τ ) to her immediate successor it+τ+1. Then, it anticipates that for any terminal

history hT that extends ht, player d will observe ωd(h
T ) = m̂itit+1 : player d will know x if

and only if it discloses it to her immediate successor it+1. As is the case for iT¡1, because

x > x̂ and bit > bd, player it strictly prefers to send m̂it,it+1 = fxg over m̂it,it+1 = X.

By induction, we conclude that all players i 6= d strictly prefer to send m̂i,j = fxg

to their immediate successor j on p, starting from from the expert e, who knows x. This

concludes that d cannot observe ωd(h
T ) = X at any terminal history hT on the equilibrium

path when x 2 ~X, thereby establishing the desired contradiction.

Part b. Suppose path p has bias reversals. Consider terminal histories hT with ωd(h
T ) =

X. Let the belief x̂ = E [xjX;µ] be arbitrary for now (the proof will show that ωd(h
T ) = X

must be on the equilibrium path, and hence that x̂ is determined by Bayes rule.)

Pick any player i with bi > bd. For any history ht at which i is called to play, she may

hold either ωi(h
t) = fxg or X. If ωi(h

t) = X, then she cannot disclose x. Consider any

state x 2 X such that x̂ + 2(bd ¡ bi) < x < x̂, and suppose that ωi(h
t) = fxg. In the

terminal history hT such that ωd(h
T ) = fxg, player d’s decision is ŷ = x + bd. Because

2(bi ¡ bd) > x̂ ¡ x > 0, it follows that

uid(x̂+ bd, x)¡ uid(x+ bd, x) = ¡(x̂+ bd ¡ x¡ bi)
2 + (bd ¡ bi)

2

= ¡(x̂ ¡ x) [(x̂¡ x)¡ 2 (bi ¡ bd)] > 0.

Player i strictly prefers that d is not disclosed x and plays ŷ = x̂+ bd, rather than d learns

x and plays ŷ = x+ bd.

Suppose that, in the considered equilibrium, i’s successors j on p relay x to their im-

mediate successors k, i.e., play m̂τ
jk = fxg at the history hτ in which they know x. Then, if
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i sends m̂t
ij = fxg to her immediate successor j, player d will eventually learn x: it will be

that ωd(h
T ) = fxg for the equilibrium terminal history hT that contain ht and m̂t

ij = fxg.

Hence, i strictly prefers sending m̂t
ij = X, as this implies that ωd(h

T ) = X at every sub-

sequent history hT . Of course, if in equilibrium some successors j on p play m̂τ
jk = X at

the history hτ in which they know x, then i’s choice at ht is irrelevant. In either case, no

state x 2 (x̂, x̂+2maxbi>bd(bi ¡ bd)) can be disclosed to d and lead to ωd(h
T ) = fxg at any

history hT on the equilibrium path.

The converse—namely, that all states x /2 [x̂, x̂+ 2maxbi>bd(bi ¡ bd)] must be disclosed

to d on the equilibrium path—is established via an induction argument analogous to the

one in Part a.

A symmetric argument shows that no state x 2 (x̂ ¡ 2minbi<bd(bi ¡ bd), x̂) can lead to

ωd(h
T ) = fxg in equilibrium, and that all states x /2 [x̂¡ 2minbi<bd(bi ¡ bd), x̂] must be be

disclosed to d on the equilibrium path.

As a consequence, d plays ŷ = x̂ + bd if x 2 U(x̂) = (x̂ ¡ 2(bh ¡ bd), x̂+ 2(bd ¡ b))

and ŷ = x + bd if x /2 [x̂ ¡ 2(bh ¡ bd), x̂ + 2(bd ¡ b)]. Thus, the expected residual variance

of equilibrium (µ, yd) is E[Var(xjωd(h
T ), µ)] = E[(x̂ ¡ x)2jU(x̂)] = Var(xjU(x̂)), where, by

consistency of the decision maker d’s beliefs on U(x̂), it must be that x̂ = E[xjU(x̂)]. As a

result, the equilibrium expected residual variance can be bounded as follows:

min
(µ,yd)

E[Var(xjωd(h
T ), µ)] ¸ min

x̂2X

Z minfx̂+2(bd¡b),xg

maxfx,x̂¡2(bh¡bd)g

(x̂ ¡ x)2f(x)dx > 0.

Part c. The results follows from Part b as corollaries. If either bh ¡ bd > 0 or bd ¡ b > 0

is su¢ciently large in absolute value, then the state space X coincides with U(x̂) for all

x̂ 2 X. Hence, x̂ = E[x], and player d’s decision is y(hT ) = E[x] + bd for almost every hT .

The equilibrium expected residual variance is

E[Var(xjωd(h
T ), µ)] =

Z

X

(E[x]¡ x)2f(x)dx = Var(x).

Proof of Proposition 3. The proof that the ordered line is immune from coalitional

deviations for any c small enough is immediate. Because the ordered line has no bias-

reversal paths, Proposition 1 implies that every state x 2 X is transmitted from e to d

regardless of their realized identities. Given that P (e, d) > 0 for all e, d, and ® > 0, there

30



exists a threshold ~c > 0 such that for all link costs c · ~c, deleting links from the ordered

line is detrimental to each player, and thus to any coalition of players. Further, adding

any link to the ordered line is costly, as c > 0, and does not improve disclosure of x. So it

cannot be bene…cial to any coalition.

The proof that the ordered line is the unique network immune from coalitional deviations

is also immediate, as it is the unique optimal network for c 2 (0, ¹c). Thus every other

network N can be blocked by a deviation of the grand coalition (i.e., the set of all players)

forming the ordered line.

Letting ĉ = minf~c, ¹cg yields the desired result.

Proof of Proposition 4. The result is proved for general disclosure games that allow

for partial disclosure. For clarity, I distinguish two parts.

Part a. Suppose that the network N is the ordered line. I show that there exists a Perfect

Bayesian Equilibrium such that, for all sets E of experts and D of decision makers, every

d 2 D receives the signal se from every e 2 E.

De…ne the sets I+(E,D) = fi : d < i · e for some e 2 E, d 2 Dg and I¡(E,D) =

fi : e · i < d for some e 2 E, d 2 Dg. Because N is the ordered line, I+(E,D) identi…es

players who relay information from experts to decision makers to their left, and I¡(E,D)

those who relay information to decision makers to their right.

Consider a pro…le of strategies µ in which every player i 2 I+(E,D) discloses all her

information ωi(h
t)je µ S about the signals se of all experts e 2 E such that e ¸ i to her

neighbor i¡ 1 at any history ht she is active, i.e., she sends message mi,i¡1(h
t)je = ωi(h

t)je

for all e ¸ i. The transmission of information about se of e < i is irrelevant. Symmetrically,

every player i 2 I¡(E,D) discloses all her information ωi(h
t)je about the signals se of all

e 2 E such that e · i to her neighbor i + 1 at all histories ht she is active, sending

mi,i+1(h
t)je = ωi(h

t)je for all e · i.

To complete the construction of pro…le (µ,yD) and associated beliefs, suppose that every

player d 2 D at any terminal history hT believes that se = minωd(h
T )je with probability

one for every e 2 E : e > d, and se = maxωd(h
T )je with probability one for every e < d,

and that player d 2 D chooses yd(h
T ) = E[xjsE] + bd according to such a pro…le of signals

sE = (se).

Because N is the ordered line, note that on the path induced by strategy pro…le µ, the
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signal se of every expert e 2 E travels to every d 2 D, and d chooses yd(h
T ) = E[xjsE]+ bd,

implying that E[Var(xjωd(h
T ), µ)] = E[Var(xjsE)].

To verify that this is a Perfect Bayesian Equilibrium, …rst note that the beliefs are

consistent. For any d 2 D and signal se of any e 2 E, the information sets ωd(h
T ) at

the terminal histories hT on the path induced by µ satisfy ωd(h
T )je = fseg, and thus

minωd(h
T )je = maxωd(h

T )je = se, ensuring consistency. Further, the strategy yd of each

player d 2 D is sequentially rational given her beliefs, by construction.

To continue with the veri…cation, I now show that no player i 2 I+(E,D) gains by

deviating from the strategy µ that prescribes mi,i¡1 (h
t) je = ωi(h

t)je for all e 2 E such

that e ¸ i, at any history ht at which she is active.

Player i’s expected payo¤ at history ht as a function of her message m̂t
i,i¡1 can be written

as follows:

E[Li (ŷD, x) jωi(h
t), µ; m̂t

i,i¡1] =
X

d2D

αidE[Li (ŷd, x) jωi(h
t), µ; m̂t

i,i¡1],

and note that for any d 2 D, the expression E[Li (ŷd, x) jωi(h
t), µ; m̂t

i,i¡1] is a quadratic loss

function, as it is the integral of the quadratic loss functions Li (ŷd, x) = ¡ (ŷd ¡ x ¡ bi)
2 .

For any d 2 D : d > i, the choice m̂t
i,i¡1 is irrelevant provided that every player j

(including possibly i) abide by the strategy µ at any history hτ 6= ht. This is because N is

the ordered line and i¡ 1 does not lie on the path from i to d.

Pick any d 2 D : d < i. Because N is the ordered line, i does not lie on any path from e

to d for any e 2 E : e < i. So, i’s choice m̂t
i,i¡1je<1 is irrelevant for the disclosure of signals

se from such e to d, and she anticipates that every such signals se will be disclosed to d

precisely, under µ.

Hence consider only the signals se of e 2 E : e ¸ i. Player i knows that she conforms to

strategy µ and plays m̂τ
i,i¡1je¸i = ωj(h

τ )je¸i at any history hτ 6= ht at which she is active.

Further, player i presumes that every player j 6= i : d < j conforms to strategy µ and hence

anticipates that they send message m̂τ
j,j¡1je¸j = ωj(h

τ )je¸j to their neighbors j ¡ 1 at any

history hτ at which they are active.

Hence, there are 3 possibilities with respect to the implications of i’s choice m̂t
i,i¡1je¸j

at history ht with respect to the information ωd(h
T )je about se of e ¸ i held by d at any

terminal histories hT that extends ht. First, it may be that ωd(h
T )je = fseg for all such hT
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regardless of i’s choice m̂t
i,i¡1 at history ht. This happens when se is disclosed to d along a

sequence of play from e to d where i moves at a time τ 6= t. Second, it may be that ωd(h
T )je

is independent of m̂t
i,i¡1 because d¡ i > T ¡ t: the message m̂t

i,i¡1 does not reach d because

the path from i to d is longer than the number of disclosure periods from t to T. Third,

and …nal, it may be that ωd(h
T )je = m̂t

i,i¡1je for all hT that extends ht. This occurs when

t is the unique time τ such that d ¡ i · T ¡ τ at which i is active. In this case, player i

controls the information about se that d will eventually receive.

As a result, player i expectation about player d’s decision yd(h
T ) as a function of her

message m̂t
i,i¡1je¸i is

E[yd(h
T )jωi(h

t), µ; m̂t
i,i¡1je¸i] = E[E[xj

¡
se¸i(ωd(h

T )je¸i), se<i
¢
]jωi(h

t)] + bd,

where for any e ¸ i, either ωd(h
T )je = m̂t

i,i¡1je, or ωd(h
T )je is independent from m̂t

i,i¡1je.

In the expression on the right-hand side, the external expectation is taken with respect to

any pro…le of signals se<i, whereas se¸i(ωd(h
T )je¸i) denotes the pro…le of signals se¸i such

that se = minωd(h
T )je for all e ¸ i.

To continue, because N is the ordered line, for any terminal history hT that extends ht,

it holds that ωi(h
t)je¸i µ ωd(h

T )je¸i. That is, everything d learns about a signal se from an

expert e ¸ i must also be known by i. As a consequence, minωd(h
T )je · minωi(h

t)je by

set inclusion for all e ¸ i, so that

E[xj
¡
se¸i(ωd(h

T )je¸i), se<i
¢
] · E[xj(se¸i(ωi(h

t)je¸i), se<i)] · E[xj(ωi(h
t)je¸i, se<i)],

where the …rst inequality follows from supermodularity, and the second one by de…nition

of se¸i(ωi(h
t)je¸i) as the pro…le se¸i such that se = minωi(h

T )je for all e ¸ i.

Integrating across se<i, and using bi > bd, I obtain:

E[yd(h
T )jωi(h

t), µ; m̂t
i,i¡1je¸i] = E[E[xj

¡
se¸i(ωd(h

T )je¸i), se<i
¢
]jωi(h

t)] + bd

< E[E[xj(ωi(h
t)je¸i, se<i)]jωi(h

t)] + bi = E[xjωi(h
t), µ] + bi.

Note that the latter is the bliss point of player i’s expected utility E[Li (ŷd, x) jωi(h
t), µ] from

d’s choice ŷd. Hence, i would like to induce the highest E[yd(h
T )jωi(h

t), µ; m̂t
i,i¡1je¸i] possi-

ble, through her message m̂t
i,i¡1je¸i. By veri…ability, it must be the case that ωi(h

t)je¸i µ

m̂i,i¡1je¸i. By set inclusion and the de…nition of se¸i(¢), player i cannot increase

E[yd(h
T )jωi(h

t), µ; m̂t
i,i¡1je¸i] by sending any message m̂t

i,i¡1je¸i 6= ωi(h
t)je¸i.
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Because the above arguments hold for all d < i, we obtain that i does not gain from

sending any message m̂t
i,i¡1je¸i 6= ωi(h

t)je¸i at history ht.

We have shown that no player i 2 I+(E,D) gains by deviating from the strategy µ

that prescribes mi,i¡1 (h
t) je¸i = ωi(h

t)je¸i at any history ht she is called to play. An

analogous, symmetric argument, shows that no i 2 I¡(E,D) gains by deviating from

mi,i+1 (h
t) je·i = ωi(h

t)je·i at any ht she is active.

This concludes the veri…cation that µ is a Perfect Bayesian Equilibrium. As a result,

the ordered line ensures that every signal se reaches every decision maker d, and hence min-

imizes the weighted sum of expected residual variances
P

d2D αid E[Var(xjωd(h
T ), µ);N ] =

P
d2D αid E[Var(xjsE)], for every realized E and D.

Part b. The proof that the ordered line is the unique optimal network is concluded with

the following arguments.

First, consider any tree N other than the ordered line. I showed in the proof of Propo-

sition 2 that there exist singleton realizations E = feg and D = fdg such that their only

connecting path p has bias reversals. For all such E, D, the expected residual variance is

E[Var(xjωd(h
T ), µ);N ] > E[Var(xjsE)]. As the aggregate link cost of such trees is the same

as the ordered line, they are all dominated.

Second, every connected network N with loops has a higher aggregate link cost c(N)

than the ordered line, and hence it is dominated, at least as long as c > 0.

Finally, every network N that is not connected causes some decision makers d to lose

all information about some signals se. Hence, by de…nition of ¹c, any disconnected network

is dominated by the ordered line when c < ¹c.

Appendix B: Omitted Results

Proposition 5 Consider the general disclosure game on a path p from the expert e to the

decision maker d that allows partial disclosure and decay de…ned in Section 4.1.

a. If the path p has no bias reversals, then for every δ such that x̂ (δ)¡x < minfbi¡bdg,

there exists an equilibrium
¡
µδ, yδd

¢
as follows: if bi > (<)bd for all i 6= d, then, for

some threshold x̂(δ) 2 (x, x), every i 6= d on p discloses every x > (<)x̂ (δ); Further,

limδ!1 x̂ (δ) = x (respectively, limδ!1 x̂ (δ) = x), and hence E[Var(xjωd(h
T ), µδ)] ! 0
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for δ ! 1.

b. If p has bias reversals, then E[Var(xjωd(h
T ), µδ)] > 0 as δ ! 1 for any equilibrium

sequence
¡
µδ, yδd

¢
.

Proof. Part a. Say p has no bias reversals, e.g. bi > bd for all i 6= d. (The proof for

bi < bd for all i 6= d is the mirror-like image.) For any δ, let x̂ (δ) solve

¡
1¡ δT

¢
E[x] + δTE[xjx · x̂] = x̂.

For δ ! 1, note that it is the case that x̂ ! E[xjx · x̂]. Because E[xjx · x̂] < x̂ for

any x̂ > x by the intermediate value theorem, it must be that x̂ ! x. Take δ such that

x̂ (δ)¡ x < minfbi ¡ bdg.

Consider the pro…le of strategies µδ such that each player i 6= d, at any history ht in

which she is active, discloses her information ωi (h
t) to her immediate successor j on p—i.e.,

she sends mδ
ij(h

t) = ωi (h
t)—if minωi (h

t) > x̂ (δ), and else she sends mδ
ij(h

t) = X. Every

player i 6= e at any history ht believes that x = minωi (h
t) with probability one, unless

ωi (h
t) = X, in which case she believes that x = x̂ with probability one. The decision

maker d plays yδd(h
T ) = x̂+ bd if ωd(h

T ) = X, and yδd(h
T ) = minωd(h

T )+ bd for every other

terminal history information set ωd(h
T ).

I now verify that the pro…le
¡
µδ, yδd

¢
is a Perfect Bayesian Equilibrium for every δ such

that x̂ (δ)¡ x < minfbi ¡ bdg.

As in the proof of Proposition 1, the players’ beliefs are consistent because the only

information sets on path are such that ωi (h
t) 2 ffxg, Xg for all i and ht. Further, d’s

strategy yd is clearly sequentially rational.

Now consider any player i 6= d at any history ht she is active. If ωi (h
t) = X, then i can

only send ~mt
ij = ωi (h

t) . Suppose ωi (h
t) 6= X. Then, player i believes that x = minωi (h

t) ,

and she anticipates that, given the successors’ strategies in the pro…le µδ, either ωd(h
T ) = X

or ωd(h
T ) = ~mt

ij for any terminal history hT that extends ht. If ωd(h
T ) = X, player d plays

yd(h
T ) = x̂(δ) + bd, and if ωd(h

T ) 6= X, she plays yd(h
T ) = minωd(h

T ) + bd.

For every state x > x̂(δ), player i is obviously better o¤ if d plays ŷ = x+bd rather than

ŷ = x̂(δ) + bd. So, if minωi (h
t) > x̂(δ), then i’s optimal decision is to send ~mt

ij = ωi (h
t) ,

so that ŷ = minωi (h
t) + bd with probability δ—with probability 1 ¡ δ, the d’s decision
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is ŷ = x̂(δ) + bd regardless of what message i sends. Hence, player i has no incentive to

deviate from µδ when minωi (h
t) > x̂(δ).

For every state x < x̂(δ), player i is better o¤ if d plays ŷ = x̂(δ) + bd rather than

any ŷ < x̂ (δ) + bd, because x + bi > x̂ (δ) + bd for all x 2 [x, x̂] as implied by x̂ (δ)¡ x <

minfbi ¡ bdg. Hence, when minωi (h
t) < x̂(δ), player i sends message ~mt

ij = X in line with

µδ.

Having concluded that
¡
µδ, yδd

¢
is an equilibrium, we see that, because limδ!1 x̂(δ) = x,

E[Var(xjωd(h
T ), µδ)] = E(E[xjωd(h

T ), µδ]¡ x)2

=

Z

x·x̂(δ)

(E[xjωd(h
T )]¡ x)2f(x)dx ! 0, for δ ! 1.

Part b. Suppose now that the path p has bias reversals. Consider any equilibrium (µ, yD) .

Suppose that x̂ > x, and pick any player i on p such that bi > bd. There are two

possibilities to consider.

First, suppose that there exists a non-null measure set ~Xi (x̂) µ (x̂¡bi+bd, x̂) such that

for all x0 2 ~Xi (x̂), player i learns that x̂+ bd ¡ bi < x < x̂ at some histories ht that follow

x0 on the equilibrium path, and at which i is active. That is, player i’s information ωi(h
t)

at such histories ht is such that there does not exist almost any state x /2 (x̂ ¡ bi + bd, x̂)

from which a history ĥt 2 ωi(h
t) can be reached with positive probability given that all i’s

predecessors on p play according to µ. For any x0 2 ~Xi (x̂) , let Ht
i (x

0) be the set of such

histories ht where i learns that x̂+bd¡bi < x < x̂, and µ (H t
i (x

0) jx0) > 0 be the probability

that they are reached under strategies µ.

For any x0 2 ~Xi (x̂) , player i would prefer that d plays ŷ = x̂ + bd rather than any

decision ŷ < x̂+ bd. This is because the bliss point E[xjωi(h
t), µ] + bi of i’s expected utility

E[ui (ŷ, x) jωi(h
t), µ] given information ωi(h

t) and beliefs induced by equilibrium (µ, yD) is

such that

E[xjωi(h
t), µ] + bi > x̂+ bd ¡ bi + bi = x̂+ bd.

Indeed, i can secure that d plays ŷ = x̂+bd by blocking the transmission of any information

on x, i.e., by sending message ~mt
ij = X to her immediate successor j on p. By doing so, i

makes it impossible for any of her successors j 6= d on p to send any message ~mjk other

than ~mjk = X to their immediate successors, thereby making sure that ωd(h
T ) = X for

all terminal histories that contain ht and ~mt
ij = X. Thus, for every terminal history hT on
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the equilibrium path that contain any history ht where i learns that x̂ + bd ¡ bi < x < x̂,

it must be that the decision maker d’s action is yd(h
T ) ¸ x̂+ bd.

As a result, for all hT that extend such histories ht, the residual variance is

Var(xjωd(h
T ), µ) = (E[xjωd(h

T ), µ]¡ x)2 ¸ (x̂ ¡ x)2.

Integrating over ~Xi, and the histories ht where i learns that x̂ + bd ¡ bi < x < x̂, the

expected residual variance of equilibrium (µ, yD) is such that

E[Var(xjωd(h
T ), µ)] ¸

Z

~Xi(x̂)

(x̂¡ x)2µ
¡
Ht (x) jx

¢
f(x)dx > 0

independently of δ, because ~Xi has non-null measure and µ (Ht
i (x) jx) > 0 for x0 2 ~Xi.

The second possibility to consider is such that for almost all x 2 (x̂ ¡ bi + bd, x̂), and

subsequent histories ht on the equilibrium path, player i does not learn that x̂+ bd ¡ bi <

x < x̂ at ht. In such a case, also player d will not learn that x̂ + bd ¡ bi < x < x̂ at any

history hT that extends any such history ht, as everything that d learns must be known

also to all players on the path p. At all such terminal histories hT , the residual variance is

(E[xjωd(h
T )]¡ x)2 ¸ minf(x̂+ bd ¡ bi ¡ x)2, (x̂¡ x)2g.

Integrating over x 2 (x̂¡ bi + bd, x̂), we obtain, because x̂ > x,

E[Var(xjωd(h
T ), µ)] ¸

Z x̂

maxfx,x̂+bd¡beg

minf(x̂+ bd ¡ bi ¡ x)2, (x̂¡ x)2gf(x)dx > 0,

independently of δ.

Now, suppose that x̂ < x, and pick any i on p such that bi < bd. Again, there are

two possibilities. The …rst one is that player i learns that x̂ < x < x̂ + bd ¡ bi on some

non-null measure set ~Xi (x̂) µ (x̂, x̂+ bd¡ bi) and some histories ht at which she is called to

play on the equilibrium path. Then, arguments symmetric to the ones above imply that,

independently of δ,

E[Var(xjωd(h
T ), µ)] ¸

Z

~Xi(x̂)

(x̂ ¡ x)2µ
¡
H t (x) jx

¢
f(x)dx > 0.

The other possibility is that player i almost never learns that x̂ < x < x̂ + bd ¡ bi when

this the case, and then, independently of δ,

E[Var(xjωd(h
T ), µ)] ¸

Z minfx,x̂+bd¡beg

x̂

minf(x̂ ¡ x)2, (x̂+ bd ¡ bi ¡ x)2gf(x)dx > 0.
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Because it is impossible for x̂ = x and x̂ = x simultaneously, the above arguments imply

that, regardless of the equilibrium value of x̂, the expected residual variance E[Var(xjωd(h
T ), µ)]

remains strictly positive, independently of δ. Hence, for any sequence δ ! 1 and corre-

sponding equilibria (µδ, yδd), we conclude that limδ!1 E[Var(xjωd(h
T ), µδ)] > 0.

Proposition 6 Consider the model of strategic disclosure on networks de…ned in Section

4.1. For all ® > 0 and full-support P , there exists a decay threshold ¹δ < 1, as well

as intermediate cost ranges (c¡, c
+) and (ĉ¡, ĉ

+) that depend on δ, with limδ!1 c¡(δ) =

limδ!1 ĉ¡(δ) = 0, limδ!1 c
+(δ) = ¹c, and limδ!1 ĉ

+(δ) = ĉ, such that:

a. for all δ 2 (¹δ, 1] and c 2 (c¡, c
+), the ordered line is the unique optimal network,

b. for all δ 2 (¹δ, 1] and c 2 (ĉ¡, ĉ
+), the ordered line is the unique network immune to

coalitional deviations in the bilateral sponsorship game.

Proof. Part a. By the proof of Proposition 2, the ordered line is the only tree in which

every pair of players e and d are connected through a path p without bias reversals. Hence,

by Proposition 5, the ordered line is the only tree such that E[Var(xjωd(h
T ), µ)] ! 0 as

δ ! 1, for all e and d. I conclude that for all ® > 0 and full-support P , there exists a

threshold ¹δ1 < 1 such that for all δ 2 (¹δ1, 1], the ordered line is the unique optimal tree.

Now, consider networks that are not minimally connected. Pick δ su¢ciently close to

1 (i.e., δ > ¹δ2 for some given threshold ¹δ2 < 1). Then, because E[Var(xjωd(h
T ), µ)] ! 0 as

δ ! 1 for all e and d with the ordered line, it cannot be dominated by any connected network

N with loops unless the link cost c is too low—i.e., c < c¡(δ) for some given threshold

c¡(δ) > 0, as the aggregate link cost c(N) is strictly higher. Likewise, no disconnected

network can dominate the ordered line unless c is too high—that is, c > c+(δ) for some

given threshold c+(δ) < c, as some decision maker d would not receive information from

some expert e.

There thus exist a decay threshold ¹δ = maxf¹δ1, ¹δ2g and an intermediate link cost range

(c¡ (δ) , c
+ (δ)), with limδ!1 c¡(δ) = 0 and limδ!1 c

+(δ) = c, such that for all δ 2 (¹δ, 1] and

c 2 (c¡ (δ) , c
+ (δ)), the ordered line is the unique optimal network N .

Part b. Because E[Var(xjωd(h
T ), µ)] ! 0 as δ ! 1 for all e and d with the ordered line,

for δ su¢ciently close to 1, no coalition of players …nds it bene…cial to form extra links
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unless c is too low, nor to delete any links unless c is too high. It follows that the ordered

line is immune to coalitional deviations for δ close to 1, unless c is too small or too large.

Under the same conditions, it is also optimal, by Part a. Hence, no other network N can

be immune to coalitional deviations, as the grand coalition would bene…t from deviating to

form the ordered line and possibly redistributing payo¤s. This concludes that there exist a

decay threshold ¹δ < 1 and an intermediate cost range (ĉ¡ (δ) , ĉ
+ (δ)), with limδ!1 ĉ¡(δ) = 0

and limδ!1 ĉ
+(δ) = ĉ, such that for all δ 2 (¹δ, 1] and c 2 (ĉ¡ (δ) , ĉ

+ (δ)), the ordered line is

the unique network immune to coalitional deviations.

Proposition 7 Consider the disclosure game on a path p from the expert e to the decision

maker d de…ned in Section 4.2. The expert’s signal s satis…es the monotone likelihood ratio

property, and each player i’s loss function Li is concave and supermodular.

a. if the path p has no bias reversals, then the decision maker d learns s for every s in

equilibrium, and plays ŷ = yd(s);

b. if the path p has bias reversals, then there exists a set ~S of non-zero measure such

that d cannot learn s for any s 2 ~S in equilibrium.

Proof. Part a. Say the path p has no bias reversals, e.g. i > d for all i 6= d on p. Then,

proceeding as in the Proof of Proposition 1, I will show that there is a Perfect Bayesian

Equilibrium such that every i 6= d plays mij(h
t) = ωj(h

t) at any history ht she is active, and

player d holds beliefs that s = minωd(h
t) with probability one at every terminal history

hT , thus choosing yd(h
T ) = yd(minωd(h

T )). As a result, the message m̂ij = fsg travels

along the path p from e to d on the equilibrium path, and d chooses yd(h
T ) = yd(s).

To prove this, …rst note that, as in the Proof of Proposition 1, the beliefs are admissible,

and d’s strategy yd is optimal given her beliefs. Now consider the decision of any player

i 6= d at any history ht in which she knows s and she is active. I show that player i

does not gain by deviating from the equilibrium strategy mij (h
t) = ωi(h

t) = fsg. Player i

anticipates that all her successors j 6= d on p will play m̂τ
jk = ωj(h

τ ) at any history hτ that

extends ht, by the imputation that they adhere to µ. As in the Proof of Proposition 1, it

follows that i anticipates that ωd(h
T ) = m̂t

ij at any terminal history hT that extends ht. If

i sends m̂t
ij = S, then d plays yd(h

T ) = yd(s). If instead i sends m̂t
ij = fsg, then d chooses

yd(h
T ) = yd(s).
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By supermodularity, i’s expected utility E[Li(ŷ, x)js] given information ωi(h
t) = fsg

increases in ŷ for ŷ < yi(s), because yi(s) is the bliss point of i’s expected utility. Further,

by supermodularity, yi(s) > yd(s) ¸ yd(s), where the …rst inequality follows from i > d,

and the second because s · s. Hence, player i prefers to send m̂t
ij = fsg over m̂t

ij = X

for all s 2 X, thus concluding the veri…cation that the stated strategy pro…le is a Perfect

Bayesian Equilibrium.

For brevity, I omit the proof that in every equilibrium (µ, yd), the message m̂ij = fsg

travels along the path p from e to d on the equilibrium path, and the decision maker chooses

ŷ = yd(s) for all terminal histories hT . This proof is a generalization of the proof the same

results in Proposition 1.

Part b. Suppose now that the path p has bias reversals.

Pick any arbitrary equilibrium (µ, yd). For any history ht, the information ωi(h
t) that

player i has on s may either be that ωi(h
t) = fsg or that ωi(h

t) = S. If ωi(h
t) = S, then

by veri…ability m̂t
ij = S and ωd(h

T ) = S for every terminal history hT that extends ht.

Consider any player i > d called to play at a history ht such that ωi(h
t) = fsg. Consider

the set ~Si(µ) = fs : yd(s) < yd(S;µ) < yi(s)g, where yd(S, µ) denotes the decision of player

d in case ωd(h
T ) = S at equilibrium (µ, yd). Because i > d and supermodularity, for all

s 2 ~Si(µ), player i would rather that d plays ŷ = yd(S;µ) than ŷ = yd(s). Suppose that

under µ, all the successors j of i relay signal s along p when they are disclosed it. Then,

player i strictly prefers sending message ~mt
ij = S over ~mt

ij = fsg as the former blocks

the transmission of s to d. Of course if some successor j of i blocks signal s by playing

~mt
jk = S at the history hτ such that ωj(h

τ ) = fsg, then player i is indi¤erent between

~mt
ij = S and ~mt

ij = fsg at ht. In any case, there cannot exist any equilibrium (µ, yd) in

which ωd(h
T ) = fsg on the equilibrium path, for any s 2 ~Si(µ). An analogous, symmetric,

argument implies that there cannot exist any equilibrium in which ωd(h
T ) = fsg on the

equilibrium path, for any s 2 ~Si(µ) = fs : yi(s) < yd(S;µ) < yd(s)g and any i < d.

As in the Proposition 1, this concludes that for every equilibrium (µ, yd) and corre-

sponding decision yd(S;µ) 2 [yd(s), yd(s)], there exists a set ~S(µ) = [i2N
~Si(µ) of strictly

positive measure such that d cannot learn s for any s 2 ~S(µ).

Proposition 8 Consider the model of strategic disclosure on networks de…ned in Section
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4.2. The expert e’s signal s satis…es the monotone likelihood ratio property, and each

player’s loss function Li is concave and supermodular. Then, for every utility weights

® > 0, and full support selection probability P, the ordered line is the unique optimal net-

work, in the sense that it guarantees full disclosure of signal s from any expert e to any

decision maker d, with minimal aggregate link cost c(N).

Proof. The proof is omitted as it is the same as the proof of Proposition 2, using Propo-

sition 7 in lieu of Proposition 1.
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