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Abstract

This paper studies how improved monitoring affects the limit equilibrium
payoff set for stochastic games with imperfect public monitoring. We introduce
a simple generalization of Blackwell garbling called weighted garbling in order
to compare different monitoring structures for this class of games. Our main
result is the monotonicity of the limit perfect public equilibrium (PPE) payoff
set with respect to this information order. We show that the limit PPE payoff
set expands when the monitoring structure gets more informative with respect
to the weighted garbling order. We also show that a similar monotonicity holds
for strongly symmetric equilibrium for symmetric stochastic games. Finally,
we show that our weighted garbling order is useful to compare the limit PPE
payoff set for different state transition laws and monitoring structures when the
limit feasible payoff set is the same.
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1 Introduction

This paper examines the informativeness of monitoring structures in stochastic games
with imperfect public monitoring, where the players’ actions are monitored imper-
fectly through noisy public signals. Such models have broad economic relevance. For
example, many standard repeated moral hazard scenarios (e.g., tacit collusion) can
be framed in such stochastic games when the key underlying state, like a demand
shock or an interest rate, evolves over time. In these settings, the quality of moni-
toring structure plays a critical role; it shapes agents’ incentives and, consequently,
determines the range of possible outcomes that could arise in equilibrium.

We study how a concept of garbling can be used to compare the limit equilib-
rium payoffs across different monitoring structures. Specifically, we introduce a novel
form of garbling, termed weighted garbling, and demonstrate that it captures the
informativeness of monitoring structures when players are very patient.

Blackwell ordering is one of the most important information orders in Economics
and Statistics. It is equivalent to the existence of garbling (noise) that transforms a
more informative information structure into a less informative one (Blackwell, 1951,
1953). Weighted garbling represents a more general class of such transformations,
encompassing the standard Blackwell garbling as a special case.

In repeated games with imperfect public monitoring, it is well established that the
set of perfect public equilibrium (PPE) payoffs (Fudenberg et al., 1994) expands for
any fixed discount factor as the monitoring structure becomes more informative under
the Blackwell order (Kandori, 1992). However, this monotonicity does not extend to
stochastic games (Kim, 2019).

Our first main result establishes that the set of PPE payoffs that can be sustained
from any initial state expands weakly in the limit—as discounting vanishes—when
the monitoring structure becomes more informative under the weighted garbling or-
der, assuming a certain kind of full-dimensionality of payoffs. In particular, if the
Markov chain over states induced by any pure Markov strategy profile is irreducible,
then a state-independent limit PPE payoff set exists and it expands with increased
informativeness in the weighted garbling order.

Since the standard garbling, which we refer to as joint garbling in the context of

2



stochastic games, is a special case of weighted garbling, a corollary of our result is
that the limit PPE payoff set expands when the monitoring structure becomes more
Blackwell informative. This implies that the standard Blackwell ordering remains a
meaningful measure of informativeness for stochastic games in the limit, even if it
fails to guarantee expansion for fixed discount factors. Furthermore, by focusing on
the limit, our result can establish an expansion of the equilibrium payoff set across
a broader class of monitoring structure pairs under weighted garbling than under
Blackwell (or joint) garbling.

Notably, our result yields a novel insight even for repeated games. It demonstrates
that in the limit case, the equilibrium payoff set expands as the monitoring structure
becomes more informative under the weighted garbling order, even if it does not
become more informative in the sense of Blackwell.

To facilitate the discussion of weighted garbling, let us provide its precise defi-
nition. Monitoring structure (Y, f) consists of a finite set Y of public signals and a
conditional distribution f(·|t, s, a) ∈ ∆(Y ), which depends on the current state s, the
next state t, and the current action profile a. Combined with the state transition
law q(·|s, a) ∈ ∆(S), which is a primitive of the model that remains fixed throughout
most of the paper (except for Section 6), this monitoring structure generates a joint
distribution p(·, ·|s, a) ∈ ∆(S × Y ) over the next state-signal pair (t, y) given (s, a).
Since both the next state and public signal convey information about the hidden
action a, it is natural to evaluate the informativeness of the joint distribution with
respect to actions at each state s ∈ S. A monitoring structure (Y, f) is said to be
a weighted garbling of (Y ′, f ′) if, for each state s, there exist a nonnegative weight
γt′,y′

s ≥ 0 and a garbling ϕs(·, ·|t′, y′) ∈ ∆(S×Y ) for each (t′, y′) such that p(t, y|s, a) =∑
(t′,y′)∈S×Y ′ γt′,y′

s ϕs(t, y|t′, y′)p′(t′, y′|s, a) for every next state-signal pair (t, y) and for
every action profile a. As a special case, if the weights γt′,y′

s are uniformly equal to 1,
the condition simplifies to: p(t, y|s, a) = ∑

(t′,y′)∈S×Y ′ ϕs(t, y|t′, y′)p′(t′, y′|s, a), which
corresponds to the standard Blackwell garbling, referred to as joint garbling.

The simplest example of weighted garbling can be found in repeated games with
imperfect public monitoring. Consider a monitoring structure that produces some
public signal ỹ. Now, imagine an alternative monitoring structure where no signal is
observed with probability 1−ϵ and a strictly more Blackwell informative public signal
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ŷ is observed with probability ϵ ∈ (0, 1). Provided that ϵ is sufficiently small, neither
monitoring structure is more informative than the other in the sense of Blackwell.
However, conditional on observing ŷ, the second monitoring structure is clearly more
informative. In this case, the first monitoring structure is a weighted garbling of the
second, but not vice versa. In this simple example, it is intuitively clear why the limit
PPE payoff set is larger under the second monitoring structure: if players are very
patient, they can disregard the no-signal events and wait for the more informative
signal to permit more efficient punishment. Our main result formally establishes
such monotonicity of limit PPE payoffs with respect to the weighted garbling order
for stochastic games with imperfect public monitoring.

Our monotonicity result builds on two key ideas for using information more effi-
ciently when players are very patient. The first idea is to treat both the next-period
state and the public signal jointly as a monitoring device. Since the next state con-
veys information about current actions, it is natural to evaluate the informativeness
of the joint distribution over the next period state and public signal. However, the
next state also determines the physical state of the game, so it cannot be treated
purely as a signal. For example, even if the next state reveals a defection in the
current period, it may not allow for a sufficiently severe punishment to deter such
behavior. To address such state-dependent constraints, we focus on the set of payoffs
that can be sustained at every state. It is known that each such payoff profile can
be supported by constructing a state-independent “block self-generating set” around
it (with respect to joint distribution) when δ is sufficiently high (Hörner et al., 2011,
henceforth HSTV). When the joint distribution becomes more informative in the
sense of standard garbling (i.e., joint garbling), one can mimic this construction by
treating the next state as a purely informative signal and modifying the continuation
payoffs in the original construction. Although these new continuation payoffs differ
from the original ones in a complex way, when δ is sufficiently high, they behave
similarly and stay in the same state-independent self-generating set. This explains
why the set of PPE payoffs that can be sustained at every state expands weakly in
the limit as δ → 1 when the monitoring structure becomes more informative under
the joint garbling. Furthermore, if some irreducibility condition is satisfied, then this
limit set of state-independent PPE payoffs coincides with the limit PPE payoff set at
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every state. The second idea centers on conditional informativeness, as illustrated in
the repeated game example above. When players receive a strictly more informative
signal but with a small probability, it may be impossible to sustain the same level of
cooperation at a fixed discount factor. However, with greater patience, the punish-
ment becomes effective enough to support cooperation. Thus, more patient players
can exploit such conditionally more informative signals to enhance efficiency.

Our second main result focuses on strongly symmetric equilibrium (SSE) for sym-
metric stochastic games. SSE is an important class of PPE in symmetric repeated or
stochastic games, where every player chooses the same action after every public his-
tory. As a natural and tractable refinement of PPE, SSE is often the focus of applied
theorists and economists. We establish that a version of weighted garbling, adapted
specifically for symmetric environments, yields monotonicity in the limit SSE payoff
set. This result is particularly valuable because no folk theorem applies in SSE. Recall
that the first-best outcome is usually impossible to sustain in SSE due to the neces-
sity of costly group punishments.1 Our result demonstrates that a more informative
monitoring structure under the weighted garbling order can generate a larger limit
SSE payoff set by mitigating such incentive cost.

We apply our result for SSE to stochastic partnership games, where the team
outcome depends solely on the total effort of its members. We show that when
the agents are very patient, the best sustainable team outcome under SSE strictly
improves as the monitoring structure becomes more informative under a strict version
of the weighted garbling order.

Throughout this paper, we focus on the case of arbitrarily patient players rather
than the case of fixed discount factors, for the same reason as we focus on the limit
PPE payoff set in folk theorems. In many settings, high levels of patience allow us to
abstract from temporary forces and transient dynamics, hence obtain sharper results
regarding the comparison of various monitoring structures. As such, our findings offer
valuable guidance for those who use stochastic games in the settings that involve very
patient agents.

1Such inefficiency arises even for general PPE when individual deviations cannot be distinguished
in symmetric settings (Radner et al., 1986).
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Related Literature

Kandori (1992) and Kim (2019) are the most closely related to our work. Both
examine how monitoring structures affect the PPE payoff set under a fixed discount
factor. Kandori (1992) analyzes repeated games with imperfect public monitoring
and shows that the PPE payoff set expands as the monitoring structure becomes
more informative in the sense of Blackwell, leveraging the recursive characterization
developed by Abreu et al. (1990).2 In the context of stochastic games, Kim (2019)
provides an extension of Kandori’s condition that guarantees the expansion of the
PPE payoff set for a fixed discount factor. This condition relies on the notion of
ex-post garbling, which is stronger than joint garbling and requires that the public
signal be more informative for every state transition pair (s, t). Importantly, Kim
(2019) also presents a counterexample showing that a more informative monitoring
structure under the standard (joint) garbling order does not guarantee expansion of
the equilibrium payoff set for a fixed discount factor. In contrast, our main result
shows that a more informative monitoring structure under joint garbling does expand
the limit equilibrium payoff set, since joint garbling is a special case of weighted
garbling.

This study also connects to the folk theorem literature for repeated and stochastic
games, as it focuses on the limit PPE payoff set. Fudenberg and Yamamoto (2011)
and HSTV establish a variety of folk theorems for stochastic games with imperfect
public monitoring.3 We build on the characterization of limit PPE payoff set by
HSTV, which extends the approach of Fudenberg and Levine (1994) for repeated
games to stochastic games.

Our main results are particularly valuable in environments where the folk theorem
does not apply. For example, in repeated games, the folk theorem holds when the
monitoring structure is sufficiently rich and satisfies identifiability conditions such as
the pairwise full rank condition (Fudenberg et al., 1994). In such cases, all feasible

2The original result of Kandori (1992) assumes continuous signals and uses pure-strategy se-
quential equilibrium as the solution concept. It is well known that, in such an environment, any
pure-strategy sequential equilibrium has a payoff-equivalent pure-strategy PPE. In contrast, we as-
sume finite signals and allow for mixed-strategy PPE.

3An earlier contribution by Dutta (1995) offers a folk theorem and foundational results for stochas-
tic games with perfect monitoring.
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and individually rational payoffs can be sustained without any incentive cost, making
it impossible to expand the limit PPE payoff set even with strictly more informative
monitoring structures.

Several studies highlight that improved information can sometimes be detrimen-
tal in specific classes of stochastic games. Kloosterman (2015) examines a setting
where state transitions are independent of players’ actions, actions are observable,
and players observe a public signal about the next state before choosing their actions.
He shows that, for a given discount factor, the PPE payoff set may shrink as the
public signal becomes more informative about the next state. This model can be
interpreted as a special case of our model with observable actions, by treating the
pair of current state and public signal as the effective current state. With observable
actions, our weighted garbling order does not rank any two information structures, as
it is designed to measure the informativeness of monitoring structures with respect to
hidden actions. Sugaya and Wolitzky (2018) study a dynamic price-setting oligopoly
with private monitoring, where the demand state evolves exogenously. They show
that increased transparency can undermine collusion, meaning that more informative
private signals may reduce cooperation. In contrast, our results demonstrate that a
more informative public signal always expands the limit equilibrium payoff set, recon-
firming the role of informative public information in sustaining cooperation among
patient players.

A related strand of literature explores the trade-off between the quality of moni-
toring and the patience of players (Abreu et al., 1991; Fudenberg and Levine, 2007,
2009; Sannikov and Skrzypacz, 2007, 2010; Sugaya and Wolitzky, 2022). For example,
such a trade-off naturally arises in repeated games with frequent actions and a contin-
uous flow of information. As the period length shortens, players become more patient
as they place greater weights on future payoffs, while the quality of monitoring may
simultaneously decline. In contrast, our approach focuses directly on the limit case
as the discount factor approaches 1, a standard approach in folk theorem analysis, to
compare monitoring structures.

The remainder of the paper is organized as follows. Section 2 introduces our
model of discounted stochastic games with imperfect public monitoring. Section 3
defines weighted garbling and related notions, illustrates them with examples, and
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provides a sufficient condition for weighted garbling in a special class of stochastic
games. In Section 4, we present our main results for general stochastic games, with
the central finding being the monotonicity of the limit PPE payoff set with respect to
the weighted garbling order. In Section 5, we establish similar results for the limit SSE
payoff set, using a version of weighted garbling tailored to symmetric environments,
and apply them to stochastic partnership games to demonstrate the relevance of the
concept in applications. Section 6 explores how our results can be used to compare
two monitoring structures with different transition laws that yield the same limit
feasible payoff set. Finally, Section 7 concludes.

2 Model

We study discounted stochastic games with imperfect public monitoring. Let S be
the finite set of states, and let I ≡ {1, 2, . . . , N} be the finite set of players. For
each player i ∈ I, let Ai be the finite set of actions available to player i, and let
A ≡ ∏

i∈I Ai. Player i’s payoff function is given by ui : A × S → R. The tuple
G ≡ (I, (Ai)i, (ui)i) defines the stage game at each state.

Each period k ∈ N starts with a state s ∈ S. Each player i takes an action
ai ∈ Ai, then the new state t ∈ S for the next period is drawn randomly according to
the transition law q(·|s, a) ∈ ∆(S), where a = (ai)i. When the transition law does not
depend on the action, we say that the transition is action-independent and use the
notation q(·|s). Players share a common discount factor δ ∈ [0, 1) to discount future
payoffs. The triple (G, q, δ) defines the underlying dynamic strategic environment,
except for the monitoring structure, which we introduce next.

States are perfectly observed by all the players at the beginning of each period,
but actions are not directly observable. Instead, players observe a public signal about
actions. Thus, we augment (G, q, δ) with a monitoring structure Π = (Y, f), which
defines the monitoring environment of the game. In each period, players observe a
public signal y ∈ Y from a finite set Y . The distribution of public signal depends on
the next state t ∈ S, the current state s ∈ S, the current action profile a ∈ A, and is
denoted by f(·|t, s, a) ∈ ∆(Y ). We can allow perfect monitoring. For example, Π such
that Y = A and f(a|t, s, a) = 1 for any s, t ∈ S and a ∈ A is a perfect monitoring
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structure. The pair Π and q induces a joint distribution p(·, ·|s, a) ∈ ∆(S × Y )
conditional on any (s, a) ∈ S ×A, defined by p(t, y|s, a) := f(y|t, s, a)q(t|s, a) for any
(t, y) ∈ S × Y .

We assume that players observe only the public signal, the state, and their own
action (privately) in each period. This does not necessarily mean that realized pay-
offs are unobservable. In many IO applications of repeated games, there is a realized
payoff gi(ai, y), which is observable to player i and depends only on player i’s ac-
tion and the public signal y. Then the expected payoff ui(a) becomes a function of
the action profile. In this case, player i’s realized payoff does not provide any addi-
tional information about a−i beyond y. Similarly, we may introduce a realized payoff
gi(ai, y, t, s) and derive the above ui as ui(a, s) = ∑

(t,y)∈S×Y gi(ai, y, t, s)p(t, y|s, a) in
certain contexts.4

A discounted stochastic game with imperfect public monitoring is defined as a
quadruple Γ = (G, q, δ,Π). Henceforth, we fix (G, q) and vary (δ,Π) to address our
research questions, except in Section 6.

A private history of player i at period k is a sequence of realized states, cho-
sen actions, and realized public signals up to the beginning of period k, i.e., hk

i =
(s1, a1

i , y
1, . . . , sk−1, ak−1

i , yk−1, sk). A public history at period k is hk = (s1, y1, . . . , sk−1, yk−1, sk).
Let Hk

i be the set of all private histories of player i at period k and Hk be the set of
all public histories at period k. Furthermore, let Hi ≡ ⋃∞

k=1 H
k
i and H ≡ ⋃∞

k=1 H
k.

A (behavioral) strategy σi for player i is defined as a mapping from Hi to ∆(Ai).
Let Σi denote the set of strategies for player i. A strategy is public if it depends only
on public histories. Given a strategy profile (σi, σ−i), player i’s average discounted
payoff is

Ui(σi, σ−i; s) := (1 − δ)E(σi,σ−i)
[ ∞∑

k=1
δk−1ui(ak, sk)|s1 = s

]
,

where the expectation is evaluated using the probability measure P over (S × A)∞

induced by (σi)i∈I and initial state s.
4Note that, if realized payoff gi does not depend on y (i.e., gi(ai, s, t)), we can change the monitor-

ing structure without affecting ui. This contrasts with repeated games, where monitoring structure
and ex-ante expected payoff become dependent under this type of interpretation. In Kandori (1992),
realized payoffs need to be adjusted to maintain the same expected payoffs across different moni-
toring structures. Such an adjustment is not necessarily needed in our setting due to the additional
flexibility of state-dependent payoffs.
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A profile of public strategies (σi)i∈I is a perfect public equilibrium (PPE) (Fuden-
berg et al., 1994) if at every public history, the continuation public strategy profile is
a Nash equilibrium for the continuation game. That is, for each i and h ∈ H,

Ui(σi|h, σ−i|h; s(h)) ≥ Ui(σ′
i, σ−i|h; s(h)), ∀σ′

i ∈ Σi

where σi|h is the continuation strategy of σi at public history h ∈ H and s(h) is the
most recent state at h.5

3 Comparison of Monitoring Structures

3.1 Weighted Garbling

In this section, we introduce weighted garbling, a new notion of garbling that is the
focus of this paper. We begin by discussing a few special cases of weighted garbling
introduced in Kim (2019) to clarify the basic ideas behind it.

We first observe that Π′ = (Y ′, f ′) is clearly more informative about actions than
Π = (Y, f) if, for each s, t ∈ S, there exists ϕs,t : Y ′ → ∆(Y ) such that

f(y|t, s, a) =
∑

y′∈Y ′
ϕs,t(y|y′)f ′(y′|t, s, a), ∀y ∈ Y

for every a ∈ A. This means that the public signal for Π is a garbling of the public sig-
nal for Π′ conditional on every state transition (s, t) ∈ S × S. Kim (2019) introduces
this notion of garbling, called ex-post garbling, and shows that the set of PPE payoffs
(weakly) expands for any fixed discount factor when a monitoring structure improves
in this sense. This is an extension of the well-known result for repeated games (Kan-
dori, 1992) to stochastic games, as ex-post garbling reduces to the standard garbling
for repeated games.

Ex-post garbling is a very strong condition in stochastic games. Instead, we may
prefer to use the standard garbling without conditioning each state transition to rank

5In general, PPE is a strict subset of sequential equilibrium for games with imperfect public
monitoring. For examples of sequential equilibria where players use non-public strategies (i.e., private
strategies), see Kandori and Obara (2006) and Mailath et al. (2002).
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monitoring structures. joint garbling (Kim, 2019) is a weaker notion of garbling and
only requires that the pair of next period state t and public signal y for Π is a garbling
of t and y′ for Π′. Formally, Π is a joint garbling of Π′ if, for each s ∈ S, there exists
ϕs : S × Y ′ → ∆(S × Y ) such that

p(t, y|s, a) =
∑

(t′,y′)∈S×Y ′

ϕs(t, y|t′, y′)p′(t′, y′|s, a), ∀(t, y) ∈ S × Y

for every a ∈ A.6

Joint garbling is a natural concept, as the next period state and public signal are
jointly informative about the current actions. After all, it is simply the standard
Blackwell garbling of a random vector. However, Kim (2019) shows that the PPE
payoff set may shrink given a fixed discount factor when the monitoring becomes
more informative in the joint garbling order.

It is useful to understand why the monotonicity with respect to the joint garbling
order fails for stochastic games. For repeated games (with a public randomization
device), the monotonicity with respect to the standard garbling order holds for the
following reason. Suppose that a payoff profile v ∈ RN can be supported by an
action profile a and continuation payoffs w : Y → Eδ(Π), where Eδ(Π) is the PPE
payoff set given δ and Π. Suppose that Π is a garbling of Π′; then there exists
ϕ : Y ′ → ∆(Y ) such that p(y|a) = ∑

y′∈Y ′ ϕ(y|y′)p(y′|a). Then, v can be supported
by the same action profile and continuation payoffs w′ : Y ′ → RN defined by w′(y′) =∑

y∈Y ϕ(y|y′)w(y) for Π′. Since the equilibrium payoff set is convex (with a public
randomization device), this means that Eδ(Π) is self-generating for Π′ as well. Hence,
the equilibrium payoff set Eδ(Π′) must contain Eδ(Π). This argument does not fully
extend to stochastic games. Suppose that v can be supported at state s by an action
profile a and continuation payoffs w : S × Y → ∏

t∈S E
δ(t; Π), where Eδ(t; Π) is the

PPE payoff set at state t given δ for Π. Also, suppose that Π is a joint garbling
of Π′. We can define continuation payoffs w′ : S × Y ′ → RN in a similar way by
w′(t′, y′) = ∑

(t,y)∈S×Y ϕs(t, y|t′, y′)w(t, y). Although all the incentive constraints are
preserved as before, w′(t′, y′) may not belong to Eδ(t′; Π) because the equilibrium

6This does not mean that states need to be literally reshuffled to obtain p from p′. It just means
that (t, y) can be interpreted as (t′, y′) plus noise (like the standard garbling). See Example 2.
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payoff sets differ across states. Hence ∏t∈S E
δ(t; Π) in stochastic games is not self-

generating for Π′ unlike Eδ(Π) in repeated games. Intuitively, the issue is that the
next-period state is not only an informative signal but also affects the feasibility of
continuation payoffs in equilibrium.

In this paper, we introduce the following simple yet even weaker notion of garbling,
called weighted garbling, and show that it captures the informativeness of monitoring
structures for stochastic games in the limit as δ → 1.

Definition 1 (Weighted Garbling). A monitoring structure Π = (Y, f) is a weighted
garbling of Π′ = (Y ′, f ′) if, for every s ∈ S, there exist nonnegative weights γt′,y′

s ≥ 0,
∀(t′, y′) ∈ S × Y ′, and ϕs : S × Y ′ → ∆(S × Y ) such that for each a ∈ A,

p(t, y|s, a) =
∑

(t′,y′)∈S×Y ′

γt′,y′

s ϕs(t, y|t′, y′)p′(t′, y′|s, a), ∀(t, y) ∈ S × Y. (1)

We say that Π′ is more WG-informative than Π if Π is a weighted garbling of Π′.

Note that the weights do not depend on action profile a. A standard garbling
(i.e., joint garbling) is a special type of weighted garbling where all the weights are
equal to 1.

In the following, we also say that p is a joint/weighted garbling of p′ when Π
is a joint/weighted garbling of Π′, where p and p′ are generated from Π and Π′,
respectively.

Weighted garbling can be interpreted in various ways. First, we can regard
it as a standard garbling with some action-independent deformation of monitor-
ing structure. Note that the expected value of the weights must be 1 given every
(s, a) ∈ S × A by definition, i.e., ∑(t′,y′)∈S×Y ′ γt′,y′

s p′(t′, y′|s, a) = 1.7 Hence, we can
regard pγ(t′, y′|s, a) := γt′,y′

s p′(t′, y′|s, a) as a proper joint distribution on S×Y ′. Thus
the weights transform a joint distribution p′ into another joint distribution pγ in such
a way that p is a standard (joint) garbling of pγ.

7If the matrix of size |A|×(|S|×|Y ′|), where each row indexed by a ∈ A corresponds to p′(·, ·|s, a),
has full-column rank, then γt′,y′

s = 1, ∀(t′, y′) is the only solution that satisfies this condition at s. If
this is the case for every state s, then weighted garbling reduces to joint garbling. Weighted garbling
is strictly more permissive than joint garbling only when there are many public signals relative to
the number of actions. This is why we need three signals for Π′ in Example 1.
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We can also interpret weighted garbling as conditional Blackwell informativeness.
Let γ ≡ maxs,t′,y′ γt′,y′

s be the size of the weights, and let γt′,y′
s ≡ γt′,y′

s /γ ∈ [0, 1] for
each (t′, y′). Then, condition (1) becomes:

1
γ
p(t, y|s, a) =

∑
(t′,y′)∈S×Y ′

γt′,y′

s ϕs(t, y|t′, y′)p′(t′, y′|s, a).

This is as if (t, y) is generated with probability ϕs(t, y|t′, y′), conditional on some
event that happens with probability γt′,y′

s when (t′, y′) realizes at state s. Since the
average weight is 1 for each (s, a) ∈ S × A, the ex-ante probability of this event is
1/γ independent of (s, a), which appears on the left-hand side. Hence, this expression
means that Π can be interpreted as a joint garbling of some conditional monitoring
structure that arises from Π′, conditional on some event occurring with probability
γt′,y′

s given (t′, y′) at s. We can also see this as a two-step garbling of Π′. Suppose
that, when (t′, y′) occurs, (t′, y′) is observed with probability γt′,y′

s , but only a null
signal n is observed with probability 1 − γt′,y′

s . This generates a joint distribution
pn on (S × Y ′) ∪ {n}. This distribution is a standard garbling of p′ since γt′,y′

s does
not depend on a. As a second step, we can extend ϕs to (S × Y ′) ∪ {n} by defining
ϕs(n|n) = 1 to show that (1/γ)p+ (1 − 1/γ)δn is a standard garbling of pn, where δn

is the Dirac measure on n. Hence, by transitivity, (1/γ)p+ (1 − 1/γ)δn is a standard
garbling of p′ when p is a weighted garbling of p′ with weight size γ.8

We present two examples of weighted garbling. The first example involves a
repeated game, which is a special case of stochastic games (i.e., a game with a single
state). For repeated games, both ex-post garbling and joint garbling reduce to the
standard garbling, whereas weighted garbling does not.

Example 1. Consider a simple repeated Prisoners’ Dilemma game with two actions
{C,D} and the following two monitoring structures Π = (Y, f) and Π′ = (Y ′, f ′):

8The converse also holds because p is a weighted garbling of (1/γ)p + (1 − 1/γ)δn (with 0 weight
on the null signal) and the weighted garbling order can be shown to be transitive.
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• Π = (Y, f): Y = {c, d} and

f(c|a1, a2) =

1 − η if (a1, a2) = CC

η otherwise

• Π′ = (Y ′, f ′): Y ′ = Y ∪ {n} and

f ′(c|a1, a2) =

ϵ(1 − η′) if (a1, a2) = CC

ϵη′ otherwise

and
f ′(n|a1, a2) = 1 − ϵ for any (a1, a2)

where 0 < η′ < η < 0.5 and ϵ ∈ (0, 1].
In the first monitoring structure, the players observe a binary signal that is incor-

rect with probability η. In the second monitoring structure, there are three possible
signals: the players observe a more informative binary signal with probability ϵ, which
is incorrect with a smaller probability η′ < η, or they observe no signal (represented
by the null signal n) with probability 1 − ϵ.

These two monitoring structures are not comparable in the sense of Blackwell if ϵ
is not too large: the first monitoring structure cannot be more informative than the
second because the posterior beliefs (about actions) can take more extreme values
for the second. The second monitoring structure is not more informative than the
first either, if ϵ is small enough.9 Nonetheless, the second monitoring structure is
more WG-informative than the first for any ϵ ∈ (0, 1]. This can be easily seen
from the earlier discussion on interpreting weighted garbling as conditional Blackwell
informativeness: the second structure is more informative conditional on observing
the more informative binary signal. For instance, we can assign γc = γd = 1/ϵ, γn = 0
as weights and set ϕ(c|c) = ϕ(d|d) = (1 − η′ − η)/(1 − 2η′) to confirm that Π is a
weighted garbling of Π′.

We present the next example to illustrate and compare various notions of garbling.
9The precise condition is (0.5 − η)/(0.5 − η′) > ϵ.
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Figure 1: The joint distribution p′ and p in Example 2

Example 2. Let S = {s1, s2}. The state transition q is action-independent and is
given by q(t|s) = 1/2 for each (t, s) ∈ S × S. Consider the monitoring structures
Π = (Y, f) and Π′ = (Y, f ′), where Y = {c, d}:

• For each (t, s) ∈ S2,

f(c|t, s, (a1, a2)) =


2
3 if (a1, a2) = CC

1
3 otherwise

• For each s ∈ S

f ′(c|t = s1, s, (a1, a2)) =


3
4 if (a1, a2) = CC

1
4 otherwise

and

f ′(c|t = s2, s, (a1, a2)) =


2
3 − ϵ if (a1, a2) = CC

1
3 + ϵ otherwise

where ϵ ∈ [0, 1/6]

Note that the public signal for Π′ is strictly more informative than the public
signal for Π when the next state is s1, but strictly less informative with ϵ > 0 when
the next state is s2. The induced joint distributions p and p′ from (q,Π) and (q,Π′)
are described in Figure 1.

We make the following observations:

1. Π is an ex-post garbling of Π′ if and only if ϵ = 0.
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2. Π is a joint garbling of Π′ if and only if ϵ ∈ [0, 1/12].

3. For any ϵ, Π is a weighted garbling of Π′.

To see the first item, note that if ϵ > 0, then conditional on t = s2, the public signal
is strictly more informative for Π. Hence, Π cannot be an ex-post garbling of Π′. The
converse holds trivially by the definition of ex-post garbling. For the second item, it is
intuitively clear that Π′ becomes more informative than Π in the standard Blackwell
sense if ϵ is sufficiently small. However, determining the precise upper bound of ϵ for
which this holds requires some work.10 To see the third item, note that we can use
the following weights: γs1,c

s = γs1,d
s = 2, γs2,c

s = γs2,d
s = 0 for any s, and the following

garbling: ϕs(t, c|s1, c) = ϕs(t, d|s1, d) = 5/12 and ϕs(t, d|s1, c) = ϕs(t, c|s1, d) = 1/12
for any s, t.

Observe that a monitoring structure is a greatest element in the WG-order if and
only if it is a conditionally perfect monitoring.11 To see this, note that a conditionally
perfect monitoring structure is as informative as a perfect monitoring structure in the
WG-order.12 Then, since a monitoring structure is a greatest element in the Blackwell
order if and only if it is a perfect monitoring structure, every conditionally perfect
monitoring structure must be a greatest element in the WG-order by transitivity.13

Conversely, it is clear that any monitoring structure that is not conditionally perfect
is strictly dominated by some conditionally perfect monitoring structure.

Our main result in the next section shows that, if Π is a weighted garbling of Π′,
then the set of PPE payoffs that can be supported given any initial state is weakly

10Suppose that Π is a joint garbling of Π′ and let ϕs(y|t′, y′) ≡ ϕs(s1, y|t′, y′) + ϕs(s2, y|t′, y′) be
the marginal distribution of the public signal given (t′, y′) for garbling function ϕs. This ϕs(y|t′, y′)
must satisfy 2/3 = 1/2(3/4ϕs(c|s1, c)+1/4ϕs(c|s1, d))+1/2((2/3−ϵ)ϕs(c|s2, c)+(1/3+ϵ)ϕs(c|s2, d))
for (a1, a2) = CC and 1/3 = 1/2(1/4ϕs(c|s1, c) + 3/4ϕs(c|s1, d)) + 1/2((1/3 + ϵ)ϕs(c|s2, c) + (2/3 −
ϵ)ϕs(c|s2, d)) for (a1, a2) ̸= CC. Conversely, if there exists ϕs(y|t′, y′) that satisfies the above condi-
tions, then we can find a joint distribution ϕs(t, y|t′, y′) satisfying the definition of joint garbling, as
the next state and public signal are independent for Π. It can be easily shown that such distribution
ϕs(y|t′, y′) exists if and only if ϵ ∈ [0, 1/12].

11Formally, Π = (Y, f) is a conditionally perfect monitoring structure if, at each s ∈ S and a ∈ A,
there exists a subset Ds,a ⊆ S × Y such that p(Ds,a|s, a) > 0 but p(Ds,a|s, a′) = 0 for any a′ ̸= a.
This means that the players would know that a was played if they observe any (t, y) ∈ Ds,a at state
s.

12A monitoring structure Π = (Y, f) is a perfect monitoring structure if, at each s ∈ S, the support
of p(·, ·|s, a) in S × Y never overlaps for any two distinct action profiles.

13It is straightforward to show that the WG-order is transitive.
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fixed δ limit
ex-post=joint o o

weighted x o*
(a) Repeated games

fixed δ limit
ex-post o o

joint x o*
weighted x o*

(b) (Irreducible) stochastic games

Table 1: Table summarizing the expansion of PPE with respect to various notions of
garbling for a fixed discount factor (“fixed δ”) or in the limit (“limit”) in repeated
games and stochastic games. If an improvement in the monitoring structure in terms
of the corresponding notion guarantees the expansion, the relevant box is marked
with “o”; otherwise, it is marked with “x.” The contributions of the current paper
are indicated with a star.

larger with Π′ in the limit as δ → 1 given any payoff functions under some regularity
assumptions.

Since joint garbling is a special case of weighted garbling, one corollary of our
result is that the monotonicity of PPE payoff set with respect to the standard garbling
(i.e., joint garbling) is reestablished in the limit. Recall that this monotonicity does
not hold for stochastic games for a fixed discount factor. Table 1 summarizes the
relationship between various notions of garbling and the expansion of the PPE payoff
set.

3.2 Weighted Garbling for Action-Independent Transition

For applications, it would be useful to have a simple way to rank monitoring structures
by weighted garbling. Here, we provide a simple sufficient condition for weighted
garbling when the state transition is action-independent. This sufficiency condition
generalizes the idea behind Example 2.

Let us introduce some new notations to state our condition. For monitoring
structure Π = (Y, f), we can regard f(·|t, s, ·) as a conditional monitoring structure
that maps each action profile to a public signal distribution conditional on (s, t) ∈ S2.
We simply refer to this as f conditional on (s, t). We can compare such conditional
monitoring structures in the WG-order. We say f ′ conditional on (s′, t′) for Π′ is more
WG-informative than f conditional on (s, t) for Π if there exist a weight γy′ ≥ 0,
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∀y′ ∈ Y ′, and ϕ : Y ′ → ∆(Y ) that satisfy f(y|t, s, a) = ∑
y′∈Y ′ γy′

ϕ(y|y′)f ′(y′|t′, s′, a)
for all y ∈ Y and all a ∈ A.

Let S(s) ⊆ S denote the support of action-independent transition q(·|s) at state
s. The following proposition provides a simple sufficient condition in terms of f ′ and
f for Π′ to be more WG-informative than Π for the special case of action-independent
transitions.

Proposition 1. Suppose that the transition law is action-independent. For Π = (Y, f)
and Π′ = (Y ′, f ′), suppose that for any s ∈ S, there exists Ts : S(s) → S(s) such that
f ′ conditional on (s, Ts(t)) is more WG-informative than f conditional on (s, t) for
any t ∈ S(s). Then, Π′ is more WG-informative than Π.

Proof. See Appendix A.1.

It may be helpful to compare this to the condition for ex-post garbling. Note
that Π is an ex-post garbling of Π′ if and only if f ′ conditional on (s, t) is more
informative than f conditional on the same (s, t) for all (s, t) ∈ S2. In contrast, Π
is a weighted garbling of Π′ if, for each transition (s, t), there exists some t′ such
that f ′ conditional on (s, t′) is more WG-informative than f conditional on (s, t).
This condition is satisfied, for example, if the public signal for Π′ is very informative
conditional on staying at the current state, so that f ′ conditional on (s, s) is more
informative than f conditional on (s, t) for any t ∈ S. Note that f ′ does not need to
be informative given any other transition (s, t) with t ̸= s in this example. Example 2
is another example of this proposition, as the public signal is most informative for Π′

when and only when the next state is s1.
The action-independence of transitions is crucial for this result. If the state tran-

sitions depend on actions, it would not be possible to compare two monitoring struc-
tures based solely on the public signals, as the next state would also be informative
about the current actions.
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4 Weighted Garbling and the Limit PPE Payoff
Set

In this section, we show that an improved monitoring structure in terms of weighted
garbling expands the PPE payoff set when players are arbitrarily patient. We then
provide an example to illustrate the main ideas. Additionally, we show that the PPE
payoff set may expand strictly when the monitoring improves strictly in a certain
sense.

4.1 A Limit Characterization of PPE Payoff Set by HSTV
(2011)

Since we utilize HSTV’s characterization of the limit PPE payoff set for stochastic
games with imperfect public monitoring, we summarize their relevant results in this
subsection.

HSTV considers a collection of programming problems, which generalizes the pro-
gramming problems introduced by Fudenberg and Levine (1994) for repeated games,
to study the limit PPE payoff set for stochastic games.

Given a weight λ ∈ Λ ≡ RN \ {0}, consider the following problem P(λ).14

k(λ) := supv∈RN , αs∈
∏

i∈I
∆(Ai) ∀s, xs(t,y)∈RN ∀s,t,y λ · v s.t.

v = u(αs, s) +
∑

(t,y)∈S×Y

xs(t, y)p(t, y|s, αs), ∀s ∈ S (2)

vi ≥ ui((a′
i, α−i,s), s) +

∑
(t,y)∈S×Y

xi,s(t, y)p(t, y|s, (a′
i, α−i,s)), ∀s ∈ S, i ∈ I, a′

i ∈ Ai

(3)
and

λ ·
∑
s∈T

xs(ξ(s), ψ(s)) ≤ 0 (4)

14Our notation of x = (xs, s ∈ S) is slightly different from that of HSTV as we use a lower subscript
to denote the current state; our xs(t, y) corresponds to xt(s, y) in HSTV.
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for any subset T ⊆ S, permutation ξ : T → T , and mapping ψ : T → Y .15 That is,
given a weight λ ∈ Λ, k(λ) is the maximum state-independent weighted average of
players’ payoffs v that can be generated for each s ∈ S with some action profile αs and
some (t, y)-contingent “payment” xs that makes αs incentive compatible (i.e., (3)) and
satisfies some across-states feasibility condition (i.e., (4)). Each xs(t, y) represents the
(discounted) increments of the total payoffs between the current period and the next
period.16 Note that this program does not involve δ.

Let
H ≡

⋂
λ∈Λ

{v|λ · v ≤ k(λ)}.

Let Eδ(s) be the set of PPE payoffs given δ and initial state s, which is compact.
HSTV invokes the following assumption to obtain some of their results ((ii) in Theo-
rem 1).

Assumption 1. For any s, s′ ∈ S,

lim
δ→1

d(Eδ(s), Eδ(s′)) = 0,

where d(Eδ(s), Eδ(s′)) is the Hausdorff distance between Eδ(s) and Eδ(s′).

This assumption is satisfied, for example, when the Markov chain on S is irre-
ducible (or has a unique invariant distribution more generally) given any pure Markov
strategy profile.

HSTV proves the following result.

Theorem 1 (HSTV). The following hold:

(i) For each δ ∈ [0, 1), ⋂s∈S E
δ(s) ⊆ H.

(ii) Suppose that dim(H) = N . Then, limδ→1
⋂

s∈S E
δ(s) = H. In particular, under

Assumption 1, limδ→1 E
δ(s) = H for each s.

15k(λ) is finite (see Section 3.4 of HSTV).
16Take any average payoff v = (1 − δ)u(a, s) + δ

∑
(t,y)∈S×Y ws(t, y)p(t, y|s, a). With a stan-

dard reformulation, this v can be expressed as the sum of the current stage game payoff and the
(discounted) difference between the total payoffs from the next period and the total payoff from
the current period as follows: v = u(a, s) +

∑
(t,y)∈S×Y (δ/(1 − δ))(ws(t, y) − v)p(t, y|s, a). xs(t, y)

corresponds to (δ/(1 − δ))(ws(t, y) − v) in the second term of this expression.
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The first item means that H is an upper bound (in the sense of set inclusion) of
the intersection of the PPE payoff sets over initial states for each δ. The second item
says that, under the assumption of full-dimensionality, the intersection of the PPE
payoff sets converges to H in Hausdorff distance. In addition, this limit set coincides
with the limit PPE payoff set at every state if Assumption 1 is satisfied.17

Based on this result, HSTV also provides a sufficient condition for a folk theorem,
which naturally extends the sufficient conditions for the folk theorem for repeated
games with imperfect public monitoring in Fudenberg et al. (1994).18

4.2 Main Result

We are now ready to state our first main result. In what follows, we use notations
such as P(λ; Π), k(λ; Π), H(Π), Eδ(s; Π) to explicitly indicate their dependence on
the underlying monitoring structure.

Theorem 2. Suppose that dim(H(Π)) = N and Π = (Y, f) is a weighted gar-
bling of Π′ = (Y ′, f ′). Then, limδ→1

⋂
s∈S E

δ(s; Π) ⊆ limδ→1
⋂

s∈S E
δ(s; Π′). In

particular, if Assumption 1 is satisfied for both Π and Π′, then limδ→1 E
δ(s; Π) ⊆

limδ→1 E
δ(s′; Π′),∀s, s′ ∈ S.

In words, the limit PPE payoff set of a stochastic game expands if the monitor-
ing structure improves in terms of weighted garbling, under the full dimensionality
assumption. This result has two implications. First, recall that joint garbling is
a special case of weighted garbling. Unlike in repeated games, the PPE payoff set
for stochastic games does not expand for a fixed δ when the monitoring structure
improves in terms of joint garbling, even though it is just the standard Blackwell gar-
bling. This theorem shows that the monotonicity of the PPE payoff set with respect
to joint garbling is restored in the limit. Second, it shows that the limit monotonicity
of the PPE payoff set can be achieved with respect to a much weaker garbling notion:

17Assumption 1 and the full-dimensionality assumption together imply the convergence of Eδ(s)
to the same set for every s as δ → 1. For an example in which the PPE payoff set does not converge,
see Renault and Ziliott (2020).

18HSTV’s condition generalizes the individual full rank condition and the pairwise full rank con-
dition in Fudenberg et al. (1994). See also Fudenberg and Yamamoto (2011) for closely related
conditions, which are slightly stronger than HSTV’s.
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weighted garbling. Consequently, we can compare a much larger set of monitoring
structures when analyzing the limit equilibrium payoffs. Notably, this second part of
the contribution is novel even in repeated games, since weighted garbling does not
reduce to the standard garbling in repeated games.

The above result is most useful when the folk theorem does not hold, as there is
still room for the limit equilibrium payoff set to expand. We also note that the result
holds independent of payoff functions. The limit equilibrium payoff set would expand
with a more informative monitoring structure for any payoff functions, as long as the
full dimensionality assumption is satisfied.

Note that we do not require any public randomization device for our monotonicity
result as the limit PPE payoff set H is already convex, whereas public randomization is
required for the monotonicity of PPE payoff set given a fixed discount factor, because
the PPE payoff set at each state may not be convex without a public randomization
device with finite states and signals.19

We prove this result by using our next result, which states that the maximum
score of problem P(λ) increases weakly for every direction λ, thereby yielding a
weakly larger H, when a monitoring structure improves in terms of weighted garbling.
Together with Theorem 1, this immediately implies the above main result as H(Π′)
is full dimensional when H(Π) is full dimensional.

Theorem 3. Suppose Π = (Y, f) is a weighted garbling of Π′ = (Y ′, f ′). Then, for
each λ ∈ Λ, k(λ; Π) ≤ k(λ; Π′). Hence, H(Π) ⊆ H(Π′).

Let us outline the idea of the proof of Theorem 3. We first observe that the payoff
increment xs(t, y) can be decomposed into two components ls(t) and zs(t, y). The
first component, ls(t), is defined as the increment that pushes the score most in the
direction of λ given the transition (s, t), i.e., λ · ls(t) = maxy∈Y λ · xs(t, y). Note that,
by construction, this component satisfies condition (4) in HSTV’s program.

On the other hand, the second component, defined by zs(t, y) := xs(t, y) − ls(t),
represents an additional variation of increments based on the public signal. Note that
the score of each zs(t, y) is nonpositive by definition.

19For repeated games with continuously distributed public signal, the PPE payoff set is convex
without any public randomization device (Kandori, 1992).
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For a more WG-informative structure Π′, we keep the same ls(t) and construct the
weighted expectation of zs(t, y) given each (t′, y′) as z̃s(t′, y′) = ∑

(t,y)∈S×Y γ
t′,y′
s ϕs(t, y|t′, y′)zs(t, y).

This application of garbling to these increments is similar to the application of gar-
bling to continuation payoffs for repeated games (e.g., Kandori (1992)). We then
construct the new payoff increment by adding these two components together, i.e.,
x̃s(t′, y′) = ls(t′) + z̃s(t′, y′). They clearly satisfy conditions (2) and (3) for P(λ; Π′).
This is because the state transition rule is independent of monitoring structures,
hence the expectation of ls(·) is the same for Π and Π′, and the expectation of the
second term is the same given the above definition based on weighted garbling. No-
tice that condition (4) also holds because the score of each z̃s(t′, y′) is nonpositive by
construction.

Proof. Fix λ ∈ Λ. Let v ∈ R, αs ∈ ∏
i∈I ∆(Ai), xs : S × Y → RN for each s ∈ S be

any feasible point for HSTV’s program P(λ; Π).
For our purpose, it is sufficient to construct {x̃s(t′, y′)}s,t′∈S,y′∈Y ′ that satisfies all

the constraints, together with the same {αs}s and v, for the problem P(λ; Π′).
For each s, t ∈ S, let ls(t) = xs(t, y∗), where y∗ is a solution to maxy∈Y λ · xs(t, y).

We decompose xs(t, y) into ls(t) and the remaining part zs(t, y), where zs(t, y) :=
xs(t, y) − ls(t).

For each (t′, y′) ∈ S × Y ′, define

z̃s(t′, y′) :=
∑

(t,y)∈S×Y

γt′,y′

s ϕs(t, y|t′, y′)zs(t, y)

and
x̃s(t′, y′) := ls(t′) + z̃s(t′, y′).

Let T ⊆ S. Note that for any permutation ξ : T → T ,

λ ·
∑
s∈T

ls(ξ(s)) =
∑
s∈T

max
y∈Y

λ · xs(ξ(s), y) ≤ 0,

where the last inequality follows from (4). Moreover, since λ · zs(t, y) ≤ 0 for all s, t
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and y by construction, and γt′,y′
s ≥ 0,

λ · z̃s(t′, y′) =
∑

(t,y)∈S×Y

γt′,y′

s ϕs(t, y|t′, y′)λ · zs(t, y) ≤ 0, ∀s ∈ S, t′ ∈ S, y′ ∈ Y.

Then,
λ ·

∑
s∈T

x̃s(ξ(s), ψ(s)) = λ ·
∑
s∈T

ls(ξ(s)) + λ ·
∑
s∈T

z̃s(ξ(s), ψ(s)) ≤ 0

for any permutation ξ : T → T and any function ψ : T → Y ′. Thus, we conclude that
condition (4) is satisfied for x̃s(t′, y′) with the monitoring structure Π′. To show that
the constraints corresponding to (2) and (3) are satisfied, fix s ∈ S and observe that
for each a ∈ A,

∑
(t′,y′)∈S×Y ′

z̃s(t′, y′)p′(t′, y′|s, a) =
∑

(t′,y′)∈S×Y ′

∑
(t,y)∈S×Y

γt′,y′

s ϕs(t, y|t′, y′)zs(t, y)p′(t′, y′|s, a)

=
∑

(t,y)∈S×Y

zs(t, y)
 ∑

(t′,y′)∈S×Y ′

γt′,y′

s ϕs(t, y|t′, y′)p′(t′, y′|s, a)


=
∑

(t,y)∈S×Y

zs(t, y)p(t, y|s, a).

Thus,

∑
(t′,y′)∈S×Y ′

x̃s(t′, y′)p′(t′, y′|s, a) =
∑

(t′,y′)∈S×Y ′

ls(t′)p′(t′, y′|s, a) +
∑

(t′,y′)∈S×Y ′

z̃s(t′, y′)p′(t′, y′|s, a)

=
∑
t∈S

ls(t)q(t|s, a) +
∑

(t,y)∈S×Y

zs(t, y)p(t, y|s, a)

=
∑

(t,y)∈S×Y

xs(t, y)p(t, y|s, a).

There are two ideas behind this limit monotonicity result with respect to the
WG-order, which does not work for a fixed δ but works as δ → 1. The first idea
is to use the next period state as a purely informative signal. Since the next state
and public signal are jointly informative about the current action, it is natural to
compare the informativeness of monitoring structures with respect to the standard
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Blackwell garbling order for joint distributions (i.e., joint garbling). However, the
next period state is not just an informative signal but also determines the set of
feasible continuation payoffs. To ignore such state-dependent physical constraints
and use the next state as a purely informative signal, we focus on the set of PPE
payoffs that can be supported starting at any state, which converges to H(Π) as
δ → 1 subject to the full dimensionality as shown by Hörner et al. (2011). Every
such payoff profile (in the interior of H(Π)) can be supported by creating a state-
independent “block self-generating set” around it when δ is large.20 If Π′ is more
informative than Π with respect to the joint garbling order, then we can mimic the
construction of continuation payoffs to support each target payoff profile based on
joint garbling. The continuation payoffs we construct are different from the original
ones in a complex way in general.21 However, when δ is very large, they behave
similarly to the original continuation payoffs and hence still stay in the original block
self-generating set. Thus, the block self-generating set for Π becomes block self-
generating for Π′ when the players are patient enough. This is why the set of PPE
payoffs that can be supported at every state is monotone with respect to the joint
garbling order in the limit as δ → 1. In addition, this set is exactly the (identical)
limit PPE payoff set at every state when Assumption 1 is satisfied.

The second idea is conditional informativeness. With a more WG-informative
monitoring structure, players can wait for more informative signals to enable more
efficient rewards or punishments. However, the probability of such an event may be
small, hence we may not be able to generate large enough payoff variations to provide
enough incentives for a given discount factor. However, this problem is resolved as
well when players get arbitrarily patient. Note that this argument is valid even in
repeated games. Thus, our result complements the monotonicity result with a fixed
δ for repeated games in Kandori (1992).

20This is a set that is self-generating independent of the initial state with a block of n − 1 periods.
See the proof of Proposition 2 in Hörner et al. (2011) for details.

21For repeated games, this reduces to a simple convex combination of continuation payoffs in
Section 3.1.
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C D
C 1, 1 −ℓ, 1 + g
D 1 + g,−ℓ 0, 0

Figure 2: Payoff matrix for the Prisoners’ Dilemma

4.3 Example

We present the simplest example with no state (i.e., a repeated game) to illustrate
how the score improves with improved monitoring. This example also demonstrates
that weighted garbling is a new and useful concept even for repeated games.

Suppose that the stage game is a Prisoners’ Dilemma, where the payoff is (1, 1)
for (C,C), (1 + g,−ℓ) with g, ℓ > 0 for (D,C) (symmetric for (C,D)), and (0, 0)
for (D,D) (see Figure 2). Assume 1 > g − ℓ, so that (C,C) maximizes the joint
payoff. We use the monitoring structure Π = ({c, d}, f) and Π′ = ({c, d, n}, f ′) from
Example 1 in Section 3.

For repeated games, the programming problem for each λ reduces to the standard
problem in Fudenberg and Levine (1994). For example, if we set λ = (1, 1) and set
the action profile to (C,C), the problem for P(λ; Π′) becomes:

sup
v∈R2 x:Y ′→R2

v1 + v2 s.t.

vi = 1 +
∑

y′∈Y ′
xi(y′)p′(y′|CC), i = 1, 2

vi ≥ 1 + g +
∑

y′∈Y ′
xi(y′)p′(y′|¬CC), i = 1, 2

x1(y′) + x2(y′) ≤ 0, ∀y′ ∈ Y ′.

We can show that H(Π′) is strictly larger than H(Π) in this example for any
ϵ > 0 (Recall that p′ is implicitly parameterized by the probability ϵ of observing a
more informative binary signal for Π′). This is easy to see when ϵ = 1, i.e., Π′ is
strictly more informative than Π in the standard Blackwell sense. In this case, clearly
k(λ; Π′) ≥ k(λ; Π) holds for any λ. Furthermore, it can be easily shown that the
inequality holds strictly for any λ ≫ 0.22 Then note that H(Π′) is actually the same

22For example, for λ = (1, 1), the maximized score for Π and Π′ would be 2 − (2ηg)/(1 − 2η) and
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for any ϵ > 0, i.e., when Π′ is just a weighted garbling of Π. If x∗
i is a solution to the

above score maximization problem when ϵ = 1, then for any ϵ ∈ (0, 1), we can achieve
exactly the same score by setting xi(y′) = (1/ϵ)x∗

i (y′) for y′ = c, d, and xi(n) = 0.
Essentially, we are replicating the continuation payoff variations after y = c, d for

Π using y′ = c, d for Π′. The probability of observing y′ = c or d is ϵ, which may be too
small to satisfy the incentive constraints for a given level of discount factor. However,
they are not binding constraints when the discount factor becomes sufficiently large.

4.4 Strict Weighted Garbling for Strict Improvement

In this subsection, we examine when the score increases strictly. Note that the maxi-
mized score in each direction is only informative about how far the PPE payoff set can
expand toward that direction in the limit. Hence, our result does not provide a clear
comparison of two monitoring structures for δ less than 1 when the maximized score
is the same for both monitoring structures. For example, k(λ,Π′) ≥ k(λ; Π) holds for
Example 1 for any λ, even if η′ = η. However, Π′ is clearly less informative than Π in
this knife-edge case since Π′ is just a convex combination of Π and no information.
Hence the PPE payoff set for Π′ cannot be a strict superset of the PPE payoff set for
Π for any discount factor δ < 1. What Theorem 2 says is just that the PPE payoff
set for Π′ must catch up with the PPE payoff set for Π at least in the limit. On the
other hand, when η′ ∈ (0, η) for Example 1, it can be shown that k(λ,Π′) is strictly
larger than k(λ,Π) for many λ ∈ R2

++ such as (1, 1), as noted in the footnote in the
previous subsection. So, the PPE payoff set for Π′ overtakes the PPE payoff set for
Π in this example when δ is large but still less than 1.

For our strict improvement result, we need to introduce a strict version of weighted
garbling as follows.

Definition 2 (Strict Weighted Garbling). A monitoring structure Π = (Y, f) is a
strict weighted garbling of Π′ = (Y ′, f ′) if, for every s ∈ S, there exist nonnegative
weights γt′,y′

s ≥ 0,∀(t′, y′) and ϕs : S×Y ′ → ∆(S×Y ) where the support of ϕs(·, ·|t′, y′)

2 − (2η′g)/(1 − 2η′), respectively. The latter is strictly larger since η′ < η.
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in S × Y is the same for all (t′, y′) ∈ S × Y ′ and, for each a ∈ A,

p(t, y|s, a) =
∑

(t′,y′)∈S×Y ′

γt′,y′

s ϕs(t, y|t′, y′)p′(t′, y′|s, a), ∀(t, y) ∈ S × Y.

Intuitively, Π is a strict weighted garbling of Π′ when Π is a weighted garbling of
Π′ and ϕ represents a noise with “common support” at each state.23 In Example 1,
Π′ with η′ ∈ (0, η) is indeed strictly WG-more informative than Π, since we can set
γc = γd = 1/ϵ, γn = 0, and ϕ(c|c) = ϕ(d|d) = (1 − η − η′)/(1 − 2η′) ∈ (0, 1).24

To improve the score strictly, there must be some room for improvement. For
example, for repeated games, no better monitoring structure would be able to expand
the limit PPE payoff set if the folk theorem already holds. If we like to improve
the score in direction λ, there must be some score-burning after some realization
of the public signal. That is, there must exist some y ∈ Y such that p(y|α) > 0
and ∑

i∈I λixi(y) < 0 for solution α and x(·) for P(λ). This simply means that
the maximum score in direction λ requires costly punishment with respect to that
direction.

We extend this condition to stochastic games. We say that the public signal is
essential in direction λ ∈ Λ for Π if there exists a solution (αs, xs), s ∈ S for the
problem P(λ; Π) such that, for every T ⊆ S and any permutation ξ on T for which
(4) is binding (i.e., λ · ∑s∈T ℓs(ξ(s)) = 0), there exist ŝ ∈ T , t̂ ∈ S, and ŷ ∈ Y such
that p(t̂, ŷ|ŝ, αŝ) > 0 and λ · ℓŝ(t̂) = maxy∈Y λ · xŝ(t̂, y) > λ · xŝ(t̂, ŷ). This means
that whenever the feasibility constraint (4) is binding for some cycle of states at the
optimal solution, there is some state in the cycle where there is some score-burning
after some realization of (t, y).25 This condition generalizes the above score-burning
condition for repeated games. While slightly more complex, it similarly requires that

23Recall that when Π is a weighted garbling of Π′ with weight γ and ϕ, pγ is more informative
than p in the standard Blackwell sense, where pγ(t′, y′|s, a) = γt′,y′

s p′(t′, y′|s, a). Strict weighted
garbling corresponds to pγ being more informative than p in strong sense. In fact, this is more than
pγ being strictly more Blackwell informative than p, as it requires ϕs(t, y|t′, y′) to be positive for
every (t, y) in Ds and every (t′y′).

24ϕ(·|n) can be any arbitrary full-support distribution on {c, d}.
25Although this is a condition on endogenous variables, it is easy to verify in some special cases.

For example, see the partnership application in Section 5, where the state transition is action-
independent.
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there is a positive chance of costly punishment based on the public signal when the
continuation payoffs cycle around the “efficient” frontier.

We show that a strictly WG-more informative monitoring structure Π′ achieves a
strictly higher score in direction λ when the public signal is essential in direction λ

for Π.

Theorem 4. Suppose Π is a strict weighted garbling of Π′ = (Y ′, f ′). If the public
signal is essential in direction λ ∈ Λ for Π, then k(λ; Π′) > k(λ; Π).

Proof. Since Π is a strict weighted garbling of Π′, for each s ∈ S, there exist non-
negative weights γt′,y′

s and ϕs : S × Y ′ → ∆(S × Y ) that have the same support
in S × Y given each (t′, y′), which we denote by Ds, such that, for each a ∈ A,
p(t, y|s, a) = ∑

(t′,y′)∈S×Y ′ γt′,y′
s ϕs(t, y|t′, y′)p′(t′, y′|s, a) for all (t, y) ∈ S × Y .

Let (αs, xs), s ∈ S, be a solution to the problem P(λ; Π). Following the proof
of Theorem 3, decompose xs(t, y) as xs(t, y) = ℓs(t) + zs(t, y), where λ · zs(t, y) ≤
0,∀(t, y) ∈ S×Y . For each s ∈ S, define z̃s by z̃s(t′, y′) := ∑

(t,y)∈S×Y γ
t′,y′
s ϕs(t, y|t′, y′)zs(t, y)

for any (t′, y′) with strictly positive weight γt′,y′
s > 0 and z̃s(t′, y′) = z for any (t′, y′)

with γt′,y′
s = 0, where z ∈ RN is any vector such that λ · z < 0. Then, define

x̃s(t′, y′) = ℓs(t′) + z̃s(t′, y′) for each (t′, y′) ∈ S × Y ′. Then, (αs, x̃s), s ∈ S is feasible
and achieves k(λ; Π) for the problem P(λ; Π′), since all the incentive constraints (3)
are preserved and the feasibility constraints (4) are satisfied for any permutation and
mapping, as shown in the proof of Theorem 3.

In fact, it can be shown that the feasibility constraint (4) is slack. Since the
public signal is essential in direction λ for Π, for any T ⊆ S and any permutation ξ

on T such that (4) is binding, there exists some ŝ ∈ T and (t̂, ŷ) ∈ S × Y such that
p(t̂, ŷ|ŝ, αŝ) > 0 and λ · zŝ(t̂, ŷ) < 0. By the definition of strict weighted garbling, the
support of p(·, ·|ŝ, αŝ) is the same as the support of ϕŝ(·, ·|t′, y′) for each (t′, y′). So
(t̂, ŷ) is in Dŝ, hence λ·z̃ŝ(t′, y′) is strictly negative for any (t′, y′) ∈ S×Y ′ with strictly
positive weight γt′,y′

s > 0. This means that k(λ; Π) can be achieved for P(λ; Π′) while
(4) is slack for any T ⊂ S, any permutation ξ on T , and any mapping ψ : T → Y ′.

Now, modify x̃ as follows: x̂s(t′, y′) = x̃s(t′, y′) + ϵγt′,y′
s λ for some ϵ > 0. Note

that (αs, x̂s), s ∈ S is feasible for P(λ; Π′) for small enough ϵ, since condition (4) is
slack for x̃, and (3) is still satisfied for x̂ (as ∑(t′,y′)∈S×Y ′ γt′,y′

s p′(t′, y′|s, a) = 1 for any
(s, a)).
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Moreover, (αs, x̂s), s ∈ S achieves a strictly higher value than k(λ; Π), as E[λ ·
x̂s(·, ·)|s, αs] = E[λ · x̃s(·, ·)|s, αs] + ϵ ∥λ∥2 > E[λ · x̃s(·, ·)|s, αs]. Therefore, k(λ; Π′) >
k(λ; Π).

We note that a strict improvement of the maximum score does not necessarily
imply a strictly larger limit PPE payoff set. Recall that H(Π) is the intersection of
all the half spaces {v|λ · v ≤ k(λ; Π)} across all directions. Thus, for example, if the
hyperplane {v|λ ·v = k(λ; Π)} does not touch H(Π), then improving the score strictly
in direction λ does not help H(Π) expand. When H(Π) is a polyhedron, it expands
if and only if at least one of its faces moves outward strictly, i.e., k(λ; Π′) > k(λ; Π)
for some λ for which the hyperplane {v|λ · v = k(λ; Π)} overlaps with a face of H(Π).

We also note that a strict expansion is relatively easier to verify for the limit
strongly symmetric equilibrium (SSE) payoff set. In the next section, we show that
the limit SSE payoff set is characterized by the maximum scores in only two directions:
λ = (+1, . . . ,+1) and λ = (−1, . . . ,−1). If the maximum score improves weakly in
these two directions and strictly in at least one of them, then the limit SSE payoff
set would become strictly larger.

5 Monotonicity of the Limit SSE Payoff Set

5.1 Strongly Symmetric Equilibrium for Symmetric Stochas-
tic Games

We extend our results to an important class of PPE for symmetric games: strongly
symmetric equilibrium (SSE). There are several reasons for pursuing this extension.
First, SSE is a natural refinement of PPE in symmetric environments. Second, appli-
cations often focus on SSE, as the SSE payoff set can be characterized and computed
more easily. In fact, we show that the set of SSE payoffs is characterized by two
programming problems, rather than an infinite number of programming problems in
all directions of λ ∈ Λ.

We note that our WG-order and monotonicity result is particularly useful for
SSE. In symmetric games, the first-best symmetric payoff is rarely achievable in SSE.
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Since every player is treated symmetrically, the incentive for cooperation needs to
be provided through costly group punishment in SSE, which leads to a failure of the
folk theorem. This leaves a room for an improved monitoring structure to reduce the
incentive cost and enhance efficiency.

We introduce symmetric stochastic games. A stochastic game is symmetric if it
satisfies the following conditions: 1) symmetric action sets, i.e., Ai = B for some
finite set B for every i ∈ I, 2) symmetric payoff functions, i.e., ui(aξ(1), . . . , aξ(N), s) =
uξ(i)(a, s) for any (a, s) ∈ BN ×S and any permutation ξ on I, 3) symmetric transition
law, i.e., q(·|s, a) = q(·|s, a′) for any (s, a) and a′ that is a permutation of a, and 4)
symmetric monitoring structure, i.e., f(·|t, s, a) = f(·|t, s, a′) for any (t, s), a and a′

that is a permutation of a. Note that conditions 3) and 4) imply p(·|s, a) = p(·|s, a′)
for such a and a′ for each s. From now on, we drop the subscript i and use u(a, s) to
denote each player’s payoff when every player plays a ∈ B at state s, and u(a′/a, s)
to denote the payoff of playing a′ ∈ B when every other player plays a at state s.
We also interpret distributions such as q(·|s, a) as the distribution when every player
plays a, and q(·|s, a′/a) as the distribution when one player unilaterally deviates to
a′ while every other player plays a ∈ B.

A strategy profile is a strongly symmetric equilibrium (SSE) if it is a PPE and,
at any history, all players play the same mixed action in equilibrium. Denote the set
of SSE payoffs at state s with monitoring structure Π by Eδ

SS(s; Π).
We pay special attention to pure strategy strongly symmetric equilibrium (PSSE),

as we often assume pure strategies for applications (we provide one such application
in Section 5.4). The set of PSSE payoffs is denoted by Eδ

P SS(s; Π).

5.2 P -weighted Garbling for Pure Strategy Strongly Sym-
metric Equilibrium

For pure strongly symmetric strategies, the quality of a monitoring structure is deter-
mined by its informativeness regarding unilateral deviations from symmetric action
profiles. Thus, it is natural to introduce a weaker criterion of informativeness when
we restrict our attention to PSSE. For any a ∈ A, let A(a) ⊆ A be the set of action
profiles consisting of a itself and the action profiles that would arise from all possible
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unilateral deviations from a. We define P -weighted garbling with respect to a subset
of action profiles A′ ⊆ A as follows.

Definition 3 (P -Weighted Garbling with respect to A′ ⊆ A). A monitoring structure
Π = (Y, f) is a P-weighted garbling of Π′ = (Y ′, f ′) with respect to A′ ⊆ A if, for
every s ∈ S and a ∈ A′, there exist nonnegative weights γt′,y′

s,a ≥ 0, ∀(t′, y′) and
ϕs,a : S × Y ′ → ∆(S × Y ) such that, for each â ∈ A(a),

p(t, y|s, â) =
∑

(t′,y′)∈S×Y ′

γt′,y′

s,a ϕs,a(t, y|t′, y′)p′(t′, y′|s, â), ∀(t, y) ∈ S × Y.

Π is a strict P -weighted garbling of Π′ with respect to A′ ⊆ A if, in addition,
ϕs,a(·, ·|t′, y′) has the same support Ds,a ⊆ S × Y for every (t′, y′) ∈ S × Y ′ for
each (s, a) ∈ S × A′.

This is weaker than weighted garbling, as we restrict attention to two types of
subsets of actions: A′ and A(a) for each a ∈ A′. A′ is a subset of action profiles
that we care about for our analysis. For PSSE, this corresponds to the set of all
symmetric pure action profiles. A(a) is the set of action profiles that could arise after
a unilateral deviation when a ∈ A′ is supposed to be played. Note that, for Π′ to
be more informative than Π in terms of PSSE, it only needs to be more informative
with respect to A(a) for each symmetric action profile a. Also note that weight γt′,y′

s,a

and ϕs,a depend on a ∈ A′, in addition to the current state s. Intuitively, the target
action profile serves as an additional state, representing the range of action profiles
that are relevant to our analysis.

5.3 Results for SSE and PSSE

To extend our result to SSE, we need to extend HSTV’s limit characterization to
SSE. Note that HSTV’s results do not directly apply to the limit SSE payoff set, as
the full-dimensionality assumption does not hold for the SSE payoff set.

We show that to characterize the limit SSE payoff set, it suffices to solve the
following programming problem PSS(λ; Π) for λ = −1 and +1:

kSS(λ; Π) = sup
v∈R, αs∈∆(B) ∀s, xs(t,y)∈R ∀s,t,y

λv
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subject to

v = u(αs, s) +
∑

(t,y)∈S×Y

xs(t, y)p(t, y|s, αs), ∀s ∈ S

v ≥ u(a′/αs, s) +
∑

(t,y)∈S×Y

xs(t, y)p(t, y|s, a′/αs), ∀s ∈ S, a′ ∈ B

λ
∑
s∈T

xs(ξ(s), ψ(s)) ≤ 0

for any T ⊆ S, any permutation ξ : T → T and any function ψ : T → Y . Note that
v and xs(t, y) are just numbers this time, because all players receive the same payoff.
When we restrict attention to pure strongly symmetric strategies, we replace ∆(B)
with B and refer to this modified problem by PP SS(λ; Π). The maximized score for
PP SS(λ; Π) is denoted by kP SS(λ; Π).

The following proposition provides an extension of HSTV’s limit characterization
result to SSE and PSSE.

Proposition 2. The following hold:

1. For any δ ∈ [0, 1),

⋂
s∈S

Eδ
SS(s; Π) ⊆ [−kSS(−1; Π), kSS(+1; Π)] .26

If −kSS(−1; Π) < kSS(+1; Π), then limδ→1
⋂

s∈S E
δ
SS(s; Π) = [−kSS(−1; Π), kSS(+1; Π)] .

2. For any δ ∈ [0, 1),

⋂
s∈S

Eδ
P SS(s; Π) ⊆ [−kP SS(−1; Π), kP SS(+1; Π)] .

If −kP SS(−1; Π) < kP SS(+1; Π), then limδ→1
⋂

s∈S E
δ
P SS(s; Π) = [−kP SS(−1; Π), kP SS(+1; Π)] .

Proof. See Appendix A.2.

Using this result, we can extend our main monotonicity results (Theorem 2, The-
orem 3, and Theorem 4) to SSE and PSSE immediately. To state the next results, we

26If kSS(+1; Π) < −kSS(−1; Π), then the intersection of the equilibrium payoff sets would be
empty.

33



use a variation of Assumption 1 for the limit SSE and PSSE payoff set. Assumption
SS (PSS) is satisfied if the distance between the SSE (PSSE) payoff sets at any two
states converges to 0 as δ → 1.27 We omit the proof of the following proposition as it
is straightforward.

Proposition 3. The following hold:

1. Suppose that −kSS(−1; Π) < kSS(+1; Π) and Π is a weighted garbling of Π′.
Then, limδ→1

⋂
s∈S E

δ
SS(s; Π) ⊆ limδ→1

⋂
s∈S E

δ
SS(s; Π′). In particular, if As-

sumption SS is satisfied for Π and Π′, then limδ→1 E
δ
SS(s; Π) ⊆ limδ→1 E

δ
SS(s′; Π′)

for any s, s′ ∈ S. If, in addition, Π is a strict weighted garbling of Π′ and the
public signal is essential in direction λ = −1 or +1 for PSS(λ; Π), then the
above inclusions are strict.

2. Suppose that −kP SS(−1; Π) < kP SS(+1; Π) and Π is a P -weighted garbling of Π′

with respect to the set of symmetric action profiles. Then, limδ→1
⋂

s∈S E
δ
P SS(s; Π) ⊆

limδ→1
⋂

s∈S E
δ
P SS(s; Π′). In particular, if Assumption PSS is satisfied for Π and

Π′, then limδ→1 E
δ
P SS(s; Π) ⊆ limδ→1 E

δ
P SS(s′; Π′) for any s, s′ ∈ S. If, in addi-

tion, Π is a strict P -weighted garbling of Π′ and the public signal is essential in
direction λ = −1 or +1 for PP SS(λ; Π), then the above inclusions are strict.

5.4 Application: Partnership Game

We apply the above results to PSSE in a symmetric partnership game. Consider
N ∈ N agents who simultaneously choose either e (“effort”) or ne (“no effort”).
Choosing ne incurs no cost, while e costs c > 0 for each player. Since the game is
symmetric, we use the total number of efforts k ∈ {0, . . . , N} instead of the whole
effort profile to simplify the exposition in the following. There is state s ∈ S that
affects the productivity of the team and evolves over time. We assume that state
transition is action-independent and follows the transition law q : S → ∆(S).

27These assumptions are satisfied, for example, when the Markov chain given any symmetric pure
Markov strategy is irreducible (or has a unique invariant distribution more generally). Note that
they are weaker than the corresponding sufficient condition for the original Assumption 1, as we
restrict attention to strongly symmetric strategies.
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Let π(k, s) ∈ R represent the expected revenue given k efforts at state s. The N
agents share the revenue equally, so agent i’s expected payoff is given by u(k, s)− c =
1
N
π(k, s) − c when she is one of the k agents who exert effort, and u(k, s) if she shirks

while k other agents exert effort.
In each period, the team observes a public signal y ∈ Y that is informative about

the total effort in the current period, which is distributed according to f(·|t, s, k) ∈
∆(Y ). Note that one agent’s deviation to shirking is indistinguishable from any other
agent’s deviation to shirking.

We focus on pure strategy SSE.28 Thus, we compare the value of monitoring
structures based on P -weighted garbling with respect to two symmetric action profiles:
full-effort and no-effort. Hence, in the following, we use the total number of effort
0 and N to represent the no-effort profile and the full-effort profile respectively and
denote A′ = {0, N}.

As mentioned, we apply Theorem 4 to PSSE in this partnership game. As a first
step, we show that strict P -weighted garbling with respect to {0, N} is equivalent
to certain likelihood ratio conditions in this setting. For monitoring structure Π,
define the likelihood ratios with respect to k and k− 1 efforts as follows: LΠ

s,k(t, y) :=
p(t, y|s, k)/p(t, y|s, k − 1) = f(y|t, s, k)/f(y|t, s, k − 1) for each (t, y) ∈ S × Y at
each s ∈ S. Each likelihood can take an infinite value and is set to be 1 if it is
0
0 . Let LΠ

s,k = LΠ
s,k(ts,k, ys,k) = max(t,y)∈S×Y L

Π
s,k(t, y) and LΠ

s,k = LΠ
s,k(ts,k, ys,k

) =
min(t,y)∈S×Y L

Π
s,k(t, y). For P -weighted garbling with respect to symmetric action

profiles, the relevant maximum and minimum likelihood ratios are LΠ
s,k and LΠ

s,k for
k = 1, N . We say that Π = (Y, f) is informative at symmetric action profiles k = 0, N
if LΠ

s,k < L
Π
s,k for every s ∈ S and k = 1, N . This means that a unilateral deviation

from any symmetric action profile must be detectable.
The following lemma shows that Π′ is informative and more informative than Π

in the strict P -weighted garbling order with respect to {0, N} if and only if these
likelihood ratios for k = 1, N take strictly more extreme values for Π′.

Lemma 1. Π is a strict P -weighted garbling of Π′ with respect to {0, N} and Π′ is
28If u(k, s) and f(·|t, s, k) are linear in k at each s, it is without loss of generality to restrict

attention to pure strategies to obtain the maximum score for P(λ; Π) in any direction λ. See
Lemma 4.1 of Fudenberg and Levine (1994) for a related result.
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informative at {0, N} if and only if
[
LΠ

s,k, L
Π
s,k

]
⊂
(
LΠ′

s,k, L
Π′

s,k

)
for every s ∈ S and

k ∈ {1, N}.

Proof. See Appendix A.3.

In this setting, strict P -weighted garbling is characterized by a simple condition:
a more informative monitoring structure has a larger maximum likelihood ratio and
a smaller minimum likelihood ratio under both full effort and no effort. It is useful
to compare this property to the corresponding property of Blackwell informativeness.
Note that A(N) and A(0) essentially contain only two elements: the symmetric action
profile and a unilateral deviation from it. Thus, comparing two monitoring structures
at these symmetric action profiles parallels the comparison of two experiments with
binary states. In this special case, there is a one-to-one relationship between posterior
beliefs and likelihood ratios. Consequently, a larger maximum likelihood ratio and
smaller minimum likelihood ratio are equivalent to a larger maximum posterior belief
and a smaller minimum posterior belief (given any full-support prior). Recall that an
experiment is more Blackwell informative than another if and only if the distribution
of posterior beliefs for the former experiment is second-order stochastically dominated
by the distribution for the latter. In contrast, P -weighted garbling in the symmetric
partnership game only requires that the largest and smallest posterior beliefs are more
extreme (and strictly so for strict P -weighted garbling).

Suppose that the above likelihood ratio conditions are satisfied for Π and Π′.
By Lemma 1, Π is a strict P -weighted garbling of Π′ with respect to {0, N}. By
Proposition 3, the best limit PSSE payoff improves strictly for Π′ when the above
likelihood ratio conditions are satisfied and the public signal is essential in direction
λ = +1. Since the state transition is action-independent, the public signal must be
essential in direction λ = +1 when kP SS(+1,Π) is achieved with symmetric effort
profiles that are not stage-game Nash equilibria. Therefore, we obtain the following
proposition.

Proposition 4. Suppose that (1)
[
LΠ

s,k, L
Π
s,k

]
⊂
(
LΠ′

s,k, L
Π′

s,k

)
holds for every s ∈ S and

k ∈ {0, N} for Π and Π′ and (2) kP SS(+1; Π) is achieved with symmetric effort profiles
(ks)s∈S where ks ∈ {0, N} is not a stage-game Nash equilibrium at each state s ∈ S.
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Then, kP SS(+1; Π′) > kP SS(+1; Π). In particular, if kP SS(+1; Π) > −kP SS(−1; Π),
then, for any high enough δ, there exists a PSSE for Π′ that generates a strictly larger
payoff than any PSSE for Π.

6 Weighted Garbling with Different Transition Laws

Thus far, we have fixed a transition law when comparing monitoring structures, as
a transition law affects not only the informational environment but also the physical
environment of stochastic games. However, comparing two monitoring structures
under different transition laws may still be meaningful if those transition laws induce
the same limit feasible payoff set at each state under each Markov strategy profile,
as our focus is on limit equilibrium payoffs. This is the case, for example, if two
transition laws have the same unique invariant distribution under any pure Markov
strategy profile given any initial state.29

To fix ideas, consider the following example in which the transition laws are action-
independent.

Example 3. Let S = {s1, s2} and consider transition laws q and q′ such that
q(sj|sj) = η (resp. q′(sj|sj) = η′) for each j = 1, 2, where 1 > η′ > η ≥ 0. This means
that the state is more persistent with q′.

Consider the monitoring structures Π = (Y, f) and Π′ = (Y, f ′) with Y = {c, d},
where f(c|sj, sk, CC) = f(d|sj, sk,¬CC) = 2/3 and f ′(c|sj, sk, CC) = f ′(d|sj, sk,¬CC) =
3/4 for Π and Π′ respectively if j ̸= k; otherwise, it is 1/2 independent of action pro-
files for both Π and Π′. Thus, the public signal is informative only if the next-period
state differs from the current one. The pair (q,Π) (resp. (q′,Π′) ) induces the joint
distribution p (resp. p′) over S × Y (see Figure 3).

Note that since q and q′ share the same invariant distribution (which assigns equal
probability to s1 and s2), they yield the same limit feasible payoff set for any payoff
function. Also note that, although players find the public signal informative more
frequently with q than with q′ (because η′ > η), conditional on the transition to

29This is because every extreme point of the feasible payoff set at any state can be generated by
some pure Markov strategy profile. Hence, we can generate any feasible payoff by randomizing over
pure Markov strategy profiles (Dutta, 1995).
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p(t, y|sj, a) CC ¬CC
sj, c η 1

2 η 1
2

sj, d η 1
2 η 1

2
sk, c (1 − η)2

3 (1 − η)1
3

sk, d (1 − η)1
3 (1 − η)2

3

p′(t, y|sj, a) CC ¬CC
sj, c η′ 1

2 η′ 1
2

sj, d η′ 1
2 η′ 1

2
sk, c (1 − η′)3

4 (1 − η′)1
4

sk, d (1 − η′)1
4 (1 − η′)3

4

Figure 3: j = 1, 2 and k ̸= j. The joint distribution p (resp. p′) induced by q and Π
(resp. q′ and Π′) in Example 3.

a different state, the public signal is more informative with q′ (because 3/4 > 2/3).
Together, the results in the previous sections suggest that the limit equilibrium payoff
set would be larger with (q′,Π′). The main result of this section confirms that this is
indeed the case.

To state the main result of this section, let us first introduce an extension of
weighted garbling to accommodate a comparison of monitoring structures with dif-
ferent transition laws: Let q and q′ be transition laws, and Π = (Y, f) and Π′ = (Y ′, f ′)
be monitoring structures. Let p and p′ be the joint distributions induced by (q,Π)
and (q′,Π′), respectively. We say that (q,Π) is a “weighted garbling” of (q′,Π′) if
condition (1) in the original definition (Definition 1) is satisfied for p and p′. For
instance, in Example 3, (q,Π) is a “weighted garbling” of (q′,Π′) according to this
definition, because, conditional on the state transitioning to the opposite state, the
public signal is more informative for Π′.

Theorem 5. Let q and q′ be transition laws that induce irreducible Markov chains
with the same invariant distribution for any pure Markov strategy profile. Suppose
(q,Π) is a “weighted garbling” of (q′,Π′) for monitoring structures Π = (Y, f) and
Π′ = (Y ′, f ′). Then for each direction λ ∈ Λ, k(λ; (q′,Π′)) ≥ k(λ; (q,Π)).

Proof. See Appendix A.4.

As in the results of the previous sections, the monotonicity of the scores in each
direction leads to an expansion of the limit equilibrium payoff set, given the full-
dimensionality assumption and Assumption 1.

This result implies that the “persistency” of the state does not affect the limit
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equilibrium payoffs.30 Suppose that, given any current state s and any current action
profile a, the next period state follows a transition law q(·|s, a) with probability α ∈
(0, 1], and remains the same with probability 1−α. Then, the limit equilibrium payoff
set is independent of α ∈ (0, 1] because the invariant distribution for αq(s̃|s, a) + (1 −
α)1(s̃ = s) is independent of α > 0.

We note that our previous approach of decomposing payoff increments into the
physical parts ((ls(t))s,t∈S in the proof) and the informational parts does not extend to
this case. This approach relies on the property that the expected values of the physical
parts are unaffected by different monitoring structures. However, this property no
longer holds for two different transition laws, even if they generate the same invariant
distribution for each pure Markov strategy profile.31 For this reason, we adopt an
alternative approach of employing the dual problem of HSTV studied by Hörner et al.
(2014) for the proof of this result.

7 Conclusion

In this paper, we introduce a novel information order on monitoring structures for
stochastic games with imperfect public monitoring based on weighted garbling, which
extends Blackwell garbling.

We demonstrate that the limit PPE payoff set is monotone with respect to this
information order. More specifically, the value of each score maximization prob-
lem increases (strictly) as the monitoring structure becomes (strictly) more WG-
informative.

We further establish that the monotonicity of the limit SSE payoff set under a
version of the WG-order adapted to symmetric environments. This follows from the
observation that the limit SSE payoff set is characterized by a subset of the same
score maximization problems.

For future work, it may be fruitful to explore other dynamic game environments in
which the limit equilibrium payoff set is characterized by a collection of optimization

30In stochastic zero-sum games where only one of the players observes the state, Pęski and Toikka
(2017) compare transition laws and show that the value of the informed player decreases in a notion
of persistency (see also Hörner et al. (2010)).

31Action-independent transition laws are exceptions.
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problems. For example, one promising direction is to examine the value of monitoring
structures in relation to the set of Belief-free equilibria (Ely et al., 2005; Yamamoto,
2009) for repeated or stochastic games with private monitoring.
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A Appendix: Omitted Proofs

A.1 Proof of Proposition 1

Proof. Fix s ∈ S. By assumption, we can define Ts : S(s) → S(s) such that, for each
t ∈ S(s), there exist γy′

st ≥ 0 and ϕst(·|y′) ∈ ∆(Y ), ∀y′ ∈ Y ′ that satisfy f(y|s, t, a) =∑
y′∈Y ′ γy′

stϕst(y|y′)f ′(y′|s, Ts(t), a) for all y ∈ Y for each a ∈ A, i.e., f ′ conditional on
(s, Ts(t)) is more WG-informative than f conditional on (s, t).

Define γt′,y′
s for each (t′, y′) by γt′,y′

s = (∑t̃:Ts(t̃)=t′ γy′

st̃
q(t̃|s))/q(t′|s) if t′ ∈ S(s), and

γt′,y′
s = 0 otherwise. Next, for each (t′, y′) ∈ S(s) × Y ′ such that T−1

s (t′) ̸= ∅, define
ϕs(t, y|t′, y′) by ϕs(t, y|t′, y′) = (γy′

stϕst(y|y′)q(t|s))/(∑t̃:Ts(t̃)=t′ γy′

st̃
q(t̃|s)) if t ∈ T−1

s (t′),
and 0 otherwise. For any other (t′, y′) ∈ S × Y ′, let ϕs(·, ·|t′, y′) be an arbitrary
distribution on S × Y . Note that, for each (t′, y′) ∈ S(s) × Y ′ such that T−1

s (t′) ̸= ∅,∑
(t,y)∈S×Y ϕs(t, y|t′, y′) = ∑

t:Ts(t)=t′(γy′

stq(t|s)/(
∑

t̃:Ts(t̃)=t′ γy′

st̃
q(t̃|s))) = 1.

Observe that for any (t, y) ∈ S(s) × Y ,

∑
(t′,y′)∈S×Y ′

γt′,y′

s ϕs(t, y|t′, y′)p′(t′, y′|s, a)

=
∑

y′∈Y ′
γTs(t),y′

s ϕs(t, y|Ts(t), y′)p′(Ts(t), y′|s, a)

=
∑

y′∈Y ′

∑
t̃:Ts(t̃)=Ts(t) γ

y′

s,t̃
q(t̃|s)

q(Ts(t)|s)
γy′

stϕst(y|y′)q(t|s)∑
t̃:Ts(t̃)=Ts(t) γ

y′

st̃
q(t̃|s)

f ′(y′|s, Ts(t), a)q(Ts(t)|s)

=
∑

y′∈Y ′
γy′

stϕst(y|y′)f ′(y′|s, Ts(t), a)q(t|s)

= f(y|s, t, a)q(t|s)

= p(t, y|s, a),

and for any other (t, y), both p(t, y|s, a) and ∑(t′,y′)∈S×Y ′ γt′,y′
s ϕs(t, y|t′, y′)p′(t′, y′|s, a)

are 0 by definition for every a ∈ A. Therefore, Π is a weighted garbling of Π′.

A.2 Proof of Proposition 2

Proof. (Proof of the first claim in Item 1) Fix δ ∈ (0, 1). Take any v ∈⋂
s∈S E

δ
SS(s) ⊂ R. For each s ∈ S, there exist v+

s ≡ maxEδ
SS(s) (by the com-
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pactness of Eδ
SS(s)), and an SSE σ+

s = (σ+
i,s)i∈I such that v+

s = (1 − δ)u(α+
s , s) +

δ
∑

(t,y)∈S×Y w
+
s (t, y)p(t, y|s, α+

s ), where α+
s ≡ σ+

i,s(s) (note that σ+
i,s(s) = σ+

j,s(s) for
any i, j ∈ I) and w+

s (t, y) ∈ R is the continuation payoff when the next state is t and
the public signal is y. Define xs(t, y) := (δ/(1 − δ))(w+

s (t, y) − v+
s ) + v − v+

s for each
(t, y) ∈ S × Y . Observe that:

u(α+
s , s) +

∑
(t,y)∈S×Y

xs(t, y)p(t, y|s, α+
s )

= u(α+
s , s) +

∑
(t,y)∈S×Y

δ

1 − δ
(w+

s (t, y) − v+
s )p(t, y|s, α+

s ) + v − v+
s

= v.

Since σ+
s is an SSE, all the incentive constraints for PSS(+1; Π) are satisfied. Observe

that, for any T ⊆ S, permutation ξ on T and ψ : T → Y ,

∑
s∈T

xs(ξ(s), ψ(s)) =
∑
s∈T

(
δ

1 − δ
(w+

s (ξ(s), ψ(s)) − v+
s ) + v − v+

s

)

= δ

1 − δ

∑
s∈T

(
w+

s (ξ(s), ψ(s)) − v+
ξ(s)

)
+
∑
s∈T

(v − v+
s ) ≤ 0.

Hence, (v, x) is feasible for PSS(+1; Π), and therefore v ≤ kSS(+1; Π). Similarly, we
can show that v ≥ −kSS(−1; Π).

(Proof of the second claim in Item 1) Let z ∈ R and z̄ ∈ R be such that
−kSS(−1; Π) < z < z̄ < kSS(+1; Π). Let Z ≡ [z, z̄]. Then, there exist ϵ0 > 0, vλ ∈ R
and xλ = (xλ

s )s ∈ R|S|2×|Y | for each λ ∈ {−1,+1} such that 1) (vλ, xλ) is feasible in
PSS(λ; Π) for each λ ∈ {−1,+1}, and 2) for any z ∈ Z, v−1 + ϵ0 < z < v+1 − ϵ0. Let

κ0 ≡ max
{

max
λ∈{−1,+1},(s,t,y)∈S2×Y

|xλ
s (t, y)|, max

λ∈{−1,+1},z∈Z
|z − vλ|

}
.

Take n ∈ N such that
ϵ0(n− 1)/2 − 2κ0|S| > 0.

Let δ̄ < 1 be large enough so that for any δ ≥ δ̄, 1) (n/2)2(1 − δ) ≤ |S|, and
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2) 1 − δn−1 ≥ (n − 1)(1 − δ)/2. Given w : Hn → R, we denote by Γn(s, w; δ) the
δ-discounted (n− 1)-stage game with final payoffs w and initial state s.

Lemma 2. For any λ ∈ {−1,+1}, z ∈ Z, and δ ≥ δ̄, there exist continuation payoffs
w : Hn → R such that the following conditions hold:

1. For each s ∈ S, z is an SSE payoff of the game Γn(s, w; δ).

2. For every h ∈ Hn, λw(h) < λz.

Proof of Lemma 2. Let λ ∈ {−1,+1}. Following HSTV, define

w(hn) := z + 1 − δn−1

δn−1 (z − vλ) + 1 − δ

δn−1

n−1∑
k=1

δk−1xλ
sk(sk+1, yk), ∀hn ∈ Hn.

Let (αs)s ∈ (∆(B))|S| be a Markov strategy such that ((αs)s, v
λ, xλ) is feasible

in PSS(λ; Π). Consider the strongly symmetric strategy profile in which each player
uses (αs)s. By the construction of w, we can show that there is no profitable one-shot
deviation, so it is an SSE of Γn(s, w; δ).

To prove the second item, note that λ
(
z − vλ

)
< −ϵ0. HSTV shows (in their

Lemma 5) that ((1−δ)/δn−1)∑n−1
k=1 δ

k−1λxλ
sk(sk+1, yk) is bounded above by 2|S|κ0(1−

δ)/δn−1. Then, the sum of the second term and the third term of λw(h) is bounded
above by −((1 − δ)/δn−1) (((1 − δn−1)/(1 − δ))ϵ0 − 2|S|κ0), which is negative for our
choice of n and δ. Therefore, we have λw(h) < λz for every h ∈ Hn.

For each z ∈ Z and δ, define ŵδ
z : Hn → R by

ŵδ
z :=

w
+1,δ
z , if z ∈

[
z̄+z

2 , z̄
]

w−1,δ
z , otherwise

, (5)

where wλ,δ
z is the continuation payoff in Lemma 2 for λ, z and δ.

Let ¯̄δ ∈ (0, 1) be large enough so that ((1 − δn−1)/δn−1)2κ0 < (z̄ − z)/2 for any
δ ≥ ¯̄δ. Then, observe that for any δ ≥ max{δ̄, ¯̄δ}, ŵδ

z satisfies Item 1 and 2 of
Lemma 2, and, in addition, ŵδ

z(hn) ∈ Z for any hn ∈ Hn, because

|wλ,δ
z (hn)−z| ≤ 1 − δn−1

δn−1 |z−v|+ 1 − δ

δn−1

n−1∑
k=1

δk−1|xλ
sk(sk+1, yk)| ≤ 1 − δn−1

δn−1 2κ0 <
z̄ − z

2
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(for instance, if z ∈ [(z̄ + z)/2, z̄], then ŵδ
z(hn) < z and |ŵδ

z(hn) − z| < (z̄ − z)/2 so
ŵδ

z(hn) ∈ Z for any hn ∈ Hn).

Now consider the original stochastic game. Fix δ ≥ max{δ̄, ¯̄δ}. Take any z ∈ Z.
We define, inductively, a strongly symmetric strategy profile σ : H → (∆(B))N and
continuation payoffs w : ⋃∞

k=1 H
(n−1)(k−1)+1 → Z that achieve z as follows:

Let w(h) = z for any h = (s1) ∈ H1.
For any k ∈ {1, 2, . . . } and history h ∈ H(n−1)(k−1)+1 (i.e., the history at the initial

stage of the k-th “block”), given that w(h) ∈ Z, let σ prescribe the same action as
the Markov strategy profile in the proof of Lemma 2 for Γn(s(n−1)(k−1)+1, ŵδ

w(h); δ),
where ŵδ

w(h) is defined as in (5), during this block.
For any history h̃ ∈ H(n−1)k+1 whose restriction to the first (n − 1)(k − 1) + 1

periods is equal to h, let w(h̃) = ŵw(h)(nh̃), where nh̃ is the restriction of h̃ to the
last n periods. Then, by our choice of δ, w(h̃) ∈ Z.

By the one-shot deviation principle and Item 1 in Lemma 2, the strategy profile
σ is an SSE of the entire (infinite-horizon) game, with an average discounted payoff
of z. Thus, Z ⊆ Eδ

SS(s) for any s ∈ S and any δ ≥ max{δ̄, ¯̄δ}.
We note that the same proof applies when we restrict our attention to the pure

strategy SSE payoff sets. We can simply replace αs ∈ ∆(B), s ∈ S, with a pure
strongly symmetric Markov strategy as ∈ B, s ∈ S, in the above proof.

A.3 Proof of Lemma 1

Proof. Suppose that
[
LΠ

s,k, L
Π
s,k

]
⊂
(
LΠ′

s,k, L
Π′

s,k

)
for every s ∈ S and k ∈ {1, N}.

Fix s ∈ S. First, we consider the full effort action profile. Since LΠ′

s,N <

1 < L
Π′

s,N holds, Π′ is informative at N . This implies that (1, 1) lies in the inte-
rior of the positive cone spanned by (p′(t′s,N , y

′
s,N |s,N), p′(t′s,N , y

′
s,N |s,N − 1)) and

(p′(t′s,N , y
′
s,N

|s,N), p′(t′s,N , y
′
s,N

|s,N − 1)) in R2
+. Hence, there exist unique γs,N > 0

and γ
s,N

> 0 that satisfy the following equation for k = N,N − 1.

γs,Np
′(t′s,N , y

′
s,N |s, k) + γ

s,N
p′(t′s,N , y

′
s,N

|s, k) = 1.

Consider the following auxiliary monitoring structure with two possible signals
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(t′s,N , y
′
s,N) and (t′s,N , y

′
s,N

), where (t′s,N , y
′
s,N) is observed with probability γs,Np

′(t′s,N , y
′
s,N |s, k)

and (t′s,N , y
′
s,N

) is observed with probability γ
s,N
p′(t′s,N , y

′
s,N

|s, k) for k = N,N − 1.
We show that Π is a garbling of this auxiliary monitoring structure when we re-
strict attention to k ∈ {N − 1, N}. Consider any full-support prior distribution on
N and N − 1, say (0.5, 0.5), and compute the posterior belief on N given each sig-
nal. The posterior beliefs given (t′s,N , y

′
s,N) and (t′s,N , y

′
s,N

) are LΠ′

s,N/(L
Π′

s,N + 1) and
LΠ′

s,N/(LΠ′

s,N + 1), respectively. Similarly, the posterior belief given any (t, y) for Π is
LΠ

s,N(t, y)/(LΠ
s,N(t, y)+1). This posterior belief is in [LΠ

s,N/(LΠ
s,N +1), LΠ

s,N/(L
Π
s,N +1)],

hence in (LΠ′

s,N/(LΠ′

s,N + 1), LΠ′

s,N/(L
Π′

s,N + 1)) by assumption. Given that the expected
posterior belief is 0.5 for both distributions, it follows that the two-point distribution
of posterior beliefs generated by this auxiliary monitoring structure is second-order
stochastically dominated by the distribution of posterior beliefs for Π; in particular,
the former is a mean-preserving spread of the latter. By the standard result for Black-
well experiments (interpreting N and N−1 as binary states and the monitoring struc-
tures as experiments), we can find ϕs,N(·, ·|t′s,N , y

′
s,N), ϕs,N(·, ·|t′s,N , y

′
s,N

) ∈ ∆(S × Y )
that satisfy, for k = N and N − 1,

p(t, y|s, k) = ϕs,N(t, y|t′s,N , y
′
s,N)γs,Np

′(t′s,N , y
′
s,N |s, k)

+ ϕs,N(t, y|t′s,N , y
′
s,N

)γ
s,N
p′(t′s,N , y

′
s,N

|s, k), ∀(t, y) ∈ S × Y.

Note that both ϕs,N(t, y|t′s,N , y
′
s,N) and ϕs,N(t, y|t′s,N , y

′
s,N

) must be strictly positive for
every (t, y) in the support of p(·, ·|s, k) for k = N,N−1, because p(t, y|s,N)/p(t, y|s,N−
1) is strictly between LΠ′

s,N = p′(t′s,N , y
′
s,N

|s,N)/p′(t′s,N , y
′
s,N

|s,N − 1) and L
Π′

s,N =
p′(t′s,N , y

′
s,N |s,N)/p′(t′s,N , y

′
s,N |s,N − 1) by assumption. Denote this common support

at state s by Ds,N ⊆ S × Y .
Similarly, for the case of the no-effort profile, we can find γs,0 > 0, γ

s,0 > 0, and
ϕs,0(·, ·|t′s,1, y

′
s,1), ϕs,0(·, ·|t′s,1, y

′
s,1) whose support is the same Ds,0 ⊆ S × Y , and the

above garbling equations are satisfied for k = 0, 1. Note that the same construction
works for every s in both cases.

Now we can show that Π is a strict P -weighted garbling of Π′ with respect to
{0, N}. To see this for k = N , set γt

′
s,N ,y′

s,N

s,N = γs,N , γ
t′
s,N ,y′

s,N

s,N = γ
s,N

, and set γt′,y′

s,N = 0
for any (t′, y′) /∈ {(t′s,N , y

′
s,N), (t′s,N , y

′
s,N

)}. Also, use the above ϕs,N(t, y|t′s,N , y
′
s,N)
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and ϕs,N(t, y|t′s,N , y
′
s,N

) for garbling given (t′s,N , y
′
s,N) and (t′s,N , y

′
s,N

) respectively and
assign an arbitrary ϕs,N(·, ·|t′, y′) ∈ ∆(S × Y ) with support Ds,N for each (t′, y′) /∈
{(t′s,N , y

′
s,N), (t′s,N , y

′
s,N

)}. It is straightforward to show that they satisfy the require-
ment of strict P -weighted garbling. A similar construction works for the case with
k = 0. This proves one direction.

Conversely, suppose that Π is a strict P -weighted garbling of Π′ with respect to
{0, N} and Π′ is informative at {0, N}. Consider the full-effort action profile. For
any s ∈ S, there exist nonnegative weight γt′,y′

s,N ≥ 0 and ϕs,N(·, ·|t′, y′) ∈ ∆(S × Y )
for every (t′, y′) with some common support Ds,N ⊆ S × Y such that the following
equations are satisfied:

p(t, y|s, k) =
∑

(t′,y′)∈S×Y ′

γt′,y′

s,N ϕs,N(t, y|t′, y′)p′(t′, y′|s, k), ∀(t, y) ∈ S × Y, ∀k ∈ {N,N − 1}.

It then follows that, for every (t, y) ∈ Ds,N ,

p(t, y|s,N)
p(t, y|s,N − 1) =

∑
(t′,y′)∈S×Y ′ γt′,y′

s,N ϕs,N(t, y|t′, y′)p′(t′, y′|s,N)∑
(t′,y′)∈S×Y ′ γt′,y′

s,N ϕs,N(t, y|t′, y′)p′(t′, y′|s,N − 1)
.

If LΠ
s,N = L

Π
s,N = 1, then the result directly follows from the informativeness

of Π′. So suppose not and −∞ < LΠ
s,N < L

Π
s,N < ∞ holds. Then, the above

equations imply that there must exist some (t′1, y′
1), (t′2, y′

2) ∈ S × Y ′ such that
γ

t′
1,y′

1
s,N , γ

t′
2,y′

2
s,N > 0 and p′(t′1, y′

1|s,N)/p′(t′1, y′
1|s,N − 1) < p(t, y|s,N)/p(t, y|s,N − 1) <

p′(t′2, y′
2|s,N)/p′(t′2, y′

2|s,N − 1) for every (t, y) in the support Ds,N of p(·, ·|s, k), k =
N−1, N . Since LΠ′

s,N ≤ p′(t′1, y′
1|s,N)/p′(t′1, y′

1|s,N−1) and LΠ′

s,N ≥ p′(t′2, y′
2|s,N)/p′(t′2, y′

2|s,N−

1), we obtain
[
LΠ

s,N , L
Π
s,N

]
⊂
(
LΠ′

s,N , L
Π′

s,N

)
.

The proof for the no-effort case is almost identical and is therefore omitted. This
proves the other direction.

A.4 Proof of Theorem 5

Proof. For each λ ∈ Λ, let Iλ
> ⊆ I be the set of players with a positive weight (i.e.,

λi > 0), Iλ
< ⊆ I be the set of players with a negative weight, and Iλ

0 ⊆ I be the
set of players with zero weight. Denote the set of players with nonzero weight by
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Iλ
̸=0 = Iλ

> ∪ Iλ
<.

An action profile α = (αs)s∈S, αs ∈ ∏
i∈I ∆(Ai) for each s ∈ S, is called admissible

if, for each s ∈ S and i ∈ I, ui((α′
i,s, α−i,s), s) ≤ ui(αs, s) holds for any α′

i,s ∈ ∆(Ai)
such that p(t, y|s, αs) = p(t, y|s, (α′

i,s, α−i,s)) for all (t, y) ∈ S × Y .32

Given each λ ∈ Λ, the dual problem of the score maximization problem in Sec-
tion 4.1 is as follows (see Section 3 of Hörner et al. (2014)).

sup
α admissible

inf
α̂∈Dλ(α)
β∈B(α̂)

∑
s∈S,i∈I

λiβsui ((α̂i,s, α−i,s) , s) ,

where

• Dλ(α) is the set of α̂ = (α̂s)s∈S ∈
(∏

i∈I R|Ai|
)|S|

such that for each s ∈ S and
each i ∈ Iλ

̸=0:33

– ∑
ai∈Ai

α̂i,s(ai) = 1 and α̂i,s(ai)


≤ 0 if i ∈ Iλ

> and αi,s(ai) = 0,
≥ 0 if i ∈ Iλ

< and αi,s(ai) = 0,
unrestricted if αi,s(ai) > 0

– p̂ (t, y|s) = p (t, y|s, (α̂i,s, α−i,s)) ,∀(t, y) for every i ∈ Iλ
̸=0 for some p̂ (·, ·|s) ∈

∆(S × Y ).

• B(α̂) is the set of invariant distributions of the Markov process over S generated
by p̂ (t, y|s).

Note that α̂i,s is an “extended” mixed action, i.e., α̂i,s(ai) can take a negative value.
The definition of ui and p is extended naturally to allow for such extended mixed
actions.

We prove that the value of this problem is greater for (q′,Π′). We first show
that the set of admissible α = (αs)s is larger with (q′,Π′). Take any α that is
admissible for (q,Π) and any α′

i,s that satisfies p′(t, y′|s, αs) = p′(t, y′|s, (α′
i,s, α−i,s))

32This is the standard condition that requires any undetectable deviation to be unprofitable.
33Dλ(α) is not empty, as α itself is a member of Dλ(α).
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for all (t, y′) ∈ S × Y ′. Then,

p(t, y|s, αs) =
∑

(t′,y′)∈S×Y ′

γt′,y′

s ϕs(t, y|t′, y′)p′(t′, y′|s, αs)

=
∑

(t′,y′)∈S×Y ′

γt′,y′

s ϕs(t, y|t′, y′)p′(t′, y′|s, (α′
i,s, α−i,s))

= p(t, y|s, (α′
i,s, α−i,s)).

Since α is admissible for (q,Π), ui((α′
i,s, α−i,s), s) ≤ ui(αs, s). Therefore, α is admis-

sible for (q′,Π′).
Next, we show that the value of the minimization problem is smaller for (q,Π)

given any admissible α. We first observe the following.

Lemma 3. Suppose that for any pure Markov strategy profile q and q′ induce irre-
ducible Markov chains with the same invariant distribution. Let α̃ : S → R|A| be
such that ∑a∈A α̃s(a) = 1 for each s ∈ S (i.e., “extended” Markov strategy pro-
file), and let β̃ = (β̃s)s ∈ R|S| be “invariant” under α̃ with q in the sense that∑

s∈S

∑
a∈A β̃sα̃s(a)q(t|s, a) = β̃t for every t ∈ S. Then, β̃ is invariant under α̃

with q′.

Proof. See Appendix A.5.

Thus, if β̂ is invariant under α̃s(ai, a−i) = α̂i,s(ai)α−i,s(a−i), ∀s, ai, a−i, with q,
then it is so with q′. In particular, if α̂ ∈ D′

λ(α) ∩Dλ(α), then B(α̂) = B′(α̂), where
D′

λ(α) and B′(α̂) are for (q′,Π′).
Also, note that the value of the objective function does not depend on the moni-

toring structure. Thus, it suffices to show that D′
λ(α) for (q′,Π′) is a subset of Dλ(α)

for (q,Π).
Take any α̂ ∈ D′

λ(α). We can show in a similar way to the above proof for ad-
missibility that, at every s ∈ S, p(·, ·|s, (α̂i,s, α−i,s)) = p(·, ·|s, (α̂j,s, α−j,s)) = p̂(·, ·|s) ∈
∆(S×Y ) holds for all i, j ∈ Iλ

̸=0, where p̂(t, y|s) ≡ ∑
(t′,y′)∈S×Y ′ γt′,y′

s ϕs(t, y|t′, y′)p̂′(t′, y′|s)
for each (t, y) ∈ S × Y . This proves α̂ ∈ Dλ(α).
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A.5 Proof of Lemma 3

Proof. For each pure Markov strategy profile a = (as)s ∈ A|S|, let π(a) = (πs(a))s∈S

denote the unique invariant distribution induced by a and q. The following observa-
tion is the key to the proof.

Lemma 4. Let α̃ : S → R|A| be such that ∑a∈A α̃s(a) = 1 for each s ∈ S and let
β̃ = (β̃s)s ∈ R|S| be invariant under α̃ with q. Then, there exists k : A|S| → R such
that

β̃sα̃s(a) =
∑

a∈A|S|:as=a

k(a)πs(a), ∀s ∈ S, a ∈ A. (6)

We prove Lemma 4 after the proof of Lemma 3.
Given this lemma, the remainder of the proof is relatively straightforward. Ob-

serve that for any t ∈ S,

∑
s∈S

∑
a∈A

β̃sα̃s(a)q′(t|s, a) =
∑
s∈S

∑
a∈A|S|

k(a)πs(a)q′(t|s, as)

=
∑

a∈A|S|

k(a)
∑
s∈S

πs(a)q′(t|s, as) =
∑

a∈A|S|

k(a)πt(a) = β̃t,

where the third equality follows from the assumption of the identical invariant distri-
bution for q and q′ and the fourth equality follows from (6). Therefore, β̃ is invariant
under α̃ with q′.

Proof of Lemma 4. In the following, we use the following fact: Let A be (m × n)-
matrix and b ∈ Rm. Then Ax = b for some x ∈ Rn if and only if for any row vector
z ∈ Rm if zA = 0 ∈ Rn, zb = 0.

Let A be a (|S| × |A|) × (|A||S|) matrix whose (s, a)-row has πs(a) in the column
corresponding to a ∈ A|S| if as = a, and 0 otherwise. Also, let x = (k(a))a∈A|S| , and
b = (β̃sα̃s(a))s,a. Then Ax = b represents (6).

Let z = (zs(a))s∈S,a∈A ∈ R|S|×|A|. Then, zA = 0 corresponds to the condition that
for each pure Markov strategy profile a = (as)s,

∑
s∈S

zs(as)πs(a) = 0. (7)
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For each t ∈ S and a ∈ A, define

z̃t
s(a) :=

−∑
s̃ ̸=t q(s̃|s, a), if s = t

q(t|s, a), otherwise

Thus, for pure Markov strategy profile a = (as)s, z̃t
s(as)πs(a) is the total “outflow”

probability from state t if s = t; otherwise, it is the “inflow” probability to state t
from s ̸= t, given that a is played. So,

∑
s∈S

z̃t
s(as)πs(a) = 0 (8)

by the definition of invariant distribution. Thus, for each t, z̃t = (z̃t
s(a))s,a is a solution

of (7).
Choose an arbitrary state ŝ ∈ S. We claim that for any solution z = (zs(a))s,a

that solves (7), there exist λt ∈ R for each t ∈ S \ {ŝ} such that

zs(a) =
∑
t̸=ŝ

λtz̃t
s(a), ∀s ∈ S, a ∈ A.

To see this, we first observe that for each pure Markov strategy profile a = (as)s,
the set {(z̃t

s(as))s : t ̸= ŝ} is linearly independent. Recall that Q(a)⊤π(a) = π(a) or
equivalently (Q(a)⊤ − I)π(a) = 0, where Q(a) is the transition matrix (with q(·|s, as)
as its sth row) given a and I is the identity matrix. Then by the Perron-Frobenius
theorem for irreducible matrices, the null space of (Q(a)⊤ − I) is one-dimensional.
Thus, by the rank-nullity theorem, Q(a)⊤ − I has rank |S| − 1. Note that Q(a)⊤ − I
contains z̃t(a) ≡ (z̃t

s(as))s in the row corresponding to state t. In addition, for each s,∑
t∈S z̃

t
s(as) = −∑

s̃ ̸=s q(s̃|s, as) + ∑
t̸=s q(t|s, as) = 0, so z̃ŝ(a) = −∑

t̸=ŝ z̃
t(a). Thus,

{z̃t(a) : t ̸= ŝ} should be linearly independent in order for (Q(a)⊤ − I) to have rank
|S| − 1.

Consider any solution z = (zs(a))s,a of (7). Pick an arbitrary pure Markov strategy
profile a = (as)s. Note that the set of variables (zs(as))s ∈ R|S| that satisfy (7) for a
(not all equations) has at most |S| − 1 dimension. From (8) for a, we know that for
each t ∈ S\{ŝ}, (z̃t

s(as))s is a solution for (7) for a, and, from the previous paragraph,
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we know that they are linearly independent. Therefore, (zs(as))s must be a linear
combination of (z̃t

s(as))s, t ∈ S \ {ŝ}, i.e.,

zs(as) =
∑
t̸=ŝ

λtz̃t
s(as), ∀s ∈ S

for some λt ∈ R for each t ∈ S \ {ŝ}. Now we show that this λt satisfies zs(a) =∑
t̸=ŝ λ

tz̃t
s(a) for any a ∈ A and s ∈ S. Pick an arbitrary s ∈ S and a′

s ̸= as. Then,
from equation (7) for pure Markov strategy profile (a′

s, a−s) (i.e., the pure Markov
strategy profile that replaces as with a′

s only for state s from a), it follows that

zs(a′
s)πs((a′

s, a−s)) +
∑
s′ ̸=s

zs(as′)πs′((a′
s, a−s))

= zs(a′
s)πs((a′

s, a−s)) +
∑
s′ ̸=s

∑
t̸=ŝ

λtz̃t
s′(as′)πs′((a′

s, a−s))

= zs(a′
s)πs((a′

s, a−s)) +
∑
t̸=ŝ

λt
∑
s′ ̸=s

z̃t
s′(as′)πs′((a′

s, a−s))

= zs(a′
s)πs((a′

s, a−s)) +
∑
t̸=ŝ

λt(−z̃t
s(a′

s)πs((a′
s, a−s)))

= 0,

where the third equality follows from (8) for pure Markov strategy profile (a′
s, a−s).

By the irreducibility assumption, πs((a′
s, a−s)) > 0, so the above equation implies

zs(a′
s) =

∑
t̸=ŝ

λtz̃t
s(a′

s).

Since we picked an arbitrary s and a′
s, we proved the claim.

Next we claim that for any solution z = (zs(a))s,a of (7), zb = 0. From our
previous claim, let zs(a) = ∑

t̸=ŝ λ
tz̃t

s(a) for each s and a. Observe that

zb =
∑
t̸=ŝ

λt
∑
s∈S

∑
a∈A

z̃t
s(a)α̃s(a)β̃s = 0,
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because for each t ̸= ŝ,

∑
a∈A

z̃t
t(a)α̃t(a)β̃t +

∑
s ̸=t

∑
a∈A

z̃t
s(a)α̃s(a)β̃s

=
−

∑
s̃ ̸=t

∑
a∈A

q(s̃|t, a)α̃t(a)
 β̃t +

∑
s ̸=t

(∑
a∈A

q(t|s, a)α̃s(a)
)
β̃s = 0,

where the last equality follows as β̃ = (β̃s)s is invariant under α̃ with q.
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