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Abstract

Models of stochastic choice typically use conditional choice probabilities given

menus as the primitive for analysis, but in the field these are often hard to observe.

We consider the case where an analyst has access to a marginal stochastic choice

dataset containing the marginal distributions of available menus and of choices,

but not to conditional choice frequencies. The Random Utility Model (RUM) has

no testable implications for such datasets, but any restriction on the domain of

feasible preference orders does limit the set of rationalizable marginals. The Luce

model can also rationalize essentially any dataset, but unlike RUM its parameters

can often be identified. We also demonstrate that additional testable implications

for the marginals may arise when the distribution of menus is endogenous.
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1 Introduction

The vast majority of theory papers on stochastic choice assume that the data available

to the observer contains choice frequencies conditional on a wide collection of choice sets

(menus). Indeed, the early works of Luce [1959], Block and Marschak [1960], Falmagne

[1978], Barberá and Pattanaik [1986], and McFadden and Richter [1990] demonstrated

the potential of this framework to deliver elegant and intuitive characterizations of choice

rules, and subsequent works followed this tradition.1 In this paper we take a different

approach and assume that the researcher has access to a marginal stochastic choice

dataset. Such datasets consist of a pair of distributions, one over menus (denoted µ) and

one over alternatives (denoted λ). Here, µ(A) is the share of choices made in the Ath

menu, while λ(a) is the aggregate frequency with which the ath alternative is chosen.

We revisit some of the prominent models in the stochastic choice literature that were

characterized using conditional choice frequencies, and study their testable implication

and identification properties with this new type of data.

Our motivation to consider such datasets stems from the fact that they are closer

to the type of datasets usually available in empirical applications. Indeed, it is often

hard to obtain data about the set of alternatives that were available or considered by

an individual at the time of making their choice.2 Nevertheless, it is sometimes possible

to separately collect data on overall availability rates (µ), which when combined with

aggregate choice data (λ) yields a marginal stochastic choice dataset.

As a concrete example, consider the case of grocery products. Variation in assort-

ment across stores, as well as stock-out events, lead to significant menu variation for

1More recent papers that use conditional choice probabilities to characterize various decision models
include Gul and Pesendorfer [2006], Manzini and Mariotti [2014], Fudenberg and Strzalecki [2015],
Fudenberg et al. [2015], Brady and Rehbeck [2016], Aguiar [2017], Apesteguia et al. [2017], Kitamura
and Stoye [2018], Frick et al. [2019], Cattaneo et al. [2020], Cattaneo et al. [2021], and Kovach and
Tserenjigmid [2022]. See Strzalecki [2025] for a comprehensive survey of the stochastic choice literature.

2To quote Manski [1977, page 239], “Current methods for estimating the parameters of random utility
functions require ex post observation of a sequence of choice problems for each of which the decision
maker, choice set, and chosen alternative are known. Often, however, the survey instrument used in
estimation supplies the identities of the decision maker and his chosen alternative but not those of his
feasible inferior alternatives.”
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consumers.3 However, trying to figure out which menu was available at a particular pur-

chase is challenging, for instance because items in inventory are sometimes not shelved.4

It is therefore typically impossible to observe choice frequencies of products conditional

on the available menu, and indeed the literature for the most part resorts to assuming

that there is no menu variation at all [Hausman et al., 1994, Nevo, 2001, Hausman and

Leonard, 2002].5 Still, overall availability rates of grocery products may be observed:

Matsa [2011] obtains detailed stock-out rates from data collected by the U.S. Bureau of

Labor Statistics used for constructing the consumer price index. This gives a measure

of the frequency with which consumers face any given menu.6

We say that the marginal stochastic choice dataset (µ, λ) is rationalizable with a

given model of stochastic choice if there are conditional choice probabilities {π(a|A)}

consistent with the model such that

λ(a) =
∑
A:a∈A

µ(A)π(a|A) (∗)

holds for each alternative a. Equation (∗) means that the available dateset (µ, λ) could

have been generated by the given stochastic choice model. As a benchmark, we start

with the case where no restrictions are imposed on π, and show that (µ, λ) is feasible if

and only if ∑
a∈A

λ(a) ≥
∑
B⊆A

µ(B) (∗∗)

for every menu A. The inequality (∗∗) is a variant of the condition in the classic ‘marriage

3Gruen et al. [2002] estimates that overall stock-out rates are about 8%. See Hickman and Mortimer
[2016, Section 2.1] for a discussion of the prevalence of assortment variation.

4Thus, scanner data might indicate a store has the item although it is not immediately available to
the consumer. Gruen et al. [2002] gives additional examples and details on the difficulty of tracking
stock-outs.

5Tenn and Yun [2008] show that not accounting for availability through stock-outs can significantly
bias elasticity estimates.

6Another example of a dataset that fits our framework is Bruno and Vilcassim [2008] which studies
demand for confectionary chocolate in the UK using data on sales and on how widely each product
is distributed. To obtain the distribution over menus µ they assume that availability probabilities are
independent across products.
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lemma’ [Hall, 1934] and simply means that the frequency with which alternatives in A

are chosen (the left-hand side) must be at least as large as the frequency with which only

alternatives in A are available (the right-hand side).

We proceed by imposing more structure on the decision process. We find that as-

suming choices are made according to the Random Utility Model (RUM) [Block and

Marschak, 1960, Falmagne, 1978] places no additional restrictions on marginal stochas-

tic choice data beyond the collection of inequalities (∗∗). This is in contrast to the case

in which conditional frequencies are observable, where RUM does have testable impli-

cations. Nevertheless, we prove that under a mild assumption on the support of µ, any

restriction of the domain of preference orders does lead to non-trivial testable implica-

tions; we illustrate this with a couple of the classic domain restrictions in the literature.

Taken together, these results highlight the importance of a-priori knowledge that the

researcher has and the assumptions they are willing to make about preferences when

only marginal datasets are available.

Next, we find that even the strong assumption of having choices generated by the Luce

model [Luce, 1959] essentially places no additional restrictions on marginal stochastic

choice data. Since Luce is a special case of many stochastic choice models, this result

emphasizes the difficulty of testing such models using only the marginals. However,

unlike RUM, under Luce the model’s parameters are often identified – we provide a

necessary and sufficient condition on the distribution of menus µ for this to be the case.

Thus, with the Luce model the marginal stochastic choice dataset (µ, λ) often pins down

the conditional choice frequencies given every menu. We note that our proof of this

result is not constructive, and there may be non-trivial computational problems in the

identification process.

In the models described so far we viewed the distribution of menu availability µ

as exogenously given.7 But in practice agents often choose the menu themselves before

7This distribution is clearly an important part of the dataset because it affects what distributions of
choice λ can emerge under a given model of behavior, but up to this point µ was not influenced by or
influencing how agents choose.
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choosing an alternative from the menu, e.g., consumers may choose a grocery store partly

based on the products available at that store. When this is the case, the distribution of

menus µ reflects maximization behavior, and we can therefore expect that not every µ can

be rationalized. Furthermore, the choice of a menu not only determines what alternatives

are available in the second period, but is also informative about the preferences over

alternatives, and therefore about the alternative that the agent eventually chooses. In

the last part of the paper we illustrate the additional restrictions that may arise with

endogenous menu choice by considering the temptation and self-control model of Gul

and Pesendorfer [2001]. It turns out that this model places intuitive restrictions on

marginal stochastic choice data: An agent would never choose a menu A and then an

alternative a from that menu if there is a feasible sub-menu of A that also contains a;

this property translates into a restriction on the support of µ, as well as a strengthening

of the inequalities in (∗∗).

From a technical point of view our analysis heavily relies on classic results and ideas

from the theory of transferable utility cooperative games. The connection is that instead

of describing the distribution of availability by its probability mass function µ, we can

describe it by its cumulative distribution function vµ(A) =
∑

B⊆A µ(B). The inequalities

(∗∗) can then be understood as requiring that λ is in the core of the game vµ. We leverage

known results about the core to derive several of our characterizations. While some

connections between cooperative games and stochastic choice have already been pointed

out in the literature,8 they all concern collections of choice probabilities conditional on

menus. We hope that the new connections we uncover here will be useful in future work

on stochastic choice.

1.1 Literature review

There is a long history of empirical and econometrics papers trying to deal with the

problem of unobservable choice sets. This problem is discussed in length in Manski

8See for example Monderer [1992], Gilboa and Monderer [1992], and Billot and Thisse [2005].
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[1977], while some examples of papers on related issues include Swait and Ben-Akiva

[1986], Horowitz [1991], Ben-Akiva and Boccara [1995], Tenn and Yun [2008], Tenn

[2009], and Abaluck and Adams-Prassl [2021]. These papers often study identification

of conditional probabilities of choosing alternative a from menu A (π(a | A)) that are

consistent with marginal choices as in (∗). Some of these papers allow for menus to be at

least partly chosen by the decision makers, similar to the setup we consider in Section 6.

Recently, Barseghyan et al. [2021] study a random utility model where the distribution of

availability is not observed but there is a known lower bound on the size of menus. Their

characterization of the sharp identification region in Theorem 3.1 has some similarities

to our Proposition 1. See also Lu [2022] which analyzes a similar problem in the case

where there are both an upper and lower bounds on the feasible menu.

As pointed out above, many of our results build on existing work in cooperative

game theory. Specifically, the characterization of RUM rationalizability is based on the

characterization of the extreme points of the core of a convex game due to Shapley [1971],

and can also be obtained from results in Weber [1988]. See also Ichiishi [1981] for related

results. For the Luce model, our proof follows the footsteps of the proof in Monderer et al.

[1992] who showed that the core is homeomorphic to the set of weighted Shapley values.

Kalai and Samet [1987] study weighted Shapley values axiomatically. Recently, Doval

and Eilat [2023] use similar techniques to study the set of feasible marginal distributions

of actions (averaged across states of the world) taken by an agent when the analyst can’t

observe the information that was available at the time of decision making.

Finally, this paper also contributes to the emerging literature taking insights from

stochastic choice to new settings and datasets. The recent work of Dardanoni et al. [2020]

is motivated by similar considerations to the current paper, namely, that theoretical

models of stochastic choice should be based on datasets more likely to be available in the

field. In their model agents are heterogeneous in their cognitive ability which determines

the number of alternatives they can consider. The researcher observes the aggregate

choice distribution (λ of the current paper) and the question is whether the distribution
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of cognitive types can be identified. Thus, roughly speaking, the main difference from our

work is that we assume that the distribution of menus is observable and study conditional

choices, while they study whether the menu distribution can be inferred from aggregate

choices. Chambers et al. [2024] study correlated preferences within the random utility

framework, where the dataset assumed to contain the frequencies of tuples of choices

made by a group of agents conditional on the menu that was available to each one of

them. Manzini et al. [2019] studies whether or not an individual chooses to approve an

option from a list. This stochastic dataset is novel since the sum of approving different

options can be more than one, and since choice probabilities vary with the order in

which options are presented. In Cheung and Masatlioglu [2021] decision makers obtain a

recommended set of alternatives before choosing, but are free to choose any alternative

(even outside of the recommended menu).

2 Preliminaries

For any finite set Y we denote by ∆(Y ) the set of probability distributions on Y . If

y ∈ Y and p ∈ ∆(Y ), then we write p(y) instead of p({y}). We sometimes identify ∆(Y )

with the standard simplex in RY , i.e. with the set of p ∈ RY such that p(y) ≥ 0 for every

y and
∑

y p(y) = 1. We use Int(D) to denote the relative interior of a set D ⊆ RY ,

where RY is endowed with its standard topology. In particular, Int(∆(Y )) is the set of

p ∈ ∆(Y ) such that p(y) > 0 for all y.

Throughout the paper we denote by X the finite set of alternatives and by X = 2X \∅

the collection of all non-empty subsets of X. Alternatives in X are typically denoted

by a, b, . . ., while elements of X are called menus and are typically denoted by A,B, . . ..

The cardinality of X is |X| = n. If A ∈ X then Ac = X \ A is the complement of A.

In this paper, we study what can be learned from the marginal stochastic choice

dataset (µ, λ) ∈ ∆(X )×∆(X), where µ is the frequency with which menus are available

and λ is the aggregate frequency of choices of alternatives. We sometimes refer to λ
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as the marginal distribution over alternatives and µ as the marginal distribution over

menus. We highlight that these are not choice frequencies conditional on a given menu

as is common in standard models of stochastic choice.

Much of our analysis relies on classic results from the theory of cooperative games,

so we now briefly present the essential definitions and results from that theory used in

later sections. More details can be found in Grabisch [2016]. At a high-level, we map

the observed marginal menu distribution µ to a cooperative game and then use insights

from cooperative game theory to characterize the model.

A cooperative game is a set function v : 2X → R satisfying v(∅) = 0. Throughout the

paper we assume that any cooperative game is normalized so that v(X) = 1. The core

of a game v, denoted Core(v), is the set

Core(v) =

{
p ∈ RX :

∑
a∈X

p(a) = 1 and
∑
a∈A

p(a) ≥ v(A) ∀A ∈ X

}
.

A game v is convex (or super-modular) when v(A ∪ B) + v(A ∩ B) ≥ v(A) + v(B)

for all menus A,B ∈ X . A game is strictly convex when the above inequality is strict

whenever neither A contains B nor B contains A. Given any real vector z = (z(B))B∈X

with
∑

B∈X z(B) = 1 we define the game vz by vz(A) =
∑

B⊆A z(B). Conversely, given

a game v, by defining zv(B) =
∑

A⊆B(−1)|B\A|v(A) one has that v(A) =
∑

B⊆A zv(B)

holds for all A, and there is no other vector z with this property. The vector zv is known

as the Möbius transform (or Harsanyi Dividend) of v. A cooperative game v is totally

monotone when zv ≥ 0.9 It is well-known that any totally monotone game is convex.

We omit the proof of the following simple lemma.

Lemma 1. Suppose that v is totally monotone (in particular, convex). Then v is strictly

convex if and only if zv({a, b}) = v({a, b})− v({a})− v({b}) > 0 for every a, b ∈ X.

9Totally monotone games are also known as ‘belief functions’ in the theory of Dempster [1968a] and
Shafer [1976].
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3 Consistent marginals

We say that a marginal stochastic choice dataset (µ, λ) is consistent when it could have

been generated by some stochastic choice function. The formal definition follows.

Definition 1. The marginal stochastic choice dataset (µ, λ) ∈ ∆(X )×∆(X) is consistent

when there exists a collection π = (π(·|A))A∈X with each π(·|A) ∈ ∆(A), such that

λ(a) =
∑
A:a∈A

µ(A)π(a|A)

for every a ∈ X.

Consistency is a minimal feasibility requirement that places no restrictions on the

form of the stochastic choice function π. The only constraints are those of availability:

If a /∈ A, then we must have π(a|A) = 0. An inconsistent dataset suggests issues with

the data and our paper is silent on how to proceed in such cases.

It turns out that consistency can be characterized by a simple collection of inequalities

reflecting the availability constraints. The following proposition can be deduced from

classic results of Strassen [1965], and has already appeared in several previous works

(e.g. Chateauneuf and Jaffray [1989, Corollary 3]). It serves as a useful benchmark for

later sections where more restrictions are imposed on π.

Proposition 1. For a marginal stochastic choice dataset (µ, λ) ∈ ∆(X ) × ∆(X), the

following are equivalent:

1. (µ, λ) is consistent.

2. For all A ∈ X ,
∑

a∈A λ(a) ≥
∑

B⊆A µ(B).

3. For all A ∈ X ,
∑

a∈A λ(a) ≤
∑

B:B∩A ̸=∅ µ(B).

Condition 2 of the proposition states that the total frequency with which elements

of A are chosen must be at least as large as the frequency with which only alternatives
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from A are available. Thus, this condition is clearly necessary for consistency. Similarly,

condition 3 states that the frequency of choices from A cannot exceed the frequency that

some alternative from A is available. These two collections of inequalities are equivalent

since the inequality in 2 for a menu A is the same as the inequality in 3 for the menu

Ac. The fact that these inequalities are sufficient for consistency can be proven using the

max-flow min-cut duality theorem – see Proposition 9 for a more general result.10

Recall from the previous section that for a given µ ∈ ∆(X ) we define the game vµ

by vµ(A) =
∑

B⊆A µ(B), and that the core of vµ is the set of distributions in ∆(X) that

are point-wise above vµ.
11 In other words, condition 2 of Proposition 1 can be rewritten

as λ ∈ Core(vµ). We therefore have the following.

Corollary 1. The marginal stochastic choice dataset (µ, λ) is consistent if and only if

λ ∈ Core(vµ).

Figure 1 illustrates the shape of Core(vµ) for a particular distribution µ in the case

where X contains three alternatives. By Corollary 1 this is precisely the set of choice

distributions λ such that (µ, λ) is consistent.

It is worth pointing out that the stochastic choice function π in Definition 1 is typically

not unique whenever the number of alternatives is at least 3. Here is a concrete example.

Example 1. Let X = {a, b, c} and suppose that µ assigns probability of 1
3
to each of

the binary menus. Consider a (deterministic) choice π that selects a from {a, b}, b from

{b, c}, and c from {a, c}. This π induces the uniform distribution over X. However, π′

that chooses the other alternative in each menu also induces the uniform distribution.

In what follows, we impose more structure on the stochastic choice function π by

considering some of the prominent models from the stochastic choice literature. We char-

10Proposition 1 is a generalized version of the classic ‘marriage lemma’ [Hall, 1934]. Theorem 3.1 in
Barseghyan et al. [2021] also applies a generalization of the marriage lemma to characterize the sharp
identification region when the distribution of availability is unobservable but there is a known bound on
the minimal size of menus.

11Since µ is a probability distribution the game vµ is non-negative and therefore the core only contains
non-negative vectors.
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b

Figure 1: The solid line outer triangle represents the set of choice distributions λ over
X = {a, b, c}. The shaded area is Core(vµ) when µ is given by µ(a) = 0.1, µ(b) = 0.1,
µ(c) = 0.15, µ({a, b}) = 0.3, µ({a, c}) = 0.1, µ({b, c}) = 0.1, and µ({a, b, c}) = 0.15.
Each dashed line corresponds to a constraint

∑
a∈A λ(a) ≥ vµ(A) for some menu A.

acterize the testable implications of each model for marginal stochastic choice datasets

and study what can be inferred about the model parameters.

4 Random utility

Suppose that each individual in a population has a strict preference ordering over X and

chooses their top alternative from the available menu. Formally, let O be the set of strict

total orders on X, with typical element ≻. Given a menu A and an alternative a ∈ A

denote T [a,A] = {≻∈ O : a ≻ b ∀b ∈ A \ {a}} the collection of orders that rank a

above any other element in A.

Definition 2. The marginal stochastic choice dataset (µ, λ) is RUM rationalizable when

there is a distribution ν ∈ ∆(O) such that

λ(a) =
∑
A:a∈A

µ(A)ν(T [a,A])

for every a ∈ X. When ν satisfies the above equality, we say that ν RUM rationalizes

11



the marginal stochastic choice dataset.12

The definition of RUM rationalizability is the same as saying that there exists π as

in Definition 1 with π(a|A) = ν(T [a,A]). It is well-known [Block and Marschak, 1960,

Falmagne, 1978] that not every π can be generated in this way. The novelty of our

situation is that we only observe marginal frequencies, so it is unknown whether the

random utility model adds any additional restrictions on top of unrestricted consistency.

Namely, even when the marginal choice data (µ, λ) can be generated by a stochastic

choice function π inconsistent with RUM, it might be possible to find another stochastic

choice function π′ that is consistent with RUM and rationalizes the same marginals. The

next proposition says that this is indeed the case.

Proposition 2. The marginal stochastic choice dataset (µ, λ) is RUM rationalizable if

and only if it consistent.

All proofs can be found in the Appendix. Proposition 2 is a simple consequence of

the following result of Shapley [1971], which characterizes the extreme points of the core

of a convex game.13 Given ≻∈ O and an alternative a, denote by L≻(a) = {b : a ≻ b}

the lower contour set of a according to ≻.

Proposition 3. [Shapley, 1971] Let v be a convex game. Then p ∈ RX is an extreme

point of Core(v) if and only if there is ≻∈ O such that for every a

p(a) = v(L≻(a) ∪ {a})− v(L≻(a)).

Moreover, if v is strictly convex then the mapping ≻−→ p is one-to-one.

In words, each of the extreme points of Core(vµ) is the distribution of choices induced

by a homogeneous population of agents all having the same preference order. Now, if

12Our definition of RUM rationalization is related to the Random Attention and Utility Model
(RAUM) of Kashaev and Aguiar [2022], see Definition 2 of that paper. There are however two im-
portant differences: First, in our framework the marginal over menus µ is part of the data, while in their
model the distribution of attention is a free parameter. On the other hand, they require that choice data
is rationalizable conditional on every menu, while we restrict attention to the grand set of alternatives.

13See Grabisch [2016, Remark 3.16] for other papers that independently proved similar results.
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(µ, λ) is consistent then λ is in the core and can therefore be represented as a convex

combination of its extreme points. Since the mapping that sends each distribution of

preferences ν to the resulting λ is linear (for fixed µ), the corresponding distribution

of preference orders RUM rationalizes (µ, λ). We note that Proposition 2 can also be

deduced from the results of Dempster [1968b] on belief functions and of Weber [1988] on

random order values.

4.1 Restricted RUM

While Proposition 2 shows that RUM has no testable implications for the marginals, this

is no longer the case whenever the researcher has some a-priori information that restricts

the set of possible preference orders in the population. Indeed, given a set of feasible

orders O′ ⊆ O, say that (µ, λ) is O′-RUM rationalizable when there is a distribution

ν ∈ ∆(O′) such that for every a ∈ X

λ(a) =
∑
A:a∈A

µ(A)ν(T [a,A]).

Then it follows from the above discussion that (µ, λ) is O′-RUM rationalizable if and

only if λ is in the convex hull of the extreme points of Core(vµ) that correspond to the

orders in O′. Applying Lemma 1 then gives the next result.

Corollary 2. Suppose that µ assigns positive probability to each of the binary menus

and let O′ be a strict subset of O. Then the set of λ’s such that (µ, λ) is consistent but

not O′-RUM rationalizable is a non-empty and relatively open subset of Core(vµ).

To illustrate this result, consider the Single-Peaked Random Utility Model (SPRUM)

of Apesteguia et al. [2017]. According to this model, there is an exogenously given order

≻∗∈ O, and the set of feasible orders O′ ⊆ O is the set of single-peaked preferences

relative to ≻∗.14 Even with just three alternatives, this domain restriction significantly

14The preference ≻ is single-peaked relative to ≻∗ if there is a ∈ X such that a ≻ b ≻ c whenever
a ≻∗ b ≻∗ c and c ≻ b ≻ a whenever c ≻∗ b ≻∗ a.
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cba

bcabac

abc

Figure 2: The entire shaded area is Core(vµ) for the same µ as in Figure 1. The dark-
shaded area is the set of λ’s such that (µ, λ) is O′-RUM rationalizable when O′ is the
domain of single-peaked preferences relative to the order a ≻∗ b ≻∗ c. Any λ in the
light-shaded area is consistent but not O′-RUM rationalizable.

reduces the set of rationalizable distributions, as can be seen in Figure 2.15

As a second example, suppose that alternatives in X are lotteries over a finite set

of prizes, and that the dataset represents the choices of a population of expected utility

maximizers as in Gul and Pesendorfer [2006]. If a lottery a ∈ X is in the interior of

the convex-hull of the other lotteries X \ {a}, then none of the decision makers ranks

a at the top. This yields a restriction on the domain of possible preference orders, and

Corollary 2 then implies that marginal datasets have non-trivial testable implications.

Third, suppose that there is a partition of the set of alternatives into ‘quality cate-

gories’, and it is known that all agents prefer alternatives in higher categories over those

in lower ones.16 For this type of domain restriction we have the following characterization

of rationalizability.

Proposition 4. Suppose that µ assigns positive probability to each of the binary menus.

Let (A1, . . . , AK) be a partition of X, and let O′ be the set of orders ≻ such that a ≻ b

15Note that in this example the analyst assumes a specific reference order ≻∗. If instead they only
assume that preferences are single-peaked with respect to some reference order, then we conjecture that
any consistent dataset would be rationalizable.

16For example, suppose that alternatives are money lotteries and that they can be partitioned into
categories such that lotteries in higher categories first-order dominate lotteries in lower categories. As-
suming that agents have expected utility preferences generates this kind of domain restriction.
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whenever a ∈ Ai, b ∈ Aj, and i > j. Then (µ, λ) is O′-RUM rationalizable if and only if

it is consistent and vµ
(
∪k

i=1Ai

)
=

∑k
i=1

∑
a∈Ai

λ(a) for all k = 1, . . . , K.

The characterizing equality in the proposition reflects the fact that alternatives in

lower quality categories i = 1, . . . , k are chosen only when none of the alternatives in

higher categories is available. Note that this equality means that some of the constraints

that define Core(vµ) are binding (whenever there are at least two categories), and hence

that only λ’s on the relative boundary of the core can be rationalized.

4.2 Identification

It is typically impossible to back out the distribution over preferences ν from the marginal

stochastic choice dataset (µ, λ). Indeed, it is well-known that point identification fails in

the RUM even when conditional choice frequencies are observable.17 If ν and ν ′ generate

the same stochastic choices in every menu, then clearly they cannot be separated based

on the marginals. Of course, when only (µ, λ) is available the situation is even worse,

since ν and ν ′ may not be distinguishable even when they are distinguishable based on

conditional choice frequencies. We illustrate this with the following example.

Example 2. Let X = {a, b, c} and suppose that µ assign probability of 1/4 to each

of the menus {a, b}, {a, c}, {b, c} and X. Let ν assign probability of 1/3 to each of

the orderings a ≻ b ≻ c, b ≻ c ≻ a, and c ≻ a ≻ b. Let ν ′ assign probability of 1/3

to each of the other three orderings a ≻ c ≻ b, b ≻ a ≻ c, and c ≻ b ≻ a. Then ν

and ν ′ induce different choice frequencies in each of the binary menus, but the resulting

marginal distribution of choices λ is uniform for both of them.

The failure of identification can be easily understood by looking at Figure 1. Any λ

in the interior of the core can be represented in multiple ways as a convex combination

17Barberá and Pattanaik [1986] and Fishburn [1998] give simple examples showing the non-uniqueness
of the rationalizing distribution of preferences when there are four alternatives. These examples demon-
strate that even the support of ν cannot be identified. Turansick [2022] characterizes those conditional
stochastic choice functions that admit a unique representation, and shows that this is equivalent to the
support of the representation being unique.
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of its extreme points, and any such representation is a possible RUM rationalization of

(µ, λ).

When the domain of preferences is restricted, identification depends on the location

of the extreme points corresponding to the feasible orders in O′. Specifically, the model

is identified if and only if these extreme points are affinely independent. In particular,

identification fails whenever O′ contains more than n elements. For the case of three

alternatives and a full-support µ, the model is identified if and only if O′ contains at

most three orders. We were unable to obtain a full characterization of identified domains

with more than three alternatives.

While point identification is very demanding under RUM, it may be that some prop-

erties of the distribution of preferences can be inferred from (µ, λ). It is known for

example that the probabilities of contour sets are pinned down by the (conditional)

stochastic choices from menus [Falmagne, 1978, Barberá and Pattanaik, 1986]. This is

no longer true when the dataset contains only the marginals (µ, λ). Indeed, in Example

2 the probability that a is ranked above b and below c is 1/3 under ν but is 0 under ν ′.

However, we now show that it is still possible to obtain an upper bound on the frequency

with which a given set of alternatives is top-ranked in the population. Given A ∈ X , let

T [A] be the set of orders that rank any element of A above any element of Ac.

Proposition 5. Suppose that ν RUM rationalizes the marginal stochastic choice dataset

(µ, λ). Then whenever A ∈ X satisfies 1− vµ(A)− vµ(A
c) ̸= 0 it holds that

ν(T [A]) ≤
∑

a∈A λ(a)− vµ(A)

1− vµ(A)− vµ(Ac)
.

5 The Luce model

The following definition formalizes the idea that the marginal stochastic choice dataset

(µ, λ) is consistent with an individual who behaves according to the Luce model of

stochastic choice.
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Definition 3. The marginal stochastic choice dataset (µ, λ) is Luce rationalizable when

there is u ∈ Int(∆(X)) such that for every a ∈ X

λ(a) =
∑
A:a∈A

µ(A)
u(a)∑
b∈A u(b)

. (1)

We say u Luce rationalizes (µ, λ) when (1) holds.18

In standard stochastic choice, it is well-known that the RUM can rationalize more

datasets than the Luce model. Nevertheless, we now show that RUM and Luce rational-

izations are essentially the same in terms of the marginals they can generate. However,

in contrast to RUM, if the marginal distribution over menus µ satisfies a mild rich-

ness condition, then under Luce we can identify the parameter u and therefore deduce

the conditional choice probabilities in every menu by observing only the marginals. To

formulate these results we need the following definition.

Definition 4. Given µ ∈ ∆(X ), the set A ⊆ X is µ-separating if there is no menu B

in the support of µ such that both B ∩ A ̸= ∅ and B ∩ Ac ̸= ∅. We say that µ is rich if

there are no µ-separating sets except X and ∅.

Put differently, A is µ-separating if every menu in the support of µ is either contained

in A or contained in its complement Ac. Richness is satisfied for example when the grand

menu X is in the support of µ. We can now state the key result of this section.

Proposition 6. Suppose that µ is rich. Then the mapping u −→ λ given by (1) is a

bijection between Int(∆(X)) and Int(Core(vµ)).

Proposition 6 allows us to obtain the following characterization of Luce rationaliz-

ability.

Corollary 3. The marginal stochastic choice dataset (µ, λ) is Luce rationalizable if and

only if λ ∈ Int(Core(vµ)).

18The definition requires that the sum of coordinates of u is 1. Clearly, any positive vector can be
normalized without changing the resulting stochastic choice function.
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Recall that λ ∈ Core(vµ) is precisely the condition characterizing consistent datasets,

as well as those that can be rationalized by the RUM. The corollary says that ‘typically’ –

when λ is in the relative interior of the core – consistent datasets can also be rationalized

by the Luce model. Distributions λ on the relative boundary cannot be rationalized

because the weights u must be strictly positive. We emphasize that, unlike Proposition

6, the corollary does not require µ to be rich; the proof shows that it is always possible

to partition X into subsets such that the restriction of µ to each of them is rich, and

Proposition 6 can then be applied in each of these subsets to deliver the result.

Another simple consequence of Proposition 6 is the following corollary which gives

necessary and sufficient conditions for the parameter u to be identified.

Corollary 4. Suppose that (µ, λ) is Luce rationalizable. Then the rationalizing vector

u ∈ Int(∆(X)) is unique if and only if µ is rich.

Before moving on we should point out that Monderer et al. [1992] prove a very

similar result to that of Proposition 6. In cooperative game theory, the distribution λ

obtained from the game vµ via equation (1) is known as a positively weighted Shapley

value, where the weights are given by the vector u. When u is the constant vector one

obtains the standard Shapley value of the game vµ. Monderer et al. [1992] prove that

for a strictly convex game v the core is homeomorphic to the set of all weighted Shapley

values (allowing for lexicographic systems of weights). Our result is weaker in that we

only consider positive weights and the games we consider are totally monotone which

implies convexity. On the other hand, our richness assumption is weaker than strict

convexity of vµ (recall Lemma 1). Our proof is also somewhat simpler due to the total

monotonicity of vµ, although the heart of the argument is the same as in Monderer et al.

[1992].

Even when µ is rich and u can be identified from (µ, λ), it is typically impossible to

express the inverse mapping from λ to u in closed form. It is therefore natural to ask

whether we can still say something about properties of u, at least in some special cases.
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The next result gives an example where this is the case. We show that if µ satisfies

a certain symmetry property between two alternatives, then the alternative that has

higher marginal choice probability also has a higher conditional choice probability in

every menu that contains both.

Definition 5. For a, b ∈ X, the marginal distribution of menu availability µ ∈ ∆(X ) is

ab-exchangeable when µ(A∪{a}) = µ(A∪{b}) for every A ⊆ X \{a, b}. The distribution

µ is exchangeable when it is ab-exchangeable for every pair a, b ∈ X.

Proposition 7. Suppose that u Luce rationalizes (µ, λ) and that µ is ab-exchangeable.

Then λ(a) ≥ λ(b) if and only if u(a) ≥ u(b). In particular, when µ is exchangeable the

ranking of menu-contingent choice probabilities is the same as the ranking of marginal

choice probabilities.

6 Endogenous menu choice

In the models considered up to now the marginal distribution of menu availability µ was

viewed as exogenously given and choices made by the agent (or population of agents)

were only affecting the marginal choice probabilities λ. We now consider a conceptually

different scenario in which the agent first chooses a menu of alternatives and then chooses

an alternative from that menu in the second period. Our goal here is not to provide a

comprehensive analysis of this case, but rather to point out that prominent ‘behavioral’

models of menu preferences may imply significant testable implications not only for the

observable menu distribution (µ), but also for the resulting distribution over alternatives

(λ). Indeed, the choice of a menu in the first period is informative about the agent’s

preferences over alternatives, and therefore also about the alternative that the agent

eventually chooses.

We illustrate this possibility using the model of Gul and Pesendorfer [2001], where

preferences over menus are affected by anticipated temptation in the second stage; agents

are worried about lack of self-control and therefore prefer to limit their future choices.
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Formally, an agent is characterized by a pair of functions u, v : X → R. The function

u describes the agent’s value for the alternatives when temptation is absent, while the

function v can be interpreted as the agent’s urges when choosing an alternative from a

menu. Given (u, v), preferences over menus are represented by the utility function

Uu,v(A) = max
a∈A

[u(a) + v(a)]−max
b∈A

[v(b)].

After choosing a menu, the agent chooses an alternative from that menu that maximizes

the sum u(a) + v(a).

The following definition formalizes the idea that the marginals (µ, λ) are consistent

with a population of individuals who behave according to the above temptation and

self-control model.

Definition 6. Let X ′ ⊆ X be a non-empty collection of feasible menus. The marginal

stochastic choice dataset (µ, λ) is temptation and self-control rationalizable given X ′

(X ′-TSC rationalizable, for short) when there is a distribution ψ over RX × RX such

that:

(i) For every A ∈ X ′,

µ(A) = ψ
({

(u, v) : Uu,v(A) > Uu,v(B) ∀B ∈ X ′ \ {A}
})
.

(ii) For every a ∈ X,

λ(a) =
∑

A∈X ′:a∈A

ψ
({

(u, v) : u(a) + v(a) > u(b) + v(b) ∀b ∈ A \ {a} and

Uu,v(A) > Uu,v(B) ∀B ∈ X ′ \ {A}
})
.

Condition (i) in Definition 6 means that the observed marginal distribution over

menus matches the population preference distribution over menus, while condition (ii)

is the analogous condition for alternatives. Note that we require strict inequalities at
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both stages so that individuals strictly prefer their chosen menu over any other feasible

menu, and that they strictly prefer their chosen alternative over any other alternative in

the menu they selected. Allowing for ties both complicates the notation and trivializes

the problem.19

To characterize X ′-TSC rationalizability, we need to introduce some additional no-

tation. First, for any feasible menu A ∈ X ′ let ĀX ′ = A \
⋃

{B∈X ′: B⊊A}B be the set

of alternatives in A that are not contained in any feasible sub-menu of A. We say that

A ∈ X ′ is redundant when ĀX ′ = ∅.

To illustrate, suppose that X = {a, b, c} and the collection of feasible menus is X ′ =

{{a}, {c}, {a, b}, {b, c}, X}. Then {a, b}X ′ = {b, c}X ′ = {b} and XX ′ = ∅. This means

that an agent who chooses either {a, b} or {b, c} in the first period will necessarily choose

b in the second period, since if they wanted a or c they could have chosen the singleton

menus in the first period and avoid second-period temptation. In addition, we should not

observe X being chosen at all in the first period since it is redundant – any alternative

is contained in a feasible sub-menu.

Now, given µ ∈ ∆(X ′) we define a game vX
′

µ by vX
′

µ (A) =
∑

{B∈X ′:B̄X′⊆A} µ(B) for

every non-empty A ⊆ X. The definition of vX
′

µ differs from that of vµ of Section 3 in

that here we sum up the probabilities of all menus B such that B̄X ′ ⊆ A rather than

only menus B that are contained in A themselves. Thus, we clearly have that vX
′

µ ≥ vµ.

Proposition 8. The marginal stochastic choice dataset (µ, λ) is X ′-TSC rationalizable

if and only if µ(A) = 0 for every redundant menu A and λ ∈ Core(vX
′

µ ).

Compared with Proposition 1, the conditions for TSC rationalizability are stronger in

two ways than the conditions for (unrestricted) consistency. The first is that redundant

menus cannot be in the support of µ,20 and the second is that the core constraints are

19TSC-rationalizability depends on the collection of feasible menus X ′. Restricted domains of feasible
menus are natural in many applications and are often used in the stochastic choice literature.

20This property corresponds to the ‘Set Betweenness’ axiom that Gul and Pesendorfer [2001] use in
their characterization of the model. Indeed, if a menu is redundant then it is equal to the union of its
feasible sub-menus. Set Betweenness implies that at least one of these sub-menus must be preferred to
the union.
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calculated based on the game vX
′

µ which, as explained above, is larger than the game vµ.

Going back to the above example, recall that X is redundant and hence X ′-TSC

rationalizability requires that µ(X) = 0; all other menus in X ′ can be included in the

support of µ. The second condition of the proposition, λ ∈ Core(vX
′

µ ), requires that

λ(a) ≥ µ(a), λ(c) ≥ µ(c), as well as λ(b) ≥ µ({a, b}) + µ({b, c}).21 The latter inequality

reflects the fact mentioned above that agents who chose one of the menus {a, b} or

{b, c} in the first stage necessarily choose alternative b in the second stage. It follows

that for every µ there is a unique λ such that (µ, λ) is X ′-TSC rationalizable, namely,

λ(a) = µ(a), λ(c) = µ(c), and λ(b) = µ({a, b}) + µ({b, c}).

In contrast, if any stochastic choice function π is allowed, then the inequalities that

characterize consistency are given by λ(a) ≥ µ(a), λ(c) ≥ µ(c), λ(a) + λ(b) ≥ µ(a) +

µ({a, b}), and λ(b)+λ(c) ≥ µ(c)+µ({b, c}). Thus, for typical distributions µ there would

be many different λ’s such that (µ, λ) is consistent. Figure 3 illustrates the difference

between (unrestricted) consistency and X ′-TSC rationalizability for this example in the

case where µ({a}) = µ({c}) = µ({a, b}) = µ({b, c}) = 1
4
.

7 Final comments

This paper studies properties of various models of stochastic choice when available data

is limited to the marginal distributions of menus and choices. We focused on the two

most prominent models, RUM and Luce. As can be expected, refuting these models

based solely on the marginals is typically hard. But, somewhat surprisingly, one may be

able to infer quite a lot about the models’ parameters. For example, it is often possible

to completely recover the value of alternatives for the Luce rule from marginal data.

We have also shown that restricting the domain of preferences in the RUM does lead

to significant testable implications for the marginals. A possible direction for future work

is to more carefully explore the implications of such domain restrictions. For example,

21The inequalities corresponding to other sets A ⊆ X are implied by those for singleton menus in this
example, but this is not the case in general.
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a c

b

Figure 3: An illustration of the example with X = {a, b, c}, X ′ =
{{a}, {c}, {a, b}, {b, c}, X}, and µ({a}) = µ({c}) = µ({a, b}) = µ({b, c}) = 1

4
. The

shaded area contains all choice distributions λ such that (µ, λ) is consistent (the core
of vµ). The only λ such that (µ, λ) is X ′-TSC rationalizable is λ(a) = λ(c) = 1

4
and

λ(b) = 1
2
– the marked point in the figure.

one can study the case where alternatives are lotteries and preferences are assumed

to be represented by expected utility [Gul and Pesendorfer, 2006], or the case where

alternatives are bundles of goods and preferences satisfy monotonicity [Kitamura and

Stoye, 2018]. A slightly different example is Filiz-Ozbay and Masatlioglu [2023], where

agents may be ‘boundedly rational’.

A different scenario in which marginal datasets naturally arise is when the available

menu is fixed but individuals consider only a subset of the alternatives. In this case µ

describes the distribution of consideration sets in the population. A previous version of

this paper included an analysis of the model introduced by Manzini and Mariotti [2014]

in this context. Other models of stochastic consideration sets can be explored as well.

When the distribution of menus is endogenous, additional restrictions may arise since

the choice of a menu can contain information about which alternative will eventually be

chosen. We have demonstrated this possibility using the model of Gul and Pesendorfer

[2001]. Another interesting direction would be to study two-period models in which

an agent chooses a distribution over menus as well as a distribution over alternatives

from each menu. These distributions may arise as the result of maximization behavior
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that trades off the benefits and costs of distributions of menus/alternatives similar to

perturbed utility models such as Fudenberg et al. [2015] and Allen and Rehbeck [2022].

If the maximization problems across the two periods are connected, then second-period

stochastic choices would be constrained by the menu distribution chosen in the first

period. That could generate non-trivial testable implications for the pair (µ, λ).

Finally, while we assumed throughout that the observables are µ and λ, in appli-

cations it may be that more or less data can be accessed. One plausible scenario is

that the researcher cannot observe how often each menu is available. Instead of ob-

serving µ, the data only shows the availability of each alternative a ∈ X, namely, only

ξ(a) =
∑

A:a∈A µ(A) for each a is observable.22 Say that the marginal distribution of

choices λ ∈ ∆(X) is potentially–consistent given ξ ∈ [0, 1]X when there exists µ ∈ ∆(X )

such that (µ, λ) is consistent and such that ξ(a) =
∑

A:a∈A µ(A) for every a ∈ X. The

following is a simple consequence of Proposition 1.

Corollary 5. The distribution of choices λ ∈ ∆(X) is potentially–consistent given ξ ∈

[0, 1]X if and only if λ(a) ≤ ξ(a) for every a ∈ X.

It is also plausible that, in addition to the aggregate data, the researcher has choice

frequencies in some menus (e.g., sales data from some retailers) but not in others; or

it may be that conditional choice probabilities for a particular alternative are available

from its producer, while for the rest of the alternatives only the aggregate is known. It

appears that much of our analysis would carry over to such situations, but we do not

pursue these directions here.
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A Proofs

Proof of Proposition 2

Clearly, we only need to show that if (µ, λ) is consistent, then it is RUM rationalizable.

By Proposition 1, if (µ, λ) is consistent then λ ∈ Core(vµ) and recall from Section 2 that

vµ is totally monotone and hence convex. Since Core(vµ) is a convex and compact

polytope, λ can be written as a convex combination of its extreme points. Thus, by

Proposition 3 there is a distribution ν over O such that for every a ∈ X,

λ(a) =
∑
≻∈O

ν(≻)[vµ(L≻(a) ∪ {a})− vµ(L≻(a))].

Now,

vµ(L≻(a) ∪ {a})− vµ(L≻(a)) =
∑

{A: a∈A⊆L≻(a)∪{a}}

µ(A) =
∑

{A: a∈A, ≻∈T [a,A]}

µ(A),

where the first equality is by the definitions of vµ and L≻(a), and the second equality is

by the definition of the set T [a,A]. Combining the above two equations, we get that

λ(a) =
∑
≻∈O

ν(≻)
∑

{A: a∈A, ≻∈T [a,A]}

µ(A) =
∑

{A:a∈A}

µ(A)ν(T [a,A]),
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where the last equality is just a change in the order of summation.

Proof of Proposition 4

Suppose that ν O′-RUM rationalizes (µ, λ) and fix k ∈ {1, . . . , K}. We have

∑
a∈∪k

i=1Ai

λ(a) =
∑

a∈∪k
i=1Ai

∑
{B:a∈B}

µ(B)ν(T [a,B]) =

∑
a∈∪k

i=1Ai

∑
{B:a∈B⊆∪k

i=1Ai}

µ(B)ν(T [a,B]) =

∑
{B:B⊆∪k

i=1Ai}

µ(B)
∑
a∈B

ν(T [a,B]) =
∑

{B:B⊆∪k
i=1Ai}

µ(B) = vµ(∪k
i=1Ai),

where the first equality holds since ν rationalizes (µ, λ), the second equality follows

from ν(T [a,B]) = 0 whenever a ∈ B ⊈ ∪k
j=1Aj (since the support of ν is contained

in O′), the next is a change in the order of summation, and the next follows from∑
a∈B ν(T [a,B]) = 1 for every set B.

Conversely, suppose (µ, λ) is consistent and that vµ(∪k
i=1Ai) =

∑
a∈∪k

i=1Ai
λ(a) for all

k. By Proposition 2 there is ν ∈ ∆(O) that RUM-rationalizes (µ, λ). Thus,

∑
a∈∪k

i=1Ai

λ(a) =
∑

a∈∪k
i=1Ai

∑
{B:a∈B}

µ(B)ν(T [a,B]) ≥

∑
a∈∪k

i=1Ai

∑
{B:a∈B⊆∪k

i=1Ai}

µ(B)ν(T [a,B]) = vµ(∪k
i=1Ai).

By assumption, the first and last expressions are equal, so the inequality must in fact

hold as equality. This implies that µ(B)ν(T [a,B]) = 0 for every pair a,B with a ∈(
∪k

i=1Ai

)
∩ B and B ⊈ ∪k

i=1Ai. In particular, for any pair of alternatives a ∈ ∪k
i=1Ai

and b /∈ ∪k
i=1Ai we have that µ({a, b})ν(T [a, {a, b}]) = 0. The proposition assumes that

µ({a, b}) > 0, which implies that any ≻ with a ≻ b is not in the support of ν. We have

shown that for any k, the support of ν does not contain orders that rank alternatives

from ∪k
i=1Ai above alternatives from the complement of this set. This proves that the

support of ν is contained in O′ as needed.
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Proof of Proposition 5

Suppose that ν Rum-rationalizes (µ, λ) and that A ∈ X satisfies 1−vµ(A)−vµ(Ac) ̸=

0. Then the total probability that some alternative from A is chosen satisfies

∑
a∈A

λ(a) ≥ ν(T [A])(1− vµ(A
c)) + (1− ν(T [A]))vµ(A).

Indeed, with probability ν(T [A]) the realized order ranks A at the top, in which case

an element of A will be chosen so long as an element of A is available. And with the

complementary probability 1− ν(T [A]) an element of A must be chosen whenever only

elements of A are available. Rearranging the above inequality gives the bound in the

proposition.

Proof of Proposition 6

Suppose that µ is rich. We start by showing that the mapping u −→ λ given by (1)

is one-to-one. Suppose that u, u′ induce the same marginal distribution of choices λ. Let

A◦ = argmaxa∈X
u(a)
u′(a)

. We claim that A◦ = X. Suppose by contradiction that this is

not the case. Then, since µ is rich, there is a menu B in the support of µ that intersects

both A◦ and Ac
◦. Let a◦ ∈ B ∩ A◦ and a1 ∈ B ∩ Ac

◦.

Now, for every menu A that contains a◦ we have

u(a◦)∑
a∈A u(a)

=
1∑

a∈A
u(a)
u(a◦)

≥ 1∑
a∈A

u′(a)
u′(a◦)

=
u′(a◦)∑
a∈A u

′(a)
,

where the inequality follows since u(a)
u(a◦)

≤ u′(a)
u′(a◦)

for every a ∈ X. Since by assumption

∑
{A: a◦∈A}

µ(A)
u(a◦)∑
a∈A u(a)

= λ(a◦) =
∑

{A: a◦∈A}

µ(A)
u′(a◦)∑
a∈A u

′(a)
,

it follows that for every menu A in the support of µ that contains a◦ we have
u(a◦)∑
a∈A u(a)

=

u′(a◦)∑
a∈A u′(a)

. In particular, this equality holds for the menu B: u(a◦)∑
a∈B u(a)

= u′(a◦)∑
a∈B u′(a)

. But

this in turn implies that u(a1)
u(a◦)

= u′(a1)
u′(a◦)

, contradicting the fact a1 ∈ Ac
◦. Thus, we have
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shown that A◦ = X so that the ratio u(a)
u′(a)

is constant in a. Since both u and u′ are in

∆(X), it follows that u = u′.

Next, we argue that if (µ, λ) is Luce rationalizable then λ ∈ Int(Core(vµ)). Indeed,

fix some u ∈ Int(∆(X)) and let λ be its image. Let A ̸= X be some menu. By

assumption, there is B in the support of µ that intersects both A and Ac. Since every

alternative in B is chosen with positive probability when B is the available menu, it

follows that
∑

a∈A λ(a) > vµ(A) (recall that
∑

a∈A λ(a) = vµ(A) holds if and only if

elements of A are never chosen when some element of Ac is available). Thus, λ ∈

Int(Core(vµ)) as claimed.

Now, the mapping u −→ λ given by (1) is clearly continuous. Therefore, by the

Invariance of Domain theorem, the image of Int(∆(X)) under this mapping is open in

∆(X). Furthermore, it follows from the previous paragraph that the image is open in

Int(Core(vµ)).

To finish the proof, let C be the set of λ’s in Int(Core(vµ)) that are not in the image.

We claim that C is also open in Int(Core(vµ)). Indeed, if it is not then there is λ0 ∈ C

and a sequence λn → λ0 such that each λn is the image of some un under Equation (1).

By compactness we may assume w.l.o.g. that un converges in ∆(X), say to u0. It can’t

be that u0 ∈ Int(∆(X)) since that would contradict the assumption that λ0 ∈ C. Thus,

the set Ā = {a : u0(a) = 0} is nonempty. We have

∑
a∈Ā

λn(a) =
∑
A⊆Ā

µ(A) +
∑
A⊈Ā

µ(A)

∑
a∈A∩Ā un(a)∑
a∈A un(a)

= vµ(Ā) +
∑
A⊈Ā

µ(A)

∑
a∈A∩Ā un(a)∑
a∈A un(a)

.

When n → ∞ the ratio
∑

a∈A∩Ā un(a)∑
a∈A un(a)

converges to 0 since the numerator goes to zero

while the denominator does not. We thus get that
∑

a∈Ā λ0(a) = vµ(Ā), contradicting

the assumption that λ0 is in Int(Core(vµ)). This shows that C is open in Int(Core(vµ)).

We have shown that both the image of the mapping u −→ λ and its complement C

are open in Int(Core(vµ)). But since Int(Core(vµ)) is connected, it must be that C = ∅

and that the image is the entire set Int(Core(vµ)). This completes the proof.
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Proof of Corollary 3

Fix µ and consider the collection of all µ-separating sets. If A is µ-separating then

clearly Ac is µ-separating as well; it is also immediate to check that if A,B are µ-

separating then the union A ∪ B is µ-separating. Thus, this collection is an algebra of

subsets of X. Since X is finite this algebra is generated by a partition, namely, there

exists a partition {A1, . . . AI} of X such that each Ai is µ-separating and such that no

strict subset of any of the Ai’s is µ-separating. We denote by µi and v
i
µ the restrictions

of µ and vµ to subsets of Ai, respectively. Note that viµ(Ai) may be strictly less than

one, in which case the definition of Core(viµ) is adjusted accordingly to require that the

sum of coordinates of core elements is equal to viµ(Ai). Clearly, we have that

Core(vµ) =
I×

i=1

Core(viµ). (2)

For each 1 ≤ i ≤ I, ui ∈ Int(∆(Ai)) and a ∈ Ai define fi(ui)(a) =∑
A:a∈A⊆Ai

µ(A) ui(a)∑
b∈A ui(b)

. Similarly, for u ∈ Int(∆(X)) and a ∈ X let f(u)(a) =∑
A:a∈A µ(A)

u(a)∑
b∈A u(b)

. Notice that given any u and a ∈ Ai, if we define ui ∈ Int(∆(Ai))

by ui(a) = 1∑
b∈Ai

u(b)
u(a) then fi(ui) coincides with f(u) for alternatives in Ai. Con-

versely, given (u1, . . . , uI) ∈×I

i=1
Int(∆(Ai)), defining u ∈ Int(∆(X)) by u(a) = 1

I
ui(a)

when a ∈ Ai gives f(u) ≡ fi(ui) on Ai for all i. In other words, we have that

f (Int(∆(X))) =
I×

i=1

fi (Int(∆(Ai))) . (3)

Finally, since µi is rich by construction, Proposition 6 implies that for every i

fi (Int(∆(Ai))) = Int(Core(viµ)). (4)
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Overall we obtain

f (Int(∆(X))) =
I×

i=1

fi (Int(∆(Ai))) =
I×

i=1

Int(Core(viµ)) = Int(Core(vµ)),

where the first equality is by (3), the second is by (4), and the last is by (2) and by the

fact that the relative interior of the product of convex sets is equal to the product of

their relative interiors.

Proof of Corollary 4

We have already shown in Proposition 6 that if µ is rich then the mapping u −→ λ

is one-to-one. For the converse, suppose that there is a µ-separating set A ̸= ∅, X. Let

u be a Luce rationalization of (µ, λ). For some 0 < α < 1
u(A)

define the vector u′ by

u′(a) = αu(a) for a ∈ A and u′(a) = 1−αu(A)
u(Ac)

u(a) for a ∈ Ac. It is straightforward to

check that u′ is another Luce rationalization of (µ, λ).

Proof of Proposition 7

Given a, b, define the collections of menus F (a, b) = {A ∈ X : a ∈ A, b /∈ A}

and F (b, a) = {A ∈ X : b ∈ A, a /∈ A}. Let g : F (a, b) → F (b, a) be defined by

g(A) = (A ∪ {b}) \ {a}. Then clearly g is a bijection, and µ(A) = µ(g(A)) for every

A ∈ F (a, b) by ab-exchangeability.

Now, suppose that u Luce rationalizes the marginal stochastic choice dataset (µ, λ).

It follows that,

λ(a) =
∑

{A:a∈A}

µ(A)
u(a)∑
c∈A u(c)

=
∑

{A:{a,b}⊆A}

µ(A)
u(a)∑
c∈A u(c)

+
∑

A∈F (a,b)

µ(A)
u(a)∑
c∈A u(c)

.

(5)

If u(a) ≥ u(b), then the first sum satisfies

∑
{A:{a,b}⊆A}

µ(A)
u(a)∑
c∈A u(c)

≥
∑

{A:{a,b}⊆A}

µ(A)
u(b)∑
c∈A u(c)

. (6)
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As for the second sum, we have

∑
A∈F (a,b)

µ(A)
u(a)∑
c∈A u(c)

≥
∑

A∈F (a,b)

µ(A)
u(b)∑

c∈g(A) u(c)
=

∑
A∈F (a,b)

µ(g(A))
u(b)∑

c∈g(A) u(c)
=

∑
A∈F (b,a)

µ(A)
u(b)∑
c∈A u(c)

,(7)

where the inequality is since t→ t
t+c

is increasing (when c > 0), the first equality follows

from µ(A) = µ(g(A)) for all A ∈ F (a, b), and the last equality follows from g being a

bijection. Combining (5), (6), and (7) we get

λ(a) ≥
∑

{A:{a,b}⊆A}

µ(A)
u(b)∑
c∈A u(c)

+
∑

A∈F (b,a)

µ(A)
u(b)∑
c∈A u(c)

= λ(b).

The converse, that λ(a) ≥ λ(b) implies u(a) ≥ u(b), easily follows.

Proof of Proposition 8

Since the collection of feasible menus X ′ is fixed, we omit it from the notation and

write Ā instead of ĀX ′ . We still write vX
′

µ to avoid confusion with the game vµ as defined

earlier in the paper. We denote the collections of redundant and non-redundant menus

in X ′ by R and NR, respectively.

The first step of the proof is the following lemma.

Lemma 2. Fix A ∈ X ′ and a ∈ A. There exists (u, v) ∈ RX × RX such that Uu,v(A) >

Uu,v(B) for all B ∈ X ′ \ {A} and such that u(a)+ v(a) > u(b)+ v(b) for all b ∈ A \ {a} if

and only if a ∈ Ā. Moreover, if A ∈ R(X ′) then there is no (u, v) ∈ RX × RX such that

Uu,v(A) > Uu,v(B) for all B ∈ X ′ \ {A}.

Proof. Suppose first that a ∈ Ā = A \
⋃

{B∈X ′:B⊊A}B. Define u, v by u(a) = 2, u(b) = 0

for all b ̸= a, v(b) = 0 for all b ∈ A, and v(b) = 1 for all b /∈ A. First, we have that

u(a) + v(a) = 2 while u(b) + v(b) ≤ 1 for any other b, so that in particular u(a) + v(a) >
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u(b) + v(b) for all b ∈ A \ {a}. Second,

Uu,v(A) = max
a′∈A

[u(a′) + v(a′)]−max
b∈A

[v(b)] = 2− 0 = 2.

Let B ∈ X ′ be any other feasible menu and consider two possible cases: If a /∈ B then

Uu,v(B) = max
a′∈B

[u(a′) + v(a′)]−max
b∈B

[v(b)] ≤ 1− 0 = 1;

if a ∈ B then by assumption B must contain an element from Ac, so that

Uu,v(B) = max
a′∈B

[u(a′) + v(a′)]−max
b∈B

[v(b)] ≤ 2− 1 = 1.

It follows that in either case Uu,v(A) > Uu,v(B), as needed.

Conversely, suppose that a ∈ B ⊊ A for some B ∈ X ′. Consider any pair of functions

(u, v) that satisfies u(a) + v(a) > u(b) + v(b) for all b ∈ A \ {a}. Then in particular

u(a) + v(a) > u(b) + v(b) for all b ∈ B \ {a}, so that

Uu,v(B) = max
a′∈B

[u(a′)+v(a′)]−max
b∈B

[v(b)] = [u(a)+v(a)]−max
b∈B

[v(b)] ≥ [u(a)+v(a)]−max
b∈A

[v(b)] = Uu,v(A).

Therefore, it can’t be that Uu,v(A) > Uu,v(B) for all B ∈ X ′ \ {A}.

Finally, we need to show that if A ∈ R(X ′) then there is no pair (u, v) such that

Uu,v(A) > Uu,v(B) for any B ∈ X ′ \ {A}. Fix A ∈ R(X ′) and a pair (u, v). Let

a∗ ∈ argmaxa∈A u(a) + v(a). By assumption, there is B ∈ X ′ such that a∗ ∈ B ⊊ A.

Then as in the previous paragraph we have that

Uu,v(B) = [u(a∗) + v(a∗)]−max
b∈B

[v(b)] ≥ [u(a∗) + v(a∗)]−max
b∈A

[v(b)] = Uu,v(A),

where the first equality is because a∗ ∈ argmaxa∈B u(a)+ v(a), and the inequality is due

to B ⊆ A.

The next lemma, which easily follows from the previous one, argues that for (µ, λ) to
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be X ′-TSC rationalizable it is necessary and sufficient to consider only non-redundant

menus and only alternatives that cannot be found in sub-menus.

Lemma 3. The pair (µ, λ) is X ′-TSC rationalizable if and only if there exists a collection

π = {π(·|A)}A∈NR, such that the support of each π(·|A) is contained in Ā, and such that

for every a ∈ X

λ(a) =
∑

A∈NR

µ(A)π(a|A).

Proof. Suppose first that π satisfies the requirements of the lemma. By Lemma 2, for

every A ∈ NR and every a ∈ Ā there is a pair u, v such that Uu,v(A) > Uu,v(B) for

all B ∈ X ′ \ {A} and such that u(a) + v(a) > u(b) + v(b) for all b ∈ A \ {a}. Denote

this pair by (u, v)A,a. Let ψ be the distribution with support
{
(u, v)A,a

}
A∈NR, a∈Ā, and

with ψ
(
(u, v)A,a

)
= µ(A)π(a|A) for every a,A. Then it is immediate that ψ satisfies

conditions (1) and (2) of Definition 6 and therefore that (µ, λ) is X ′-TSC rationalizable.

Conversely, suppose that (µ, λ) is X ′-TSC rationalizable and let ψ be a rationalizing

distribution over pairs u, v. First, Lemma 2 implies that if A ∈ R(X ′) then µ(A) = 0.

Second, for any A ∈ NR define π(·|A) as follows. If µ(A) = 0, then π(·|A) is any

distribution with support contained in Ā; and if µ(A) > 0 then

π(a|A) = 1

µ(A)
ψ
({

(u, v) : u(a) + v(a) > u(b) + v(b) ∀b ∈ A \ {a} and

Uu,v(A) > Uu,v(B) ∀B ∈ X ′ \ {A}
})
.

Then clearly π satisfies the equality in the lemma and it follows from Lemma 2 that

π(a|A) = 0 whenever a /∈ Ā.

The next step is the heart of the proof, so we state it as a separate proposition. Its

proof is based on the max-flow min-cut duality theorem.23

23Proposition 9 implies Proposition 1 of Section 3 as a special case. Indeed, just take Y = X and
h(A) = A for every A ∈ X . The characterizing condition becomes λ ∈ Core(vµ).
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Proposition 9. Let Y be a finite set, µ ∈ ∆(Y ), λ ∈ ∆(X), and fix a mapping h :

Y → X where X = 2X \ ∅. There is a conditional probability system π = {π(·|y) ∈

∆(h(y))}y∈Y such that λ(a) =
∑

y∈Y µ(y)π(a|y) for every a ∈ X if and only if for every

A ∈ X ∑
a∈A

λ(a) ≥
∑

{y∈Y : h(y)⊆A}

µ(y).

Proof. ‘Only if’: Suppose that there is π = {π(·|y) ∈ ∆(h(y))}y such that λ(a) =∑
y µ(y)π(a|y) for every a ∈ X and fix a menu A ∈ X . Then

∑
a∈A

λ(a) =
∑
a∈A

∑
y

µ(y)π(a|y) ≥
∑

{y: h(y)⊆A}

µ(y)
∑
a∈A

π(a|y) =
∑

{y: h(y)⊆A}

µ(y),

so that the required collection of inequalities is satisfied.

‘If’: Consider a directed bipartite graph with sets of nodes V1 = X and V2 = Y , and

where there is an edge from a ∈ V1 to y ∈ V2 if and only if a ∈ h(y). Add two additional

nodes, a source and a sink, denoted s and t respectively. Also add edges from s to every

a ∈ V1 and from every y ∈ V2 to t. Denote by G = (V,E) the resulting augmented graph.

For every e ∈ E set a capacity c(e) ∈ R+ as follows: If a ∈ X then c(s, a) = λ(a); If

y ∈ Y then c(y, t) = µ(y); and c(a, y) = 1 for every edge in the original bipartite graph.

We claim that, under the assumption of the proposition, any cut E ′ ⊆ E that sepa-

rates s from t has total capacity of at least 1. This is clearly the case if one of the (a, y)

edges is in E ′; if not, then for every a ∈ X either (s, a) ∈ E ′ or {(y, t) : a ∈ h(y)} ⊆ E ′
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(or both). Let A0 = {a ∈ X : (s, a) ∈ E ′}. Then the total capacity of E ′ satisfies

∑
e∈E′

c(e) ≥
∑
a∈A0

c(s, a) +
∑

{y: h(y)⊈A0}

c(y, t)

=
∑
a∈A0

λ(a) + 1−
∑

{y: h(y)⊆A0}

c(y, t)

=
∑
a∈A0

λ(a) + 1−
∑

{y: h(y)⊆A0}

µ(y)

≥ 1,

where the final inequality is by the assumption of the proposition.

Clearly, there exists a cut E ′ of capacity equal to 1. Thus, the optimal value of the

min-cut program for G is 1. By the max-flow min-cut theorem of linear programming

(see, for example, Theorem 7.13 in Kleinberg and Tardos [2006]), there exists a flow

f : E → R+ such that
∑

a∈X f(s, a) =
∑

y∈Y f(y, t) = 1. In particular, f(s, a) = λ(a)

and f(y, t) = µ(y) for all a and y. For every edge (a, y) define π(a|y) = f(a,y)
µ(y)

(and π(·|y)

arbitrarily on h(y) when µ(y) = 0). For every a ∈ X we thus have

λ(a) = f(s, a) =
∑
y

f(a, y) =
∑
y

µ(y)π(a|y),

where the second equality is by the flow conservation constraints at the node a, and the

last equality is by the definition of π(a|y). This completes the proof.

We can now finish the proof of the Proposition 8.

‘Only If’: Suppose that (µ, λ) is X ′-TSC rationalizable. By Lemma 2, we have that

µ(R(X ′)) = 0, which proves the first condition of the proposition. Next, let π be as in

Lemma 3. Since the support of µ is contained in NR we can apply Proposition 9 with

Y = NR and h(B) = B̄ for every B ∈ NR. We thus get that, for every A ∈ X ,

∑
a∈A

λ(a) ≥
∑

{B∈NR: B̄⊆A}

µ(B) =
∑

{B∈X ′: B̄⊆A}

µ(B) = vX
′

µ (A),
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where the inequality is from Proposition 9 , the first equality follows from µ(R(X ′)) = 0,

and the last equality from the definition of the game vX
′

µ . It follows that λ ∈ Core(vX
′

µ )

as needed.

‘If’: Suppose that the conditions of the proposition hold. Applying Proposition 9 with

Y = NR and h(A) = Ā for every A ∈ NR we get that there exists π = {π(·|A) ∈

∆(Ā)}A∈NR such that λ(a) =
∑

A∈NR µ(A)π(a|A). By Lemma 3, (µ, λ) is X ′-TSC

rationalizable and the proof is complete.

Proof of Corollary 5

First, it is obvious that if λ is potentially–consistent given ξ then λ(a) ≤ ξ(a) for

every a ∈ X. For the converse, fix ξ and λ that satisfy these inequalities. We describe

an algorithm that stops after a finite number of steps and produces the desired µ.

Label the alternatives arbitrarily, X = {a1, . . . , an}. Given any µ ∈ ∆(X ), let ξµ ∈

[0, 1]X be defined by ξµ(ai) =
∑

{A: ai∈A} µ(A), and let Dµ = {1 ≤ i ≤ n : ξµ(ai) < ξ(ai)}

be the set of alternatives for which the probability of availability based on µ, ξµ(ai), is

strictly below the required level ξ(ai).

The algorithm starts with µ0 whose support is just the singletons {ai}ni=1, and where

µ0(ai) = λ(ai) for every i. Note that, by assumption, ξµ0 ≤ ξ.

For some k = 1, 2, . . . suppose that a distribution µk−1 is given. If Dµk−1 = ∅ then

stop. Otherwise, we now describe how to obtain µk.

Let i∗ = minDµk−1 so that in particular ξµk−1(ai∗) < ξ(ai∗). We claim that there

must exist a menu Ã in the support of µk−1 such that ai∗ /∈ Ã. Indeed, if ai∗ is in every

menu in the support of µk−1 then ξµk−1(ai∗) = 1, contradicting ξµk−1(ai∗) < ξ(ai∗). Let

t = min{µ(Ã), ξ(ai∗)−ξµk−1(ai∗)} > 0. Define µk by µk(Ã) = µk−1(Ã)−t, µk(Ã∪{ai∗}) =

µk−1(Ã ∪ {ai∗}) + t, and µk(A) = µk−1(A) for every other menu A. In words, a mass of

t is moved from the menu Ã to the menu Ã ∪ {ai∗}.

We have that ξµk(ai∗) = ξµk−1(ai∗) + t, and ξµk(ai) = ξµk−1(ai) for every i ̸= i∗.

Therefore, ξµk is an increasing sequence, bounded above by ξ. Moreover, if i∗ is not

removed from Dµk , then Ã is removed from the support of µk, implying that after at most

41



2n−1 iterations an equality ξµk(ai∗) = ξ(ai∗) is achieved. It follows that the algorithm

terminates after at most n× 2n−1 iterations.

Let µ∗ be the resulting final distribution. By construction, ξµ∗(ai) = ξ(ai) for every

i. It is left to show that (µ∗, λ) is consistent. Note however that λ ∈ Core(vµ0) and that

vµk ≤ vµk−1 for every k since µk is obtained from µk−1 by shifting mass from a set to one

of its supersets. Thus, λ ∈ Core(vµ0) ⊆ Core(vµ∗), so we are done by Proposition 1.

42


