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Abstract

I consider a model of reputational bargaining in which the stubborn type
can choose their initial demand. There are two types of players: rational and
stubborn. The game has two stages: a demand stage and a concession stage.
Types can pool or separate in equilibrium for any fixed probability of facing
a stubborn type. When the probability of facing a stubborn type is small,
any feasible payoff can be achieved in equilibrium for either type. When the

probability is large, there is either immediate agreement or long delays.
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1 Introduction

In political bargaining, leaders often make public commitments to bolster their po-
sition with foreign counterparts and to signal resolve to domestic audiences. During
the Brexit negotiations, Prime Minister Theresa May publicly articulated a set of
“red lines” (e.g., leaving the single market and the customs union).! Walking these
back risked severe domestic penalties in Parliament and within her party. Leaders
typically have better private information about the domestic political costs of reneg-
ing, whereas counterparts may be uncertain about how damaging any backtracking
would be to the leader’s credibility at home. How do such strategic public postures

shape the outcome of trade?

This paper explores the middle ground between fully rational agents and behav-
ioral agents, providing a framework for studying bargaining dynamics when players
can strategically commit to postures. Motivated by examples like May during the
Brexit negotiations, I propose a model of reputational bargaining in which the behav-
ioral type can choose their initial demand — essentially determining the posture they
wish to project. This is a departure from the strategy restriction on behavioral types
typically made in the literature on reputational bargaining (Myerson 1991, Abreu
and Gul 2000 [AG| and follow-up papers), where behavioral types cannot choose
their initial demand (and more generally, have no choices to make). Specifically, I
consider a bargaining game with two types of players: rational and stubborn. The
game has two stages: a demand stage and a concession stage. Players simultaneously
make demands, and the game concludes when one player concedes to the other’s de-
mand. Rational players can concede at any point in time, whereas stubborn players

can choose their initial demand but cannot concede thereafter.

I establish the existence of both pooling and separating equilibria for any fixed

probability of facing a stubborn type. When this probability is low, I show that any

L The New York Times, “In ‘Brexit’ Speech, Theresa May Outlines Clean Break for U.K.,” January
17, 2017



payoff, for both rational and stubborn players, can be achieved in equilibrium. In
fact, this is true both for pooling and separating equilibria. When the probability
is high, there is either immediate agreement or there are prolonged delays, causing
payoffs for both players, regardless of type, to be arbitrarily small.

The intuition behind these results is as follows. A rational player never benefits
from making a demand known to be compatible with the opponent’s, since they
can always concede later. In contrast, a stubborn player risks losing any chance of
agreement if their demand is incompatible with that of a similarly stubborn opponent.
This difference in preferences allows for type separation in equilibrium.

However, types can also pool over multiple demands. Asin AG, players (regardless
of their type) face a tradeoff between the amount received if the opponent concedes
and the speed with which the opponent concedes. However, this trade-off is not the
same for the two types. When demands are compatible, the two types receive the
same payoff. When demands are incompatible, there is a cost of being stubborn
(relative to being rational). This cost is smaller the higher the demands. Higher
demands imply a longer war of attrition and hence, the stubborn type’s cost of not
being able to concede is paid “far in the future.”?> Appropriate punishment with off-
path beliefs imply that deviations to other demands are not profitable for either type.
This together implies that types can pool over multiple demands in equilibrium.

A low probability of facing a stubborn type drives equilibrium multiplicity, as the
benefits of making incompatible demands (and leaving nothing on the table) outweigh
the risk of facing a similarly stubborn opponent. This creates a force toward multiple
equilibria, where any payoff can be achieved in equilibrium. In contrast, a high
probability of facing a stubborn type incentivizes players to either reach immediate
agreement or escalate to high demands, prolonging delays and polarizing outcomes.

Thus, the proportion of behavioral types significantly shapes negotiation dynamics

2 A rational player is willing to wait to concede only so long as he is uncertain about the opponent’s

type. Hence, the length of the war of attrition determines the payoff difference between the two

types.



and payoffs.

Much of the literature on reputational bargaining focuses on the limiting case
where the probability of encountering a stubborn opponent is small. In contrast, the
analysis here considers a fixed ex-ante probability of stubbornness, which aligns with
empirical evidence suggesting that stubborn behavior is not uncommon. For example,
Backus et al. (2020) examine behavior patterns in bilateral bargaining using data
from eBay’s Best Offer platform. They find that a significant portion of negotiations
end in disagreement after a delay. Such outcomes are difficult to reconcile with
reputational bargaining models that assume a low probability of stubbornness. In
my model, however, when the probability of facing a stubborn opponent is high, the
likelihood of perpetual disagreement is substantial.

The results on prolonged delays resonate with documented real-world phenom-
ena across various applications. In US politics, for instance, Binder (1999) provides
evidence that intrabranch conflict (and hence, uncertainty as to whether a branch is
willing or able to make concessions) is critical in shaping deadlock. Similarly, Card
(1990) provides evidence that longer strikes in labor disputes are associated with
lower wage settlements — potentially reflecting employers’ stubbornness.

My results emphasize the importance of defining behavioral types based on the
specific context, as different economic applications may call for different approaches.
This model is suited to analyzing situations where agents privately know whether
making demands or threats will limit their flexibility, though this constraint is not
common knowledge. For instance, a political leader may issue demands during in-
ternational negotiations while privately aware that backtracking later would incur
significant political costs (or be impossible). This creates a so-called audience cost:
a domestic political penalty when foreign policy actions are perceived as unsuccess-
ful.® Such scenarios are not adequately captured by standard models of reputational
bargaining, where players with audience costs (behavioral types) are not strategic

players. In contrast, here behavioral types strategically choose their demands while

3See Fearon (1994) and follow-up papers, Ozyurt (2014) and Ozyurt (2015a,b).
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anticipating the impossibility of future concessions. This allows opponents to update
their beliefs about a leader’s constraints based on the demands made. For example,
during the 2023 US debt ceiling crisis, Republicans insisted on spending cuts as a
condition for raising the debt ceiling, while Democrats argued for a “clean bill” with-
out preconditions. Both sides strategically weighed the political costs of conceding
against the benefits of holding firm on their demands.?

This paper contributes to the literature on bargaining with two-sided incomplete
information. In bargaining with two-sided private information about valuations for
a good, a player’s offer can serve as a signal of their information, which can lead
to multiplicity of equilibria. Signaling allows a player to be “punished with beliefs”
for deviating from a proposed equilibrium path. This can support a wide variety
of behavior, ranging from no trade (Ausubel and Deneckere 1992) to Myerson and
Satterthwaite’s (1983)’s constrained efficient bounds (Ausubel and Deneckere 1993).5

When the two-sided private information is about a player’s ability to concede
rather than their value for the good, this multiplicity disappears. Models on repu-
tational bargaining (Myerson 1991, AG and follow-up papers) have shown that the
so-called Rubinstein-Stahl outcome is the unique outcome in a large class of bar-
gaining protocols when the game is perturbed with simple behavioral types who are
committed to a fixed stance.® This clear prediction of reputational bargaining models
therefore stands in stark contrast to models where the private information is about
a players’ values for the good. In reputational bargaining models, belief-based pun-
ishments do not arise, despite two-sided incomplete information, because committed
types have no choices to make and are therefore immune to such punishments: they

insist on their pre-specified demands (regardless of their actual preferences over such

4The Guardian, “Danger and deja vu: what 2011 can tell us about the US debt ceiling crisis,”

April 30, 2023.
°For a helpful discussion, see the survey by Fanning and Wolitzky (2022).
6 Among others, see Abreu and Pearce (2007), Abreu, Pearce, and Stacchetti (2015), Abreu and

Sethi (2003), Atakan and Ekmekci (2014), Compte and Jehiel (2002), Fanning (2016, 2018, 2021),
Kambe (1994), Kim (2009), Wolitzky (2012).



demands), forcing behavior onto the equilibrium path.

A closely related paper is Kambe (1994), who also departs from AG by allowing
demands to be chosen rather than assume an exogenously fixed set of commitment
demands. Specifically, players do not know at the time of choosing whether they are
rational or committed: they first select a demand, and only afterward may discover
that they are bound to it. This preserves the payoff predictions, because off-path
punishments cannot be freely used once demands are precommitted in this way.

My model is closer to AG in that types are realized before demands are chosen, but
differs crucially in allowing stubborn types to choose strategically. This flexibility by
the stubborn type has two implications. First, there are more deviations to consider
than in AG, as the stubborn type also needs to be appropriately incentivized. This
in itself is a force towards unique predictions. However, there is a second implication:
conditional on being able to appropriately incentivize the stubborn type, there is
greater flexibility on which demands can be assigned positive probability as coming
from a behavioral type on path. This means it is easier to incentivize the rational
type to be willing to make certain demands. In order to “force” behavior by the
stubborn type onto the equilibrium path for such a variety of demands, we need the
possibility of belief-based punishments off-path: without them, we could not deter
these additional deviations by the stubborn type. In fact, these off-path belief-based
punishments are not enough to deter the stubborn type when the probability of facing
a stubborn type is high. Hence, the flexibility of the stubborn types together with
the possibility of belief-based punishments off-path are two crucial features of my
environment that allow for Folk theorem like payoff multiplicity when the probability
of facing a stubborn type is small.

This paper explores the middle ground between fully rational agents and fully
committed agents who have no strategic choices to make. When behavioral types
are given the ability to choose their initial stance, the possibility of belief-based
punishments plays an important role in establishing a Folk Theorem when the ex-

ante probability of encountering a behavioral type is small. Reducing the probability



of being behavioral in classical models of reputational bargaining is a force towards
efficiency. Here, it is a force toward multiplicity. Equilibria retain a war of attrition
structure, but uncommitted players no longer necessarily mimic behavioral types.
When the ex ante probability of behavioral types is high, the Folk Theorem breaks
down: the force of belief-based punishments is not enough to deter stubborn types

from deviating (to compatible demands).

2 Model

Time is continuous, and the horizon is infinite. Two players decide on how to split a
unit surplus. At time ¢ = —1, players 7 and j simultaneously announce demands, o
and of, with o/, o’/ € [0,1]. If o’ + o/ < 1, the demands are said to be compatible.
In this case, the game ends. If o’ + o > 1, the demands are incompatible. In this
case, a concession game starts at £ = 0. The game ends when one player concedes.
Concession means agreeing to the opponent’s demand.

Each player i is rational with probability 1 — z and stubborn with probability z,
where z € (0,1). Before the game starts, each player privately learns whether he is
stubborn or rational. A rational player i = 1,2 can make any demand o' € [0, 1] at
time 0 and concede to his opponent at any point in time. Stubborn player ¢ can choose
his initial demand o € [0, 1] but cannot concede to his opponent. Note that this is
unlike in AG, where a stubborn player cannot choose his initial demand. A strategy
for a stubborn player, i, 0, is defined by a Borel probability measure s® on [0, 1] (his
demand a'). A strategy for a rational player i, o™, is defined by a Borel probability
measure 7 on [0, 1] (his demand ') and a collection of cumulative distributions F; ,:;
on R, U{oo} for each incompatible pair of realized demands (o', o’) = (., ay) with
ay + oy > 1.7 Throughout, I restrict attention to equilibria that involve strategies s*

and 7 with finite support.® For any = € [0,1], let §, denote the Dirac measure at .

"The set of (demand) strategies (measures) is endowed with the topology of weak convergence.

Throughout, this is how limits are understood.
8That is, I focus on equilibria such that this is the case, but I do not impose that players cannot

deviate to arbitrary demand strategies.
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Thus, a strategy with finite support C = {ay,...,ax} and weights (ri,... 7% ) for

rational player i (resp. (si,...,s%) for stubborn player i) is
K K

T’:Zrzéak, 8122825%,
k=1 k=1

with 7%, st > 0 and S0 7t = S°% st = 1. Throughout, I use the notation that
lower demands have lower subscripts, i.e., ap < Qgi1.

For realized demands o = a;, and o/ = ay with ag + ay > 1, let F,:z(t) denote
the probability that a rational player ¢ concedes to player j by time ¢ > 0. The
(unconditional) probability that player i concedes by time ¢ is

F(t) = (1= 7' (ow)) Fy(h),

where the posterior that i is stubborn after observing af = oy, € C at time t = —1
(given o™ and o) is '

‘ Z 8, |
zsi+(1—2)r

Wi(Oék) =
Therefore, if o' = oy, € C,

lim Fy,(t) < 1—m"(ax).

t—o00

Note that F, ,&(0) may be positive; this is the probability that ¢ immediately concedes
to J.

Player i’s discount rate is p > 0, for ¢ = 1,2. The continuous-time bargaining
problem is denoted B = {z, p}. If a’+a? < 1 at t = 0, player i receives o’ and 1 — o’
with probability 1/2.

Suppose that (af,a’) = (ag, ay) is observed at time 0, with a; + a, > 1. Given
a strategy profile 6 = (0%, 07) with ¢* = (6™, 0%"), the expected payoff to rational

player ¢ from conceding at time ¢ is

Ozk—f-l—(l/g

Ult,o? | k,0) = ozk/ e*pdeZ,ﬂ(y) + 5

y<t

(Fé{k(t) - Fz{k(f))efpt

+ (=) (1= F/(t)e ",



where Fe{k(t*) = limyy Fefk(y).Thus player i receives (i) the discounted value of «y
if j concedes first, (ii) (o + 1 — ay)/2 if they concede simultaneously at ¢, and (iii)
1 — ay if i concedes first. If ¢ never concedes,
U'(co,07 | k,0) = ak/[ )e_py dFé{k(y),
0,00
which coincides with the stubborn player’s payoff when facing an incompatible de-
mand.

Since F/, describes the concession behavior of a player, unconditional on his
type, a rational player ¢’s concession behavior is described by is Fl:z = 1/(1 -
7'(ow)) Fyy. Therefore the rational player’s expected utility from using F;,, con-
ditional on (ag, ay), is

1

UG | k,0) = =Tp

/[ U0 | KO AFL )
0,00

Finally, the rational player’s ex-ante expected utility under & is

K
, ) 1— : .
OED S D DI S (RS I E)
k=1

l:ap<l—ay
N

J/

TV
compatible at t=—1

+ > Uia kO (A=2)rf+2s])|.

Lap>1—ay
A >y

Vv
incompatible, concession game

For later use, define the opponent’s probability of facing «a; by
q,(;i) =(1-2) r,sfi) +z s(ﬂ'),

and define player ¢’s strength at ay by

1

(o) == (' (ay)) ok

Write pt := p'(ay). In all formal statements and proofs the index notation g} is
used, while numerical examples with explicit demands use the functional notation

p(a); when a = ay this coincides with gl .
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I follow the literature in modeling the bargaining as a war of attrition (rather than
allowing players to revise their demands). This is inspired by Myerson’s (1991) insight
that revising one’s demand reveals rationality, so that it is equivalent to conceding
(in the context of his model, which is closely related, but not identical to mine).?

A crucial feature of the model — one that departs from AG — is that initial de-
mands are chosen simultaneously. This assumption is essential for the existence of
pooling equilibria involving more than one offer. If demands were instead made se-
quentially, symmetric pooling would not be robust, although Folk-theorem-like payoff
multiplicity would still arise.

For the analysis in B = {z,p}, I use the solution concept of (weak) Perfect
Bayesian equilibrium (PBE). A PBE is a profile of strategies o* = (¢'*,0%) and a
system of initial beliefs mapping demands into probabilities that a player is stubborn,

7w :[0,1] = [0,1] for ¢ =1,2,
such that (1) the strategy maximizes a player’s expected utility (given beliefs), and
(2) if an information set is reached with positive probability given the strategy profile,
beliefs are formed according to Bayes’ rule; and if an information set is not reached
with positive probability given the strategy profile, beliefs are arbitrary probabilities
that a player is stubborn.'?

Henceforth, equilibrium refers to weak PBE (see Fudenberg and Tirole, 1991 for a
definition).!! T focus on symmetric equilibria. By symmetric equilibria I mean equi-

libria where r* = r and s' = s/ — i.e., the identity of a player does not matter. Only

9AG show that any convergent sequence of equilibrium outcomes within a broad family of
discrete-time games must converge to the unique continuous-time equilibrium outcome as the max-
imum time between consecutive opportunities to revise demands goes to 0. Of course, the modeling
of AG differs from mine in some respects. Moreover, types in AG do not separate in equilibrium.
As we will see, they can do so here, and hence, modeling the bargaining as a war of attrition entails

some loss of generality here.
10While PBE is permissive with regards to off-path beliefs, this flexibility turns out to matter

only for “high” off-path demands.
H'To the extent that the concession behavior is a direct consequence of the demands made, I refer

to an equilibrium by its support and the probabilities associated with that support.

10



his type does. This suffices to establish payoff multiplicity.'? To simplify notation, I
omit superscripts indicating a player’s identity unless clarification is necessary.

I denote an equilibrium by (z,7,s), where z is the probability of a stubborn
type, r is the rational type’s strategy, and s is the stubborn type’s strategy. The
corresponding equilibrium payoffs are v,(z,r, s) for the rational type and vy(z, 7, s)
for the stubborn type. For brevity, I often write simply v, and v, when the equilibrium

is clear from context.

3 Main Results

The two main propositions establish existence of pooling and separating equilibria
for a given ex ante probability of facing a stubborn type, z. I define an equilibrium
as pooling if both types (of both players, by symmetry) make the same demands
in equilibrium with positive probability, and as separating if each demand made in
equilibrium perfectly reveals the player’s type. Additionally, the propositions estab-
lish limits for payoffs and probabilities as the probability of encountering either type
vanishes. Specifically, I establish Folk theorem-like payoff multiplicity when the stub-
born type vanishes. Conversely, when the probability of the rational type vanishes,
there is either immediate agreement or infinite delay.

Before turning to non-degenerate pooling, it is useful to note that there always
exist degenerate single-demand pooling equilibria. If all types demand o = 1/2,
agreement is immediate and both players obtain the efficient payoff of 1/2. If all
types demand o = 1, then there is infinite delay and both players obtain a payoff of
0. We now turn to the existence of non-degenerate pooling equilibria, in which types
pool on more than one demand, and which give rise to the Folk-theorem result.

To illustrate, let us begin with an example of a pooling equilibrium featuring two
demands. Suppose the prior probability of the stubborn type is z = 1/10. Then the

following is an equilibrium: the rational and the stubborn type randomize over 1/3

I2Note that given the assumption of symmetry, multiplicity refers to delay rather than division

of surplus.
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and 4/5 with
r = 51/30381 + (54/50619, and s~ 51/30230 + 54/50770

Once the initial demands have been made, the war of attrition proceeds exactly as
in AG.'3 If both players demand 1/3, there is immediate agreement (which ends the
game). If both players demand 4/5, there is no immediate concession, and the ratio-
nal player concedes at a rate that keeps their opponent indifferent between waiting
and conceding. If players make different demands, then the player demanding 4/5
concedes immediately with probability ~ 0.72. Thereafter, players concede at a rate
that keeps their opponent indifferent between waiting and conceding (meaning the
player demanding 4/5 concedes at a slower rate than the player demanding 1/3).
If a player faces an unexpected, incompatible demand o« ¢ {1/3,4/5}, he does not
concede.

After the initial demands are made, a player demanding 1/3 is believed to be
stubborn with probability 7(1/3) ~ 0.063. A player demanding 4/5 is believed to be
stubborn with probability m(4/5) ~ 0.121. If either player demands a ¢ {1/3,4/5},

he is believed to be rational with probability 1.

13Specifically, the war of attrition for incompatible demands unfolds as follows. The player making
the higher demand concedes with positive probability at time 0. More precisely, player j’s immediate

concession probability when demanding o/ = ay, and facing a demand of o = «y is given by

) 1—ag
Flge(O):max{l—(uk> ,O}.
: 110

In equilibrium py > py if and only if a < ay — see Lemma 1 in the Appendix. Thereafter, players
concede at a rate that keeps their opponent indifferent between waiting and conceding. Finally,
there is a finite time by which the posterior probability of stubbornness reaches 1 simultaneously

for both players and concessions by the rational type stop.
4 Note that for any deviating demand o < 0.619, it is sufficient that the deviating demand « is

believed to come from the stubborn type with probability 7(4/5)1 =)/ (1=4/5) o that 1(4/5) = ().
This ensures that a demand 4/5 does not lead to concession with positive probability at time 0 to
such an out-of-equilibrium demand, but simply to concession at a rate that keeps the opponent

indifferent between waiting and conceding. For demands « > 0.619, we ensure equilibrium existence
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These strategies result in the following payoffs. A rational player demanding
1/3 receives 1/2 when facing a demand of 1/3, and receives a payoff of 0.2962 when
facing a demand of 4/5. A rational player demanding 4/5 receives 0.6667 when facing
a demand of 1/3 and a payoff of 0.2 when facing a demand of 4/5. Hence, fixing the
opponent’s strategy, the rational player expects the same payoff of 0.3708 from either
of the equilibrium demands 1/3 and 4/5. A stubborn player demanding 1/3 receives
1/2 when facing a demand of 1/3, and receives of a payoff of 0.2946 when facing
a demand of 4/5. A stubborn player demanding 4/5 receives 0.6426 when facing a
demand of 1/3 and receives 0.19996 when facing a demand of 4/5. Hence, fixing
the opponent’s strategy, the stubborn player expects the same payoft of 0.3619 from
either demands 1/3 or 4/5. The difference in the two types’ payoffs comes from the
fact that the stubborn type is unable to concede even when he puts probability 1 on
being faced with a stubborn opponent. This difference in the two types’ payoffs is
smaller the smaller the ex ante probability of facing a stubborn type. As a result, in
the limit, as the stubborn type vanishes, the payoff to the two types is identical.

Figure 1 illustrates the expected payoff from an equilibrium demand (shown as
red and blue dots for the rational and stubborn type respectively at a = 1/3,4/5)
and contrasts it to the payoff a rational (stubborn) player could receive from devi-
ating to any other demand. Since after a deviation an opponent never concedes to
an incompatible demand, we can limit attention to the deviations that are exactly
compatible with some demand of the opponent: 2/3 and 1/5. Neither player gains
from such a deviation. Clearly, the payoff from making any demand less than 2/3 is
strictly less than the equilibrium payoff; for demands above 2/3, the payoff is identi-
cal and hence, the rational type is willing to make the equilibrium demands. For the
stubborn type, the equilibrium payoff is strictly higher than the stubborn type could
get from any other demand.

Before stating the first main result formally, given a pair (ay, as), with oy €

by assigning probability 1 to the deviating demand coming from a rational type, which deters the

stubborn type from deviating.
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Figure 1: Expected payoff from making demand « for the rational (red) and stubborn
(blue) type (pooling equilibrium). Here z = 1/10 and the equilibrium demands are
a € {1/3,4/5}.

(0,1/2) and oy € (1 — oy, 1], let

11—
20 —a)(ag+as—1)1—m N 205-1\ Tmo- a1
(1 —2a1)(1 — an) m

2(0(1, Oég) =

where

. mm{(zu ~an)(au +ag — 1))232 (s — an)(au +ag — 1) }

(1 —2a1)(200 — 1) (1= )? + 200 —ay — a2

For oy = 1/2 and as > 1/2, let 2(1/2,0) = 1. Note that z > 0 for all oy < 1/2

and 1 > a9 > 1 — ;.

Proposition 1. 1. [Existence of Two Demand Pooling Equilibria] Fiz any
a; < 1/2 and 1 > ag > 1 — ay. There exists a pooling equilibrium (z,r, s) with

finite support C = {aq, s},

Vz € [0, Z].

2. [Convergence as stubborn types vanish| Let (2",r",s") be a convergent

sequence of pooling equilibria with finite support C* = {ay, an} and lim,, o 2™ =

14



0. Then along any such sequence,

. 2(0&1 + Qo — 1) 1-— 2@1
1 "= dq O ’
nlﬁlh{olor ! 20(2 -1 * 22&2 -1
and
. 1-— (6] 1-— aq
1 "=y F 0.
TLEEOS 12—0[1—042—'_ 22-@1—042
Moreover,
(5-a)°
lim v = lim v? = = — ~2 T
n—oo n— o0 @2 —_ =

3. [Convergence as rational types vanish| Let (2",r", s") be a convergent

sequence of pooling equilibria and lim,, ., 2" = 1. Then along any such sequence

FITHER (1)
. 1 . . . .
lim " (—) =1, and lim s" =46y, with lim v = lim v} =0,
n—00 2 n—o0 n— o0 n—o00
OR (2)
1
lim " = lim " =901, with lim v, = lim v} = —.
n—00 n—00 2 n—00 n—00 2

The first part of Proposition 1 establishes that for any fixed probability of facing
a stubborn type z € (0, 1), there exist pooling equilibria with two demands.'® For
instance, a pooling equilibrium, where both types randomize over a; = 49/100 and
az = 99/100 exists for any z < 0.978. Conversely, a pooling equilibrium, where
both types randomize over oy = 1/3 and ay = 4/5 exists for any z < 0.627. More
generally, for every z € (0, 1) one can select (aq, ay) such that a two-demand pooling
equilibrium exists.

To gain intuition for why players can be made indifferent over multiple demands,
it is helpful to consider the tradeoffs involved in choosing a demand. First, play-
ers of either type face a tradeoff between the amount they receive if their opponent
concedes and the speed at which the opponent concedes. Fixing the opponent’s con-

cession behavior, a player’s payoff increases with their demand. However, the higher

15 A complete characterization of all equilibria can be found in the working paper version on the

author’s website.
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the demand, the slower the opponent concedes. This tradeoff makes intermediate
demands particularly appealing and results in a rational payoff that is single-peaked
in their own demand, as in AG.

Second, these tradeoffs vary between the two types. When demands are compat-
ible, both types receive the same payoff. When demands are incompatible, however,
the rational type’s expected payoff is higher than that of the stubborn type. This
is because, unlike the stubborn type, the rational player can choose to concede. A
rational player is willing to wait as long as there is uncertainty regarding the oppo-
nent’s type. But once the rational player assigns probability 1 to facing a stubborn
opponent, the rational player strictly prefer to concede, whereas the stubborn type
cannot concede. This results in the rational type achieving a higher (expected) payoff
than the stubborn type when demands are incompatible.

The difference in payoffs when facing an incompatible demand depends on the level
of the demands. Specifically, this difference is smaller for higher demands. Higher
demands lead to a slower concession rate, prolonging the war of attrition. Conse-
quently, the point at which the rational player strictly prefers to concede is pushed
“far into the future.” Due to discounting, the stubborn type’s cost of being unable
to concede becomes minimal when demands are high. Therefore, when demands are
incompatible, the payoff difference between the two types is smaller the higher the
demands. As a result, preferences do not satisfy the single-crossing property.

Finally, the appropriate off-path beliefs ensure that neither type has an incentive
to deviate to out-of-equilibrium demands. Specifically, assigning sufficiently high
probability to any deviation coming from the rational type ensures that both types

find it optimal to stick to the equilibrium demands.'® As in AG, off-path beliefs are

6Specifically, in a pooling equilibrium with support C = {aj,as}, requiring m(a) =
()1 =)/ (1=a2) g sufficient if « is sufficiently low, i.e., if:

a+1—o
2

as+1—aq

(- ) (1 - a2)(1 - pg?).

q1 + (1 =q)(1—a2)(1—p3) <aq

If this condition is violated, we specify that 7(a)) = 0, which deters the deviation. Note that in AG,

any deviation is automatically assigned probability 1 as coming from the rational type, as stubborn
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central to disciplining deviations but play an additional role in my model. In their
framework, any off-path demand is automatically attributed to the rational type, a
reasonable specification given that committed types cannot deviate. This sustains
a unique outcome by forcing play onto the set of commitment demands. In the
present model, committed types also choose their initial demands: this means there
are more deviations (by the stubborn type) that need to be deterred (a force towards
unique predictions).!” It is here that belief-based punishments play a crucial role:
they are needed to “force” behavior by the stubborn type onto the equilibrium path.
So, payoff multiplicity emerges if sufficiently high off-path demands are punished by
assigning probability one to the rational type. If, instead, such dogmatic beliefs are
ruled out and all deviations must be assigned positive probability of stemming from a
committed type, then the only symmetric pooling equilibrium is the efficient outcome
where all types demand 1/2. Thus, the Folk theorem result hinges on the scope for
extreme off-path punishments, in contrast to AG where such punishments collapse
behavior to a unique outcome.

The second part of Proposition 1 demonstrates the convergence of strategies and
payoffs as the probability of facing a stubborn type vanishes. It shows that any
feasible payoff can be sustained in equilibrium for either type, when the probability
of facing a stubborn type is small enough. Here, inefficiency is measured by the
distance between 1/2 and the lower demand oy, as well as the distance between
as and 1. When «; is close to 0 (and hence, as close to 1), a player’s expected
equilibrium payoff is close to 0. A demand s close to 1 implies that a player almost
certainly will face a demand of as which induces a long war of attrition. If, on
the other hand, «; is close to 1/2, a player’s expected payoff is close to 1/2 (when

players are equally patient). When demands are close to 1/2, the war of attrition

types have no choices to make.
17 As discussed previously, there is also a second implication: conditional on being able to appro-

priately incentivize the stubborn type, there is greater flexibility on which demands can be assigned
positive probability as coming from a behavioral type on path. This means it is easier to incentivize

the rational type to be willing to make certain demands.
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is short, minimizing inefficiency. By adjusting a; and as, one can generate in this
fashion any payoff between 0 and 1/2. Interestingly, fixing a4, a higher ay actually
increases the limiting equilibrium payoff. Although this may seem counterintuitive
— since a symmetric equilibrium with the highest payoff occurs when both types
demand 1/2 with probability 1 — a rational player facing a demand of s receives a
payoff of 1 — as < 1/2. Hence, conditional on meeting a demand of aw, the rational
type’s payoff increases as as decreases. However, there is a dominating effect: as as
increases, the likelihood of the rational type demanding o, decreases.

The third part of Proposition 1 considers the case where the probability of facing
a stubborn type is high. In such cases, any pooling equilibrium, regardless of the
number of demands in the support of the strategy, leads to one of two outcomes: either
immediate agreement with compatible demands, or prolonged delays that ultimately
result in a payoff of zero for both types as z — 1. To illustrate the logic, return to
the example of demands oy = 1/3 and ay = 4/5. When z = 0.9, players can still
be made indifferent between these two demands. However, indifference alone is not
sufficient for equilibrium: at such high probabilities of stubbornness, the cost of a
prolonged standoff becomes substantial for stubborn types. As a result, a stubborn
type has an incentive to deviate to a compatible demand (such as 1/5) to avoid the
risk of deadlock with another stubborn opponent. This is why “moderate” demands
can no longer be sustained in equilibrium as z becomes large, even if indifference
across them can still be maintained.

Let me now illustrate the structure of the separating equilibria. Suppose the prior
probability of the stubborn type is z = 1/2. Then the following is an equilibrium: the
stubborn type demands 1/3 and the rational type demands 4/5.1® In other words,
the stubborn type makes a less aggressive demand than the rational type. After the
initial demands are made, a player demanding 1/3 is believed to be stubborn with
probability 1 and a player demanding 4/5 is believed to be rational with probability
1. If either player demands o ¢ {1/3,4/5}, the player is believed to be rational

18There exists a separating equilibrium with these demands for z € [4/9,2/3].
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Figure 2: Expected payoff from making demand « for the rational (red) and stubborn
(blue) type (separating equilibrium). Here z = 1/2, and the equilibrium demands
are 1/3 (for the stubborn type) and 4/5 (for the rational type).

with probability 1. After the initial demands, the game unfolds as follows. If both
players demand 1/3, there is immediate agreement and both players receive 1/2. If
one player demands 1/3, and the other 4/5, the player demanding 4/5 immediately
concedes with probability 1. If both players demand 4/5, then a war of attrition
starts, giving both (rational) players a payoff of 1/5.1° Fixing the opponent’s strategy,
a rational player receives an expected payoff of 0.4333 from the equilibrium strategy,
and the stubborn type receives 0.4167. Figure 2 illustrates the expected payoff from
an equilibrium demand (as before shown as red and blue dots for the rational and
stubborn type respectively) and contrasts it to the payoff a rational (stubborn) player
could receive from deviating to any other demand. Note that so long as the demand
is compatible with the stubborn type’s demand (i.e., demands up to 2/3 for the

demands chosen in Figure 2), the payoff to a rational and a stubborn type from a

9Note that in the continuation game involving two rational players, there exists another equilib-
rium with immediate concession. However, any such continuation strategies would make it profitable

for the stubborn type to imitate the rational type and hence, cannot be part of an equilibrium.
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deviation is identical.

As we will see, the feature that the stubborn type’s demand is below the rational
type’s demand is true in any separating equilibrium: stubborn types are more con-
servative in their demands compared to rational types, because it is more costly to

them if demands are incompatible.

Proposition 2. 1. [Existence of Separating Equilibria] Fix any set of de-
mands {aq, ..., ax} with K > 2. Then there ezists a fully separating equilib-

rium if and only if a1 < 1/2, oy + @y > 1 and

2(0n — Yy il — )
1—230 (1 — o)

a2al ’

. K )
where (rq,...,rg) are weights s.t. Y, _,r; = 1. Moreover, in any such sepa-

rating equilibrium, s = 0o, and r = Zszz O Ti-

2. [Convergence as stubborn types wvanish| Let (2",r",s") be a convergent
sequence of separating equilibria and lim, .., 2" = 0. Then there exists a €
(0,1/2) such that lim, oo ™" = d1_o and lim,_,, " = 0,. Moreover,

lim v = lim v = a.
n—oo n—o0

Conversely, for every a € (0,1/2), there exists a convergent sequence of sepa-
rating equilibria (2", r", ™) with lim,, o 1™ = d1_o and lim,_,o s = 0,. More-
over,

lim v = lim v = a.
n—oo n—o0

3. [Convergence as rational types vanish| Let (2",r",s") be a convergent
sequence of separating equilibria and lim,, . 2" = 1. Then along any such se-
quence, lim,_,o 8" = 01/2. Moreover, lim,_,o,r" (1/2) = 0. Along any such
sequence,

lim v = lim 27 = —.
n—oo r n—oo s 2
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The first part of Proposition 2 establishes existence of separating equilibria for
any fixed ex ante probability of facing a stubborn type. This result is stronger than
the first part of Proposition 1 as it provides both necessary and sufficient conditions
for the existence of any separating equilibrium. It is straightforward to verify that for
every z € (0,1), one can select demands {ay, as} such that a separating equilibrium
exists.?’ In any such equilibrium, if one player is stubborn, agreement is immediate.
In other words, here, delay signals rationality rather than stubbornness: delay only
occurs when two rational players face one another, which contrasts with the dynamics
of pooling equilibria.?!

The second part of Proposition 2 derives the limits of strategies and payoffs as
the probability of facing a stubborn type vanishes. In the limit, the two types make
exactly compatible demands, and in this way, any feasible payoff can be sustained in

equilibrium for either type as the probability of facing a stubborn type vanishes.

Finally, the third part of Proposition 2 addresses convergence as the probability
of facing a rational type approaches zero. Here, the stubborn type makes a demand
of 1/2, resulting in a payoff of 1/2 for both types. The intuition behind this result is
straightforward: as the probability of facing a stubborn type increases, so does the
stubborn type’s incentive to deviate from its separating demand to a complemen-
tary demand. This incentive diminishes as the stubborn type’s separating demand

increases, ultimately leading to the equilibrium outcome.

Taken together, Propositions 1 and 2 show that payoff multiplicity arises in sym-

20To see this, note that the lower bound converges to 0 as o + ap — 1 and the upper bound

converges to 1 if ag — 1.
2IModeling the bargaining as a war of attrition entails some loss of generality here: if rational

players could revise their demands, there exists another equilibrium of the continuation game which
does not entail delay: if the incompatible demands revealing rationality are observed by both players,
players revise their offers to 1/2. If one of the players does not revise their demand, probability
1 is placed on this deviation coming from a rational type and hence, not revising one’s offer from
the original incompatible offer does not lead to concession by the opponent — thereby ensuring the

stubborn type has no incentive to deviate from his demand.
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metric pooling and separating equilibria when the probability of facing a stubborn
type is small, but breaks down as this probability becomes large. More generally, as
the probability of the rational type vanishes, the game reduces to a Nash demand
game among stubborn players. In any symmetric equilibrium — whether pooling, sep-
arating, or semi-separating — an argument similar to that in the proof of Proposition
2(c) implies that the limiting payoffs converge to (1/2,1/2) (efficient agreement) or
(0,0) (complete breakdown).?? By contrast, when asymmetric equilibria are consid-
ered, any division of the surplus between the two players can be sustained in the
limit.

The preceding propositions do not exhaustively characterize equilibria, even under
symmetry and finite support. In particular, there exist pooling equilibria supported
on more than two demands for fixed z, as well as a variety of semi-separating equi-
libria. I restrict attention to the pooling and fully separating cases, as it suffices
to establish payoff multiplicity. Allowing for asymmetric equilibria leads to a still
richer set of outcomes. To see this, note that for any a € (0, 1) there exists a pooling
equilibrium in which player 1 demands « and player 2 demands 1 — «, yielding asym-
metric payoffs (o, 1 — «). Hence, an asymmetric Folk theorem holds: any division of

the surplus between players can be sustained in equilibrium (for any z € (0, 1)).

4 Type space

This section locates a boundary of the multiplicity result: once an AG type with
a = 1/2is present (in addition to the stubborn type), the scope for payoff multiplicity
disappears in the vanishing-behavioral limit, and equilibrium payoffs collapse to the
efficient payoff 1/2 for all players. However, away from that vanishing-behavioral limit

— or if the support of AG types does not include av = 1/2 — equilibrium multiplicity

22Essentially, the stubborn type will always prefer to make a compatible demand in this case
(unless making a compatible demand gives 0 payoff). Hence, within the class of symmetric equilibria,
the stubborn type either demands 1/2 or 1. Hence, both types payoffs are either 1/2 or 0 in the

limit.

22



can persist.

Specifically, consider a model with a (finite) set of AG types C*9 with one sim-
ple change: each player is behavioral a la AG with probability zsq, stubborn with
probability zg and rational otherwise. I denote by m4g(«) the conditional probability
that a player is an AG type « given that the player is an AG type. Hence, maq is
a probability distribution on C49. Denote this game BA%“. For any comparison

between BAS and B, I assume z4¢ + 25 = 2.

Proposition 3. 1. Fiz an equilibrium (z,r, s) with finite support C = {aq, ..., ax}
in B. Then there exists an outcome equivalent equilibrium in the game BAG~

if and only if zagmag(aw) < zsy for all oy, € C, and wag(a) =0 for any o & C.

2. Suppose 1/2 € CA9. Let (25, 22,7, 8") be a convergent sequence of pooling
equilibria and lim, o (2%o + 2%) = 0. Then lim, o " = d1/2. Moreover,

lim,, o0 v = lim,, o 07 = 1/2.

The first part of Proposition 3 implies that there is multiplicity away from the
limit, even when there is an AG type demanding o = 1/2: for an equilibrium in

BAGS exactly when the joint

B there exists an outcome-equivalent equilibrium in
distribution of behavioral types — AG types and stubborn types — can reproduce
the on-path posteriors in the equilibrium in B. Intuitively, stubborn types act like
“flexible” AG types whose demand can be allocated to match the baseline; feasibility
therefore holds provided that, at every on-path demand «, the exogenous AG mass at
a does not exceed the behavioral mass that the baseline equilibrium in B assigns to a.
When an AG type with o = 1/2 is present and z4¢ is sufficiently small relative to zg,
this condition is met, so the posteriors can be replicated and the payoff multiplicity
with a = 1/2 persists away from the vanishing-behavioral limit. The second part
of the proposition shows that this multiplicity collapses to the efficient payoff 1/2
whenever an AG type a = 1/2 is present and the probability of facing a behavioral

type (of either kind) vanishes.
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Corollary 1. Suppose CA9 = {ay} with ay > 1/2 and suppose zaq = z5 = z. Then
there exists Z > 0 such that for every z < zZ and every oy satisfying oy + ag > 1 and
ay < 1/2, there exists a pooling equilibrium with support {1, as}. Let (2™, 1™, s™) be
a convergent sequence of pooling equilibria with support {aq, as} and lim, . 2" = 0.
Then

: no__ 1 n __
lim v = lim v, = - — ———>1— as.
n—00 n—00 2 Qay — 5

The corollary establishes payoff multiplicity when there is a single AG type o >
1/2 and the probability of facing a behavioral type (of either kind) is small.

Note that there exist equilibria in B4 where no outcome equivalent equilib-
rium exists in B: this is precisely because there are fewer incentive compatibility

constraints to satisfy in BA%® than in B.%

5 Varying abilities to concede
Many real-world negotiations, particularly in political and labor disputes, involve
parties who are uncertain about their own ability to hold out. For instance, a labor
union might be unsure about its members’ commitment to continue striking, or a
political negotiator may believe they can concede but remain uncertain about whether
they can truly afford to do so. This uncertainty highlights the value of exploring
a generalized version of the model presented in this paper. Specifically, I aim to
capture the idea that players may have differing abilities to concede. Initially, a
player may only know the probability with which they can concede, discovering their
true capacity for concession only when they attempt it. This idea can be formalized
in the following model.

Each player is either rational or stubborn. Ex ante, each player i privately observes
a signal 0; € ©, where © C [0, 1] is finite. Conditional on 6; = 6, player i is stubborn
with probability 6 (and rational with probability 1—6). Signals are drawn i.i.d. from
the discrete distribution P on © with masses (Pg)oco, i.e. P = Do o Do s, so that
> pcoPo = 1.

23Examples of such equilibria are readily available on request.
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As before, the solution concept is weak PBE. Recall that PBE imposes no restric-
tion on off-path beliefs: regardless of the mass points of P, we can assign arbitrary
beliefs to any off-path demand. Given the signal 6, a player ¢ chooses a demand
o' € [0,1] (as before players choose demands simultaneously). Once demands are
made, players privately learn their type (rational or stubborn). The war of attrition
ensues as before. The bargaining problem is denoted B = {z, 0, P, p}. The model as
described in Section 2 is the special case, where P = P := §;2+ dy(1 — z). As before,
the unconditional probability of stubbornness is z := Y, g P 0.%*

A strategy for player ¢ who has received signal 6 is defined by a Borel probability
measure oY on [0, 1] and a collection of cumulative distributions F é’f’a]_ on Ry U{oo}
for all a; + o; > 1. F, é’faj () describes the probability that the rational player ¢ who
received signal 6 concedes to player j by time ¢ (inclusive), given his choice of «,
when facing «;. With some abuse of notation, I will denote the strategy for player 4
who has received signal § by (6%, F, ;’faj).

We may additionally want to impose the (very reasonable) “no signaling what
you don’t know” (NSWYDK) condition. If we do so, the set of symmetric pooling
equilibria depends on the mass points of P. Specifically, if py > 0, everything stated
in this section continues to hold. This is because a small positive mass on 6 = 0
ensures that players can be punished with beliefs for any off-path deviation by being
identified as a rational # = 0 type in a manner consistent with NSWYDK. If instead
po = 0, there is a unique symmetric pooling equilibrium satisfying the NSWYDK
condition. In this equilibrium, all players demand 1/2. If we impose NSWYDK and
po = 0, this implies there is no off-equilibrium path demand which is believed to

come from a rational type for sure. This makes certain deviations more attractive

and therefore rules out multi-demand pooling equilibria.?®

24Note that a player who only discovers their ability to concede upon attempting to do so may
as well condition on the event that he is able to concede when choosing his concession strategy.
Therefore, this model — where a player learns his type after demands are made — is strategically

equivalent to the informal description provided above.
25To see this, note that in any pooling equilibrium with support {a, ...,ax}, the payoff to the
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Note that given a strategy profile, each on path demand induces a posterior prob-
ability distribution over types: each demand made can be viewed as a signal about
a player’s type. Throughout, I denote the (distribution over) posterior beliefs that a
strategy profile induces by I1.26 Consider the two bargaining games, B with (6, P)
and B with (6, P). Note that P is a garbling of P. Hence, ignoring incentive com-
patibility constraints, any probability distribution over types that can be generated
with P, can be generated with P. Given that payoffs are linear in , this implies that
for any pooling equilibrium in B there exists an outcome-equivalent pooling equilib-
rium in B. The reverse is true only when P second-order stochastically dominates

the probability distribution over types induced in the equilibrium of B, IT.%7

Proposition 4. Fiz B = {z,0, P,p} and B = {z,0, P, p}. Suppose ((r, ng?aj), s) is
an equilibrium of B, which induces beliefs I1. Then there exists an outcome-equivalent

equilibrium of B if, and only if, P —sosp IL.

Proposition 4 highlights that many insights from the paper carry over to this
model. However, it also clearly indicates where this similarity reaches its limits: if
players in B separate (that is, different types choose different demands), the strat-
egy profile in B that would generate the same information structure is generally not
incentive-compatible. Clearly, if a player receiving signal 6§ = 0 is willing to demand
a, and a player receiving signal # = 1 is willing to demand «, then a player receiving
signal 6 € (0,1) is willing to demand «. The reverse however is not true: a player
receiving signal # may be willing to demand «, but a player receiving a fully informa-
tive signal does not. This implies, that when players in B separate by signal, there

does not generally exist an outcome-equivalent equilibrium in B.%?

stubborn type is given by >, qr(1 — ax)(1 — p ). By deviating to a > ag, the stubborn type

could guarantee a strictly higher payoff: Y, gi(1 — au)(1 — pf).
26In the simplest case, take P = §,0.9 + 6;0.1, and revisit the pooling equilibrium with 1/3 and

4/5 Then I =1 = 50.063(0-9 *0.381 + 0.1 % 023) + (50_121(0.9 *0.619 + 0.1 077)
2"TExamples that illustrate the key insight on equivalence and when it breaks down are available

on request.
28Examples of such separating equilibria are readily available on request.
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6 Conclusion

While this paper focuses on endogenizing behavioral types in a bargaining setting, the
idea of endogenizing behavioral types applies more broadly. For instance, some agents
may restrict attention to stationary strategies in a repeated game. Whatever drives
their preference for this restriction does not mean that they do not choose optimally
within the set of stationary strategies. There is a middle ground between rational
and behavioral agents, and this paper is a first attempt to explore this territory in a

well-known and tractable environment.
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Appendix
For the proof of Proposition 1, it is helpful to establish some preliminary lemmas that
impose some structure on possible equilibria. In a candidate pooling equilibrium, the

payoff to the rational type of player j from demanding « is:

, 1—oa,+«
PO SRR R

kap<l—ap

+ km;_w 0 <Oée — (o + o — 1) min { (%) e | 1}) | (1)

Similarly, we can write the payoff of a stubborn player 7 demanding oy in a candidate

pooling equilibrium as:
. X ,Ué ap+ap—1
vl () = vl (o) — Z qe(1 — oy g max < 1, <—> : (2)
k:ap>1l—ay Pk

Using (1),(2), given z > 0, a pooling equilibrium with support C = {ay, ..., ax}

requires, Yoy, o, € C, and j = 1,2,

vi () = v](am) =0, (3)
vi(ar) — vi(am) =0, (4)
K
Z qx = ]-7 and (5)
k=1
K
> =z (6)
k=1
with g, . € [0,1].
Lemma 1. Fiz any set of demands C, where C = {ay,...,ax} is an arbitrary finite

subset of [0,1]. In any symmetric pooling equilibrium with support C, py > pig+1 for

any o < 1 —aq and pp = pgyr for ap > 1 — aq.

Proof of Lemma 1. Note that for any two demands ay,axr1 € C, (3) must hold.

Conditional on facing a compatible demand, the payoff to a rational player from
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demanding ay,q is strictly higher than the payoff from demanding ay (cf. (3)).
Conditional on facing a demand which is compatible with a4 but not with a1, the
payoff to a rational player from demanding «y, is weakly higher than the payoff from
demanding ay1. Hence, either (a) Yo, € C, ay + g > 1 and i, > min{ gy, pr},
or (b) there must exist some «,, € C with ay + «, > 1 such that puz,; < p, but
tr > fn. Note that (a) implies py = pig41. Moreover, (b) implies pgr; < pg. The

result follows. O

Lemma 2. Fiz any set of demands C, where C = {ay,...,ax} is an arbitrary finite
subset of [0,1] and |C| > 2. In any symmetric pooling equilibrium with support C, the

following holds:

1. The lowest and highest demand in C are incompatible: oy + a > 1.
2. Consider any two demands, oy, o, € C, ap > «y,. Then there exists o, € C s.t.

o+ ay, > 1 and o, + o, < 1.

Proof of Lemma 2. Part 1. Suppose a; + ax < 1. Then v,(ay) = vs(ap). This
implies v, () = vs(ay) Yoy € C. If v.(ag) = vs(ag) Yay, € C, then it must be that
ag <1/2. If ag < 1/2, then axg = ay = 1/2, and hence, |C| = 1. Hence, if |C| > 2,
a1+ ag > 1.

Part 2. Consider any two demands, ay, oy, € C, ay > «,,. Suppose Vo, € C,
either ay + o, < 1 or oy, + v, > 1 (i.e., the set of compatible demands is constant

between «ay and ). Given that py < p,, for all a, > 1 — au,:

antoy—1 antam—1
pofmax < 1, (ﬂ) < ppm max q 1, (,u_m) .
Hn Hon

Hence, if (3) is satisfied for all ay, o, € C, then (4) cannot be satisfied.
Hence, for all oy, o, € C with oy > «,, there exists a,, € C such that «,, <
1 —ay, < ay. (Note that it follows that the lowest pooling demand is compatible with

all but the highest pooling demand.)

Proof of Proposition 1. The proof procedes in three steps.
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Part 1: Existence of Two Demand Pooling Equilibria for fixed z. The next
lemma implies existence of pooling equilibria with two demands for fixed z.

For oy < 1/2, ag > 1 — oy, let

l—ag

2(1 — Ozl) 1—m 20¢21)_a20¢1

2(@17 042> = ( +m o2

n(l—ag) m

where

]_—20[1
n—=-———-—, and
a1+a2—1

. mm{(m —an)(ar + as — 1))1052 (s — an)(cy +ag — 1) }

(1—2a1)(209 — 1) (1 —an)? + 20109 — ap — a2

The bound z(aq, az) is well-defined for oy < 1/2. The right-limit exists and equals
one,

lim z=1,
a11l/2

so by continuity I define z2(1/2, as) := 1.

Moreover, given z and C = {ay, as}, define the following system in (g, pux), k =

1,2:
1 m 1—ao
q1 (&1 — 5) + Q2 (Oél + iy — 1) (1 — (IU—Z) ) = O, and (7)
1

1—a2

q1(1 — o) py? = ga (1 — ag) = (ui* 727! = pi3™71) = 0, (8)

quul =2, (9)

@1 +q =1, and (10)

@ (L—on) (1= p5%) 4 g2 (1 — az) (1 — p3*) .

> Chﬂocg—all—ale + QQﬂa<1—a21_&T2+a Va & C, .

Ga(l—a)+q¢p(l—a) > Z qkmm{ ak+a 1 —ap}Vadgl, (12)
k=1,2

where 0 < g, < 1,0 < pp < 1.29

29(7)—(10) corresponds to (3)—(6) when K = 2 (necessary conditions for existence). (11) and (12)
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Lemma 3. Fiz any oy < 1/2 and 1 > ag > 1 — lay. For every z < Z, there exist

probabilities ¢, and qa, and positive numbers py and ps with py, po < 1 that solve (7)-

(12).

Proof. There exists a pooling equilibrium with support {ay, as} only if the demands
a1 and ap along with probabilities ¢; and ¢o, and positive numbers p; and py with
i, 2 < 1 solve (7)— (12). Note that clearly (12) is satisfied for any o ¢ C. Moreover,
note that by Lemma 2, it must be that oy + as > 1,0 < a3 < 1/2 < ap < 1. If
az = 1, (8) can only be satisfied if ¢; = 1, hence, players would not pool over two
demands. So, it is assumed that as < 1.

We can simplify (11) to

2-0(1—0[2

5 > + g1 — o)}

(13)

2 (L= an) (1= %)+ o (1 — ) (1 — 1§%) > max{gy (1 — o) g1 (

In the following, we reduce the system (7)—(10) and (13) to one equation and one
inequality, in one unknown p;. Then we derive an explicit upper bound on z such
that a solution to this system exists. First, we use (10) to replace go by 1 —¢; in (7),

which we can then solve for ¢;:

o 2(a;+ag—1) <1 - (%)ICQ) | (14)
(25 — 1) — 2 (a1 + ap — 1) (/ﬂ)laz

H1

Using these expressions for ¢; and ¢z, we can then solve (9) for ps:

1

2ar + oo — D)™™ — 2 (205 — 1 o2
M2 = (@ 2 1_)a11 (20, ) Ty M1 (15)
201 +ag = 1) (™ = 2) — (1 = 2a1)p

Then, replacing ¢;, g2 and ps in (8), we can write the stubborn type’s indifference as

ensure that neither type has any incentive to deviate to an out-of-equilibrium demand (necessary

and sufficient conditions for existence).
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a function of u; only:

(1— o) (2(=1+ o1 + )y ™ + 2 — 2a92)
2a9—1

1-— ,uaz—cu ( 2(_1 +o + 042)/&_0[1 + (Z — 20‘22) ) -
! (=14 20 +2(—1 + ag + o) (™™ — 2)

(16)

+2(1 — ap) (=14 ag + ap)ps?> * (u; 7 — 2) = 0.

Finally, by replacing ¢, g2 and po, and further simplifying, using (16), we can write

(13) as:
(aq + ag — 1)#%7(12 (ag — o 4+ 2(1 — ag) i)

= (s —an) (o +am— D)+ (1 —an)@as — Dt (17)
Recall that s < py by Lemma 1. Hence, it follows from (15) that
1 < 2. (18)
Moreover, recall that ¢; < 1. Combining (15) and (14), this then requires
o 2(a; +ag — 1) (,u%fo‘1 — z) . (19)

1—2061

In summary, we are left to find sufficient conditions on z such that (16), (17) can be
satisfied subject to (18), (19) (and uy < 1). Formally, we will show that for every
z < Z, (a) there exists pq € (0, 1) solving (16) and (b) this solution satisfies (17)—(19).

Let us change variables from (o, ag, p1) to

].-20[1 o — (V1

v = and y = puy 2.

CY1+062—17 o 1—062

Equations (16) and (17) simplify to:

Fy,z) =0, (20)

z < H(y), (21)
where
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Fy,2) = 22 (y — 2)(1 + A) — (22 — 241 +2 P R Ul
(y,2) =20y — 2)(1+ A) — (22— 2y +72)< y 2 2 A oy
(22)
and
2y(1+<2f+7'>yA) + A
H(y) =y | —= : (23)
y T (2+y)+A
Moreover, (18)—(19) simplifies to
1
z <y, y“’A - éyy < z.
Note that combining the two inequalities implies,
I(y) < z, (24)
where
2y1+A
I(y) .= 25
)= S5 (25)
Define

(=y+2)y ))H o

Gly, 2) = (2 1+
(y,2) =( +7)( S y—2A

A—=21+7)(1+A). (26)

Claim 2. If G(y,z) <0, then

OF (y,2)/0y
" OF(y,2)/0z >0

Note first that F(y,z) is continuously differentiable in y and z and note fur-
ther that OF(y, z)/0z # 0. Hence, by the implicit function theorem, there exists (a
neighborhood of (y, z) = (0,0) and) a unique function J(y) defined over this neigh-
borhood, whose graph (y, J(y)) is the set of all (y, z) such that F(y,z) = 0. Hence,
—(0F (y,2)/0y)/(0F (y,2)/0z) > 0, is equivalent to d.J(y)/dy > 0.
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Tedious algebra (using (20)) shows that

OF(y,z)/0y  Num
OF(y,2)/0z > Den’

where

Num :=(—2 + 2v — ) (&“ﬂ% +2(1—v)(1+ A)) <v1+<2fjw>A7(2 + A = 2(1+ ) (1 + A)) ,

2(24+7)A 2+nA

Den :=(—2+2v — ) (a“ (=14 2022 +9)A — 20" T 7((—2 +2v —)(147)

F (=14 0)2+ ) (=1 +4v+7)A+2(—1 +v)(—1 + 20)(2 + 7)A2>

+4(—1+v)(1+7)(1+A)(2+A)<— 2+7)(1+A) +v(2+%>>)’

and
(z =y
2z +y(—2y2 + )
Let us first consider the sign of Num. Note that v < 1, and hence (—2+2v —7) < 0.

Moreover, note that v!T(+N2)/0+M~ 4 2(1 — ¢)(1 + A) > 0. Hence, if G(y, z) < 0,

vi=1+

then Num > 0. Next, consider the sign of Den. As before, (=2 + 2v — ) < 0.
Moreover, it can easily be shown that if G(y,z) < 0, then Den/(—2 + 2v — ) > 0.3
Hence, if G(y, z) < 0, then Den < 0. Hence, if G(y, z) < 0 is satisfied,

_OF(y,2)/9y
OF (y,z)/0z >0

Claim 3. If H(y) > z, and F(y,z) =0, then G(y,z) < 0.
Suppose not. Suppose H(y) > 0 (and hence, z = 0) and F'(y,0) = 0. This implies
y = 0. Then G(0,0) < 0. Suppose there exists a smallest z > 0 such that H(y) > z,

and F(y,z) = 0 does not imply G(y, z) < 0. For this smallest z, by continuity of all
functions involved, we must have z < H(y), F(y,z) =0 and G(y,z) = 0. F(y,z) =0

30This can easily be seen when G(y, z) = 0.
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and G(y,z) = 0 give explicit formulas for y and z, call them y* and z*. Tedious
algebra shows z* > H(y*), a contradiction.
The last two claims imply that if we derive an upper bound on y, we have an

upper bound on z (recall, z < y).

Claim 4. For every z < Z, there exists y € (0,1) solving F(y,z) = 0. This solution
satisfies 1(y) < z < H(y).
Recall from the previous proof that

(z—y)y
2z +y(—2y2 +7)°

v=1

Then I(y) < z < H(y) becomes

A

O0<v< —5—",
y TRy + A

and (20) (when multiplied by —(2 4 2v —~)/(2 + 7)) becomes F(v) = 0, where

F(v) :== —vy + ¢~ (UH(QLWW)AV —2(-1+v)(1+ A)) :

Note that F(0) = 2y»(1 + A) > 0. Hence, by the intermediate value theorem, it

suffices to find
A

0<v< —=——,
y Ty 4 A

such that F(v) < 0, i.e., v such that

1
N
~ U’)/
y < Fl(”) = < 14 CIA ) .
vy +2(1—v)(1+A)

Hence, we can choose y as

max F}(v).
USAH_AA

(Note that v < A/(y+ A) implies v < A/(y'+2/0+)~ + A) given that y < 1.) This
is achieved by

* : A ( 1+7+A—|—7A>1+7+12+X+VA
v* = min 2 ‘
v+A 72 +7)A
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Hence, the upper bound on y and hence, z is given by
z = Fl (U*)

Hence, to conclude,

1
z = ) )
() TRy 4 21— ) (14 A)

where
S, A <1+7+A+7A>1+7i2+1+'m
v* = min 2 .
7+ A v(2+7)A
Equivalently,
l—ay
_ . 2(1 — 061)(061 + Qg — 1) 1—m 2101271 Tag—aq
Z(ay, ap) = ( 1= 2011 — ) —— tm ’
where

m:mm{(Q(l—041)(0414—042—1))1;22’( (az — a1)(ar + ag — 1) }

(1 —2a1)(2a0 — 1) 1— )2+ 2000 — y — a2

Part 2. Convergence as z — 0.

Proof. The proof of Part 2 of Proposition 1 has the following steps. First, in any
sequence of equilibria, pr — 0 for £ = 1,2 (Claim 5). Second, an equilibrium with
support {aq, s} exists in the limit (Claim 6).

NB. Given that we have established that z > 0 for all ay, ay satisfying a; < 1/2,

a; +ay > 1, ag < 1, we can drop (13) from now on.

Claim 5. For (7)-(10) to be satisfied, lim, o py, = 0 for k=1,2.31

31Here and in what follows, z — 0 is shorthand for lim, e 2, = 0 (and likewise for other

variables).
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By (9) and (10), either lim, ,o g, = 0 or lim,_,o ux = 0 for & = 1,2. Moreover, if
lim, .o qr = 0, then lim, ,o u, = 0. Recall that by Lemma 1, ps < p1, V2 > 0. Hence,
by (9), it follows that lim, ,o o = 0. If lim, ,o po = 0, then (7) can only be satisfied
if lim,_,o g1 = 0: if lim,_,0¢1 = 0, then it must be that lim, ,olo; = 1, and hence,
lim, .oy = 0. Therefore, lim, ,o ur = 0 for k=1, 2.

NB. Recall that by Lemma 1, in order for (7) to be satisfied it must be that
fer1 < pk, Vk, ¥z > 0. Hence, all ratios pe/pp and pg/pgr1 in (7) and (8) are
bounded above by 1. Hence, without loss, assume that these ratios converge. Call

the ratios [y and lpj41.

Claim 6. There exists Z > 0 such that, for z < z, the system (7)-(10) has a solution

with
. . 2 (Oél + g — 1)
gy =le =" %)
1— [6%)
li = 29

We first reduce the system (7)—(10) to two equations. Then we use Taylor ap-
proximations to derive (28) and (29). As before, using (10), we can replace g2 by
1 — ¢y in (7). Similarly, we can then solve (7) for ¢; as a function of p; and us only
and replace ¢; and ¢» in (8) and (9). We can write the stubborn type’s indifference
condition, (8), as:

(1 —2a1) (1 — ay) (,ué_”/,a?l_l - 1321) +2(1—aq) (a1 +ay—1) (lé;” — 1)

= 0.
1% (2 (a1 + as — 1) Z;_IO‘Q — (200 — 1))
(30)
We can then show that
1—ao o o
lim M?_a _2(1— o) (o +a 1). (31)
z—0 i 1 (]_ — 2051) (]. — 062)

More precisely,

(1-2a1) (1 —ay) \Tor 1= 1292 (1 ay—an)
le( ) py "+ Oy - (32)




To derive (31) and (32), note that for (30) to be satisfied either

limls; = Ky, or lim
z—0 7

where K is some positive constant. If lim, ,oly; = Ko, then lim,_,g pé_‘” / p&_o‘l —

0o, and hence, (30) cannot be satisfied. If lim, ,q g **/p; " = Ko, then lim,_,olo; =

0. Hence, we can solve (30) for Kjy:

2(1—&1) (Oél—f-OéQ— 1)
(1-20&1) (1 —042> ’

Ko = (33)

and (31) follows. Using Taylor approximation, we can then derive (32). Using (32),

we can rewrite (9) and (14) as

2
2 —1 (tap)1-ap)-(-ay)? 2202701 0f)
q = (CE; + 0421 ) . kl,UQ T—ay +0 1 T—a; ’ (34)
Qg —
(1 —2a1) (2—041 —a2) —ay %ﬁz(?—ﬂz)
- “+0 1 35
© (1 — Oél) (20{2 — 1) H2 * F ’ ( )

where

2 ag—aq l—ay
b — 2(a; + g — 1) 1 -2 i—ar (1 —qq\ o1
b 200y — 1 2(ay +ay — 1) 1— '

To derive (34), note that we can write ;7% as

Ho +O [, T

_ _ —1=22  (tap(-ap)-(-ay)? 2(2a2-a1-03)
jl-oz _ (1 —201) (1 —ay) —
2L\ 2(1 —ay) (a1 +ag — 1)

Using (35), and recalling that s, = (41~ *'¢1)/2, we can now write s; as a function of

b2 only:

1— o L (1+a2)(1zf}1)17(17a2)2 N o 172a}tioltzfa%_1+a2 (36)
51 =———— — kopt I
2 _ al _ &2 2 2 Y

where

by — (2((1—2a1)(1—a2> ) (2(a1+oz2—1)(1—a1))'

ag+ay—1)(1—a) (202 — 1) (2 — a3 — )

38



Hence,

2 —1 1-—
limr; = (01 % @ ),andlim81=—a2
z—0 2042 — 1 z—0

(37)

— 1 — Q9 '
Finally, I now show that the system (7)—(10) can be solved locally around z = 0,
with S € (O, 1), € (O, 1)
As before, I replace g2 by 1 — ¢; in equations (9), (7) and (8) (using (10)). In

analogue to before, I then solve (7) for ¢; as a function of yy and py only:

2(ay + ag — 1) <1 B (/%)u%)

Q1 = Ttos (38)
(200 — 1) — 2 (a1 + ap — 1) (Z‘)
Using this, I can then use (9) to solve for uy as a function of z and p;:
1
2(+as —1) 1™ — (200 — 1) 2+ o2
pa = fia (o + 09 1)_a11 s — 1) oz : (39)
2( +ay—1) (1™ = 2) = (1 = 200) 11y

Hence, I can express (8) as a function of p; and z only. Let me introduce two auxiliary

variables, p and u, where

al—ag(l—a1)+2a%

p=z O-enl-a2  and (40)
(]_ — 062) (20{2 — 1)

-y —1
u=py T = . 41
i 22— —ag) (a1 +ag—1) (41)
Given (40) and (41), one can derive:
d_p :(2 — a1 — 042) (2(2 — 01 — Oéz)(ozl + Qg — 1)> QIQ:a? -0 (42>
Wlpm-oo 17> (1 - az)(202 — 1)

I can rewrite (8) as a function of p and u, using (40) and (41). Denote this new
function A7 . Taking derivatives w.r.t. p and u, evaluating these derivatives at
p = u = 0 (the solution for z = 0), and rearranging, I get (42), which is clearly finite
and positive:

dp B A ., /Ou
du |, OAs ,/Op

p)=(0,0) (p.)=(0.0) (43)

_2-ai—a) (22— —ap)(a +as— 1)) T
— 1— o < (1 — 012)(2042 _ 1) ) .
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Hence, by the Implicit Function Theorem, the system (7)—(10) can be solved locally
around z = 0 when K = 2, with r; € (0,1), and s; € (0,1). O

Part 3: Convergence as z — 1.

Proof. Consider a pooling equilibrium with support {as,...,ax}. Recall that any
such equilibrium has to satisfy (3)—(6). By (6), either lim,_,; g5 = 0 or lim,_,; g = 1.

The stubborn type’s payoff from ak in a candidate equilibrium is:

[M] =

vs(ak) = ) qe(1 — o) (1 — p™).

k=1
This implies that lim, ,; vs(ag) = 0.
Consider instead, the payoff from making a demand of 1 — ax, where ag is the
highest demand being made in equilibrium:

K

2—ag —«a
it ) = Yo ().
k=1

Unless ¢ = 1 and ax = 1, v5(1 — ax) > 0 for any z € [0,1]. This implies that if
ag < 1, there exists Z < 1 such that for any z > Z, the stubborn type prefers to

deviate to 1 — avge. This implies lim,_,; s = ;. O

O

Proof of Proposition 2. The proof procedes in three steps.

Part 1: Existence of Separating Equilibria for fixed z.

Proof. We start with some preliminary observations. Note that for any z, in any
equilibrium, any separating demand by the stubborn type must be smaller than the
lowest demand assigned positive probability by the rational type. Moreover, the
separating demand can be no higher than 1/2. Otherwise, the rational type would
have an incentive to deviate from this lowest demand to the separating demand by

the stubborn type.
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Note further that for any z, in any separating equilibrium, there can be at most
one separating demand by the stubborn type. If there were multiple, the payoff to
the stubborn type from the higher separating demand would be strictly higher.

Finally, note that the lowest separating demand by the rational type must be in-
compatible with the separating demand by the stubborn type. Otherwise, the stub-
born type would prefer to deviate to the rational type’s lowest separating demand.
Hence, a; + as > 1. Consider the following strategy profile. Suppose the rational
type randomizes over demands «s, ..., ag, i.e., r = 2522 o), T With 2522 T = 1,
and suppose s = d,,. If both players demand a4, there is immediate agreement. If
both players demand a “rational equilibrium demand” (i.e., demands o, o/ € suppr),
there is no immediate concession, and rational player i demanding o' and facing o’
concedes at rate \' = (p(1 — a?))/(a’ + a? — 1). If player i demands «; and player
J demands «; € suppr, player j immediately concedes to ¢ with probability 1. If a
player faces an incompatible demand « ¢ supp s Usupp r, he does not concede. After
the initial demands are made, a player demanding «; is believed to be stubborn with
probability 1. A player demanding « # a is believed to be stubborn with probability
0. This results in the following payoffs:

1
vs(a) = 25 + (1 — 2)ay, and

K
ve(ag) = 2(1—aq) + (1 — 2) Z (1 —ay), Yag € suppr.
k=2

Then the rational type has no incentive to deviate to the stubborn type’s demand
if and only if
1
ve(ag) > 25+ (1—2)ay,

or equivalently, if and only if

2 (= Sl —an) 2 (a1 + XS, ey — 1)
1-23K m(l—ay) 22K R —1

Moreover, note that the stubborn type has no incentive to deviate to 1 — «a iff:

2> z=

vs(aq) > 2(1 — aq).
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Or equivalently, if and only if 2z < z = 2ay. Clearly, neither the rational nor the
stubborn type has any incentive to deviate to any other demand (given the strategy
profile and system of beliefs given above). Hence, there exists a separating equilibrium

if and only if oy < 1/2, @ + g > 1, and

z € [z,7].

Part 2: Convergence as z — 0.

Proof. Note that z is increasing in the excess surplus demanded (a; + Zszz rrog — 1
and z = 0 if and only if @; + as =1 and 71 = 0 and 79 = 1. Hence, lim,_.qr = §;_,,

and lim,_,g s = 4,. O

Part 3: Convergence as z — 1.

Proof. Note Z is increasing in a; and z = 1 if and only if ay = 1/2. Hence, lim,_,; s =

51/2. ]
[

Proof of Proposition 3. Part (i): First, note that we may specify the probability
that a stubborn type picks ay in BA%S denoted mg(ay), such that zagmac(ox) +
zsms(ay) = zsy for every k. This ensures that the posterior probability that a player
is rational is the same in both games, for every «j. Hence, continuation payoffs are
the same. It follows that any equilibrium in B is an equilibrium in BA%S (there are
fewer deviations to deter).

Part (ii) follows from Abreu and Gul (2000): given any distribution over behav-
ioral types, if the type o = 1/2 is present, the rational type makes the offer a = 1/2
with probability 1 in the limit as z — 0. [

32Note that this also implies that there may be equilibria in BA%S that are not equilibria in
B: given that some behavioral types (the AG types) have no ability to deviate, there are fewer

deviations to consider.
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Proof of Corollary 1. Claim 5 and 6 (Proposition 1) implies that for z sufficiently
small s(ag) > 1/2. Hence, if z4¢ = zg, Part 1 of Proposition 3 implies the corollary.

]

Proof of Proposition 4. Consider the two bargaining games, B with (©, P) and B
with (6, P). Note that P is less informative about types than P. Formally, P is a
garbling of P, i.e., there exists a Markov matrix I such that P = I'P. Hence, ignoring
incentive compatibility constraints (i.e., ignoring (3) and (4)), any probability distri-
bution over types that can be generated with P, can be generated with P. Suppose
then that ((r, I, , ), s) is an equilibrium of B, which induces beliefs II. Then there
exists a strategy profile in B that induces beliefs II if and only if P =gogp II.

If (o, F gi’aj)g is an equilibrium of B with support C, then the payoff to a type
0 € (0,1) from demanding « € C is simply a weighted average of the payoff a type 0
and the payoff a type 1 would receive:

vg(ar) = vy (a) + (1 — O)vp(a).

Hence, the payoff is linear in 6. Therefore, if 0,0 € © are indifferent over a set of
demands, so are 0,1 € O, and vice-versa. This implies that (3) and (4) are satisfied
in B. Further, if a deviation outside of the support is unprofitable for both types 0
and 1, then it is also unprofitable for a type 6 € (0, 1), keeping the beliefs off-path
fixed.
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