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Abstract

I consider a model of reputational bargaining in which the stubborn type

can choose their initial demand. There are two types of players: rational and

stubborn. The game has two stages: a demand stage and a concession stage.

Types can pool or separate in equilibrium for any fixed probability of facing

a stubborn type. When the probability of facing a stubborn type is small,

any feasible payoff can be achieved in equilibrium for either type. When the

probability is large, there is either immediate agreement or long delays.
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1 Introduction

In political bargaining, leaders often make public commitments to bolster their po-

sition with foreign counterparts and to signal resolve to domestic audiences. During

the Brexit negotiations, Prime Minister Theresa May publicly articulated a set of

“red lines” (e.g., leaving the single market and the customs union).1 Walking these

back risked severe domestic penalties in Parliament and within her party. Leaders

typically have better private information about the domestic political costs of reneg-

ing, whereas counterparts may be uncertain about how damaging any backtracking

would be to the leader’s credibility at home. How do such strategic public postures

shape the outcome of trade?

This paper explores the middle ground between fully rational agents and behav-

ioral agents, providing a framework for studying bargaining dynamics when players

can strategically commit to postures. Motivated by examples like May during the

Brexit negotiations, I propose a model of reputational bargaining in which the behav-

ioral type can choose their initial demand – essentially determining the posture they

wish to project. This is a departure from the strategy restriction on behavioral types

typically made in the literature on reputational bargaining (Myerson 1991, Abreu

and Gul 2000 [AG] and follow-up papers), where behavioral types cannot choose

their initial demand (and more generally, have no choices to make). Specifically, I

consider a bargaining game with two types of players: rational and stubborn. The

game has two stages: a demand stage and a concession stage. Players simultaneously

make demands, and the game concludes when one player concedes to the other’s de-

mand. Rational players can concede at any point in time, whereas stubborn players

can choose their initial demand but cannot concede thereafter.

I establish the existence of both pooling and separating equilibria for any fixed

probability of facing a stubborn type. When this probability is low, I show that any

1The New York Times, “In ‘Brexit’ Speech, Theresa May Outlines Clean Break for U.K.,” January

17, 2017
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payoff, for both rational and stubborn players, can be achieved in equilibrium. In

fact, this is true both for pooling and separating equilibria. When the probability

is high, there is either immediate agreement or there are prolonged delays, causing

payoffs for both players, regardless of type, to be arbitrarily small.

The intuition behind these results is as follows. A rational player never benefits

from making a demand known to be compatible with the opponent’s, since they

can always concede later. In contrast, a stubborn player risks losing any chance of

agreement if their demand is incompatible with that of a similarly stubborn opponent.

This difference in preferences allows for type separation in equilibrium.

However, types can also pool over multiple demands. As in AG, players (regardless

of their type) face a tradeoff between the amount received if the opponent concedes

and the speed with which the opponent concedes. However, this trade-off is not the

same for the two types. When demands are compatible, the two types receive the

same payoff. When demands are incompatible, there is a cost of being stubborn

(relative to being rational). This cost is smaller the higher the demands. Higher

demands imply a longer war of attrition and hence, the stubborn type’s cost of not

being able to concede is paid “far in the future.”2 Appropriate punishment with off-

path beliefs imply that deviations to other demands are not profitable for either type.

This together implies that types can pool over multiple demands in equilibrium.

A low probability of facing a stubborn type drives equilibrium multiplicity, as the

benefits of making incompatible demands (and leaving nothing on the table) outweigh

the risk of facing a similarly stubborn opponent. This creates a force toward multiple

equilibria, where any payoff can be achieved in equilibrium. In contrast, a high

probability of facing a stubborn type incentivizes players to either reach immediate

agreement or escalate to high demands, prolonging delays and polarizing outcomes.

Thus, the proportion of behavioral types significantly shapes negotiation dynamics

2A rational player is willing to wait to concede only so long as he is uncertain about the opponent’s

type. Hence, the length of the war of attrition determines the payoff difference between the two

types.
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and payoffs.

Much of the literature on reputational bargaining focuses on the limiting case

where the probability of encountering a stubborn opponent is small. In contrast, the

analysis here considers a fixed ex-ante probability of stubbornness, which aligns with

empirical evidence suggesting that stubborn behavior is not uncommon. For example,

Backus et al. (2020) examine behavior patterns in bilateral bargaining using data

from eBay’s Best Offer platform. They find that a significant portion of negotiations

end in disagreement after a delay. Such outcomes are difficult to reconcile with

reputational bargaining models that assume a low probability of stubbornness. In

my model, however, when the probability of facing a stubborn opponent is high, the

likelihood of perpetual disagreement is substantial.

The results on prolonged delays resonate with documented real-world phenom-

ena across various applications. In US politics, for instance, Binder (1999) provides

evidence that intrabranch conflict (and hence, uncertainty as to whether a branch is

willing or able to make concessions) is critical in shaping deadlock. Similarly, Card

(1990) provides evidence that longer strikes in labor disputes are associated with

lower wage settlements – potentially reflecting employers’ stubbornness.

My results emphasize the importance of defining behavioral types based on the

specific context, as different economic applications may call for different approaches.

This model is suited to analyzing situations where agents privately know whether

making demands or threats will limit their flexibility, though this constraint is not

common knowledge. For instance, a political leader may issue demands during in-

ternational negotiations while privately aware that backtracking later would incur

significant political costs (or be impossible). This creates a so-called audience cost:

a domestic political penalty when foreign policy actions are perceived as unsuccess-

ful.3 Such scenarios are not adequately captured by standard models of reputational

bargaining, where players with audience costs (behavioral types) are not strategic

players. In contrast, here behavioral types strategically choose their demands while

3See Fearon (1994) and follow-up papers, Ozyurt (2014) and Ozyurt (2015a,b).
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anticipating the impossibility of future concessions. This allows opponents to update

their beliefs about a leader’s constraints based on the demands made. For example,

during the 2023 US debt ceiling crisis, Republicans insisted on spending cuts as a

condition for raising the debt ceiling, while Democrats argued for a “clean bill” with-

out preconditions. Both sides strategically weighed the political costs of conceding

against the benefits of holding firm on their demands.4

This paper contributes to the literature on bargaining with two-sided incomplete

information. In bargaining with two-sided private information about valuations for

a good, a player’s offer can serve as a signal of their information, which can lead

to multiplicity of equilibria. Signaling allows a player to be “punished with beliefs”

for deviating from a proposed equilibrium path. This can support a wide variety

of behavior, ranging from no trade (Ausubel and Deneckere 1992) to Myerson and

Satterthwaite’s (1983)’s constrained efficient bounds (Ausubel and Deneckere 1993).5

When the two-sided private information is about a player’s ability to concede

rather than their value for the good, this multiplicity disappears. Models on repu-

tational bargaining (Myerson 1991, AG and follow-up papers) have shown that the

so-called Rubinstein-Stahl outcome is the unique outcome in a large class of bar-

gaining protocols when the game is perturbed with simple behavioral types who are

committed to a fixed stance.6 This clear prediction of reputational bargaining models

therefore stands in stark contrast to models where the private information is about

a players’ values for the good. In reputational bargaining models, belief-based pun-

ishments do not arise, despite two-sided incomplete information, because committed

types have no choices to make and are therefore immune to such punishments: they

insist on their pre-specified demands (regardless of their actual preferences over such

4The Guardian, “Danger and deja vu: what 2011 can tell us about the US debt ceiling crisis,”

April 30, 2023.
5For a helpful discussion, see the survey by Fanning and Wolitzky (2022).
6Among others, see Abreu and Pearce (2007), Abreu, Pearce, and Stacchetti (2015), Abreu and

Sethi (2003), Atakan and Ekmekci (2014), Compte and Jehiel (2002), Fanning (2016, 2018, 2021),

Kambe (1994), Kim (2009), Wolitzky (2012).
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demands), forcing behavior onto the equilibrium path.

A closely related paper is Kambe (1994), who also departs from AG by allowing

demands to be chosen rather than assume an exogenously fixed set of commitment

demands. Specifically, players do not know at the time of choosing whether they are

rational or committed: they first select a demand, and only afterward may discover

that they are bound to it. This preserves the payoff predictions, because off-path

punishments cannot be freely used once demands are precommitted in this way.

My model is closer to AG in that types are realized before demands are chosen, but

differs crucially in allowing stubborn types to choose strategically. This flexibility by

the stubborn type has two implications. First, there are more deviations to consider

than in AG, as the stubborn type also needs to be appropriately incentivized. This

in itself is a force towards unique predictions. However, there is a second implication:

conditional on being able to appropriately incentivize the stubborn type, there is

greater flexibility on which demands can be assigned positive probability as coming

from a behavioral type on path. This means it is easier to incentivize the rational

type to be willing to make certain demands. In order to “force” behavior by the

stubborn type onto the equilibrium path for such a variety of demands, we need the

possibility of belief-based punishments off-path: without them, we could not deter

these additional deviations by the stubborn type. In fact, these off-path belief-based

punishments are not enough to deter the stubborn type when the probability of facing

a stubborn type is high. Hence, the flexibility of the stubborn types together with

the possibility of belief-based punishments off-path are two crucial features of my

environment that allow for Folk theorem like payoff multiplicity when the probability

of facing a stubborn type is small.

This paper explores the middle ground between fully rational agents and fully

committed agents who have no strategic choices to make. When behavioral types

are given the ability to choose their initial stance, the possibility of belief-based

punishments plays an important role in establishing a Folk Theorem when the ex-

ante probability of encountering a behavioral type is small. Reducing the probability
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of being behavioral in classical models of reputational bargaining is a force towards

efficiency. Here, it is a force toward multiplicity. Equilibria retain a war of attrition

structure, but uncommitted players no longer necessarily mimic behavioral types.

When the ex ante probability of behavioral types is high, the Folk Theorem breaks

down: the force of belief-based punishments is not enough to deter stubborn types

from deviating (to compatible demands).

2 Model
Time is continuous, and the horizon is infinite. Two players decide on how to split a

unit surplus. At time t = −1, players i and j simultaneously announce demands, αi

and αj, with αi, αj ∈ [0, 1]. If αi + αj ≤ 1, the demands are said to be compatible.

In this case, the game ends. If αi + αj > 1, the demands are incompatible. In this

case, a concession game starts at t = 0. The game ends when one player concedes.

Concession means agreeing to the opponent’s demand.

Each player i is rational with probability 1− z and stubborn with probability z,

where z ∈ (0, 1). Before the game starts, each player privately learns whether he is

stubborn or rational. A rational player i = 1, 2 can make any demand αi ∈ [0, 1] at

time 0 and concede to his opponent at any point in time. Stubborn player i can choose

his initial demand αi ∈ [0, 1] but cannot concede to his opponent. Note that this is

unlike in AG, where a stubborn player cannot choose his initial demand. A strategy

for a stubborn player, i, σs,i, is defined by a Borel probability measure si on [0, 1] (his

demand αi). A strategy for a rational player i, σr,i, is defined by a Borel probability

measure ri on [0, 1] (his demand αi) and a collection of cumulative distributions F r,i
k,`

on R+ ∪{∞} for each incompatible pair of realized demands (αi, αj) = (αk, α`) with

αk + α` > 1.7 Throughout, I restrict attention to equilibria that involve strategies si

and ri with finite support.8 For any x ∈ [0, 1], let δx denote the Dirac measure at x.

7The set of (demand) strategies (measures) is endowed with the topology of weak convergence.

Throughout, this is how limits are understood.
8That is, I focus on equilibria such that this is the case, but I do not impose that players cannot

deviate to arbitrary demand strategies.
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Thus, a strategy with finite support C = {α1, . . . , αK} and weights (ri1, . . . , r
i
K) for

rational player i (resp. (si1, . . . , s
i
K) for stubborn player i) is

r i =
K∑
k=1

rik δαk , s i =
K∑
k=1

sik δαk ,

with rik, s
i
k ≥ 0 and

∑K
k=1 r

i
k =

∑K
k=1 s

i
k = 1. Throughout, I use the notation that

lower demands have lower subscripts, i.e., αk < αk+1.

For realized demands αi = αk and αj = α` with αk + α` > 1, let F r,i
k,`(t) denote

the probability that a rational player i concedes to player j by time t ≥ 0. The

(unconditional) probability that player i concedes by time t is

F i
k,`(t) =

(
1− π i(αk)

)
F r,i
k,`(t),

where the posterior that i is stubborn after observing αi = αk ∈ C at time t = −1

(given σr,i and σs,i) is

π i(αk) =
z sik

z sik + (1− z) rik
.

Therefore, if αi = αk ∈ C,

lim
t→∞

F i
k,`(t) ≤ 1− π i(αk).

Note that F i
k,`(0) may be positive; this is the probability that i immediately concedes

to j.

Player i’s discount rate is ρ > 0, for i = 1, 2. The continuous-time bargaining

problem is denoted B = {z, ρ}. If αi+αj ≤ 1 at t = 0, player i receives αi and 1−αj

with probability 1/2.

Suppose that (αi, αj) = (αk, α`) is observed at time 0, with αk + α` > 1. Given

a strategy profile σ̄ = (σ i, σ j) with σ i = (σr,i, σs,i), the expected payoff to rational

player i from conceding at time t is

U i(t, σ j | k, `) = αk

∫
y<t

e−ρy dF j
`,k(y) +

αk + 1− α`
2

(
F j
`,k(t)− F

j
`,k(t

−)
)
e−ρt

+ (1− α`)
(
1− F j

`,k(t)
)
e−ρt,
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where F j
`,k(t

−) := limy↑t F
j
`,k(y).Thus player i receives (i) the discounted value of αk

if j concedes first, (ii) (αk + 1 − α`)/2 if they concede simultaneously at t, and (iii)

1− α` if i concedes first. If i never concedes,

U i(∞, σ j | k, `) = αk

∫
[0,∞)

e−ρy dF j
`,k(y),

which coincides with the stubborn player’s payoff when facing an incompatible de-

mand.

Since F i
k,` describes the concession behavior of a player, unconditional on his

type, a rational player i’s concession behavior is described by is F r,i
k,` = 1/(1 −

π i(αk))F
i
k,`. Therefore the rational player’s expected utility from using F i

k,`, con-

ditional on (αk, α`), is

U i(σ̄ | k, `) =
1

1− π i(αk)

∫
[0,∞)

U i(y, σ j | k, `) dF i
k,`(y).

Finally, the rational player’s ex-ante expected utility under σ̄ is

U i(σ̄) =
K∑
k=1

r ik

[ ∑
`:α`≤1−αk

αk + 1− α`
2

(
(1− z) r j` + z s j`

)
︸ ︷︷ ︸

compatible at t=−1

+
∑

`:α`>1−αk

U i(σ̄ | k, `)
(
(1− z) r j` + z s j`

)
︸ ︷︷ ︸

incompatible, concession game

]
.

For later use, define the opponent’s probability of facing αk by

q
(−i)
k := (1− z) r

(−i)
k + z s

(−i)
k ,

and define player i’s strength at αk by

µ i(αk) :=
(
π i(αk)

) 1
1−αk .

Write µik := µi(αk). In all formal statements and proofs the index notation µik is

used, while numerical examples with explicit demands use the functional notation

µi(α); when α = αk this coincides with µik.
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I follow the literature in modeling the bargaining as a war of attrition (rather than

allowing players to revise their demands). This is inspired by Myerson’s (1991) insight

that revising one’s demand reveals rationality, so that it is equivalent to conceding

(in the context of his model, which is closely related, but not identical to mine).9

A crucial feature of the model – one that departs from AG – is that initial de-

mands are chosen simultaneously. This assumption is essential for the existence of

pooling equilibria involving more than one offer. If demands were instead made se-

quentially, symmetric pooling would not be robust, although Folk-theorem-like payoff

multiplicity would still arise.

For the analysis in B = {z, ρ}, I use the solution concept of (weak) Perfect

Bayesian equilibrium (PBE). A PBE is a profile of strategies σ∗ = (σ1∗, σ2∗) and a

system of initial beliefs mapping demands into probabilities that a player is stubborn,
πi : [0, 1]→ [0, 1] for i = 1, 2,

such that (1) the strategy maximizes a player’s expected utility (given beliefs), and

(2) if an information set is reached with positive probability given the strategy profile,

beliefs are formed according to Bayes’ rule; and if an information set is not reached

with positive probability given the strategy profile, beliefs are arbitrary probabilities

that a player is stubborn.10

Henceforth, equilibrium refers to weak PBE (see Fudenberg and Tirole, 1991 for a

definition).11 I focus on symmetric equilibria. By symmetric equilibria I mean equi-

libria where ri = rj and si = sj – i.e., the identity of a player does not matter. Only
9AG show that any convergent sequence of equilibrium outcomes within a broad family of

discrete-time games must converge to the unique continuous-time equilibrium outcome as the max-

imum time between consecutive opportunities to revise demands goes to 0. Of course, the modeling

of AG differs from mine in some respects. Moreover, types in AG do not separate in equilibrium.

As we will see, they can do so here, and hence, modeling the bargaining as a war of attrition entails

some loss of generality here.
10While PBE is permissive with regards to off-path beliefs, this flexibility turns out to matter

only for “high” off-path demands.
11To the extent that the concession behavior is a direct consequence of the demands made, I refer

to an equilibrium by its support and the probabilities associated with that support.
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his type does. This suffices to establish payoff multiplicity.12 To simplify notation, I

omit superscripts indicating a player’s identity unless clarification is necessary.

I denote an equilibrium by (z, r, s), where z is the probability of a stubborn

type, r is the rational type’s strategy, and s is the stubborn type’s strategy. The

corresponding equilibrium payoffs are vr(z, r, s) for the rational type and vs(z, r, s)

for the stubborn type. For brevity, I often write simply vr and vs when the equilibrium

is clear from context.

3 Main Results
The two main propositions establish existence of pooling and separating equilibria

for a given ex ante probability of facing a stubborn type, z. I define an equilibrium

as pooling if both types (of both players, by symmetry) make the same demands

in equilibrium with positive probability, and as separating if each demand made in

equilibrium perfectly reveals the player’s type. Additionally, the propositions estab-

lish limits for payoffs and probabilities as the probability of encountering either type

vanishes. Specifically, I establish Folk theorem-like payoff multiplicity when the stub-

born type vanishes. Conversely, when the probability of the rational type vanishes,

there is either immediate agreement or infinite delay.

Before turning to non-degenerate pooling, it is useful to note that there always

exist degenerate single-demand pooling equilibria. If all types demand α = 1/2,

agreement is immediate and both players obtain the efficient payoff of 1/2. If all

types demand α = 1, then there is infinite delay and both players obtain a payoff of

0. We now turn to the existence of non-degenerate pooling equilibria, in which types

pool on more than one demand, and which give rise to the Folk-theorem result.

To illustrate, let us begin with an example of a pooling equilibrium featuring two

demands. Suppose the prior probability of the stubborn type is z = 1/10. Then the

following is an equilibrium: the rational and the stubborn type randomize over 1/3

12Note that given the assumption of symmetry, multiplicity refers to delay rather than division

of surplus.
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and 4/5 with

r ≈ δ1/30.381 + δ4/50.619, and s ≈ δ1/30.230 + δ4/50.770.

Once the initial demands have been made, the war of attrition proceeds exactly as

in AG.13 If both players demand 1/3, there is immediate agreement (which ends the

game). If both players demand 4/5, there is no immediate concession, and the ratio-

nal player concedes at a rate that keeps their opponent indifferent between waiting

and conceding. If players make different demands, then the player demanding 4/5

concedes immediately with probability ≈ 0.72. Thereafter, players concede at a rate

that keeps their opponent indifferent between waiting and conceding (meaning the

player demanding 4/5 concedes at a slower rate than the player demanding 1/3).

If a player faces an unexpected, incompatible demand α 6∈ {1/3, 4/5}, he does not

concede.

After the initial demands are made, a player demanding 1/3 is believed to be

stubborn with probability π(1/3) ≈ 0.063. A player demanding 4/5 is believed to be

stubborn with probability π(4/5) ≈ 0.121. If either player demands α 6∈ {1/3, 4/5},

he is believed to be rational with probability 1.14

13Specifically, the war of attrition for incompatible demands unfolds as follows. The player making

the higher demand concedes with positive probability at time 0. More precisely, player j’s immediate

concession probability when demanding αj = αk and facing a demand of αi = α` is given by

F jk,`(0) = max

{
1−

(
µk
µ`

)1−αk

, 0

}
.

In equilibrium µk ≥ µ` if and only if αk < α` – see Lemma 1 in the Appendix. Thereafter, players

concede at a rate that keeps their opponent indifferent between waiting and conceding. Finally,

there is a finite time by which the posterior probability of stubbornness reaches 1 simultaneously

for both players and concessions by the rational type stop.
14Note that for any deviating demand α ≤ 0.619, it is sufficient that the deviating demand α is

believed to come from the stubborn type with probability π(4/5)(1−α)/(1−4/5) so that µ(4/5) = µ(α).

This ensures that a demand 4/5 does not lead to concession with positive probability at time 0 to

such an out-of-equilibrium demand, but simply to concession at a rate that keeps the opponent

indifferent between waiting and conceding. For demands α > 0.619, we ensure equilibrium existence
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These strategies result in the following payoffs. A rational player demanding

1/3 receives 1/2 when facing a demand of 1/3, and receives a payoff of 0.2962 when

facing a demand of 4/5. A rational player demanding 4/5 receives 0.6667 when facing

a demand of 1/3 and a payoff of 0.2 when facing a demand of 4/5. Hence, fixing the

opponent’s strategy, the rational player expects the same payoff of 0.3708 from either

of the equilibrium demands 1/3 and 4/5. A stubborn player demanding 1/3 receives

1/2 when facing a demand of 1/3, and receives of a payoff of 0.2946 when facing

a demand of 4/5. A stubborn player demanding 4/5 receives 0.6426 when facing a

demand of 1/3 and receives 0.19996 when facing a demand of 4/5. Hence, fixing

the opponent’s strategy, the stubborn player expects the same payoff of 0.3619 from

either demands 1/3 or 4/5. The difference in the two types’ payoffs comes from the

fact that the stubborn type is unable to concede even when he puts probability 1 on

being faced with a stubborn opponent. This difference in the two types’ payoffs is

smaller the smaller the ex ante probability of facing a stubborn type. As a result, in

the limit, as the stubborn type vanishes, the payoff to the two types is identical.

Figure 1 illustrates the expected payoff from an equilibrium demand (shown as

red and blue dots for the rational and stubborn type respectively at α = 1/3, 4/5)

and contrasts it to the payoff a rational (stubborn) player could receive from devi-

ating to any other demand. Since after a deviation an opponent never concedes to

an incompatible demand, we can limit attention to the deviations that are exactly

compatible with some demand of the opponent: 2/3 and 1/5. Neither player gains

from such a deviation. Clearly, the payoff from making any demand less than 2/3 is

strictly less than the equilibrium payoff; for demands above 2/3, the payoff is identi-

cal and hence, the rational type is willing to make the equilibrium demands. For the

stubborn type, the equilibrium payoff is strictly higher than the stubborn type could

get from any other demand.

Before stating the first main result formally, given a pair (α1, α2), with α1 ∈

by assigning probability 1 to the deviating demand coming from a rational type, which deters the

stubborn type from deviating.
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Figure 1: Expected payoff from making demand α for the rational (red) and stubborn

(blue) type (pooling equilibrium). Here z = 1/10 and the equilibrium demands are

α ∈ {1/3, 4/5}.

(0, 1/2) and α2 ∈ (1− α1, 1], let

z̄(α1, α2) =

(
2(1− α1)(α1 + α2 − 1)

(1− 2α1)(1− α2)

1−m
m

+m
2α2−1
1−α2

)− 1−α2
α2−α1

where

m = min

{(
2(1− α1)(α1 + α2 − 1)

(1− 2α1)(2α2 − 1)

) 1−α2
α2

,
(α2 − α1)(α1 + α2 − 1)

(1− α2)2 + 2α1α2 − α1 − α2
1

}
.

For α1 = 1/2 and α2 > 1/2, let z̄(1/2, α2) = 1. Note that z̄ > 0 for all α1 ≤ 1/2

and 1 > α2 > 1− α1.

Proposition 1. 1. [Existence of Two Demand Pooling Equilibria] Fix any

α1 < 1/2 and 1 > α2 > 1− α1. There exists a pooling equilibrium (z, r, s) with

finite support C = {α1, α2},

∀z ∈ [0, z̄].

2. [Convergence as stubborn types vanish] Let (zn, rn, sn) be a convergent

sequence of pooling equilibria with finite support Cn = {α1, α2} and limn→∞ z
n =
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0. Then along any such sequence,

lim
n→∞

rn = δα1

2(α1 + α2 − 1)

2α2 − 1
+ δα2

1− 2α1

2α2 − 1
,

and

lim
n→∞

sn = δα1

1− α2

2− α1 − α2

+ δα2

1− α1

2− α1 − α2

.

Moreover,

lim
n→∞

vnr = lim
n→∞

vns =
1

2
−
(

1
2
− α1

)2

α2 − 1
2

.

3. [Convergence as rational types vanish] Let (zn, rn, sn) be a convergent

sequence of pooling equilibria and limn→∞ z
n = 1. Then along any such sequence

EITHER (1)

lim
n→∞

rn
(

1

2

)
= 1, and lim

n→∞
sn = δ1, with lim

n→∞
vnr = lim

n→∞
vns = 0,

OR (2)

lim
n→∞

rn = lim
n→∞

sn = δ 1
2
, with lim

n→∞
vnr = lim

n→∞
vns =

1

2
.

The first part of Proposition 1 establishes that for any fixed probability of facing

a stubborn type z ∈ (0, 1), there exist pooling equilibria with two demands.15 For

instance, a pooling equilibrium, where both types randomize over α1 = 49/100 and

α2 = 99/100 exists for any z ≤ 0.978. Conversely, a pooling equilibrium, where

both types randomize over α1 = 1/3 and α2 = 4/5 exists for any z ≤ 0.627. More

generally, for every z ∈ (0, 1) one can select (α1, α2) such that a two-demand pooling

equilibrium exists.

To gain intuition for why players can be made indifferent over multiple demands,

it is helpful to consider the tradeoffs involved in choosing a demand. First, play-

ers of either type face a tradeoff between the amount they receive if their opponent

concedes and the speed at which the opponent concedes. Fixing the opponent’s con-

cession behavior, a player’s payoff increases with their demand. However, the higher
15A complete characterization of all equilibria can be found in the working paper version on the

author’s website.
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the demand, the slower the opponent concedes. This tradeoff makes intermediate

demands particularly appealing and results in a rational payoff that is single-peaked

in their own demand, as in AG.

Second, these tradeoffs vary between the two types. When demands are compat-

ible, both types receive the same payoff. When demands are incompatible, however,

the rational type’s expected payoff is higher than that of the stubborn type. This

is because, unlike the stubborn type, the rational player can choose to concede. A

rational player is willing to wait as long as there is uncertainty regarding the oppo-

nent’s type. But once the rational player assigns probability 1 to facing a stubborn

opponent, the rational player strictly prefer to concede, whereas the stubborn type

cannot concede. This results in the rational type achieving a higher (expected) payoff

than the stubborn type when demands are incompatible.

The difference in payoffs when facing an incompatible demand depends on the level

of the demands. Specifically, this difference is smaller for higher demands. Higher

demands lead to a slower concession rate, prolonging the war of attrition. Conse-

quently, the point at which the rational player strictly prefers to concede is pushed

“far into the future.” Due to discounting, the stubborn type’s cost of being unable

to concede becomes minimal when demands are high. Therefore, when demands are

incompatible, the payoff difference between the two types is smaller the higher the

demands. As a result, preferences do not satisfy the single-crossing property.

Finally, the appropriate off-path beliefs ensure that neither type has an incentive

to deviate to out-of-equilibrium demands. Specifically, assigning sufficiently high

probability to any deviation coming from the rational type ensures that both types

find it optimal to stick to the equilibrium demands.16 As in AG, off-path beliefs are
16Specifically, in a pooling equilibrium with support C = {α1, α2}, requiring π(α) =

π(α2)(1−α)/(1−α2) is sufficient if α is sufficiently low, i.e., if:

q1
α+ 1− α1

2
+ (1− q1)(1− α2)(1− µα2 ) ≤ q1

α2 + 1− α1

2
+ (1− q1)(1− α2)(1− µα2

2 ).

If this condition is violated, we specify that π(α) = 0, which deters the deviation. Note that in AG,

any deviation is automatically assigned probability 1 as coming from the rational type, as stubborn
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central to disciplining deviations but play an additional role in my model. In their

framework, any off-path demand is automatically attributed to the rational type, a

reasonable specification given that committed types cannot deviate. This sustains

a unique outcome by forcing play onto the set of commitment demands. In the

present model, committed types also choose their initial demands: this means there

are more deviations (by the stubborn type) that need to be deterred (a force towards

unique predictions).17 It is here that belief-based punishments play a crucial role:

they are needed to “force” behavior by the stubborn type onto the equilibrium path.

So, payoff multiplicity emerges if sufficiently high off-path demands are punished by

assigning probability one to the rational type. If, instead, such dogmatic beliefs are

ruled out and all deviations must be assigned positive probability of stemming from a

committed type, then the only symmetric pooling equilibrium is the efficient outcome

where all types demand 1/2. Thus, the Folk theorem result hinges on the scope for

extreme off-path punishments, in contrast to AG where such punishments collapse

behavior to a unique outcome.

The second part of Proposition 1 demonstrates the convergence of strategies and

payoffs as the probability of facing a stubborn type vanishes. It shows that any

feasible payoff can be sustained in equilibrium for either type, when the probability

of facing a stubborn type is small enough. Here, inefficiency is measured by the

distance between 1/2 and the lower demand α1, as well as the distance between

α2 and 1. When α1 is close to 0 (and hence, α2 close to 1), a player’s expected

equilibrium payoff is close to 0. A demand α2 close to 1 implies that a player almost

certainly will face a demand of α2 which induces a long war of attrition. If, on

the other hand, α1 is close to 1/2, a player’s expected payoff is close to 1/2 (when

players are equally patient). When demands are close to 1/2, the war of attrition

types have no choices to make.
17As discussed previously, there is also a second implication: conditional on being able to appro-

priately incentivize the stubborn type, there is greater flexibility on which demands can be assigned

positive probability as coming from a behavioral type on path. This means it is easier to incentivize

the rational type to be willing to make certain demands.
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is short, minimizing inefficiency. By adjusting α1 and α2, one can generate in this

fashion any payoff between 0 and 1/2. Interestingly, fixing α1, a higher α2 actually

increases the limiting equilibrium payoff. Although this may seem counterintuitive

– since a symmetric equilibrium with the highest payoff occurs when both types

demand 1/2 with probability 1 – a rational player facing a demand of α2 receives a

payoff of 1− α2 < 1/2. Hence, conditional on meeting a demand of α2, the rational

type’s payoff increases as α2 decreases. However, there is a dominating effect: as α2

increases, the likelihood of the rational type demanding α2 decreases.

The third part of Proposition 1 considers the case where the probability of facing

a stubborn type is high. In such cases, any pooling equilibrium, regardless of the

number of demands in the support of the strategy, leads to one of two outcomes: either

immediate agreement with compatible demands, or prolonged delays that ultimately

result in a payoff of zero for both types as z → 1. To illustrate the logic, return to

the example of demands α1 = 1/3 and α2 = 4/5. When z = 0.9, players can still

be made indifferent between these two demands. However, indifference alone is not

sufficient for equilibrium: at such high probabilities of stubbornness, the cost of a

prolonged standoff becomes substantial for stubborn types. As a result, a stubborn

type has an incentive to deviate to a compatible demand (such as 1/5) to avoid the

risk of deadlock with another stubborn opponent. This is why “moderate” demands

can no longer be sustained in equilibrium as z becomes large, even if indifference

across them can still be maintained.

Let me now illustrate the structure of the separating equilibria. Suppose the prior

probability of the stubborn type is z = 1/2. Then the following is an equilibrium: the

stubborn type demands 1/3 and the rational type demands 4/5.18 In other words,

the stubborn type makes a less aggressive demand than the rational type. After the

initial demands are made, a player demanding 1/3 is believed to be stubborn with

probability 1 and a player demanding 4/5 is believed to be rational with probability

1. If either player demands α 6∈ {1/3, 4/5}, the player is believed to be rational

18There exists a separating equilibrium with these demands for z ∈ [4/9, 2/3].
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Figure 2: Expected payoff from making demand α for the rational (red) and stubborn

(blue) type (separating equilibrium). Here z = 1/2, and the equilibrium demands

are 1/3 (for the stubborn type) and 4/5 (for the rational type).

with probability 1. After the initial demands, the game unfolds as follows. If both

players demand 1/3, there is immediate agreement and both players receive 1/2. If

one player demands 1/3, and the other 4/5, the player demanding 4/5 immediately

concedes with probability 1. If both players demand 4/5, then a war of attrition

starts, giving both (rational) players a payoff of 1/5.19 Fixing the opponent’s strategy,

a rational player receives an expected payoff of 0.4333 from the equilibrium strategy,

and the stubborn type receives 0.4167. Figure 2 illustrates the expected payoff from

an equilibrium demand (as before shown as red and blue dots for the rational and

stubborn type respectively) and contrasts it to the payoff a rational (stubborn) player

could receive from deviating to any other demand. Note that so long as the demand

is compatible with the stubborn type’s demand (i.e., demands up to 2/3 for the

demands chosen in Figure 2), the payoff to a rational and a stubborn type from a

19Note that in the continuation game involving two rational players, there exists another equilib-

rium with immediate concession. However, any such continuation strategies would make it profitable

for the stubborn type to imitate the rational type and hence, cannot be part of an equilibrium.
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deviation is identical.

As we will see, the feature that the stubborn type’s demand is below the rational

type’s demand is true in any separating equilibrium: stubborn types are more con-

servative in their demands compared to rational types, because it is more costly to

them if demands are incompatible.

Proposition 2. 1. [Existence of Separating Equilibria] Fix any set of de-

mands {α1, . . . , αK} with K ≥ 2. Then there exists a fully separating equilib-

rium if and only if α1 < 1/2, α1 + α2 > 1 and

z ∈

[
2(α1 −

∑K
k=2 rk(1− αk))

1− 2
∑K

k=2 rk(1− αi)
, 2α1

]
,

where (r2, . . . , rK) are weights s.t.
∑K

k=2 ri = 1. Moreover, in any such sepa-

rating equilibrium, s = δα1 and r =
∑K

k=2 δαkri.

2. [Convergence as stubborn types vanish] Let (zn, rn, sn) be a convergent

sequence of separating equilibria and limn→∞ z
n = 0. Then there exists α ∈

(0, 1/2) such that limn→∞ r
n = δ1−α and limn→∞ s

n = δα. Moreover,

lim
n→∞

vnr = lim
n→∞

vns = α.

Conversely, for every α ∈ (0, 1/2), there exists a convergent sequence of sepa-

rating equilibria (zn, rn, sn) with limn→∞ r
n = δ1−α and limn→∞ s

n = δα. More-

over,

lim
n→∞

vnr = lim
n→∞

vns = α.

3. [Convergence as rational types vanish] Let (zn, rn, sn) be a convergent

sequence of separating equilibria and limn→∞ z
n = 1. Then along any such se-

quence, limn→∞ s
n = δ1/2. Moreover, limn→∞ r

n (1/2) = 0. Along any such

sequence,

lim
n→∞

vnr = lim
n→∞

vns =
1

2
.
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The first part of Proposition 2 establishes existence of separating equilibria for

any fixed ex ante probability of facing a stubborn type. This result is stronger than

the first part of Proposition 1 as it provides both necessary and sufficient conditions

for the existence of any separating equilibrium. It is straightforward to verify that for

every z ∈ (0, 1), one can select demands {α1, α2} such that a separating equilibrium

exists.20 In any such equilibrium, if one player is stubborn, agreement is immediate.

In other words, here, delay signals rationality rather than stubbornness: delay only

occurs when two rational players face one another, which contrasts with the dynamics

of pooling equilibria.21

The second part of Proposition 2 derives the limits of strategies and payoffs as

the probability of facing a stubborn type vanishes. In the limit, the two types make

exactly compatible demands, and in this way, any feasible payoff can be sustained in

equilibrium for either type as the probability of facing a stubborn type vanishes.

Finally, the third part of Proposition 2 addresses convergence as the probability

of facing a rational type approaches zero. Here, the stubborn type makes a demand

of 1/2, resulting in a payoff of 1/2 for both types. The intuition behind this result is

straightforward: as the probability of facing a stubborn type increases, so does the

stubborn type’s incentive to deviate from its separating demand to a complemen-

tary demand. This incentive diminishes as the stubborn type’s separating demand

increases, ultimately leading to the equilibrium outcome.

Taken together, Propositions 1 and 2 show that payoff multiplicity arises in sym-

20To see this, note that the lower bound converges to 0 as α1 + α2 → 1 and the upper bound

converges to 1 if α2 → 1.
21Modeling the bargaining as a war of attrition entails some loss of generality here: if rational

players could revise their demands, there exists another equilibrium of the continuation game which

does not entail delay: if the incompatible demands revealing rationality are observed by both players,

players revise their offers to 1/2. If one of the players does not revise their demand, probability

1 is placed on this deviation coming from a rational type and hence, not revising one’s offer from

the original incompatible offer does not lead to concession by the opponent – thereby ensuring the

stubborn type has no incentive to deviate from his demand.
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metric pooling and separating equilibria when the probability of facing a stubborn

type is small, but breaks down as this probability becomes large. More generally, as

the probability of the rational type vanishes, the game reduces to a Nash demand

game among stubborn players. In any symmetric equilibrium – whether pooling, sep-

arating, or semi-separating – an argument similar to that in the proof of Proposition

2(c) implies that the limiting payoffs converge to (1/2, 1/2) (efficient agreement) or

(0, 0) (complete breakdown).22 By contrast, when asymmetric equilibria are consid-

ered, any division of the surplus between the two players can be sustained in the

limit.

The preceding propositions do not exhaustively characterize equilibria, even under

symmetry and finite support. In particular, there exist pooling equilibria supported

on more than two demands for fixed z, as well as a variety of semi-separating equi-

libria. I restrict attention to the pooling and fully separating cases, as it suffices

to establish payoff multiplicity. Allowing for asymmetric equilibria leads to a still

richer set of outcomes. To see this, note that for any α ∈ (0, 1) there exists a pooling

equilibrium in which player 1 demands α and player 2 demands 1−α, yielding asym-

metric payoffs (α, 1− α). Hence, an asymmetric Folk theorem holds: any division of

the surplus between players can be sustained in equilibrium (for any z ∈ (0, 1)).

4 Type space

This section locates a boundary of the multiplicity result: once an AG type with

α = 1/2 is present (in addition to the stubborn type), the scope for payoff multiplicity

disappears in the vanishing-behavioral limit, and equilibrium payoffs collapse to the

efficient payoff 1/2 for all players. However, away from that vanishing-behavioral limit

– or if the support of AG types does not include α = 1/2 – equilibrium multiplicity

22Essentially, the stubborn type will always prefer to make a compatible demand in this case

(unless making a compatible demand gives 0 payoff). Hence, within the class of symmetric equilibria,

the stubborn type either demands 1/2 or 1. Hence, both types payoffs are either 1/2 or 0 in the

limit.
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can persist.

Specifically, consider a model with a (finite) set of AG types CAG with one sim-

ple change: each player is behavioral à la AG with probability zAG, stubborn with

probability zS and rational otherwise. I denote by πAG(α) the conditional probability

that a player is an AG type α given that the player is an AG type. Hence, πAG is

a probability distribution on CAG. Denote this game BAG,S. For any comparison

between BAG,S and B, I assume zAG + zS = z.

Proposition 3. 1. Fix an equilibrium (z, r, s) with finite support C = {α1, . . . , αK}

in B. Then there exists an outcome equivalent equilibrium in the game BAG,S

if and only if zAGπAG(αk) ≤ zsk for all αk ∈ C, and πAG(α) = 0 for any α 6∈ C.

2. Suppose 1/2 ∈ CAG. Let (znAG, z
n
S , r

n, sn) be a convergent sequence of pooling

equilibria and limn→∞(znAG + znS) = 0. Then limn→∞ r
n = δ1/2. Moreover,

limn→∞ v
n
r = limn→∞ v

n
s = 1/2.

The first part of Proposition 3 implies that there is multiplicity away from the

limit, even when there is an AG type demanding α = 1/2: for an equilibrium in

B there exists an outcome-equivalent equilibrium in BAG,S exactly when the joint

distribution of behavioral types – AG types and stubborn types – can reproduce

the on-path posteriors in the equilibrium in B. Intuitively, stubborn types act like

“flexible” AG types whose demand can be allocated to match the baseline; feasibility

therefore holds provided that, at every on-path demand α, the exogenous AG mass at

α does not exceed the behavioral mass that the baseline equilibrium in B assigns to α.

When an AG type with α = 1/2 is present and zAG is sufficiently small relative to zS,

this condition is met, so the posteriors can be replicated and the payoff multiplicity

with α = 1/2 persists away from the vanishing-behavioral limit. The second part

of the proposition shows that this multiplicity collapses to the efficient payoff 1/2

whenever an AG type α = 1/2 is present and the probability of facing a behavioral

type (of either kind) vanishes.

23



Corollary 1. Suppose CAG = {α2} with α2 > 1/2 and suppose zAG = zS = z. Then

there exists z̄ > 0 such that for every z < z̄ and every α1 satisfying α1 + α2 > 1 and

α1 < 1/2, there exists a pooling equilibrium with support {α1, α2}. Let (zn, rn, sn) be

a convergent sequence of pooling equilibria with support {α1, α2} and limn→∞ z
n = 0.

Then

lim
n→∞

vnr = lim
n→∞

vns =
1

2
−
(

1
2
− α1

)2

α2 − 1
2

> 1− α2.

The corollary establishes payoff multiplicity when there is a single AG type α >

1/2 and the probability of facing a behavioral type (of either kind) is small.

Note that there exist equilibria in BAG,S where no outcome equivalent equilib-

rium exists in B: this is precisely because there are fewer incentive compatibility

constraints to satisfy in BAG,S than in B.23

5 Varying abilities to concede
Many real-world negotiations, particularly in political and labor disputes, involve

parties who are uncertain about their own ability to hold out. For instance, a labor

union might be unsure about its members’ commitment to continue striking, or a

political negotiator may believe they can concede but remain uncertain about whether

they can truly afford to do so. This uncertainty highlights the value of exploring

a generalized version of the model presented in this paper. Specifically, I aim to

capture the idea that players may have differing abilities to concede. Initially, a

player may only know the probability with which they can concede, discovering their

true capacity for concession only when they attempt it. This idea can be formalized

in the following model.

Each player is either rational or stubborn. Ex ante, each player i privately observes

a signal θi ∈ Θ, where Θ ⊆ [0, 1] is finite. Conditional on θi = θ, player i is stubborn

with probability θ (and rational with probability 1−θ). Signals are drawn i.i.d. from

the discrete distribution P̄ on Θ with masses (p̄θ)θ∈Θ, i.e. P̄ =
∑

θ∈Θ p̄θ δθ, so that∑
θ∈Θ p̄θ = 1.

23Examples of such equilibria are readily available on request.
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As before, the solution concept is weak PBE. Recall that PBE imposes no restric-

tion on off-path beliefs: regardless of the mass points of P̄ , we can assign arbitrary

beliefs to any off-path demand. Given the signal θ, a player i chooses a demand

αi ∈ [0, 1] (as before players choose demands simultaneously). Once demands are

made, players privately learn their type (rational or stubborn). The war of attrition

ensues as before. The bargaining problem is denoted B̄ = {z,Θ, P̄ , ρ}. The model as

described in Section 2 is the special case, where P̄ = P := δ1z+ δ0(1− z). As before,

the unconditional probability of stubbornness is z :=
∑

θ∈Θ p̄θ θ.
24

A strategy for player i who has received signal θ is defined by a Borel probability

measure σi,θ on [0, 1] and a collection of cumulative distributions F i,θ
αi,αj

on R+∪{∞}

for all αi + αj > 1. F i,θ
αi,αj

(t) describes the probability that the rational player i who

received signal θ concedes to player j by time t (inclusive), given his choice of αi,

when facing αj. With some abuse of notation, I will denote the strategy for player i

who has received signal θ by (σi,θ, F i,θ
αi,αj

).

We may additionally want to impose the (very reasonable) “no signaling what

you don’t know” (NSWYDK) condition. If we do so, the set of symmetric pooling

equilibria depends on the mass points of P̄ . Specifically, if p̄0 > 0, everything stated

in this section continues to hold. This is because a small positive mass on θ = 0

ensures that players can be punished with beliefs for any off-path deviation by being

identified as a rational θ = 0 type in a manner consistent with NSWYDK. If instead

p̄0 = 0, there is a unique symmetric pooling equilibrium satisfying the NSWYDK

condition. In this equilibrium, all players demand 1/2. If we impose NSWYDK and

p̄0 = 0, this implies there is no off-equilibrium path demand which is believed to

come from a rational type for sure. This makes certain deviations more attractive

and therefore rules out multi-demand pooling equilibria.25

24Note that a player who only discovers their ability to concede upon attempting to do so may

as well condition on the event that he is able to concede when choosing his concession strategy.

Therefore, this model – where a player learns his type after demands are made – is strategically

equivalent to the informal description provided above.
25To see this, note that in any pooling equilibrium with support {α1, ..., αK}, the payoff to the
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Note that given a strategy profile, each on path demand induces a posterior prob-

ability distribution over types: each demand made can be viewed as a signal about

a player’s type. Throughout, I denote the (distribution over) posterior beliefs that a

strategy profile induces by Π̄.26 Consider the two bargaining games, B with (Θ, P )

and B̄ with (Θ, P̄ ). Note that P̄ is a garbling of P . Hence, ignoring incentive com-

patibility constraints, any probability distribution over types that can be generated

with P̄ , can be generated with P . Given that payoffs are linear in θ, this implies that

for any pooling equilibrium in B̄ there exists an outcome-equivalent pooling equilib-

rium in B. The reverse is true only when P̄ second-order stochastically dominates

the probability distribution over types induced in the equilibrium of B, Π.27

Proposition 4. Fix B̄ = {z,Θ, P̄ , ρ} and B = {z,Θ, P, ρ}. Suppose ((r, F r
αi,αj

), s) is

an equilibrium of B, which induces beliefs Π. Then there exists an outcome-equivalent

equilibrium of B̄ if, and only if, P̄ %SOSD Π.

Proposition 4 highlights that many insights from the paper carry over to this

model. However, it also clearly indicates where this similarity reaches its limits: if

players in B̄ separate (that is, different types choose different demands), the strat-

egy profile in B that would generate the same information structure is generally not

incentive-compatible. Clearly, if a player receiving signal θ = 0 is willing to demand

α, and a player receiving signal θ = 1 is willing to demand α, then a player receiving

signal θ ∈ (0, 1) is willing to demand α. The reverse however is not true: a player

receiving signal θ may be willing to demand α, but a player receiving a fully informa-

tive signal does not. This implies, that when players in B̄ separate by signal, there

does not generally exist an outcome-equivalent equilibrium in B.28

stubborn type is given by
∑
k qk(1 − αk)(1 − µαK

k ). By deviating to α > αK , the stubborn type

could guarantee a strictly higher payoff:
∑
k qk(1− αk)(1− µαk ).

26In the simplest case, take P = δ00.9 + δ10.1, and revisit the pooling equilibrium with 1/3 and

4/5. Then Π̄ = Π = δ0.063(0.9 ∗ 0.381 + 0.1 ∗ 0.23) + δ0.121(0.9 ∗ 0.619 + 0.1 ∗ 0.77).
27Examples that illustrate the key insight on equivalence and when it breaks down are available

on request.
28Examples of such separating equilibria are readily available on request.
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6 Conclusion
While this paper focuses on endogenizing behavioral types in a bargaining setting, the

idea of endogenizing behavioral types applies more broadly. For instance, some agents

may restrict attention to stationary strategies in a repeated game. Whatever drives

their preference for this restriction does not mean that they do not choose optimally

within the set of stationary strategies. There is a middle ground between rational

and behavioral agents, and this paper is a first attempt to explore this territory in a

well-known and tractable environment.
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Appendix
For the proof of Proposition 1, it is helpful to establish some preliminary lemmas that

impose some structure on possible equilibria. In a candidate pooling equilibrium, the

payoff to the rational type of player j from demanding α` is:

vjr(α`) =
∑

k:αk≤1−α`

qk
1− αk + α`

2

+
∑

k:αk>1−α`

qk

(
α` − (αk + α` − 1) min

{(
µk
µ`

)1−αk
, 1

})
.

(1)

Similarly, we can write the payoff of a stubborn player j demanding α` in a candidate

pooling equilibrium as:

vjs(α`) = vjr(α`)−
∑

k: αk>1−α`

qk(1− αk)µα`k max

{
1,

(
µ`
µk

)αk+α`−1
}
. (2)

Using (1),(2), given z > 0, a pooling equilibrium with support C = {α1, . . . , αK}

requires, ∀α`, αm ∈ C, and j = 1, 2,

vjr(α`)− vjr(αm) = 0, (3)

vjs(α`)− vjs(αm) = 0, (4)
K∑
k=1

qk = 1, and (5)

K∑
k=1

qkµ
1−αk
k = z, (6)

with qk, µk ∈ [0, 1].

Lemma 1. Fix any set of demands C, where C = {α1, . . . , αK} is an arbitrary finite

subset of [0, 1]. In any symmetric pooling equilibrium with support C, µk > µk+1 for

any αk < 1− α1 and µk = µk+1 for αk ≥ 1− α1.

Proof of Lemma 1. Note that for any two demands αk, αk+1 ∈ C, (3) must hold.

Conditional on facing a compatible demand, the payoff to a rational player from
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demanding αk+1 is strictly higher than the payoff from demanding αk (cf. (3)).

Conditional on facing a demand which is compatible with αk but not with αk+1, the

payoff to a rational player from demanding αk is weakly higher than the payoff from

demanding αk+1. Hence, either (a) ∀αm ∈ C, αm + αk ≥ 1 and µm ≥ min{µk+1, µk},

or (b) there must exist some αn ∈ C with αk + αn > 1 such that µk+1 < µn but

µk > µn. Note that (a) implies µk = µk+1. Moreover, (b) implies µk+1 < µk. The

result follows.

Lemma 2. Fix any set of demands C, where C = {α1, . . . , αK} is an arbitrary finite

subset of [0, 1] and |C| ≥ 2. In any symmetric pooling equilibrium with support C, the

following holds:

1. The lowest and highest demand in C are incompatible: α1 + αK > 1.

2. Consider any two demands, α`, αm ∈ C, α` > αm. Then there exists αn ∈ C s.t.

α` + αn > 1 and αm + αn ≤ 1.

Proof of Lemma 2. Part 1. Suppose α1 + αK ≤ 1. Then vr(α1) = vs(α1). This

implies vr(αk) = vs(αk) ∀αk ∈ C. If vr(αk) = vs(αk) ∀αk ∈ C, then it must be that

αK ≤ 1/2. If αK ≤ 1/2, then αK = α1 = 1/2, and hence, |C| = 1. Hence, if |C| ≥ 2,

α1 + αK > 1.

Part 2. Consider any two demands, α`, αm ∈ C, α` > αm. Suppose ∀αn ∈ C,

either α` + αn ≤ 1 or αm + αn > 1 (i.e., the set of compatible demands is constant

between α` and αm). Given that µ` ≤ µm, for all αn ≥ 1− αm:

µα`n max

{
1,

(
µ`
µn

)αn+α`−1
}
< µαmn max

{
1,

(
µm
µn

)αn+αm−1
}
.

Hence, if (3) is satisfied for all α`, αm ∈ C, then (4) cannot be satisfied.

Hence, for all α`, αm ∈ C with α` > αm, there exists αn ∈ C such that αm ≤

1−αn < α`. (Note that it follows that the lowest pooling demand is compatible with

all but the highest pooling demand.)

Proof of Proposition 1. The proof procedes in three steps.
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Part 1: Existence of Two Demand Pooling Equilibria for fixed z. The next

lemma implies existence of pooling equilibria with two demands for fixed z.

For α1 < 1/2, α2 > 1− α1, let

z̄(α1, α2) =

(
2(1− α1)

n(1− α2)

1−m
m

+m
2α2−1
1−α2

)− 1−α2
α2−α1

where

n =
1− 2α1

α1 + α2 − 1
, and

m = min

{(
2(1− α1)(α1 + α2 − 1)

(1− 2α1)(2α2 − 1)

) 1−α2
α2

,
(α2 − α1)(α1 + α2 − 1)

(1− α2)2 + 2α1α2 − α1 − α2
1

}
.

The bound z̄(α1, α2) is well-defined for α1 < 1/2. The right-limit exists and equals

one,

lim
α1↑1/2

z̄ = 1,

so by continuity I define z̄(1/2, α2) := 1.

Moreover, given z and C = {α1, α2}, define the following system in (qk, µk), k =

1, 2:

q1

(
α1 −

1

2

)
+ q2 (α1 + α2 − 1)

(
1−

(
µ2

µ1

)1−α2
)

= 0, and (7)

q1 (1− α1)µα2
1 − q2 (1− α2)µ1−α2

2

(
µα1+α2−1

1 − µ2α2−1
2

)
= 0, (8)

2∑
k=1

qkµ
1−αk
k = z, (9)

q1 + q2 = 1, and (10)

q1 (1− α1) (1− µα2
1 ) + q2 (1− α2) (1− µα2

2 )

≥ q11α≤1−α1

1− α1 + α

2
+ q21α<1−α2

1− α2 + α

2
, ∀α 6∈ C,

(11)

q1 (1− α1) + q2 (1− α2) ≥
∑
k=1,2

qk min{1− αk + α

2
, 1− αk} ∀α 6∈ C, (12)

where 0 < qk < 1, 0 < µk < 1.29

29(7)–(10) corresponds to (3)–(6) when K = 2 (necessary conditions for existence). (11) and (12)
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Lemma 3. Fix any α1 ≤ 1/2 and 1 > α2 > 1 − 1α1. For every z < z̄, there exist

probabilities q1 and q2, and positive numbers µ1 and µ2 with µ1, µ2 ≤ 1 that solve (7)–

(12).

Proof. There exists a pooling equilibrium with support {α1, α2} only if the demands

α1 and α2 along with probabilities q1 and q2, and positive numbers µ1 and µ2 with

µ1, µ2 ≤ 1 solve (7)– (12). Note that clearly (12) is satisfied for any α 6∈ C. Moreover,

note that by Lemma 2, it must be that α1 + α2 > 1, 0 < α1 ≤ 1/2 < α2 ≤ 1. If

α2 = 1, (8) can only be satisfied if q2 = 1, hence, players would not pool over two

demands. So, it is assumed that α2 < 1.

We can simplify (11) to

q1 (1− α1) (1− µα2
1 ) + q2 (1− α2) (1− µα2

2 ) ≥ max{q1 (1− α1) , q1

(
2− α1 − α2

2

)
+ q2(1− α2)}.

(13)

In the following, we reduce the system (7)–(10) and (13) to one equation and one

inequality, in one unknown µ1. Then we derive an explicit upper bound on z such

that a solution to this system exists. First, we use (10) to replace q2 by 1− q1 in (7),

which we can then solve for q1:

q1 =

2 (α1 + α2 − 1)

(
1−

(
µ2

µ1

)1−α2
)

(2α2 − 1)− 2 (α1 + α2 − 1)
(
µ2

µ1

)1−α2
. (14)

Using these expressions for q1 and q2, we can then solve (9) for µ2:

µ2 =

(
2(α1 + α2 − 1)µ1−α1

1 − z (2α2 − 1)

2(α1 + α2 − 1)
(
µ1−α1

1 − z
)
− (1− 2α1)µ1−α2

1

) 1
1−α2

µ1. (15)

Then, replacing q1, q2 and µ2 in (8), we can write the stubborn type’s indifference as

ensure that neither type has any incentive to deviate to an out-of-equilibrium demand (necessary

and sufficient conditions for existence).
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a function of µ1 only:

(1− α2)
(
2(−1 + α1 + α2)µ1−α1

1 + z − 2α2z
)

·

1− µα2−α1
1

(
2(−1 + α1 + α2)µ1−α1

1 + (z − 2α2z)

(−1 + 2α1)µ1−α2
1 + 2(−1 + α1 + α2)(µ1−α1

1 − z)

) 2α2−1
1−α2


+ 2(1− α1)(−1 + α1 + α2)µα2−α1

1 (µ1−α2
1 − z) = 0.

(16)

Finally, by replacing q1, q2 and µ2, and further simplifying, using (16), we can write

(13) as:

z ≤ (α1 + α2 − 1)µ1−α2
1 (α2 − α1 + 2(1− α2)µα2

1 )

(α2 − α1) (α1 + α2 − 1) + (1− α2)(2α2 − 1)µα1
1

. (17)

Recall that µ2 < µ1 by Lemma 1. Hence, it follows from (15) that

µ1−α2
1 < z. (18)

Moreover, recall that q1 < 1. Combining (15) and (14), this then requires

µ1−α2
1 >

2 (α1 + α2 − 1)
(
µ1−α1

1 − z
)

1− 2α1

. (19)

In summary, we are left to find sufficient conditions on z such that (16), (17) can be

satisfied subject to (18), (19) (and µ1 ≤ 1). Formally, we will show that for every

z < z̄, (a) there exists µ1 ∈ (0, 1) solving (16) and (b) this solution satisfies (17)–(19).

Let us change variables from (α1, α2, µ1) to

γ :=
1− 2α1

α1 + α2 − 1
, ∆ :=

α2 − α1

1− α2

and y := µ1−α2
1 .

Equations (16) and (17) simplify to:

F (y, z) = 0, (20)

z ≤ H(y), (21)

where
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F (y, z) := 2x∆(y − z)(1 + ∆)−
(
2z − 2y1+∆ + γz

)(
1− y∆

(
1− (y − z)γ

2z − 2y1+∆ + γy

) (2+γ)∆
1+γ

)
,

(22)

and

H(y) := y

(
2y(1+

(2+γ) ∆
1+γ ) + ∆

y1+ ∆
1+γ (2 + γ) + ∆

)
. (23)

Moreover, (18)–(19) simplifies to

z < y, y1+∆ − 1

2
γy < z.

Note that combining the two inequalities implies,

I(y) < z, (24)

where

I(y) :=
2y1+∆

2 + γ
(25)

Define

G(y, z) = γ(2 + γ)

(
1 +

(−y + z)γ

2z + y(−2y∆ + γ)

)1+
(2+γ)∆

1+γ

∆− 2(1 + γ)(1 + ∆). (26)

Claim 2. If G(y, z) < 0, then

−∂F (y, z)/∂y

∂F (y, z)/∂z
> 0.

Note first that F (y, z) is continuously differentiable in y and z and note fur-

ther that ∂F (y, z)/∂z 6= 0. Hence, by the implicit function theorem, there exists (a

neighborhood of (y, z) = (0, 0) and) a unique function J(y) defined over this neigh-

borhood, whose graph (y, J(y)) is the set of all (y, z) such that F (y, z) = 0. Hence,

−(∂F (y, z)/∂y)/(∂F (y, z)/∂z) > 0, is equivalent to dJ(y)/dy > 0.
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Tedious algebra (using (20)) shows that

∂F (y, z)/∂y

∂F (y, z)/∂z
∝ Num

Den
, (27)

where

Num :=(−2 + 2v − γ)

(
v1+

(2+γ)∆
1+γ γ + 2(1− v)(1 + ∆)

)(
v1+

(2+γ)∆
1+γ γ(2 + γ)∆− 2(1 + γ)(1 + ∆)

)
,

Den :=(−2 + 2v − γ)

(
v2+

2(2+γ)∆
1+γ (−1 + 2v)γ2(2 + γ)∆− 2v1+

(2+γ)∆
1+γ γ

(
(−2 + 2v − γ)(1 + γ)

+ (−1 + v)(2 + γ)(−1 + 4v + γ)∆ + 2(−1 + v)(−1 + 2v)(2 + γ)∆2
)

+ 4(−1 + v)(1 + γ)(1 + ∆)(2 + ∆)
(
− (2 + γ)(1 + ∆) + v

(
2 +

(2 + γ)∆

1 + γ

)))
,

and

v := 1 +
(z − y)γ

2z + y(−2y∆ + γ)
.

Let us first consider the sign of Num. Note that v < 1, and hence (−2 + 2v−γ) < 0.

Moreover, note that v1+((2+γ)∆)/(1+γ)γ + 2(1 − v)(1 + ∆) > 0. Hence, if G(y, z) < 0,

then Num > 0. Next, consider the sign of Den. As before, (−2 + 2v − γ) < 0.

Moreover, it can easily be shown that if G(y, z) < 0, then Den/(−2 + 2v − γ) > 0.30

Hence, if G(y, z) < 0, then Den < 0. Hence, if G(y, z) < 0 is satisfied,

−∂F (y, z)/∂y

∂F (y, z)/∂z
> 0.

Claim 3. If H(y) > z, and F (y, z) = 0, then G(y, z) < 0.

Suppose not. Suppose H(y) > 0 (and hence, z = 0) and F (y, 0) = 0. This implies

y = 0. Then G(0, 0) < 0. Suppose there exists a smallest z > 0 such that H(y) ≥ z,

and F (y, z) = 0 does not imply G(y, z) < 0. For this smallest z, by continuity of all

functions involved, we must have z < H(y), F (y, z) = 0 and G(y, z) = 0. F (y, z) = 0

30This can easily be seen when G(y, z) = 0.
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and G(y, z) = 0 give explicit formulas for y and z, call them y∗ and z∗. Tedious

algebra shows z∗ > H(y∗), a contradiction.

The last two claims imply that if we derive an upper bound on y, we have an

upper bound on z (recall, z < y).

Claim 4. For every z ≤ z̄, there exists y ∈ (0, 1) solving F (y, z) = 0. This solution

satisfies I(y) < z ≤ H(y).

Recall from the previous proof that

v = 1 +
(z − y)γ

2z + y(−2y∆ + γ)
.

Then I(y) < z ≤ H(y) becomes

0 < v ≤ ∆

y1+ ∆
1+γ γ + ∆

,

and (20) (when multiplied by −(2 + 2v − γ)/(2 + γ)) becomes F̃ (v) = 0, where

F̃ (v) := −vγ + y∆
(
v1+

(2+γ)∆
1+γ γ − 2(−1 + v)(1 + ∆)

)
.

Note that F̃ (0) = 2y∆(1 + ∆) > 0. Hence, by the intermediate value theorem, it

suffices to find

0 < v ≤ ∆

y1+ ∆
1+γ γ + ∆

,

such that F̃ (v) < 0, i.e., v such that

y < F̃1(v) :=

(
vγ

v1+
(2+γ)∆

1+γ γ + 2(1− v)(1 + ∆)

) 1
∆

.

Hence, we can choose y as

max
v≤ ∆

γ+∆

F̃1(v).

(Note that v ≤ ∆/(γ + ∆) implies v ≤ ∆/(y1+∆/(1+γ)γ + ∆) given that y ≤ 1.) This

is achieved by

v∗ = min

{
∆

γ + ∆
,

(
2

1 + γ + ∆ + γ∆

γ(2 + γ)∆

) 1+γ
1+γ+2∆+γ∆

}
.
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Hence, the upper bound on y and hence, z is given by

z̄ = F̃1(v∗).

Hence, to conclude,

z̄ =

(
v∗γ

(v∗)1+
(2+γ)∆

1+γ γ + 2(1− v∗)(1 + ∆)

) 1
∆

,

where

v∗ = min

{
∆

γ + ∆
,

(
2

1 + γ + ∆ + γ∆

γ(2 + γ)∆

) 1+γ
1+γ+2∆+γ∆

}
.

Equivalently,

z̄(α1, α2) =

(
2(1− α1)(α1 + α2 − 1)

(1− 2α1)(1− α2)

1−m
m

+m
2α2−1
1−α2

)− 1−α2
α2−α1

,

where

m = min

{(
2(1− α1)(α1 + α2 − 1)

(1− 2α1)(2α2 − 1)

) 1−α2
α2

,
(α2 − α1)(α1 + α2 − 1)

(1− α2)2 + 2α1α2 − α1 − α2
1

}
.

Part 2. Convergence as z → 0.

Proof. The proof of Part 2 of Proposition 1 has the following steps. First, in any

sequence of equilibria, µk → 0 for k = 1, 2 (Claim 5). Second, an equilibrium with

support {α1, α2} exists in the limit (Claim 6).

NB. Given that we have established that z̄ > 0 for all α1, α2 satisfying α1 ≤ 1/2,

α1 + α2 > 1, α2 < 1, we can drop (13) from now on.

Claim 5. For (7)–(10) to be satisfied, limz→0 µk = 0 for k = 1, 2.31

31Here and in what follows, z → 0 is shorthand for limn→∞ zn = 0 (and likewise for other

variables).
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By (9) and (10), either limz→0 qk = 0 or limz→0 µk = 0 for k = 1, 2. Moreover, if

limz→0 qk = 0, then limz→0 µ` = 0. Recall that by Lemma 1, µ2 < µ1, ∀z > 0. Hence,

by (9), it follows that limz→0 µ2 = 0. If limz→0 µ2 = 0, then (7) can only be satisfied

if limz→0 µ1 = 0: if limz→0 q1 = 0, then it must be that limz→0 l2,1 = 1, and hence,

limz→0 µ1 = 0. Therefore, limz→0 µk = 0 for k = 1, 2.

NB. Recall that by Lemma 1, in order for (7) to be satisfied it must be that

µk+1 ≤ µk, ∀k, ∀z > 0. Hence, all ratios µ`/µk and µ`/µk+1 in (7) and (8) are

bounded above by 1. Hence, without loss, assume that these ratios converge. Call

the ratios l`,k and l`,k+1.

Claim 6. There exists z̄ > 0 such that, for z < z̄, the system (7)–(10) has a solution

with

lim
z→0

r1 = lim
z→0

q1 =
2 (α1 + α2 − 1)

2α2 − 1
, and (28)

lim
z→0

s1 =
1− α2

2− α1 − α2

. (29)

We first reduce the system (7)–(10) to two equations. Then we use Taylor ap-

proximations to derive (28) and (29). As before, using (10), we can replace q2 by

1− q1 in (7). Similarly, we can then solve (7) for q1 as a function of µ1 and µ2 only

and replace q1 and q2 in (8) and (9). We can write the stubborn type’s indifference

condition, (8), as:

(1− 2α1) (1− α2)
(
µ1−α2

2 µα1−1
1 − lα2

2,1

)
+ 2 (1− α1) (α1 + α2 − 1)

(
l1−α2
2,1 − 1

)
µ−α2

1

(
2 (α1 + α2 − 1) l1−α2

2,1 − (2α2 − 1)
) = 0.

(30)

We can then show that

lim
z→0

µ1−α2
2

µ1−α1
1

=
2 (1− α1) (α1 + α2 − 1)

(1− 2α1) (1− α2)
. (31)

More precisely,

µ1 =

(
(1− 2α1) (1− α2)

2 (1− α1) (α1 + α2 − 1)

) 1
1−α1

µ
1−α2
1−α1
2 +O

(
µ

1−α2
1−α1

(1+α2−α1)

2

)
. (32)
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To derive (31) and (32), note that for (30) to be satisfied either

lim
z→0

l2,1 = K0, or lim
z→0

µ1−α2
2

µ1−α1
1

= K,

where K0 is some positive constant. If limz→0 l2,1 = K0, then limz→0 µ
1−α2
2 /µ1−α1

1 →

∞, and hence, (30) cannot be satisfied. If limz→0 µ
1−α2
2 /µ1−α1

1 = K0, then limz→0 l2,1 =

0. Hence, we can solve (30) for K0:

K0 =
2 (1− α1) (α1 + α2 − 1)

(1− 2α1) (1− α2)
, (33)

and (31) follows. Using Taylor approximation, we can then derive (32). Using (32),

we can rewrite (9) and (14) as

q1 =
2 (α1 + α2 − 1)

2α2 − 1
− k1µ

(1+α2)(1−α1)−(1−α2)2

1−α1
2 +O

µ 2(2α2−α1−α
2
2)

1−α1
2

 , (34)

z =
(1− 2α1) (2− α1 − α2)

(1− α1) (2α2 − 1)
µ1−α2

2 +O
(
µ

1−2α1+α2(2−α2)
1−α1

2

)
, (35)

where

k1 =

(
2 (α1 + α2 − 1)

2α2 − 1

)2(
1− 2α1

2 (α1 + α2 − 1)

)α2−α1
1−α1

(
1− α1

1− α2

) 1−α2
1−α1

.

To derive (34), note that we can write l1−α2
2,1 as

l1−α2
2,1 =

(
(1− 2α1) (1− α2)

2 (1− α1) (α1 + α2 − 1)

)− 1−α2
1−α1

µ
(1+α2)(1−α1)−(1−α2)2

1−α1
2 +O

µ 2(2α2−α1−α
2
2)

1−α1
2

 .

Using (35), and recalling that s1 = (µ1−α1
1 q1)/z, we can now write s1 as a function of

µ2 only:

s1 =
1− α2

2− α1 − α2

− k2µ
(1+α2)(1−α1)−(1−α2)2

1−α1
2 +O

(
µ

1−2α1+2α2−α
2
2

1−α1
−1+α2

2

)
, (36)

where

k2 =

(
(1− 2α1) (1− α2)

2 (α1 + α2 − 1) (1− α1)

)α2−α1
1−α1

(
2 (α1 + α2 − 1) (1− α1)

(2α2 − 1) (2− α1 − α2)

)
.
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Hence,

lim
z→0

r1 =
2 (α1 + α2 − 1)

2α2 − 1
, and lim

z→0
s1 =

1− α2

2− α1 − α2

. (37)

Finally, I now show that the system (7)–(10) can be solved locally around z = 0,

with s1 ∈ (0, 1), r1 ∈ (0, 1).

As before, I replace q2 by 1 − q1 in equations (9), (7) and (8) (using (10)). In

analogue to before, I then solve (7) for q1 as a function of µ1 and µ2 only:

q1 =

2 (α1 + α2 − 1)

(
1−

(
µ2

µ1

)1+α2
)

(2α2 − 1)− 2 (α1 + α2 − 1)
(
µ2

µ1

)1+α2
. (38)

Using this, I can then use (9) to solve for µ2 as a function of z and µ1:

µ2 = µ1

(
2 (α1 + α2 − 1)µ1−α1

1 − (2α2 − 1) z+

2 (α1 + α2 − 1)
(
µ1−α1

1 − z
)
− (1− 2α1)µ1−α2

1

) 1
1−α2

. (39)

Hence, I can express (8) as a function of µ1 and z only. Let me introduce two auxiliary

variables, p and u, where

p =z
α1−α2(1−α1)+2α2

2
(1−α1)(1−α2) , and (40)

u =µ1−α1
1 z−1 − (1− α2) (2α2 − 1)

2 (2− α1 − α2) (α1 + α2 − 1)
. (41)

Given (40) and (41), one can derive:

dp

du

∣∣∣∣
(p,u)=(0,0)

=
(2− α1 − α2)

1− α1

(
2(2− α1 − α2)(α1 + α2 − 1)

(1− α2)(2α2 − 1)

)α2−α1
1−α1

> 0. (42)

I can rewrite (8) as a function of p and u, using (40) and (41). Denote this new

function ∆s
p,u. Taking derivatives w.r.t. p and u, evaluating these derivatives at

p = u = 0 (the solution for z = 0), and rearranging, I get (42), which is clearly finite

and positive:

dp

du

∣∣∣∣
(p,u)=(0,0)

= −
∂∆s

p,u/∂u

∂∆s
p,u/∂p

∣∣∣∣
(p,u)=(0,0)

=
(2− α1 − α2)

1− α1

(
2(2− α1 − α2)(α1 + α2 − 1)

(1− α2)(2α2 − 1)

)α2−α1
1−α1

.

(43)
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Hence, by the Implicit Function Theorem, the system (7)–(10) can be solved locally

around z = 0 when K = 2, with r1 ∈ (0, 1), and s1 ∈ (0, 1).

Part 3: Convergence as z → 1.

Proof. Consider a pooling equilibrium with support {α1, . . . , αK}. Recall that any

such equilibrium has to satisfy (3)–(6). By (6), either limz→1 qk = 0 or limz→1 µk = 1.

The stubborn type’s payoff from αK in a candidate equilibrium is:

vs(αK) =
K∑
k=1

qk(1− αk)(1− µαKk ).

This implies that limz→1 vs(αK) = 0.

Consider instead, the payoff from making a demand of 1 − αK , where αK is the

highest demand being made in equilibrium:

vs(1− αK) =
K∑
k=1

qk

(
2− αK − αk

2

)
.

Unless qK = 1 and αK = 1, vs(1 − αK) > 0 for any z ∈ [0, 1]. This implies that if

αK < 1, there exists z̄ < 1 such that for any z > z̄, the stubborn type prefers to

deviate to 1− αK . This implies limz→1 s = δ1.

Proof of Proposition 2. The proof procedes in three steps.

Part 1: Existence of Separating Equilibria for fixed z.

Proof. We start with some preliminary observations. Note that for any z, in any

equilibrium, any separating demand by the stubborn type must be smaller than the

lowest demand assigned positive probability by the rational type. Moreover, the

separating demand can be no higher than 1/2. Otherwise, the rational type would

have an incentive to deviate from this lowest demand to the separating demand by

the stubborn type.
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Note further that for any z, in any separating equilibrium, there can be at most

one separating demand by the stubborn type. If there were multiple, the payoff to

the stubborn type from the higher separating demand would be strictly higher.

Finally, note that the lowest separating demand by the rational type must be in-

compatible with the separating demand by the stubborn type. Otherwise, the stub-

born type would prefer to deviate to the rational type’s lowest separating demand.

Hence, α1 + α2 > 1. Consider the following strategy profile. Suppose the rational

type randomizes over demands α2, . . . , αK , i.e., r =
∑K

k=2 δαk r̃k with
∑K

k=2 r̃k = 1,

and suppose s = δα1 . If both players demand α1, there is immediate agreement. If

both players demand a “rational equilibrium demand” (i.e., demands αi, αj ∈ supp r),

there is no immediate concession, and rational player i demanding αi and facing αj

concedes at rate λi = (ρ(1 − αi))/(αi + αj − 1). If player i demands α1 and player

j demands αj ∈ supp r, player j immediately concedes to i with probability 1. If a

player faces an incompatible demand α 6∈ supp s∪ supp r, he does not concede. After

the initial demands are made, a player demanding α1 is believed to be stubborn with

probability 1. A player demanding α 6= α1 is believed to be stubborn with probability

0. This results in the following payoffs:

vs(α1) = z
1

2
+ (1− z)α1, and

vr(α`) = z(1− α1) + (1− z)
K∑
k=2

r̃k(1− αk), ∀αk ∈ supp r.

Then the rational type has no incentive to deviate to the stubborn type’s demand

if and only if

vr(αK) ≥ z
1

2
+ (1− z)α1,

or equivalently, if and only if

z ≥ z =
2
(
α1 −

∑K
k=2 r̃k(1− αk)

)
1− 2

∑K
k=2 r̃k(1− αk)

=
2
(
α1 +

∑K
k=2 r̃kαk − 1

)
2
∑K

k=2 r̃kαk − 1
.

Moreover, note that the stubborn type has no incentive to deviate to 1− α1 iff:

vs(α1) ≥ z(1− α1).
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Or equivalently, if and only if z ≤ z̄ = 2α1. Clearly, neither the rational nor the

stubborn type has any incentive to deviate to any other demand (given the strategy

profile and system of beliefs given above). Hence, there exists a separating equilibrium

if and only if α1 < 1/2, α1 + α2 > 1, and

z ∈ [z, z̄] .

Part 2: Convergence as z → 0.

Proof. Note that z is increasing in the excess surplus demanded (α1 +
∑K

k=2 r̃kαk− 1

and z = 0 if and only if α1 + α2 = 1 and r̃1 = 0 and r̃2 = 1. Hence, limz→0 r = δ1−α,

and limz→0 s = δα.

Part 3: Convergence as z → 1.

Proof. Note z̄ is increasing in α1 and z̄ = 1 if and only if α1 = 1/2. Hence, limz→1 s =

δ1/2.

Proof of Proposition 3. Part (i): First, note that we may specify the probability

that a stubborn type picks αk in BAG,S, denoted πS(αk), such that zAGπAG(αk) +

zSπS(αk) = zsk for every k. This ensures that the posterior probability that a player

is rational is the same in both games, for every αk. Hence, continuation payoffs are

the same. It follows that any equilibrium in B is an equilibrium in BAG,S (there are

fewer deviations to deter).32

Part (ii) follows from Abreu and Gul (2000): given any distribution over behav-

ioral types, if the type α = 1/2 is present, the rational type makes the offer α = 1/2

with probability 1 in the limit as z → 0.
32Note that this also implies that there may be equilibria in BAG,S that are not equilibria in

B: given that some behavioral types (the AG types) have no ability to deviate, there are fewer

deviations to consider.
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Proof of Corollary 1. Claim 5 and 6 (Proposition 1) implies that for z sufficiently

small s(α2) > 1/2. Hence, if zAG = zS, Part 1 of Proposition 3 implies the corollary.

Proof of Proposition 4. Consider the two bargaining games, B with (Θ, P ) and B̄

with (Θ, P̄ ). Note that P̄ is less informative about types than P . Formally, P̄ is a

garbling of P , i.e., there exists a Markov matrix Γ such that P̄ = ΓP. Hence, ignoring

incentive compatibility constraints (i.e., ignoring (3) and (4)), any probability distri-

bution over types that can be generated with P̄ , can be generated with P . Suppose

then that ((r, F r
αi,αj

), s) is an equilibrium of B, which induces beliefs Π. Then there

exists a strategy profile in B̄ that induces beliefs Π if and only if P̄ %SOSD Π.

If (σθ, F θ
αi,αj

)θ is an equilibrium of B̄ with support C, then the payoff to a type

θ ∈ (0, 1) from demanding α ∈ C is simply a weighted average of the payoff a type 0

and the payoff a type 1 would receive:

vθ(α) = θv1(α) + (1− θ)v0(α).

Hence, the payoff is linear in θ. Therefore, if θ, θ′ ∈ Θ are indifferent over a set of

demands, so are 0, 1 ∈ Θ, and vice-versa. This implies that (3) and (4) are satisfied

in B. Further, if a deviation outside of the support is unprofitable for both types 0

and 1, then it is also unprofitable for a type θ ∈ (0, 1), keeping the beliefs off-path

fixed.
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