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Abstract

This paper studies a moral hazard problem in which the principal does not
know the agent’s beliefs about the output generating process. The agent is risk
neutral, transfers are subject to limited liability, and the principal evaluates
contracts according to their worst-case payoff against a rich set of plausible
agent beliefs. With common knowledge of the relationship between effort and
expected output, optimal contracts are of the form w(y) = max(ay+/,0). With
or without common knowledge of that relationship, there are broad conditions
under which optimal contracts are of the form w(y) = ay +  and the principal

can not improve her payoff guarantee by randomizing over menus of contracts.

JEL classification: D81, D82, D86
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1 Introduction

In the classical formulation of the moral hazard problem, the agent’s effort determines

the distribution of output to be received by the principal. Because effort is costly for
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the former and unobserved by the latter, the principal pays the agent on the basis of the
output he produces. The joint distribution of effort and output is common knowledge,
and these shared beliefs are inputs into both the agent’s problem of choosing how
hard to work and also the principal’s problem of identifying the contract that most
cheaply incentivizes the agent to exert her preferred level of effort.

While the common prior assumption lends a simplicity to the above framework
that has proven valuable for developing principles, it is unclear whether or not its
demanding informational criteria are likely to be met in practice. First, because the
agent’s actions are hidden from the principal, it is not obvious what might constitute
an objective source for shared beliefs about the output generating process. Second,
while classical decision theory (Savage (1954)) provides foundations for expected
utility maximization with respect to subjective beliefs, those beliefs are personal to
the decision maker (Morris (1995); Kreps (2012)). And if beliefs are indeed personal,
it seems they might also be private information.

This paper studies a general moral hazard problem in which the principal does
not know the agent’s beliefs A about how output y is distributed. Instead, she knows
only the identity of some rich set of plausible beliefs to which they belong. The agent
is risk neutral, protected by limited liability, and suffers additive disutility from effort
e. His action set is one-dimensional, effort costs are common knowledge, and the
principal assesses her payoffs with respect to her own subjective beliefs about output.
Because she does not know the agent’s beliefs, the principal does not necessarily have
a complete understanding of how he will respond to any particular incentive scheme.
In the face of that uncertainty, she seeks a contract w that maximizes her guaranteed
payoff against the set of plausible beliefs.

Our results are as follows. In Section 3, we initiate our study of the principal’s
problem by supposing the relationship between effort and expected output is common
knowledge. First, we show optimal contracts for incentivizing uniform effort! across
the set of plausible beliefs are linear contracts of the form w(y) = ay + § with
minimum payment 0 (Theorem 1) . Second, we show optimal contracts in general are

linear bonus contracts of the form w(y) = max(ay + 3,0) with minimum payment 0

LContract w uniformly incentivizes effort e if the agent’s expected payoff (net of additive effort
disutility) under contract w, belief A, and effort e matches or exceeds his expected payoff under
contract w, belief A, and effort €’ for every alternative effort ¢’ and for every plausible belief A.



(Theorem 2). Third, and finally, we show that if the range of outputs is sufficiently
broad then the principal’s problem has a saddle point and optimal contracts are linear
(Theorem 3). In all such cases, the principal can not improve her payoff guarantee by
screening the agent with a menu or by randomizing over contracts.

In Section 4, we relax the assumption that the relationship between effort and
expected output is common knowledge and develop broad generalizations of our main
result. First, we show that if the principal knows the agent’s beliefs about expected
output but those beliefs differ from her own then the principal’s problem has a saddle
point and optimal contracts are linear (Theorem 4). This result requires no new
assumptions and is a proper generalization of our third theorem. Second, we show
that if the principal is instead uncertain about the agent’s beliefs about expected
output then the same conclusions obtain as long as her utility function is linear in
output and beliefs are monotone and supermodular (Theorem 5).

To develop intuition, we illustrate Theorems 1-3 with three examples. First,
regarding Theorem 1, consider the setting with common knowledge of the relationship
between effort and expected output and note that the principal is certain about the
agent’s payoffs if and only if she pays him with a contract under which wages vary
affinely with output. Given that linear contracts are optimal in other models of robust
contracting in part because they equate payoffs across classes of environments (Carroll
(2015)), it seems natural that such contracts might be robustly optimal in our model
as well. While our first theorem shows only that linear contracts are optimal within
the class of incentive schemes that assign the same level of effort to every type of
agent, there are cases of our model in which that is a feature of generally optimal

contracts.

Example 1. The principal’s goal is to maximize guaranteed expected net output
y — w(y). Output lies in the interval [0, 160] and the agent chooses between low effort
at cost 0, medium effort at cost 8, and high effort at cost 20. The principal believes
output is 40 with probability 1 under low effort, 80 with probability 1 under medium
effort, and 120 with probability 1 under high effort. The set of plausible agent beliefs
is the set of beliefs consistent with common knowledge of the relationship between

effort and expected output.

Suppose the principal in Example 1 recommends high effort and pays the agent



3/10 = (20 — 8)/(120 — 80) > (20 — 0)/(120 — 40) of output. The agent’s high effort
payoff 16 = (3/10) x 120 — 20 equals his medium effort payoff 16 = (3/10) x 80 — 8
and exceeds his low effort payoff 12 = (3/10) x 40 — 0 for every plausible belief; the
principal’s recommendation is unambiguously incentive compatible; and net guaranteed
output is 84 = (7/10) x 120. Because this guarantee exceeds both the 40 gross output
produced by low effort and the 80 gross output produced by medium effort, optimal
contracts must robustly incentivize high effort. As we show in our first theorem, the
best contracts for those purposes are linear, and the 3/10 contract is the least generous
linear contract under which high effort is incentive compatible. The principal’s contract
is uniquely optimal.

Second, regarding Theorem 2, consider the following modified version of our first
example in which medium effort is less costly for the agent and uniformly incentivizing

high effort is therefore more expensive for the principal.

Example 2. The principal’s goal is to maximize guaranteed expected net output
y — w(y). Output lies in the interval [0, 160] and the agent chooses between low effort
at cost 0, medium effort at cost 5, and high effort at cost 20. The principal believes
that output is 40 with probability 1 under low effort, 80 with probability 1 under
medium effort, and 120 with probability 1 under high effort. The set of plausible
agent beliefs is the set of beliefs consistent with common knowledge of the relationship

between effort and expected output.

Suppose the principal in Example 2 pays the agent with the linear bonus contract
max(y—80,0) that returns to him all? output in excess of 80 and recommends the agent
choose either medium or high effort. Because the agent’s piece rate is nondecreasing,
his payoff is lowest when he believes output is deterministic and highest when he
believes it is distributed in an all-or-nothing manner. Accordingly, his maximal low
effort monetary payoff is 20 = (3/4) x 0+ (1/4) x (160 — 80) and his minimal high
effort monetary payoff is 40 = 120 — 80. While the highest plausible expected wage
under medium effort 40 = (1/2) x 0+ (1/2) x (160 — 80) is such that the agent might

strictly prefer medium effort to high, he unambiguously prefers high effort to low.

2Linear bonus contracts max(ay + 3,0) with o = 1 and 8 < 0 are identical to the debt contracts
that appear elsewhere in the moral hazard literature (Innes (1990)). The optimality of the o = 1
share in Example 2 is coincidental, and debt contracts play no special role in our analysis.
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Accordingly, the principal’s recommendation is incentive compatible; she believes
the agent produces either 80 output at wage 0 or 120 output at wage 40; and her
guaranteed payoff 80 is an upper bound for any contract that does not uniformly
incentivize high effort. Because the best contract that does uniformly incentivize
high effort pays the agent 3/8 = (20 — 5)/(120 — 80) > (20 — 0)/(120 — 40) of output
and leaves the principal with only (5/8) x 120 = 75 output in net, the linear bonus
contract is optimal.

Finally, regarding Theorem 3, our first two examples suggest and our first two
theorems confirm that optimal contracts in our model are simple. At the same time, we
have implicitly constrained our principal to the deterministic use of a single contract,
and randomizing over contracts is known to improve payoff guarantees in other
models of robust contracting with privately informed agents (Kambhampati (2023);
Kambhampati, Peng, Tang, Toikka, and Vohra (2025)). While optimal mechanisms in
expanded design spaces that allow for randomization, screening, or both, there are
straightforward conditions under which our optimal contracts retain their optimality

in relaxed formulations of the principal’s problem.

Example 3. The principal’s goal is to maximize guaranteed expected net output
y — w(y). Output lies in the interval [0,250] and the agent chooses between low effort
at cost 0, medium effort at cost 5, and high effort at cost 20. The principal believes
that output is 40 with probability 1 under low effort, 80 with probability 1 under
medium effort, and 120 with probability 1 under high effort. The set of plausible
agent beliefs is the set of beliefs consistent with common knowledge of the relationship

between effort and expected output.

Consider the counterfactual formulation of Example 3 in which the agent is known
to hold the plausible belief that output is 0 with probability 5/6 and 240 with
probability 1/6 under low effort; 0 with probability 1/3, 80 with probability 1/2, and
240 with probability 1/6 under medium effort; and 80 with probability 1/2, 120 with
probability 1/3, and 240 with probability 1/6 under high effort. For any contract w, the
counterfactual agent’s marginal expected wage is (1/2) x (w(80) — w(0)) for increasing
low effort to medium and (1/3) x (w(120) —w(0)) for increasing medium effort to high.
If medium effort is incentive compatible then w(80) > w(80) —w(0) > 2 x (5—0) = 10.



Alternatively, if high effort is incentive compatible then w(120) > w(120) — w(0) >
3 % (20 —5) = 45. The principal’s payoff in the counterfactual is at most 120 — 45 = 75;
the linear contract that pays the agent 3/8 of output achieves that upper bound and
is therefore optimal in both the factual and counterfactual; and the principal does not
benefit in worst-case terms from screening or randomizing over contracts.

The optimality of the linear contract in the counterfactual formulation of Example
3 can be understood by analogy to an alternative model. For every contract w, that
agent’s marginal monetary payoff for increasing low effort to medium effort is as if

med under which (i) the agent’s wage

he were instead paid with the affine contract w
for producing 0 output is the same as under w and (ii) the principal’s payoff under
medium effort is the same as under w. Simultaneously, his marginal monetary payoff
for increasing medium effort to high effort is as if he were paid with the potentially
distinct affine contract w"*9" under which (i) the agent’s wage for producing 0 output is
again the same as under w and (ii) the principal’s payoff under high effort is the same
as under w. In addition to driving our functional form result, this feature suggests a
behavioral interpretation of our model as one in which the precise output generating
process is common knowledge and the agent mistakenly interprets nonlinear incentive
schemes as if they were linear. We formalize this connection and discuss its empirical
relevance at the end of Section 3.3.

The paper is organized as follows. In Section 2 we lay out the model and characterize

the agent’s payoffs. We present our analysis in Sections 3 and 4, review the literature

in Section 5, and conclude in Section 6. Omitted proofs are in the Appendix.

2 Model

The agent’s choice of effort e from set £ determines the distribution of output y in
set Y. Output is public and received by the principal; effort is private and costly for
the agent. The principal provides financial incentives for effort by paying the agent
with a contract w : Y — R, under which non-negative wages vary continuously with

output. In places, we use the notation ¢ to indicate a generic transfer to the agent.



Formalities The set of efforts £ C R is finite, normalized by min £ = 0, and includes
at least two elements; the set of outputs )V C R is a nondegenerate interval [y,7]. The
real numbers R and their products have the Euclidean topology and finite sets have
the discrete topology. We write A(X) for the Borel probabilities on set X and §(x) for
the degenerate distribution at point z. Given a function f: ) — R and a distribution
G € A(Y), we write (f,G) = [y f(y) dG for the expected value of f with respect to
G and abusively write (y, G) = [y, y dG for expected output under G.

Contracts Contract w is an affine contract if there exist constants «, § such that
w(y) = ay+p5; a linear contract if w is an affine contract with minimum payment 0 on Y;
and a linear bonus contract if there exist constants «, 5 such that w(y) = max(ay+4,0)
and w has minimum payment 0. By definition, w is linear if and only if it is both

affine and a linear bonus contract.

Beliefs The principal and the agent believe output is distributed according to
P:&— A(Y)and A: € — A(Y), respectively. The principal does not know A but
does know some non-empty set A to which it belongs. We call beliefs in A plausible
and sometimes refer to the agent’s beliefs as his type.

We maintain two assumptions about beliefs throughout. First, if (i) A is plausible;
(ii) B(e) has either degenerate or binary support for all efforts e; and (iii) B(e) satisfies
(y, B(e)) = (y, A(e)) for all efforts e, then B is also plausible. This richness assumption
imposes broad uncertainty about the shape of the agent’s beliefs on the principal and
is therefore substantive. Second, we assume that the principal’s beliefs P and every

plausible agent belief A satisfy?
y <min (y, A(e)) <max (y,A(e)) <¥, y <min (y,P(e)) <max (y, Pe)) <7.

In doing so, we rule out extreme situations in which beliefs are necessarily degenerate.
Finally, if P(e) has full support for each effort e then we say that the principal’s

beliefs have full support. As we show, linear bonus contracts are uniquely optimal in

3In principle, we allow for cases in which beliefs about output under effort e approach § (y) or
d(7). This has no bearing on our formal results Lemma 1 and Theorem 5 that treat cases of our
problem in which the principal is uncertain about the agent’s beliefs about expected output.



specifications of our problem that satisfy this criterion.

Preferences The agent is a risk neutral expected utility maximizer with quasilinear
effort costs. The principal is an expected utility maximizer with quasilinear transfer
costs and preferences over actions described by utility 7 : £ — R. Given a contract w
and beliefs A, the agent’s problem
A _
max (w, A(e)) — e
is to maximize his expected utility. In addition to specifying the contract, the principal
also recommends a deterministic and type-specific tiebreaking rule ¢ : A — £ under

which ¢(A) is constrained to be a solution to the agent’s problem for every plausible

belief A.* The principal’s problem

max min 7(c(4)) — (w, P(c(A4)))

subject to VA Ve (w, A(c(A))) — c(A) > (w, A(e)) — e

is thus to choose a contract w and a recommendation ¢ to maximize her worst-case
payoff against the set of plausible beliefs, noting that the inner minimization problem
has a solution because there are finitely many efforts and the principal’s payoff does
not depend directly on the agent’s beliefs. We write W = (w, ¢) for a typical contract—
recommendation pair, II(W|A) = 7m(c(A)) — (w, P(c(A))) for her payoff given pair
W = (w,c) and plausible belief A, and II(W) = minac 4 II(W]A) for her payoff

guarantee under W.

The agent’s payoffs The agent’s payoffs have a simple and useful geometric
characterization, as we illustrate in Figure 1. First, we write &/ = {e — (y, A(e))|A €
A} for the set of plausible beliefs about expected output and a for a typical element
of that set. Second, given a contract w, we write ®(w) C ) x R, for the convex hull

of its graph, noting that ®(w) is compact because ) is compact and w is continuous.

4We interpret the incentive compatibility constraint in the principal’s problem as part of the
definition of the recommendation c. We are explicit about this constraint only when introducing that
problem and its variants. Otherwise, when we take a contract-recommendation pair W = (w, ¢) as
given, we implicitly assume that c is incentive compatible for w.
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Figure 1: Expected output and wage valuation pairs for a nonlinear contract

Finally, we call a vector v : &€ — R, a wage valuation for w if there exists a plausible
belief A with (w, A(e)) = v(e) for all e.

Lemma 1. Payoff vector v is a wage valuation for contract w if and only if there

exists an output vector a € &7 such that (a(e),v(e)) € ®(w) for all efforts e.

The proof of Lemma 1 follows from the Fenchel-Bunt strengthening of Caratheodory’s
theorem for connected sets. We make use of it throughout our analysis, both for the
purposes of proving our results and also for representing our arguments diagrammati-

cally.
Fact 1. The interior of payoff set ®(w) is empty if and only if w is an affine contract.

Fact 2. If output distribution F' has full support, then ({y, F'), (w, F)) belongs to the

interior of ®(w) if and only if w is not an affine contract.

Fact 1 implies that affine contracts pin down the agent’s payoff up to his beliefs
about expected output and is therefore useful for establishing the optimality of linear
contracts in the appropriate specifications of our model. Conversely, Fact 2 has
implications for tiebreaking and is ultimately useful for establishing some of our
uniqueness results. While both results are seemingly standard, we include proofs in

the Appendix.



Discussion We make two comments about this setup. First, our agent controls
the distribution of output only through his one-dimensional choice of effort.® Second,
because our principal’s preferences over actions are represented by an arbitrary utility
function 7 : £ — R, it might be the case that output is either desirable, undesirable®,
or a pure signal with no tangible value, and there are indeed specifications of our
problem in which optimal wages are decreasing in output. While our setup is general
enough to include the specification m(e) = (y, P(e)) under which the principal’s
objective is to maximize net expected output, we impose that as an assumption only
in Theorem 5. Outside of that context, our output variable is best understood as
a signal of the agent’s action rather than as a direct determinant of the principal’s
payoff.

These two features of our model lie in contrast to the robust contracting framework
developed in Carroll (2015), in which (i) the agent controls both effort and the
distribution of output and (ii) the principal’s objective is to maximize net expected
output. There, linear contracts are optimal because they align the risk-neutral agent’s
incentives for risk taking with the principal’s risk neutral preferences. Here, linear
bonus contracts are optimal because they balance the tradeoff between providing the
right incentives for effort and paying the agent economical wages. Because our results
do not in general require that the principal’s objective is to maximize net output, our
optimal contracts do not necessarily achieve the same preference alignment that they

do in Carroll’s setting, even where they are fully linear.

3 Common knowledge of the relationship between

effort and expected output

The model described in Section 2 is permissive. While we allow for situations in
which the principal knows the agent’s beliefs about expected output, we also allow

for situations in which she views every belief that is consistent with our interiority

SAll of our results go through without modification if we allow the agent’s technology to be
multidimensional in the sense that distinct actions share effort costs.

6We imagine an employer (professional sports league) who disincentivizes flagrant rule violations via
fines, a parent who punishes bad behavior with deductions from a child’s allowance, or a government
that pays a company to reduce its production of negative externalities (pollution).
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criteria as plausible. The principal’s problem is most interesting to study when she is
willing to rule out extreme heterogeneity within the set of plausible beliefs, and we

focus first on its simplest structured specification.

Assumption 1. (Common knowledge of the relationship between effort and expected
output) If beliefs A are plausible then (y, A(e)) = (y, P(e)) for every effort e.

We maintain Assumption 1 throughout this section of the paper and write u for
the mutually understood expected output map e — (y, P(e)). Our analysis of the
model with common knowledge of the relationship between effort and expected output
is organized as follows. First, in Section 3.1 we study a constrained version of the
principal’s problem in which she recommends the same level of effort to every type of
agent. Next, in Section 3.2, we treat the principal’s problem in full. Finally, in Section
3.3, we consider expanded versions of the principal’s problem and identify broad
conditions under which she does not benefit from screening the agent, randomizing
over contracts, or employing other types of complex mechanisms. The first subsection

supports the third.

3.1 The uniform effort problem

Our principal’s preference for robustness suggests that she might do well to pay the
agent with a contract under which there is certainty about his actions. Accordingly,
we initiate our study of the principal’s problem by first considering the uniform effort
problem
i A)) — P(c(A
max iy m(c(A)) — (w, P(c(A)))

subject to VA Ve’ (w, A(c(A))) — c(A) > (w, A(e")) — ¢’ and VA ¢(A) = e

in which the principal constrains herself to incentive schemes that assign the same effort
e to every type of agent. As we show in the major result of this section (Theorem
1), the best contracts for incentivizing uniform effort are linear contracts. After
establishing that result, we show how it leads to the optimality of linear contracts in

two-effort specifications of the principal’s problem.

11
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Figure 2: Identifying efficient actions

The first step in our analysis of the uniform effort problem is to identify the set of
efforts for which that problem is feasible. While specifications of our model that satisfy
the common knowledge of expected output assumption are sufficiently well structured
that the principal’s problem is nontrivial and interesting to study, it might still be
the case that the relationship between effort and expected output p is nonmonotone,

nonconvex, noninjective, or pathological in other ways.

Definition 1. Effort e is efficient if e < e for every e such that (e, u(e)) belongs to
the convex hull of graph(u).

The set of efficient actions is the set of actions under which effort costs are convex
in expected output, as we illustrate in Figure 2. We enumerate the efficient efforts as
€1, ..., em so that the corresponding sequence of expected outputs p; = p(e;) is strictly
increasing in ¢. Further, we write k for the index i associated with the necessarily-
efficient 0 effort action and P, = P(e;), m; = 7(e;) for the principal’s beliefs and
utility, respectively. It will be helpful to keep in mind that e; is strictly decreasing
in ¢ for ¢ = 1,...,k and strictly increasing in ¢ for ¢ = k,...,m, and further that
p1 = ming p(e), iy, = maxe pu(e). Accordingly, if expected output is strictly increasing
in effort then £ = 1 and e; is strictly increasing in i. The reader uninterested in
generality might wish to restrict attention to those cases.

Our efficiency criterion begins to suggest a special role to be played by linear

contracts because it depends only on effort and expected output. In order to state our

12



formal results, it will be useful to first identify the linear contract that most cheaply

incentivizes each efficient effort. For each i, define

€ — €i+1 . € — €yl ,__ .
(y_y> Z<k> 7(y—ui) Z<k‘,
Hit1 — [ Hit1 — M
wi(y) =10 i=k, ti=30 i=k IL=m—t,
€ — €i—1 . €, — €1 .
—(y—y) >k — (i —y) i>k;
Hi = Hi-1 i = Hi-1

noting that the share parameter for contract w; is derived from the binding incentive
compatibility constraint associated with reducing effort e; to the marginally-lower
efficient effort e;_; or e;; 1, as appropriate. Let recommendation ¢; satisfy ¢;(A) = e;
for all plausible beliefs A and set W; = (wj, ¢;). Our first major result confirms that
the uniform effort problem is feasible for the efficient efforts and that the best uniform

effort contracts are linear.

Theorem 1. Let Assumption 1 hold. First, the uniform effort problem is feasible
for effort e if and only if e = e; is efficient. Second, W; solves the uniform effort
problem for effort e; with value I(W;) = 11;. Third, if e; is nonzero or if the principal’s
beliefs have full support, then W solves the uniform effort problem for effort e; only if
W =W;.

We prove Theorem 1 in three steps, each of which we present as a standalone

lemma. First, we confirm that efficiency characterizes feasibility.

Lemma 2. Let Assumption 1 hold. The uniform effort problem is feasible for effort e
if and only if e = e; is efficient.

The sufficiency of efficiency follows straightforwardly from the separating hy-
perplane theorem, which yields uniform effort linear contracts for those actions.
Conversely, we establish necessity by constructing plausible beliefs under which the
agent’s monetary payoff necessarily varies linearly with the expected output that he
produces, regardless of how he is paid. As suggested by our definition, inefficient
efforts are never incentive compatible when the agent’s payoffs are a linear function of

expected output.

13
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Figure 3: Constructing an improving linear contract

In the second step, we show that any nonlinear contract that uniformly incentivizes
a particular level of effort can be improved to a linear contract that does the same.

This is the heart of the argument, and we present the proof in the body.

Lemma 3. Let Assumption 1 hold. If W = (w,c) is feasible for the uniform effort
problem with effort e and w is not a linear contract, then there exists a linear contract
@ such that W = (w, c) is feasible for the uniform effort problem with effort e and

satisfies ILW') > II(W), with IL(W) > II(W) if e is nonzero or if the principal’s
beliefs have full support.

The intuition for Lemma 3 is mostly captured by Fact 1, where we remarked that
there is certainty about the agent’s payoffs if and only if the principal pays the agent
with an affine contract. Nonlinearities in the agent’s wages yield beliefs under which
the agent’s payoff is relatively low for the intended level of effort and relatively high
for every alternative level of effort, vis-a-vis the principal’s own beliefs about transfers.
Those asymmetries manifest as an endogenous “complexity penalty” that must be
paid by the principal in order to uniformly incentivize the intended effort, and the
magnitude of that penalty is such that it is less expensive for her to simply pay the

agent with a linear contract if she desires certainty about his actions.

Proof of Lemma 3. Suppose W = (w, c) is feasible for the uniform effort problem with
effort e and that w is not a linear contract. If w is affine, set @ = w — min, w(z).
Alternatively, if e is 0, set @ = wy. In both cases, W = (w, ¢) yields the claimed
improvement. If instead w is not affine and e is nonzero, write y° = u(0),y* =

p(e), t° = max{t|(y°,t) € ®(w)}, t* = min{t|(y* t) € ®(w)} and note that t* > t° per

14



our hypothesis that W is feasible for the uniform effort problem with effort e.

The supporting hyperplane theorem provides a support line /° C R? to ®(w) at
(y°,t%) and a support line £¢ C R? to ®(w) at (y°, t¢). First, because 3°, y¢ are interior,
0, ¢ are nonvertical and can therefore be interpreted as affine functions ¢°, /¢ : R — R.

Second, because w is not affine, Fact 2 implies

max{1)(y”, 1) € B(w)} > min{|(s”, 1) € B(w)}, )
max{t|(y°,t) € ®(w)} > min{t|(y°, t) € ¢(w)}.

In turn, because °(y°) = max{t|(y°,t) € ®(w)} and (¢(y*) = min{t|(y%,t) € ®(w)},
we obtain for all pairs (y,t) € ®(w)

Cly) >t > 1°(y). (2)

Consider the affine contract” @ with @ (y°) = t° and @(y°) = t¢, as depicted in Figure
3. Jointly from (1)—(2) and our choice of w, we have ¢¢(y°) < °(y°) = w(y°) =
0 < t¢ = w(y®) = ¢(y°) < (°(y°). In turn, because (°, ¢° 1 are affine, we have (i)
w(y) <t® < w(y) > O(y) and (ii) w(y) > t* < w(y) < £°(y). Further, because
®(w) is convex by definition and (y°, @ (y°) = t%), (v¢, w(y°) = t¢) € ®(w) per our
choice of 9, t¢, we also have

" <w(y) <t° <= (y,0(y)) € O(w). (3)

Together, (2)—(3) have two implications of significance. First, if w(y) > max{t|(y,t) €

®(w)} then w(y) < t°. Because w(y¢) = t¢ by construction and t* — e > t° — 0 by
hypothesis, efforts that yield wages strictly smaller than t° are not incentive com-
patible under contract @. Accordingly, W = (w, ¢) uniformly incentivizes effort
e. Second, if w(y) < t° then w(y) > max{t|(y,t) € ®(w)}. Because y° is inte-
rior, w is affine, and w(y°) = °, the minimum of @ is strictly less than t°. In
turn, because the graph of w is contained in ®(w) by definition, the minimum
of w is strictly greater than the minimum of w. This implies both that @ is a

well defined contract and also that the linear contract @w = @ — min, w(z) satisfies

"We show near the end of the proof that @ satisfies limited liability and is therefore a contract.
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(@, P(e)) < (w,P(e)) = min{t|(y°,t) € ®(w)) < (w, P(e)). The pair W = (@, c)
inherits feasibility for the uniform effort problem with effort e from W and satisfies

— ~

(W) > (W) > TI(W). O

Lemma 3 implies that optimal uniform effort contracts are linear. The third and
final step of the proof of Theorem 1 is to verify that W; is optimal among the set of

incentive schemes that are feasible for the uniform effort problem with effort e;.

Lemma 4. Let Assumption 1 hold. First, if W = (w, c) is feasible for the uniform
effort problem with effort e; and w is a linear contract, then W solves the uniform
effort problem for effort e; if and only if W = W;. Second, the uniform effort problem
for effort e; has value IL(W;) = I1,.

The proof of Lemma 4 is a straightforward accounting exercise, and we leave the
details to the Appendix. With that result in hand, we obtain Theorem 1 as a summary
of Lemmas 2—4.

In order to understand the implications of our first theorem for optimality in the
principal’s problem, recall that we began our discussion of Example 1 by arguing that
the optimal contract must incentivize high effort in every type of agent. Once that has
been established, it is enough to show that the best uniformly incentive compatible
contract is linear, as Lemma 3 implies. However, that the optimal contract must
robustly incentive high effort is a specific feature of that example rather than a general
feature of our model, as Example 2 makes clear. Instead, the results of this section are
only strong enough to guarantee the linearity of solutions to the principal’s problem if

there are two levels of effort and the principal’s beliefs have full support.

Proposition 1. Let Assumption 1 hold and suppose there are exactly two levels of
effort and the principal’s beliefs have full support. Contract—recommendation pair W
solves the principal’s problem if and only if there exists an index i such that W = W;

and Hz = maX(Hl, Hg)

If there are two actions available to the agent and the principal’s beliefs have
full support, any contract that pays positive wages for any output either uniformly
incentivizes the more costly of the two actions or yields a strictly worse guarantee
than the trivial contract that pays the agent wage 0 for every output. Once that has

been verified, Proposition 1 follows immediately from Theorem 1.
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3.2 The principal’s problem

The binary effort assumption in Proposition 1 is restrictive. At the same time, the
uniform effort constraint is arguably unnatural and, as we have shown in Example 2,
at least sometimes binding. In this section, we show that linear bonus contracts are
optimal for general specifications of the principal’s problem, and uniquely so if her

beliefs have full support.

Theorem 2. Let Assumption 1 hold. First, there exists a linear bonus contract w and
a recommendation ¢ such that W = (w, ¢) solves the principal’s problem. Second, if
the principal’s beliefs have full support, then W = (w, c) solves the principal’s problem

only if w is a linear bonus contract.
The substance of Theorem 2 is contained in the following lemma.

Lemma 5. Let Assumption 1 hold. If W = (w,c) and w is not a linear bonus
contract, then there exists a linear bonus contract W and a recommendation ¢ such
that W = (@,¢) satisfies TL(W) > IL(W), with TI(W) > II(W) if the principal’s beliefs
have full support.

Lemma 5 can be understood by careful consideration of the geometric structure
of the agent’s payoff set, as described by Lemma 1. For the purposes of illustration,
let w be any contract, ¢ any incentive compatible recommendation, A* any plausible
belief that satisfies (w, A(e)) = minge4(w, B(e)) for each effort e, and e* the level of
effort assigned to the minimal-payoff agent A*. As we show in the proof, there exists a
corresponding linear bonus contract w that preserves the agent’s lowest-possible payoff
for effort e* despite paying the agent no more than w for any level of output. When
coupled with any incentive compatible recommendation ¢ that breaks ties in favor of
effort e* wherever possible, the improved contract @ not only directly improves the
principal’s payoff by unambiguously reducing wages but also makes efforts other than
e* less attractive to the agent, regardless of his beliefs. The set of actions the agent
might take under the improved contract is a subset of the actions he might take under
the original contract, and her payoff for each of those actions is at least as high. In

light of the principal’s preferences for robustness, this improves her payoff guarantee.
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Figure 4: Constructing an improving linear bonus contract

Proof of Lemma 5. Suppose w is not a linear bonus contract, let ¢ be any incentive
compatible recommendation, and set W = (w, ¢). As in the proof of Theorem 1, if
w is an affine contract then (i) @ = w — min, w(z) is a linear bonus contract and
(ii) W = (@, ¢) satisfies II(W) > [I(w). We devote the rest of the proof to the more
interesting cases in which w is not an affine contract. Let plausible belief A* satisfy
(w, A*(e)) = min{t|(u(e),t) € ®(w)} for all efforts e and write e* = c(A*),y* =
pu(e*), t* = (w, A*(e*)). Per our choice of A*, the pair (y*,t*) lies on the boundary
of ®(w). In turn, the supporting hyperplane theorem provides a normal vector

n = (ny,n:) # (0,0) such that
‘v’(y,t) S CI)(U)) n - (y*,t*) > - (y,t), (4)

where (i) 7, is nonzero because y* is interior and (ii) 7, is nonpositive because ®(w)
contains points (y*,t) with ¢ > ¢* per Fact 2. Jointly, the support line {(y,?)|n-(y,t) =
n- (y*,t*)} and the limited liability constraint delineate a contract w(y) = max(t* +
(ne) " 'n,(y* —y),0), as depicted in Figure 4. We make two observations about . First,
because the graph of w is contained in ®(w) by definition, n - (y*,t*) > - (y, w(y))
for all y per (4). In turn, limited liability and 7, < 0 imply

w(y) > max(t* + ;’j@* —y),0) = @(y). (5)
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Second, because w is the pointwise maximum of two convex functions, w is itself

convex. In turn, Jensen’s inequality implies

min{t|(y", t) € ®(w)} = w(y") = t* = min{t|(y", ) € P(w)}. (6)

Let ¢ be any incentive compatible tiebreaking rule for contract w that breaks ties in
favor of ¢* whenever e* is a solution to the agent’s problem and consider W = (w0, ).

While the condition
max{t|(u(e),t) € ®(w)} — e >min{t[(y", 1) € P(w)} — €’ (7)
is necessary for the existence of a plausible belief A with ¢(A) = e, the condition
max{t|(u(e),t) € ®(w)} — e >min{t[(y", 1) € P(w)} — €’ (8)

is sufficient for the existence of a plausible belief A with ¢(A) = e. At the same time, (5)
and (6) imply that (7) is sufficient for (8). Accordingly, {¢(A)|A € A} C {c(A)|A € A}.
Furthermore, (5) implies 7(e) — (w, P(e)) > m(e) — (w, P(e)) for all efforts e, with
strict inequality if the principal’s beliefs have full support. Accordingly, we have
H(W) > TI(W), with strict inequality again if the principal’s beliefs have full support.
If @ has minimum payment 0 then @ is a linear bonus contract and the proof is
complete. If @ does not have minimum payment 0, then @(y) = w(y) — min, w(z) is

w
a linear bonus contract and W = (@, ¢) satisfies II(W) > (W) > II(W). O

Theorem 2 follows jointly from Lemma 5 and the existence of an optimal contract.

We provide a detailed proof of the latter in the Appendix.

3.3 The principal’s expanded problem

Thus far, we have constrained the principal to deterministically pay every type of agent
with the same contract. At the same time, her aversion to uncertainty is such that
she would be guaranteed to at least weakly benefit from learning the agent’s beliefs
before settling on an incentive scheme. Were that benefit guaranteed to be strict,

then it might be possible for her to improve on the best-available payoff guarantee by
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screening the agent, randomizing over contracts, or both. However, if instead
max min [I(W]A) = min max II(W|A)
W AcA AcA W
then the principal’s problem has a saddle point (W, A) with the property that
VIV II(W|A) > TI(W'| A), VA" TI(W]A) < TI(W|A").

In turn, (i) W solves the principal’s problem; (ii) the principal’s payoff guarantee
under W is her payoff II(I/W|A) when the agent’s beliefs are A; and (iii) W maximizes
the principal’s payoff in the counterfactual in which the principal knows the agent’s
beliefs are A. In all such cases, the optimality of W persists in expanded formulations
of the principal’s problem that allow for mechanisms that are more complex than the
deterministic use of a single contract.

In this section, we identify broad conditions under which the principal’s problem
indeed has a saddle point and optimal contracts are linear. We then use this result to
formalize our observation that the principal does not benefit in worst-case terms from
using complex mechanisms. In doing so, we provide a theoretical justification for the
deterministic use of a single contract with a simple functional form. We view these as

positive results.

Constructing the saddle point

Assumption 2. (Broad support) First, every belief A with (y, A(e)) = u(e) for every
effort e is plausible. Second, the set of outputs Y = [y,7] satisfies

pi—Y >1+\/g Y — Hm >1+\/3
fn — 11— 2 fn =11 — 2

The second part of Assumption 2 implies that the range of outputs 7 — y is roughly
four times the length of the range of expected outputs u,, — u; or greater. Along

with Assumption 1, we maintain it throughout this subsection. Our arguments are
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constructive. First, define weights 7; and remainder r by

Hit1 — M Pk
Y — W ’ Mk—?ZTi—szi
=10 i=k, = i<k i>k
1—27}'
Hi — Hi—1 i
— 1>k
i —y

Next, for each efficient effort e; define belief S by

k
> 70(F) + X TP+ ¥ md(y) + (1 - 21)d(r) i <k,
Se;) =8 =47 = J>k J
> 0@ + X TP+ Y mio(y) + (1= 7)d(r) i >k
J<k j=k i>i j
Finally, for each inefficient effort e there exists a distribution v¢ € A({1,..,m}) with
S = p(e) and >o;vfe; < e. Complete the construction by assigning S(e) =
> v5S; for each inefficient effort e.

Theorem 3. Let Assumptions 1-2 hold. First, the principal’s problem has a saddle
point. Second, (W;,S) is a saddle point if and only if Il; = max(I1y, ..., IL,,). Third, if
the principal’s beliefs have full support, then W solves the principal’s problem only if
W =W, for some index i with I1; = max(Ily, ..., I1,,).

In addition to identifying a saddle point and proving that linear contracts are opti-
mal, Theorem 3 explicitly characterizes the set of solutions to the principal’s problem.

There are three steps to the proof. First, in Lemma 6 we use the underestimates

ST \y ) Ty’ N N we—y/) T -y

to show that S is both well defined and plausible whenever Assumption 2 is satisfied.®

Lemma 6. Let Assumptions 1-2 hold. Belief S is both well defined and plausible.

81t can be readily verified that S is well defined when there are two efforts, regardless of whether or
not the second criterion in Assumption 2 is satisfied. Accordingly, Theorem 3 subsumes Proposition
1 in two-effort specifications of our problem that satisfy that Assumption’s first criterion.
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Second, we show that for any contract w (i) belief S is assigned an efficient effort
e; and (ii) expected transfers to the agent under e; match or exceed expected transfers
under the linear contract w; that uniformly incentivizes effort e;. This fact falls
straightforwardly out of the incentive compatibility conditions for S and is the crux

of the argument.

Lemma 7. Let Assumptions 1-2 hold. For every W = (w,c) there exists an index i
such that ¢(S) = e; and II; > II(W|S).

Proof. Let W = (w, ¢) be any contract-recommendation pair and note that (w, S(e))—
e =7 (w,S;) —e < X7 ((w,S;) — e;) for all inefficient efforts e. Accordingly,

c(S) = e; for some index ¢. The lower bounds

(w, S;) — (w, Sit1) = 7({(w, P;)
<'LU, SZ> - <w> Si—1> = Ti<<w7 PZ>

@)

Y)) = € — €1 i <k,
(g)) >e;— e 1>k

—w
—w

follow directly from the definitions of S; and the adjacent distributions S; 1, .5;11. We

have in turn

(w, P) > (w, P) — w(y) > jf;iij_(y—m) —t, i <k,
(w,P) 2 (w, P) —wly) 2 T —y) =1, ik (9

where the first column of inequalities follows from limited liability and the second
from the definition of 7;. Accordingly, I(W|S) = m; — (w, P;) < m; —t; = 11,. O

With support from Theorem 1, Lemma 7 yields a saddle point for the principal’s
problem. The third and final step of the argument is to show that if the principal’s

beliefs have full support then nonlinear contracts are suboptimal.

Lemma 8. Let Assumptions 1-2 hold and suppose the principal’s beliefs have full
support. If W = (w, ¢) and w is not a linear contract then there exists an indez i such
that T1; > TI(W).
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Lemma 8 follows jointly from Fact 2 and an adaptation of the argument given in
proof of Lemma 7. For the purposes of illustration, suppose there are two efforts e; < e5
with g1 < po and let the principal pay the agent with a contract-recommendation
pair W = (w, ¢) under which w is not a linear contract. If ¢(S) = e; then W provides
a strictly worse guarantee than W because the principal’s beliefs have full support.
Otherwise, if ¢(S) = ey then there are two cases to consider. First, if (w, Ss) — ey >
(w, S1) — e1 then the incentive compatibility conditions for S imply directly that
(w, Py) > (ws, Py) and hence II(Wy) > II(W). Second, if (w, ) — ey = (w, S3) — ey
then (i) (9) implies w is not an affine contract and (ii) Fact 2 implies there exists a
belief type S nearby to S satisfying (w,S;) — e; > (w, S3) — eq, noting that Sy, S,
inherit full support from our hypothesis that the principal’s beliefs themselves have
full support. In that case, we again have II(W;) > II[(W). With the formal result in
hand, we obtain Theorem 3 as an easy consequence of Lemmas 6—8 and the results of
Section 3.1. We provide a short proof in the Appendix.

As a final technical matter, the sufficiency of Assumption 2 for the existence of a
saddle point in the principal’s problem raises a question as to whether or not that
problem might have saddle points in specifications that do not satisfy the criterion.
While the suboptimality of linear contracts in Example 2 confirms that the principal’s
problem does not in general have a saddle point in which the constituent optimal
contract is linear, it might still be the case that there exists a belief that is adversarial
with respect to the linear bonus contract that is optimal in that specification of
the problem. Toward a general result, Sion’s minimax theorem implies that strong
duality holds in our problem if (i) the map W — II(WW|A) is upper semicontinuous
and quasiconcave for every plausible A and (ii) the map A — II(W|A) is lower
semicontinuous and quasiconvex for every well defined W. In Appendix D, we
construct a four-action example in which both criteria in (ii) are violated. In doing so,
we demonstrate that Sion’s theorem can not be used to establish the existence of a

saddle point in general specifications of our problem.

The principal’s expanded problem Among its other implications, Theorem 3
implies that linear contracts remain optimal in expanded formulations of the principal’s

problem that allow for screening and randomization. Formally, a menu (W, ¢) is an
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incentive compatible assignment of contract W(A) and action ¢(A) to each plausible
belief; a random menu v = (N; Wy, ¢1), ..., Wha, en); (V15 ..., vn)) is a randomization
over finitely many menus (W, ¢1), ..., Wy, cy) according to probability distribution
(v1,...,vN); the principal’s payoff given random menu v and belief A is II(v|A) =
JII(OW(A), c(A))|A) dv; and the principal’s expanded problem

max min TI(v|A)
v=(N;(Wi,c1),....(Wn,en);(v1,...,vn)) AEA

subject to Vj VA VB Ve (W;(A), A(¢;(A))) — ¢;(A) > W;(B), A(e)) — e

is to choose the random menu that maximizes her guaranteed payoff against the set

of plausible beliefs.”

Proposition 2. Let Assumptions 1-2 hold. If 1I; = max(Ily, ..., I1,,) then W; solves

the principal’s expanded problem.

Proposition 2 formalizes our assertion that Theorem 3 provides a worst-case
justification for the use of linear contracts in expanded design spaces. While the
uniqueness result in that theorem implies our optimal contracts are not weakly
dominated by other contracts, it falls short of ruling out weak dominance by random

menus. We leave the analysis of that issue for future work.!®

Discussion Economists have documented extensive evidence that a critical mass of
real-world decision makers seem to mistakenly interpret nonlinear incentive schemes as
if they were linear (see Ito (2014) for an overview of the evidence and Martimort and
Stole (2020) for a nonlinear pricing exercise that takes this behavior as its premise).
As Tto shows, these mistakes potentially have negative welfare implications not only for
the decision maker but also for the firms with whom they interact. Along those lines,

there is a formal sense in which the saddle point agent types in our model themselves

9We identify the degenerate random menu (1; (W, ¢); (1)) satisfying W(A) = w for all plausible
beliefs A with the contract-recommendation pair (w, ¢).

10To see why this is a potential concern, return to Example 3. Screening the agent by giving him a
choice between the robustly optimal contract (3/8)y and the linear bonus contract max((3/4)y —90,0)
weakly dominates paying him with the former because there are agent types that are indifferent
between the two contracts, even though the latter pays no more than the former for every output in
the support of the principal’s beliefs.
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interpret every contract as if it were linear, and this perception drives the optimality
of linear contracts in the corresponding specifications of our model. To the extent that
our agent’s behavior reasonably approximates the real-world behavior documented by
[to (2014) and other authors, our analysis might be viewed as providing a formal model
of those phenomena that fits within the standard rational choice framework. From
that perspective, this paper (i) justifies the provision of linear incentives in contexts
where misunderstandings by the agent are a first order concern and (ii) provides an
interpretation of linear contracts as being “simple” because they are easy for the agent
to understand, rather than because they are more literally robust to various forms of
uncertainty.

To make the connection concrete, consider an alternative model in which the agent
is known to share the principal’s beliefs P. The principal proposes a contract w and
recommends an effort e;. The agent correctly assesses his payoff for e; but uses the

affine approximation

(w, Piy1) — wf@) _ y,_ it i<k
(w, P;) —w(y) U — I
Pi— - —1

(w,Pmq) —w(y) _ pi1—y Dok

to evaluate his payoff under a marginal reduction in effort. He accepts the principal’s
recommendation if and only if the approximated payoff differential resulting from that

effort reduction

(1, P) = {w, Prr) = FE 2 (w, Py — () i<k,  (10)
(w, P) = {w, Py = 22 (w, Py = wly) i>k

matches or exceeds the effort cost differential e; —e;_1 or e; — e; 41, as appropriate.
Unsurprisingly, the principal might as well pay the agent with an affine contract. To
see why, let w be a contract of arbitrary form and suppose the principal’s recommended

effort e; is incentive compatible. The principal’s payoff for effort e; and the agent’s
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Figure 5: Constructing an improving linear contract for belief type S

marginal payoff for effort e; are each the same under the affine contract

~ _ <w7Pi> - w(y) — _ .
w(z) = = . P) (T —2)+w(@) i <k,
_{w, P) —w(y) ,
U)(Z): <y7P1>_y (Z—g)—i—ZU(y) i >k

as they are under w.'!' Payoffs for both parties are as if the principal paid the agent
with the affine contract @ rather than the original contract w.

The construction of the adversarial belief S is motivated by the approximating
agent’s incentive compatibility criterion, and for every contract w the actual marginal

payoff

(w,S; = Sip1) = Ti((w, P) —w(g) = "L (w, P) —w(y) i<k

Y — Wi
(w, 8; = ;1) = i((w, P) —w(y)) = %((w, P)—w(y) i>k (11)

is identical to the linearized marginal payoff (10), as we illustrate in Figure 5.12 The

HThe coefficient on the first term of the improved contract @ is strictly positive because the
original contract w satisfies the counterfactual agent’s incentive compatibility criterion for effort e;
and the constant in the second term is nonnegative because w is a valid contract. Accordingly, @
satisfies limited liability and is therefore itself a well defined contract.

12The diagrams in Figure 5 are generated to scale by the data Y = [-1,1], w = y® — y/2, n = 3,
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subtlety inherent in recovering the approximating agent’s behavior within the expected
utility maximization framework is the need for that equivalence to hold simultaneously
across distinct effort recommendations. In particular, while the approximating agent’s

payoffs are identical to his expected utility under beliefs A with

il — Mi ooy Y — Hit1 .
Ale;) = Ple;), Alei) = —0(y) + ——P(e; 1 < k,
@ =Ple).  Ale) = B Pg(y) + 0 pe

i — Mi—1 Mi—1 — Y .
Ale;) = Ple;), Alej 1) =—0(y) + ———=P(e; 1>k,
@)= Ple),  Ale) = F o) + B e

the competing specifications
(i) A(e;) = P(e;) if the principal recommends effort e;,
(ii) A(e;) = (1 = A)d(y) + AP(es41) if she recommends effort e; 4 for i > k,
(ili) A(e;) = (1 —N)o(y) + AP(e;—1) if she recommends effort e;_; for i < k

are generically contradictory in cases of our model with more than two actions.
Accordingly, while the linearly approximated marginal payoffs (10) coincide with the
actual marginal payoffs (11), the absolute payoffs typically differ, as in Figure 5.

4 Beyond common knowledge of the relationship

between effort and expected output

The assumption that the relationship between effort and expected output is common
knowledge is restrictive in two ways. First, the principal and the agent agree about
that relationship. Second, that agreement is understood by the principal. In this
section, we show that our strongest result (Theorem 3) persists under relaxations of
both.

Assumption 1*. (Supermodularity) There exists a complete lattice (©,<) and a
supermodular function f:E x © — Y such that o7 = {f(-|0)|0 € O}.

(g1, pro, 13) = (=v6/6,0,4/6/6), (w, P,) = —3/16, and (w, Ps) = 1/6. The low-effort wage (w, Py)
is set arbitrarily with (u1, (w, P1)) € ®(w) and the payoffs (w, S1), (w, S2), (w, S3) are computed
according to the definition of S.
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Assumption 1* provides for the existence of a plausible belief about expected
output that is minimal in the sense of increasing differences. We write a* for the

element of .o/ that satisfies
a(max{e, ¢'}) — a(min{e, ¢'}) > a*(max{e, ¢'}) — a*(min{e, ¢'}) (12)

for all plausible beliefs about expected output a € 7. This belief plays a central
role in our analysis, and we make two comments about the assumption. First, if .o/
contains only a single element, then Assumption 1* is vacuously satisfied. Second, our
arguments go through without modification under the weaker assumption that .o/ has

a minimal element in the sense of increasing differences, as in (12).

Definition 1*. Effort e is efficient™ if e < ¢ for every point ¢ such that (e, a*(e))
belongs to the convex hull of graph(a*).

As before, we enumerate the efficient™ efforts ef, ..., €}, so that af = a*(e]) is strictly
increasing in . We label as [ the index associated with the zero effort action and use
the shorthand P = P(e}) for the principal’s beliefs, p; = p(ef) for the expected value
of the principal’s beliefs, and 7} = 7(e}) for the output component of the principal’s
payoff, noting the dependency of the index ¢ = 1, ...,n on the identity of a*. With that

notation in hand, we proceed to our construction. Define weights 7, remainder r* by

* *
Qi1 — 4 oy
—
— * ) * * — *
J— D aj —yy T =y, T
_ . . i >1 i<l
T’L'*: 0 @:l’ T*: L ¢
1— T
>
*_ * .
a; —a;_1 i
” 1>
b =Y

and beliefs S} by

!
YTi0(y) + TP+ ng]T“é(y) + (1 =)o) i<,
j j

S*(e;) = S; =7 2
S o) + S Py Sa(y) + (1- Sr)o0) i1
j<i 7=l 7>t J

Extend the definition to the inefficient® efforts e by choosing £¢ € A({1,...,n})
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to satisfy >, &fal = a*(e),>; &fef < e and assigning S*(e) = >, &S, Toward the

statement of conditions under which S* is plausible, define

k¥ = max | max = , max =, =
i<l y—pi o>l opi—y 2

and note that ¢* reduces to (1/2)(1 ++/5) in the a* = p case, as in Assumption 2.

Assumption 2*. (Broad* support) First, every belief A with (y, A(e)) = a*(e) for
every effort e is plausible. Second, the set of outputs Y = [y,7| satisfies

* — *

a; — vy —a

1 7>90* y n>90*
* __ % — ) * __ % —
a,, ai a,, ay

Together, Assumptions 1*, and 2* yield a proper generalization of our earlier model
with common knowledge of the relationship between effort and expected output. In
order to state our main results for this section, it will again be useful to introduce the

linear contracts of interest. Define for each ¢

ez ez—l—l (— ez ei—l—l — * -
y—y) i<l G —p;) i<l
Qi — a;'k Qi — a;!( !
wi(y) =<0 i=1, tr=140 i=1, Il =7 —t],
e —e € — €1
> [; r— > [

let ¢; be any incentive compatible tiebreaking rule that breaks ties in favor of e
wherever possible, and set W} = (w}, ¢). We first consider specifications of our model

in which a* is the lone element of «/. Under no additional assumptions, a proper

generalization of Theorem 3 obtains.

Theorem 4. Let Assumptions 1%, 2* hold and suppose that the agent’s beliefs about
expected output are known to be a*. First, the principal’s problem has a saddle point.
Second, (W},S*) is a saddle point if and only if II} = max(II3,...,IT%). Second, if
the principal’s beliefs have full support, then W solves the principal’s problem only if
W =W} for some index i with 1I} = max(II}, ..., II%).

We establish the result in steps. First, we show that S* is well defined and plausible.

Second, we show that the principal’s payoff in the counterfactual in which she knows
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the agent’s beliefs are S* is bounded above by max(Ilj, ..., II}). Third, we verify that
W} guarantees the principal payoff II? across the set of plausible beliefs. Fourth, and
finally, we show that nonlinear contracts are suboptimal. Both the structure of the
overall argument and the details of the individual steps closely mirror the logic of
Theorem 3.

Setting aside further technical elaboration until the Appendix, the premise that
the principal knows the agent’s beliefs about expected output is itself informationally
demanding, if not especially so when her own beliefs differ from his. Under mild

regularity conditions, our result extends to a much richer class of environments.

Assumption 3. (Regularity) First, the principal’s beliefs about expected output p
and the agent’s beliefs about expected output a are nondecreasing in effort for every
plausible belief about expected output a. Second, the principal’s utility function satisfies
™=Dp.

Monotonicity of the agent’s beliefs works together with our supermodularity
assumption to ensure all agent types exert no less effort than type S* when paid with
a linear contract. At the same time, monotonicity of the principal’s beliefs and full

linearity of her utility function ensure her payoff is nondecreasing in effort.

Theorem 5. Let Assumptions 1%, 2%, 3 hold. First, the principal’s problem has a
saddle point. Second, (W}, S*) is a saddle point if and only if II} = max(II7, ..., II} ).
Second, if the principal’s beliefs have full support, then W solves the principal’s problem
only if W =W} for some index i with II} = max(II7, ..., II}).

Altogether, Theorem 5 provides a sharp optimality result for specifications of our
model in which there is (i) monotonicity of beliefs about expected output in effort; (ii)
linearity of the principal’s utility function; and (iii) a minimal belief in the sense of
increasing differences. All three assumptions are standard and, in our view, at least

the first and the third are broadly permissive.

5 Related literature

Robust contracts and mechanisms This paper complements the literature on

robust contracting with uncertain production technologies initiated by Chassang
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(2013) and Carroll (2015) and elaborated on by Dai and Toikka (2022); Walton and
Carroll (2022); Kambhampati (2023, 2024); Burkett and Rosenthal (2024a); Antic and
Georgiadis (2024); Marku, Ocampo, and Tondji (2024); Liu (2024); Kambhampati,
Peng, Tang, Toikka, and Vohra (2025). While the defining premise of that literature
is the principal’s incomplete understanding of the agent’s capabilities, our principal
knows both the set of actions available to the agent and also the distribution of
output produced by each of those actions. This knowledge protects her from the
all-or-nothing risk taking that renders convex contracts suboptimal in the baseline
unknown technology model, and our optimal linear bonus contracts are only sometimes
fully linear.

The methods we use in proving Theorem 1 and Theorem 2 are inspired by the
elegant applications of convex analysis in the aforementioned Carroll (2015). There,
the author uses the separating hyperplane theorem to improve given contracts of
arbitrary form into linear contracts that yield better guarantees. For our part, we use
the supporting hyperplane theorem to construct improving linear contracts in Theorem
1 and improving linear bonus contracts in Theorem 2. The high level distinction
between the two sets of arguments is that while Carroll’s approach is based around
improving the agent’s payoff for desirable actions while maintaining his payoff for
undesirable actions, our approach is based around tightening the range of payoffs
associated to the agent’s actions while simultaneously preserving or degrading his
wages. While improving the agent’s payoff for “good” actions is valuable to Carroll’s
principal because doing so endogenously improves the productivity of the “bad” actions
that drive her guarantees, our agent’s actions are fixed and transferring additional
utility to him only serves to increase our principal’s costs.

Setting aside our first two major results, our saddle point theorems have no
counterpart in Carroll (2015) or elsewhere in the ensuing literature because the
uncertain technology problem in which the principal is constrained to the deterministic
use of a single contract does not have a saddle point except in a narrow class of special

13

cases, as Carroll shows.”™ While Carroll does prove directly that screening does

13Kambhampati, Peng, Tang, Toikka, and Vohra (2025) identify a saddle point in the expanded
formulation of Carroll’s problem that allows for randomization over contracts. Conversely, as Carroll
shows, the formulation of the problem in which the principal is constrained to deterministic contracts
does not have a saddle point. By contrast, we identify saddle points of our problem in which
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not improve that principal’s guarantee, other authors have since established that
randomization (Kambhampati (2023); Kambhampati, Peng, Tang, Toikka, and Vohra
(2025)) and experimentation (Liu (2024)) do. In contrast, we identify broad conditions
under which none of the aforementioned procedures yield a better payoff guarantee
than the best linear contract. The significance of this feature of our model is admittedly
subjective, and there are practical reasons why a real-world principal in a Carroll-like
environment might wish to use a single contract even if complex mechanisms do yield
better guarantees.

Separately, our richness condition is related to the richness condition that appears
in Walton and Carroll (2022). There, the authors suppose that the set of output
distributions ®(w) taken in best response to contract w has the property that if (i) £
is a potential best response; (ii) expected output under F” and F' is the same; and (iii)
expected transfers under F” are at least expected transfers under F', then F” is also a
potential best response. Aside from minor technicalities pertaining to (ii), we differ in
two ways. First, we work with agent beliefs A rather than shared beliefs F'. Second,
our uncertainty set A is primitive while theirs ®(w) is derived from primitives. Hence,
there is no analogue to (iii) in our setting.

Elsewhere in the robust contracts literature, a pair of related papers (Lopomo,
Rigotti, and Shannon (2011); Burkett and Rosenthal (2024b)) study a model in which
the agent is uncertain about his own production technology and demands to be paid
with a contract under which the recommended level of effort is unambiguously incentive
compatible. As in our paper, the principal knows the agent’s production technology;
unlike in our paper, the agent does not. In contrast with our own results, both studies
find that optimal contracts are coarse.

Finally, while this paper is to the best of our knowledge the first to study belief-
robust incentive contracting, several earlier studies consider robustness to beliefs in
mechanism design problems with multiple agents (Bergemann and Morris (2005);
Chung and Ely (2007); Brooks and Du (2021)).

the constituent optimal contract does not involve randomization. This distinction is significant.
In our model, deterministic contracts are optimal in expanded design spaces; in Carroll’s model,
deterministic contracts are only optimal in expanded design spaces for a proper subset of the family
of cases in which the 0 contract is optimal. Kambhampati, Peng, Tang, Toikka, and Vohra do clarify
that randomized screening menus do not yield better guarantees than the best random contract.
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Contracting with heterogeneous beliefs One approach to relaxing the common
prior assumption that is different than our own is to instead assume the principal
and the agent have different beliefs but the agent’s beliefs are known to the principal.
This premise has been explored both in the context of moral hazard (Karni (2008))
and separately in the extensive behavioral contract theory literature (see Készegi
(2014) for an overview), where it has been shown for instance that calculating firms
are in a position to benefit from overconfidence in an employee (de la Rosa (2011)) or
naiveté in a borrower (Heidhues and Készegi (2010)). While much of that literature
interprets the principal’s beliefs as “correct” and the agent’s beliefs as “biased”, we
have deliberately avoided assigning primacy to either parties’ beliefs and we have
eschewed welfare calculations altogether. Instead, our emphasis lies on the principal’s

uncertainty about the agent’s beliefs, rather than on disagreement per se.

6 Conclusions

This paper studies the design of robust incentives for an agent with unknown beliefs
about the output generating process. We show that linear bonus contracts are optimal
in general and that linear contracts are optimal in special cases. Further, we show that
if the range of outputs is large relative to expected productivity, then the principal’s
problem has a saddle point and optimal contracts are again linear. In doing so,
we provide foundations for paying the agent with simple contracts on the basis of
robustness to uncertainty about beliefs.

Our analysis here suggests a few avenues for future work. First, our optimality
results leave open the possibility that our optimal contracts are dominated by more
complicated mechanisms that employ screening or randomization. It remains unclear
whether or not the characterization of undominated incentive schemes is a tractable
problem, and similarly whether or not its solutions are of interest. Second, we have
neither confirmed nor refuted the existence of saddle points in specifications of the
principal’s problem that fail Assumption 2, 2*. To the extent that screening or
randomization might be impractical in certain real-world applications, a positive
result for those specifications seems desirable. Third, and finally, our assumption

that the agent’s preferences are quasilinear in effort might be viewed as restrictive.
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While the core improvement arguments in Lemmas 3, 5 that respectively support
Theorems 1, 2 generalize readily to any environment in which the agent’s preferences
are monotonically increasing in expected transfers, our notions of efficiency and
our accompanying characterization of optimal linear contracts do not extend to
those alternative environments. Furthermore, because the improvements that support
Theorems 3-5 are based around preserving the agent’s marginal payoff for the intended
effort but not necessarily his absolute payoff, it is unclear if those results obtain under

more flexible restrictions to the agent’s preferences.

References

Antic, N. and G. Georgiadis (2024, 08). Robust Contracts: A Revealed Preference
Approach. The Review of Economics and Statistics, 1-31.

Bergemann, D. and S. Morris (2005). Robust mechanism design. Econometrica 73(6),
1771-1813.

Brooks, B. and S. Du (2021). Optimal auction design with common values: An

informationally robust approach. Econometrica 89(3), 1313-1360.

Burkett, J. and M. Rosenthal (2024a). Data-driven contract design. Journal of
Economic Theory 221, 105900.

Burkett, J. and M. Rosenthal (2024b). Statistical uncertainty and coarse contracts.
Journal of Economic Theory 220, 105876.

Carroll, G. (2015). Robustness and linear contracts. American Economic Re-
view 105(2), 536-563.

Chassang, S. (2013). Calibrated incentive contracts. Econometrica 81(5), 1935-1971.

Chung, K. S. and J. C. Ely (2007). Foundations of dominant-strategy mechanisms.
Review of Economic Studies 74(2), 447-476.

Dai, T. and J. Toikka (2022). Robust incentives for teams. Econometrica 90(4),
1583-1613.

34



de la Rosa, L. E. (2011). Overconfidence and moral hazard. Games and Economic
Behavior 73(2), 429-451.

Eggleston, H. G. (1958). Convezity. Cambridge University Press.

Heidhues, P. and B. Készegi (2010). Exploiting naivete about self-control in the credit
market. American Economic Review 100(5), 2279-2303.

Innes, R. D. (1990). Limited liability and incentive contracting with ex-ante action
choices. Journal of Economic Theory 52(1), 45-67.

Ito, K. (2014). Do consumers respond to marginal or average price? evidence from

nonlinear electricity pricing. American Economic Review 104(2), 537-563.

Kambhampati, A. (2023). Randomization is optimal in the robust principal-agent
problem. Journal of Economic Theory 207, 105585.

Kambhampati, A. (2024). Robust performance evaluation of independent agents.
Theoretical Economics 19(3), 1151-1184.

Kambhampati, A., B. Peng, Z. G. Tang, J. Toikka, and R. Vohra (2025). Randomiza-

tion and the robustness of linear contracts. Unpublished paper.

Karni, E. (2008). On optimal insurance in the presence of moral hazard. The Geneva

Risk and Insurance Review 33(1), 1-18.

Készegi, B. (2014). Behavioral contract theory. Journal of Economic Literature 52(4),
1075-1118.

Kreps, D. M. (2012). Microeconomic foundations I: Choice and competitive markets.

Princeton University Press.
Liu, C. (2024). Robust contracts with exploration. Unpublished paper.

Lopomo, G., L. Rigotti, and C. Shannon (2011). Knightian uncertainty and moral
hazard. Journal of Economic Theory 146(3), 1148-1172.

Marku, K., S. Ocampo, and J.-B. Tondji (2024). Robust contracts in common agency.
The RAND Journal of Economics 55(2), 199-229.

35



Martimort, D. and L. A. Stole (2020). Nonlinear pricing with average-price bias.
American Economic Review: Insights 2(3), 375-396.

Morris, S. (1995). The common prior assumption in economic theory. Economics and
Philosophy 11, 227-253.

Savage, L. J. (1954). The Foundations of Statistics. John Wiley and Sons.

Walton, D. and G. Carroll (2022). A general framework for robust contracting models.
Econometrica 90(5), 2129-2159.

A Section 2

Proof of Lemma 1. Let w be an arbitrary contract. We prove both directions directly.
First, let a € &/ and let payoff vector v : £ — R, satisty (a(e),v(e)) € ®(w) for
every effort e. Because w is continuous and ) is an interval and therefore connected,
®(w) is itself a connected subset of R%. In turn, the Fenchel-Bunt strengthening of
Caratheodory’s theorem for connected sets (see Eggleston (1958) Theorem 18(ii)) yields
vectors A : € — [0,1] and ag,a; : € — Y such that a(e) = (1 — A(e))ap(e) + Aay(e) and
v(e) = (I1=A(e))w(ag(e))+A(e)w(ai(e)). The belief A with A(e) = (1—X\(e))d(ao(e))+
A(e)o(aq(e)) is plausible and satisfies (w, A(e)) = v(e) for all e.

Second, let A be any plausible belief. Let a be the output vector e — (y, A(e))
and v the wage valuation e — (w, A(e)). If A(e) has finite support, then it follows
immediately from the definition of ®(w) that (a(e),v(e)) € ®(w). If A(e) does not
have finite support, recall that the set of finitely supported distributions is dense in
A(Y) and the payoff set ®(w) is closed. The infinite case follows from the finite cases

via limits. N

Proof of Fact 1. First, if w is affine then (y,t) € ®(w) if and only if £ = w(y). Second,
if w is not affine then for every interior y there exist outputs yo,y; € )V and constant
A € (0,1) such that y = (1—X)yo+Ay1 and w(y) # (1 —N)w(yo) +Aw(y1). Accordingly,
®(w) contains distinct pairs (y, w(y)) and (y, (1 — Nw(yo) + Aw(y1)). O
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Proof of Fact 2. If w is affine, then ®(w) has an empty interior per Fact 1. Conversely,
if w is nonaffine then write t° = min{¢|((y, F'),t) € ®(w)} and t' = max{t|((y, F),t) €
®(w)}. The supporting hyperplane theorem provides a support line ° to ®(w)
at ((y, F),t°) and a support line ¢! to ®(w) at ({y, F),t'). Let T° C Y be the
projection of graph(w) N ¢° onto its first coordinate and 7" C Y the projection of
graph(w) N ¢* onto its first coordinate. First, per our choice of °, ¢! we have (i)
(w,F) =t <= supp(F) C T° and (ii) (w,F) = t' <= supp(F) C T". Second,
because w is continuous and nonaffine there exists an open set O° C Y such that
T°NO° = P and an open set O' C Y such that 7' N O = (. Accordingly, because F
has full support, we have t° < (w, F') < ¢! as claimed. O

B Section 3

B.1 Section 3.1

Proof of Lemma 2. Suppose e is efficient and write m = u(e). Write S C R? for the
convex hull of the graph of u and T' C R? for the set of all pairs (g,m) with ¢ < e.
First, S and T are disjoint per our choice of e. Second, S,T are both apparently
convex. Third, (e,m) belongs to both the boundary of both S and 7. In turn,
the separating hyperplane theorem yields a normal vector (7., n,,) # (0,0) such that
Ne€s+NmMs > Nel+nmm > neer +n,mey for all (eg, mg) € S and for all (er, mr) € T
Per our choice of T, we have 1, > 0. There are two cases to consider. First, if n, =0
then 7, # 0 and thus e either maximizes or minimizes the expected output map pu.
In that case, because e is efficient, e is uniformly incentive compatible under contracts
of the form w(y) = ay + f with a appropriately signed and sufficiently large in
magnitude. Second, if . > 0 then e is uniformly incentive compatible under contracts
of the form w(y) = (=nm/ne)y + B.

Conversely, suppose e is inefficient. By definition, there exists a convex combination
v € A(E) such that Y g v(e)u(e) = u(e) and > v(e)e < e. Consider the belief

pe) —y

AL 5*
T—y Ty @)
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and note that (i) A is plausible, (ii) (w, A(e)) — e = Y .cev(e){w, A(e)) — e <
Yece v(E)((w, A(g)) — €) for every contract w. Apparently, there are no contracts

under which e is incentive compatible for A. n

Proof of Lemma 4. There are two cases to consider. If i = k then w; is the zero
contract and the claim follows immediately from limited liability. Alternatively,
suppose ¢ # k and consider linear contract ay + 3. Per Lemma 2, it is sufficient to
verify incentive compatibility against other efficient efforts. Accordingly, for all j
distinet from @ write a;; = (p; — 1) *(e; — €;) and note that the downward conditions
a > «;j for all j < ¢ and the upward conditions o < «v; for all j > 4 are jointly necessary
and sufficient for incentive compatibility. Further, because the restriction of u to the
set of efficient efforts is by definition the restriction of some concave function on the
convex hull of the complete set of efforts £, a; is nondecreasing in j. Consequently,
the adjacent conditions ;1 > a > «;_1 are both necessary and sufficient. If ¢ > k,
the best contract in that set is a;—1(y — y) = w;. If i <k, the best contract in that

set is —Oéz'_,_l(g — y) = W;. ]

Proof of Proposition 1. We claim that if VW does not uniformly incentivize one of the
two efforts then II(W) < II;. Once that has been established, the result is a corollary
of Theorem 1. Proceeding, suppose W = (w,¢) is such that there exist plausible
beliefs A, B with ¢(A) = min € and ¢(B) = max . First, because min & is strictly
incentive compatible under contract wy, for every plausible belief and ¢(B) # min €,
we have w # wy. Second, because the principal’s beliefs have full support and w is
continuous and satisfies limited liability, we have (w, P(0)) > (wy, P(0)). Consequently,
(W) <II(W|A) = m — (w, P(0)) < mp — (wg, P(0)) = . O

B.2 Section 3.2

Proof of Theorem 2. Write II* for the supremum of the objective in the principal’s
problem, noting that II*° is finite because the set of efforts £ is finite. We claim that
there exists a contract w and an incentive compatible recommendation ¢ such that
W = (w, c) satisfies [I(W) = II*°. The result then follows from Lemma 5. If [I* = IIj,
then Wy is a solution to the principal’s problem per Theorem 1. Accordingly, we

restrict attention for the rest of the proof to the more interesting cases in which
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a,T —

I1°° > II;. Parameterize the set of linear bonus contracts by w** = max(«a(y — z),0)
with @ € R,z € ) and let ¢®* break ties in favor of the principal. Define E(«,z) =
Uaeac®®(A) and (o, x) = T((w>*, ¢**)) for the corresponding set of recommended
efforts and principal payoffs, respectively.

Lemma 5 provides for the existence of a sequence of parameters (a;,z;) with
(v, z;) — 1. For the purposes of readability, we write w’/ = w® % ¢ = ¢
and implicitly pass to subsequences wherever necessary. First, because the set of
efforts £ is finite, there exists a fixed set of efforts £ such that E(q;,z;) = E™.
Second, because Y is compact, x; — £ for some output £*°. Third, if o; = o> for
some a® € R, then II(a™, 2°°) = [I* because the principal’s payoff for each effort is
continuous in (a, z).

We show by contradiction that a;; must indeed converge. Toward that end, suppose

to the contrary that «; is unbounded and consider the plausible belief A defined by

Afe) = |5 e >0,
7T () + 1025y =0
y—y L Uy

There are two cases to consider. First, if y < 2 < g then (w’, A(0)) — +o0.
In turn, incentive compatibility implies (w?, A(c’(A))) — +oo. Because Jensen’s
inequality implies (w’, P(e)) > (w?, A(e)) for all positive efforts e, we have either
(w?, P(?(A))) — 400 or 0 € E*. Both subcases contradict II® > II;. Second, if
> =y or if z = g, then either (i) (w/, A(e)) — 4oo for all nonzero efforts or (ii)
(w?, A(e)) — 0 for all nonzero efforts. In subcase (i), the situation is the same as
in the y < 2> < 7 case. In subcase (ii), 0 € E*. Both subcases again contradict

I1°° > IIj, and so we conclude o indeed converges to a finite limit . O]

B.3 Section 3.3

Proof of Lemma 6. We show first that S is composed of valid probability distributions
and second that S is consistent with common knowledge of the relationship between

effort and expected output.
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Part 1 First, from the definition of 7; and the approximation In(z) < z — 1 we have

1 T — —
I e e

i<k p Yy — Y — K Y — Hg
Hm 1 m m

ZTi</ d%zln('u y)g“ Mk.

ik e T —Y e —Y He — Y

Second, from y < py < pg, < fiy, < 7 we have

Mk—lt1<,uk;—u1 :Mk—,lh,um—,lh He — Y U —
=tk — U—tm M= 1 T = fm =Y T— M
,um_:uk<:um_,ulc:,um_ﬂk,um_,ul y_ﬂk,um_,ul

He—Y — H1—Y M — M1 1 —Y Y~ p1 pa—Y

IN

A

Third, define A = ji, — pu1, 0 = (1/2)(1+V5),e = (11 — y) — A E = (T — i) — pA

and note Assumption 2 implies £, > 0. From ¢ ~ 1.6 > 1 and (1 + ¢)p = (1 + 2¢),

Pk =Y pm — P _ (i — y)A < e =Y _ M=y
P =Y U=t (A+0A+e)(PA+E) ~ A(l+p)p+e+e  F—y’
Y — [k fon — P11 _ (¥ — me)A < Y — Hr Y~
T—m m—y  (pA+e)(A+eA+8) ~ A(l+@)p+e+E T—y
Altogether, we obtain
n<” 4 (13)
i<k y_g
S < L (14)
i>k y—y

Two facts follow. First, (13) and (14) immediately imply >, 7; < 1. Because 7; > 0 for
all 4 by construction, the vector (71, ..., 7m; 1 — >, 7;) therefore specifies a valid convex
combination. Second, (13) implies r > y and (14) implies 7 < j. Consequently, the
remainder distribution 6(r) is itself well defined. Altogether, we conclude S(e) is a
well defined element of A(Y) for each efficient effort e. This extends to the inefficient

efforts e by construction.
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Part 2 We claim that S; has mean p; for every efficient effort e;. This obtains

immediately for ¢ = k. Otherwise, from our choice of remainder r we have

,<Z<k7j(Mj 7))t i<k,
<y78%> ="

> Tl —y) e i>k
k<j<i

and from our choice of weights 7; we have

ool =)+ e = D (15— 1) + e =

i<j<k i<j<k
Z (s —y) + e = Z (5 — pj—1) + p = fs.
k<j<i k<j<i

Accordingly, S; has mean ;. In turn, because we chose v¢ to satisfy Y-, v§u; = u(e)
for each inefficient effort e, distribution S(e) has mean pu(e) for each inefficient effort e
and thus S is plausible. O

Proof of Lemma 8. Let W = (w, ¢) be such that w is not a linear contract. First, if w
does not have minimum payment 0 then W = (0, ¢) with @ = w — min, w(z) satisfies
II(W) > TI(W). Second, if ¢(A) = 0 for any plausible belief A then ITI(W}) > II(W), as
in the proof of Proposition 1. Accordingly, suppose to the contrary that c(A) # 0 for
all plausible A and that w has minimum payment 0. Write £ = argmax (w, S(e)) —e
for the set of payoff-maximizing effort choices for belief S and noteg gthat every effort
in F is efficient per Lemma 7.

Proceeding, because the principal’s beliefs P; have full support and \5; includes
factor P; for every @ # k, .S; itself has full support for every i # k. In turn, Fact 2
implies that for every effort e € E there exists a plausible belief under which e is
uniquely incentive compatible. This has two implications. First, it follows immediately
that II(W) < min.cg m(e) — (w, P(e)). Second, because we have already restricted
attention to cases with ¢(A) > 0 for all A, it must be that 0 ¢ E and hence that £
contains at least one nonzero effort. There are two cases to consider. Suppose j > k
for some j with e; € E and set ¢ = min{jle; € E,j > k}. It follows jointly from our

choice of 7 and the exclusion of 0 from FE that e;_; is itself excluded from FE. Direct
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evaluation of the incentive compatibility constraints for S then implies

€ — €1

(w, P;) > (i —y) =t

M — Hi—1 -

In turn II(W) <7 — (w, P;) < m — (w;, P;) = 1I; = II(W;), where the second equality

follows from Theorem 1. The case in which E contains e; with j < k is symmetric. [

Proof of Theorem 3. Per Lemma 6, S is plausible. Let IT; = max(Ily, ..., I1,,,). First we
have maxy [I(W1S) < II, = II(W;) < II(W;]S), where the first inequality follows from
Lemma 7, the equality follows from Theorem 1, and the second inequality is vacuous.
Accordingly, both inequalities hold with equality and maxy II(W|S) = II(W;|S).
Second we have miny I[I(W;|A) = I1; > TI(W;]S), where the equality follows again
from Theorem 1 and the inequality again from Lemma 7. The inequality again
holds with equality and min4 II(W;|A) = II(W;|S). Thus, (W;,5) is a saddle point.

Uniqueness follows from Lemma 8. [

Proof of Proposition 2. Let index i satisfy II; = max(Ily, ..., II,,). For any random

menu v = (N; Wi, 1), ..., Wh, en); (v1, ..., vn)) we have

it TI(4]4) < TIw]S) < max T(OV,(5), &;(S))IS) < T,

AcA

where the first two inequalities are vacuous and the third follows from Theorem 3. [

C Section 4

Lemma 9. Let Assumptions 1%, 2* hold. Belief S* is both well defined and plausible.

Proof. We retrace the argument given in the proof of Lemma 6, with some superficial
adjustments to account for the presence of the multiplicative constant k* and with
some intermediate mechanical steps left to the reader. Proceeding, we claim first that

S* is composed of well defined probability distributions. Direct adaptation of our
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earlier argument yields

af,, —ar aj —yat —aj
I s s
77— * * 77— *

i<l i<t YT an =Y Y= an
a; —a; y—aja, —aj

* * 7 i—1 xd 1
P

i>l i~ 4 Y y—aj ay — Q

As before, define A* = a) —af, * = (1/2)(\/4(k*)? + 14+26* 1), " = (a] —y) —¢* A,
g = (g —a}) — ¢*A* and note that (i) €*,2* > 0 per Assumption 2%; (ii) 1 + 2¢* =
(k*) L™ (1 + ¢*) per our choice of p*; and (iii) (k*)"'p* > 1 because x* > 0. We have

a*_ * % /ﬁ?*a*— A* a*_

/ﬁ?* 1 gcin al — ( l g) - S l y’ (15)
ar—yyg—a, (A F A ) (AT +E) T g —y

STaia —ai R (7 — af) A y—ai (16)
g—aji ai—y (A + ) (A +p*A*+E) T gy

Together, (15)—(16) imply both >-; 7 < 1 and y < r* < 7. This is sufficient to ensure
that S* is composed of well defined elements of A()), and we are left to verify that

S* has the appropriate mean for each effort. The ¢ = [ case is immediate. Otherwise,

(. S0 = > 77 (. Py =9 +a = > (af—aj) +aj =a; i<l

i<j<l i<j<l

W, )= > 7T (W.Py—y +a =Y (ai—ajy)+a=a]  i>l

1<j<i 1<j<i
O

Lemma 10. Let Assumptions 1%, 2* hold. For every W = (w, ¢) there exists an index
i such that c(S*) = e; and IT; > II(W|S*).

Proof. Let W = (w, ¢) be any contract and note that (w, S*(e))—e = >, £5(w, Sf)—e <
> &8 ((w, SF) — ef) for all efforts e that are not efficient®. Accordingly, ¢(S) = e} for

some index i. If ¢ = [ then (w, P) > 0 follows immediately from limited liability.
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Otherwise we have

(w, ) > (w, PF) — w(f) > L — pi) = £ i<l
Qjpy — G
* * e;'k — e;'k— * * .
<w7Pi>2<w>Pi>_w(y>Zﬁ<pi_y>:ti i>1,
7 1—1

where the first pair of inequalities follow from limited liability and the second pair

from the definition of 7. In all three cases we have II} > II(W|S*), as claimed. [

Corollary 1. Let Assumptions 1%, 2* hold and suppose that the agent’s beliefs about
expected output are known to be a*. Contract-recommendation pair W} satisfies
[(W;) = I

Application of Lemma 4 to the specification of the common knowledge of the
relationship between effort and expected output environment with p = a* implies that
effort e is uniformly incentive compatible for W;. Corollary 1 then follows by taking

expectations.

Lemma 11. Let Assumptions 1%, 2* hold and suppose that the agent’s beliefs about
expected output are known to be a* and the principal’s beliefs have full support. If
W = (w,c) and w is not a linear contract then there exists an index i such that
I > I(W).

Proof. The proof follows that of Lemma 8 very closely. Let W = (w, ¢) be a nonlinear
contract. As before, if w has nonzero minimum payment or if ¢(A) = 0 for any
plausible belief A, then W is not a solution to the principal’s problem. Accordingly,
suppose to the contrary that ¢(A) # 0 for all plausible A and that w has minimum
payment 0. Write £ = argmax (w, S*(e)) — e for the set of payoff-maximizing effort
choices for S* and note th;etgevery effort in E is efficient™ per Lemma 10. As before,
Fact 2 implies II(W) < min.cg 7(e) — (w, P(e)). Also as before, it must be that 0 ¢ E
and hence that E contains at least one nonzero effort. Suppose j > [ for some j
with e; € E and set ¢ = min{jle; € E,j > [}, with the symmetric j < [ case left to
the reader. By the same argument as in the proof of the earlier Lemma, we have
(W) < = (w, ) <11} = TI(W7). O
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Proof of Theorem 4. Per Lemma 9, S* is plausible. Let II} = max(II7,...,1I*). We
have maxy II(W|S*) < IIf = II(W}) < II(W}|S*), where the first inequality follows
from Lemma 10, the equality from Corollary 1, and the second inequality from the
definition of II(-). We also have minaec4 II(W}|S*) = IIF > II(W}|S*), where the
equality follows again from Corollary 1 and the inequality again from Lemma 10.

Accordingly, (W}, S*) is a saddle point. Uniqueness follows from Lemma 11. O

Proof of Theorem 5. Let 11T = max(Ilj, ..., II*). We claim that [I(W}*|A) > II} for
every plausible belief A. Per Theorem 4, this is sufficient to establish the result.
Proceeding, we have [ = 1 per Assumption 3 and hence w; = «a;(y — y) for some
a; > 0. In turn, (12) implies for all efforts e, ¢’ and for all a € & a;(a(max{e,e'}) —
a(min{e, ¢'})) > a;(a*(max{e, e'}) — a*(min{e, ¢'})). Consequently,

(w,Ale)) —e > (w;,A(e})) —ef = e>e]. (17)

7

Per our choice of 7, we have p(e}) —a;(p(e;) —y) > p(ej) > y, where the first inequality
follows from IIY > II} and the second from the interiority assumption maintained

throughout the paper. It follows that «; < 1. In turn, Assumption 3 implies

*

e>e;

= (1 —ay)ple) > (1 —a;)p(e). (18)

%

The claimed results follow jointly from Theorem 4 and (17)—(18). O

D Counterexample

Example 4. The principal’s goal is to maximize guaranteed expected net output
y — w(y). Output lies in the interval [0,320] and the agent chooses between low effort
at cost 0, medium effort at cost 5, high effort at cost 35, and maximum effort at cost
50. The principal believes that output is 80 with probability 1 under low effort, 160
with probability 1 under medium effort, 240 with probability 1 under high effort, and
256 with probability 1 under maximum effort. The set of plausible agent beliefs is the
set of beliefs consistent with common knowledge of the relationship between effort

and expected output.
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Suppose the principal in Example 4 pays the agent with the linear bonus contract
w(y) = max((7/8)(y — 160),0) and recommends actions that maximize her own payoff.
Per Lemma 1, the range of plausible agent payoffs net of effort costs is [0, 35] for low
effort; [0, 70] — 5 = [—5,65] for medium effort; [70, 105] — 35 = [35, 70] for high effort;
and [84, 112] — 50 = [34, 62] for maximum effort. Accordingly, W = (w, ¢) assigns one
of the three nonzero efforts to every plausible belief.

With regards to Sion’s sufficient conditions!# for the existence of saddle point, there
exists a plausible belief A with net expected payoffs (0, 60,40, 55), a plausible belief B
with net expected payoffs (0,40, 60,55), and a plausible belief C = (1 —-\)- A+ \- B
with net expected payoffs (0,60(1 — ) + 40\, 40(1 — A) 4+ 60X, 55). The principal’s
payoft satisfies

160 0 <A< 1/4,
[I(W|A) =160;  I(W|B)=170;  I(WI[C)=q172 X € [1/4,3/4],
170 3/4 <A <1
and thus the map A — II(W|A) is neither lower semicontinuous nor quasiconvex.

Accordingly, Sion’s minimax theorem can not be used to establish the existence of a

saddle point in general specifications of our problem.

14For the purposes of assessing the continuity and convexity criteria in Sion’s minimax theorem,
we give the set of beliefs A the product topology and the linear structure ((1 — A)A + AB)(e) =
(1 —=X)A(e) + AB(e).
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