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Lemonade from lemons: Information design and adverse
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A seller posts a price for a single object. The seller’s and buyer’s values may be
interdependent. We characterize the set of payoff vectors across all informa-
tion structures. Simple feasibility and individual-rationality constraints identify
the payoff set. The buyer can obtain the entire surplus; often, noninformational
mechanisms cannot enlarge the payoff set. We also study payoffs when the buyer
is more informed than the seller, and when the buyer is fully informed. All three
payoff sets coincide (only) in notable special cases—in particular, when there is
complete breakdown in a “lemons market” with an uninformed seller and fully
informed buyer.

Keywords. Monopoly pricing, interdependent values, price discrimination, mar-
ket segmentation, buyer-optimal information, Bayesian persuasion.
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1. Introduction

Motivation Asymmetric information affects market outcomes, both in terms of effi-
ciency and distribution. For example, adverse selection can generate dramatic mar-
ket failure (Akerlof (1970)) or skew wages in labor markets (Greenwald (1986)), while
consumers can secure information rents from a monopolist (Mussa and Rosen (1978)).
Much of the work in information economics prior to the last decade took the market par-
ticipants’ information as given and studied properties of a particular market structure
or mechanism, or tackled these properties across various mechanisms.

Our paper joins a recent wave of research—elaborated subsequently—by instead
asking: what is the scope for different market outcomes as the participants’ informa-
tion varies? We are motivated by the fact that in the digital age, the nature of informa-
tion that sellers (e.g., Amazon) have about consumers is ever changing. Consumers and
regulators do have some control over this information, of course. In some cases, it is
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plausible that a seller’s information is a subset of the consumer’s. But in other cases, the
seller may well know more about the consumer’s value for a product, or at least have
some information the consumer herself does not. This is especially relevant for prod-
ucts the consumer is not already familiar with. Indeed, numerous firms make tailored
recommendations to consumers about the products they carry. With social media and
other sources of information diffusion, the possible correlation in information across
two sides of a market seems truly limitless. It is this variety of possible information that
our paper focuses on.

Our paper fixes a simple, canonical market mechanism and studies the possible
market outcomes across a variety of information structures, including all of them. We
model two parties, Buyer and Seller, who can trade a single object. Buyer’s value for the
object is a random v ∈ [v, v] ⊂ℝ. Seller’s cost of providing the object, or equivalently, her
value from not trading, is c(v) ≤ v. Thus, values may be interdependent, but trade is
always efficient.1 The environment, that is, the function c(·) and the distribution of v, is
commonly known. Seller posts a price p ∈ℝ, and Buyer decides whether to buy.

This stylized setting subsumes a variety of possibilities, depending on the shape of
the cost function c(·) and the parties’ information about the value v. With an informed
Buyer and an uninformed Seller, there is adverse selection when c(·) is increasing, while
there is favorable or advantageous selection when c(·) is decreasing.2 If instead Seller is
better informed than Buyer, signaling becomes relevant; the price can serve as a credible
signal if the two parties’ information is suitably correlated (e.g., Bagwell and Riordan
(1991)). A constant c(·) captures an environment in which there is no uncertainty about
Seller’s cost; this is the canonical monopoly pricing problem when Seller is uninformed
about v, and third-degree price discrimination when Seller has some partial information
while Buyer is better informed.

Summary of results For any given environment (i.e., Seller’s cost function and the dis-
tribution of Buyer’s values), we seek to identify the possible market outcomes. Specifi-
cally, we are interested in the ex ante expected payoffs that obtain, given sequentially ra-
tional behavior, in an equilibrium under some information structure.3 We provide three
results, each of which covers a different class of information structures. Our main theo-
rems are Theorems 1/1∗, which impose no restrictions on information, and Theorem 2,
which applies when Buyer is better informed than Seller in the sense of Blackwell (1953);
in fact, Theorem 2 applies more broadly, as elaborated later. Theorem 3 concerns a fully
informed Buyer who knows his value v. We view each of these three cases as intellectu-
ally salient and economically relevant. Plainly, these payoff sets must be ordered by set

1We describe here our baseline model presented in Section 2. Section 4 discusses extensions, including
cases when Buyer’s value does not pin down Seller’s cost and when trade is not always efficient.

2Jovanovic (1982) uses the term “favorable selection.” Einav and Finkelstein (2011) use “advantageous,”
and discuss both adverse and advantageous selection in the context of insurance markets, with references
to empirical evidence on both.

3As detailed in Section 2, an information structure specifies a joint distribution of private signals for
each party conditional on the value v. This induces an extensive form game of incomplete information.
Our primary solution concept is a weak perfect Bayesian equilibrium; we also address refinements for our
constructive arguments.
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Figure 1. Outcome under different restrictions on information structures.

inclusion: Theorem 1’s set is the largest; Theorem 2’s is intermediate; and Theorem 3’s
the smallest. Figure 1 summarizes.

In the figure’s axes, πb and πs represent respectively Buyer’s and Seller’s ex ante ex-
pected utilities or payoffs (for readability, we often drop the “expected” qualifier). The
no-trade payoffs are normalized to zero. The three triangles, AFG, ADE , and ABC depict
Theorems 1–3, respectively. That payoffs must lie within AFG is straightforward: Buyer
can guarantee himself a payoff of zero by not purchasing; Seller can guarantee herself
not only a payoff of zero (by posting any price p> v, which will not be accepted) but also
v−𝔼[c(v)] (by pricing at or just below v, which will be accepted); and the sum of payoffs
cannot exceed the trading surplus 𝔼[v − c(v)]. We refer to the first two constraints as
individual rationality and the third as feasibility.

Theorem 1 says that every feasible and individually rational payoff pair can be im-
plemented, that is, obtains in an equilibrium under some information structure. It is
immediate that point A obtains when both parties learn v (full information) or neither
party has any information (no information). More interestingly, at the point G trade
occurs with probability one and Buyer obtains the entire surplus, despite Seller post-
ing the price. While perhaps surprising, this outcome obtains with sparse information
structures. For simplicity, suppose 𝔼[c(v)|v > v] ≤ max{v, 𝔼[c(v)]}. Then Buyer can be
uninformed while Seller learns whether v = v or v > v. In equilibrium, Seller prices at
p = max{v, 𝔼[c(v)]} regardless of her signal and Buyer purchases. If Seller were to de-
viate to a higher price, Buyer would reject because he believes v = v. Section 3.1 ex-
plains how a single information structure in fact implements every point in the triangle
AFG. Theorem 1∗ there discusses how a richer information structure using imperfectly-
correlated signals ensures implementation in Kreps and Wilson’s (1982) sequential equi-
librium in discretized versions of the model.

Turning to Figure 1’s triangle ADE , Theorem 2 establishes that the payoff pair in
any equilibrium when Buyer is better informed than Seller arises in an equilibrium of
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an(other) information structure in which Seller is uninformed.4 In other words, there
is no loss of generality in studying an uninformed Seller so long as Buyer is better in-
formed. When c(·) is increasing, such information generates a game with adverse se-
lection; when c(·) is decreasing there is favorable selection. Seller’s payoff along the line
segment DE is the lowest payoff she can get in any information structure in which she
is uninformed.5 Theorem 2 further establishes that any point within the ADE triangle
can be implemented with some such information structure by suitably varying Buyer’s
information. In fact, we show that higher slices of the triangle (i.e., those corresponding
to larger Seller’s payoff) can always be implemented by reducing Buyer’s information in
the sense of Blackwell (1953). We also explain in Section 3.2 why the triangle ADE actu-
ally characterizes all payoffs that can obtain when Buyer does not update from Seller’s
price, even if Buyer is not better informed than Seller.

Finally, the ABC triangle in Figure 1 depicts Theorem 3, which characterizes all pay-
off pairs when Buyer is fully informed, that is, learns v. We use the term “Akerlof” to
describe a fully informed Buyer and an uninformed Seller, as these information struc-
tures are standard in the adverse-selection literature; the corresponding payoff pair is
marked as such in the figure. Depending on the environment’s primitives, the Akerlof
point can be anywhere on the segment BC , including at the extreme points. Any feasible
payoff pair that satisfies Buyer’s individual rationality and gives Seller at least her Akerlof
payoff can be implemented with a fully informed Buyer by suitably varying Seller’s in-
formation.

An implication of Theorems 1–3 is that it is without loss, in terms of ex ante equilib-
rium payoffs, to focus on information structures in which Buyer is fully informed if and
only if Seller’s Akerlof payoff coincides with her individual rationality constraint. This
coincidence occurs if and only if the Akerlof market can have full trade (Seller prices
at p = v and gets payoff v − 𝔼[c(v)] ≥ 0) or no trade (the price is p ≥ v and both par-
ties’ payoffs are 0). As detailed in Remark 5 of Section 3.3, in all other cases the point
B in Figure 1 is distinct from the point D (and hence also F), which means that Buyer
can obtain a higher payoff with less-than-full information, while keeping Seller unin-
formed.6 Furthermore, under a reasonable condition, if Seller’s individual rationality
constraint is zero (i.e., v ≤ 𝔼[c(v)]), then point D is also distinct from F ; see Remark 3
in Section 3.2. When D and F are distinct, maximizing Buyer’s payoff, that is, achieving
point G, requires Seller to have some information Buyer does not and an equilibrium
with price-dependent beliefs: after conditioning on his signal, Buyer must update about
v from the price either on or off the equilibrium path.

While our results do not speak directly to the economics of privacy, recently reviewed
by Acquisti, Taylor, and Wagman (2016), they do offer a notable twist. Consumer welfare

4We stipulate that a better-informed Buyer does not update his value from Seller’s price, even off the
equilibrium path, in line with the “no signaling what you do not know” requirement (Fudenberg and Tirole
(1991)) that is standard in versions of perfect Bayesian equilibrium and implied by sequential equilibrium.

5It is because Seller cannot commit to the price as a function of her signal that she can be harmed (i.e.,
receive a payoff lower than that on the DE segment) with more information. However, Theorem 2 assures
that Seller is not harmed so long as Buyer is better informed.

6This substantially broadens the message of Roesler and Szentes (2017) on the benefits to restricting
Buyer’s information.
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can be higher when a monopolist has information about a consumer’s valuation that the
consumer does not; indeed, maximizing consumer welfare in our single-unit setting fre-
quently necessitates that. This is an implication of our Theorems 1/1∗ and Theorem 2.

Relatedly, we view those results as cautioning against assuming away the possibil-
ity that sellers have information buyers do not—not only does this seem relevant in
practice, as discussed earlier, but it has significant payoff consequences. An alterna-
tive perspective on Theorem 1/Theorem 1∗ is that they are negative results: “anything
goes” without restrictions on information structures or equilibria. From that perspec-
tive, Theorem 2 reveals that what is essential to restrain payoffs to its smaller set (triangle
ADE in Figure 1) is that prices do not provide Buyer with information. Whether this is a
consequence of Buyer being better informed than Seller or a principle of equilibrium se-
lection does not matter. Theorem 3 characterizes the additional payoff restrictions that
obtain from Buyer being fully informed.

Related literature Our questions and results are most closely related to Bergemann,
Brooks, and Morris (2015), Roesler and Szentes (2017), and Makris and Renou (2023, Sec-
tion 4). These papers—only the relevant section of the third paper—study the monopoly
pricing problem in which there is uncertainty only about Buyer’s valuation. This is the
special case of our interdependent-values model with a constant function c(v) ≤ v.7

We study interdependent values because of its importance in many economic environ-
ments; substantively and methodologically, we explore whether and how insights from
the monopoly-pricing problem hold more generally.

Bergemann, Brooks, and Morris (2015) assume Buyer is fully informed, and hence
can only vary Seller’s information.8 Our Theorem 3, corresponding to triangle ABC in
Figure 1, is a generalization of their main result to our environment; the key step in our
methodology is to construct the “isoprofit distributions,” which reduces to their “ex-
tremal markets” in monopoly pricing. An economic lesson from our analysis is that un-
like in monopoly pricing, there are salient interdependent-value environments in which
a fully informed Buyer can achieve all implementable payoffs, even when the Akerlof
market has inefficiency; see Remark 5.

Roesler and Szentes (2017) assume Seller is uninformed and only vary Buyer’s infor-
mation. For the monopoly-pricing environment, they derive one part of our Theorem 2,
namely they identify the triangle ADE in Figure 1 as the implementable set when Seller is
uninformed. Even for this result, our methodology is quite different from theirs because
we do not assume a linear c(·) function; our methodology delivers new insights, includ-
ing that noted in Remark 2, and also sheds a different light on Roesler and Szentes’ pay-
off triangle. When we specialize to a linear c(·), we can obtain a sharper characterization

7Related to Roesler and Szentes (2017) are also Du (2018) and Libgober and Mu (2021), who consider
worst-case profit guarantees for Seller in static and dynamic environments, respectively. Terstiege and
Wasser (2020) qualify Roesler and Szentes (2017) by allowing Seller to supply Buyer with additional infor-
mation, although Seller cannot have any private information of her own.

8Less directly related to our work, there are also recent papers extending the approach of Berge-
mann, Brooks, and Morris (2015) to monopolistic markets with multiple products (e.g., Ichihashi (2020),
Haghpanah and Siegel (2023), Terstiege and Vigier (2025)), oligopolistic markets with differentiated prod-
ucts (e.g., Elliott, Galeotti, Koh, and Li (2022, 2023), Bergemann, Brooks, and Morris (2025)), and profit-
maximizing information design by intermediaries (e.g., Yang (2022)).
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of the point E, which extends Roesler and Szentes’ characterization of Buyer-optimal
information to an interdependent-values environment; see Proposition 2.

Our Theorems 1–3 establish that the “alignment” principle highlighted by Berge-
mann, Brooks, and Morris (2025)—Buyer surplus/payoff is maximized when total sur-
plus (the sum of Buyer and Seller payoffs) is maximized—extends with a single seller
beyond the settings of Bergemann, Brooks, and Morris (2015) and Roesler and Szentes
(2017), both in terms of the information structures considered and to interdependent
values. However, we qualify this point in Section 4.2 when trade may be inefficient, as
was also illustrated by example in Roesler and Szentes (2017, Online Appendix).

While our main interest is in interdependent values, our results provide new in-
sights even for monopoly pricing. Theorem 2 implies that the Roesler and Szentes (2017)
bounds are without loss so long as Buyer is better informed than Seller; or, more gener-
ally, in equilibria in which Buyer’s belief is price independent after conditioning on his
own signal. On the other hand, Theorem 1 establishes that any feasible and individually
rational payoff pair can be implemented absent these restrictions: in particular, Buyer
may even get all the surplus. This latter point has a parallel with Makris and Renou
(2023). As an application of their general results on “revelation principles” for informa-
tion design in multi-stage games, Makris and Renou’s (2023) Proposition 1 deduces an
analog of our Theorem 1 for the (independent values) monopoly pricing problem. We
share with Makris and Renou an emphasis on sequential rationality;9 we go further by
establishing in Theorem 1∗ off-the-equilibrium-path belief consistency in the sense of
sequential equilibrium (Kreps and Wilson (1982)). We also show in Theorem 1/1∗ that a
single information structure implements all payoffs in the relevant triangle.

Other authors have studied different aspects of more specific changes of information
in adverse selection settings, maintaining that one side of the market is better informed
than the other. Levin (2001) identifies conditions under which the volume of trade de-
creases when one party is kept uninformed and the other’s information becomes more
effective in the sense of Lehmann (1988); see also Kessler (2001). Assuming a linear
payoff structure, Bar-Isaac, Jewitt, and Leaver (2021) consider how certain changes in
Gaussian information affect the volume of trade, surplus, and a certain quantification
of adverse selection.

Dang (2008), Pavan and Tirole (2025), and Thereze (2023) study endogenous costly
information acquisition with interdependent values, using different assumptions about
the nature and timing of information acquisition and the underlying economic environ-
ment. By contrast, we do not have strategic or costly information acquisition; rather, the
informational environment is exogenously (and costlessly) varied.

In a model with interdependent values where they hold fixed a partially-informed
buyer’s information, Deb, Pai, and Roesler (2024) characterize the outcome—including
what information the seller should have—that maximizes the buyer’s payoff. They high-
light that the solution typically involves the seller being partially informed. Garcia, Te-
per, and Tsur (2018) solve for socially optimal information provision in an insurance

9Makris and Renou use an apparatus of “sequential Bayes correlated equilibrium,” which we do not. In
our approach, note that Seller’s individual rationality constraint described earlier hinges, when 𝔼[c(v)] < v,
on Buyer’s behavior being sequentially rational even off the equilibrium path.
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setting with adverse selection; owing to a cross-subsidization motive, full information
disclosure is typically not optimal. Pollrich and Strausz (2024) study a third-party certi-
fier in an adverse-selection environment. Their environment corresponds to our Buyer
being fully informed and facing a competitive market of sellers. Among other things,
they discuss implementable payoff vectors for Buyer (conditional on type) and their cer-
tifier.

The rest of our paper proceeds as follows. We introduce our model, equilibrium
concept(s), and certain classes of information structures in Section 2. Section 3 presents
the main results: implementable payoffs when the information structure is arbitrary or
varies within canonical classes. Section 4 contains discussion and extensions. All formal
proofs are in the Appendices.

2. Model

2.1 Primitives

There are two players, Seller and Buyer; given the assumptions that follow, Buyer can be
viewed as representing a market of buyers. Seller may sell an indivisible good to Buyer.
Buyer’s value for the good is v ∈ V ⊂ ℝ, where V is a compact (finite or infinite) set with
v ≡ minV < maxV ≡ v. The value v is drawn from a probability measure μ with support
V . Seller’s cost of production is given by a function c(v). We assume c : V →ℝ is contin-
uous, v− c(v) ≥ 0 for all v, and 𝔼[v− c(v)] > 0. Hence, the trading surplus is nonnegative
for all v and positive for a positive measure of v. (Throughout, expectations are with
respect to the prior measure μ unless indicated otherwise; “positive” means “strictly
positive” and similarly elsewhere.) Note that the function c(v) need not be monotonic.
Section 4 extends the model to Seller’s cost being stochastic even conditional on v, and
considers the possibility of negative trading surplus. We call � ≡ (c, μ) an environment.
We refer to an environment with a constant c(·) function as that of monopoly pricing.

An information structure consists of signal spaces for each party and a joint signal
distribution. (We abuse terminology and refer to “distribution” even though “measure”
would sometimes be more precise.) Formally, there is a probability space (�, ℱ , P ),
complete and separable metric spaces Ts and Tb (equipped with their Borel sigma alge-
bras), and an integrable function X : � → Ts × Tb × V . We hereafter suppress the prob-
ability space and define, with an abuse of notation, P(D) = P(X−1(D)) for any measur-
able D ⊂ Ts ×Tb×V .10 Each realization of random variable X is a triplet (tb, ts, v), where
tb ∈ Tb is Buyer’s signal and ts ∈ Ts is Seller’s signal. For i ∈ {s, b, v}, let Pi denote the cor-
responding marginal distribution of P on dimension Ti, with the convention Tv ≡ V .
We require Pv = μ; this is an iterated expectation or “Bayes plausibility” requirement.
Denote an information structure by τ.

The environment � and information structure τ define the following game:

1. The random variables (tb, ts , v) are realized. Signal tb is privately observed by Buyer
and signal ts privately observed by Seller. Neither party observes v.

10We write ⊂ for a “weak subset.”
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2. Seller posts a price p ∈ ℝ.

3. Buyer accepts or rejects the price. If Buyer accepts, his von Neumann–Morgenstern
payoff is v − p and Seller’s is p − c(v). If Buyer rejects, both parties’ payoffs are
normalized to 0.

Note that because the signal spaces Tb and Ts are abstract and the two parties’ sig-
nals can be arbitrarily correlated conditional on v, there is no loss of generality in assum-
ing that each party privately observes their own signal. For example, public information
can be captured by perfectly correlating (components of) tb and ts.

We highlight that our notion of an information structure involves parties receiving
information only at the outset. A more permissive notion would also allow Buyer to re-
ceive information after Seller posts her price, as in the literature on multistage informa-
tion design (Makris and Renou (2023), Doval and Ely (2020)). Permitting that would not
change some of our results, in particular Theorems 1/1∗ and Theorem 3, but would ex-
pand the implementable set characterized in Theorem 2. Methodologically, our interest
in only ex ante information means that existing “revelation principles” do not directly
apply.

Our assumption that Seller simply posts a price—rather than using more compli-
cated mechanisms—is not restrictive for our main results. Remark 6 elaborates later.

2.2 Strategies and equilibria

In the game defined by (�, τ), denote Seller’s strategy by σ and Buyer’s by α. Following
Milgrom and Weber (1985), we define σ as a distributional strategy: σ is a joint dis-
tribution on ℝ × Ts whose marginal distribution on Ts must be the Seller’s signal dis-
tribution. So, σ(·|ts ) is Seller’s price distribution given her signal ts .11 Buyer’s strategy
α : ℝ× Tb → [0, 1] maps each price-signal pair (p, tb ) into a trading probability. A strat-
egy profile (σ , α) induces expected utilities for Buyer and Seller (πb, πs ) in the natural
way:

πb =
∫︂

(v −p)α(tb, p)σ(dp|ts )P(dts, dtb, dv),

πs =
∫︂ (︁

p− c(v)
)︁
α(tb, p)σ(dp|ts )P(dts , dtb, dv).

Our baseline equilibrium concept is a weak perfect Bayesian equilibrium. Since
Seller’s action is not preceded by Buyer’s, we can dispense with specifying beliefs for
Seller. For Buyer, it suffices to focus on his belief about the value v given his signal and
the price; we denote this distribution by ν(v|p, tb ).

Definition 1. A strategy profile (σ , α) and beliefs ν(v|p, tb ) is a weak perfect Bayesian
equilibrium (wPBE) of game (�, τ) if:

11Here, σ(·|ts ) is the regular conditional distribution, which exists and is unique almost everywhere be-
cause Ts is a standard Borel space (Durrett (1995), pp. 229–230). Similarly, for subsequent such notation;
we drop “almost everywhere” qualifiers unless essential.
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1. Buyer plays optimally at every information set given his belief:

α(p, tb ) =
{︄

1 if 𝔼ν(v|p,tb )[v] >p

0 if 𝔼ν(v|p,tb )[v] <p;

2. Seller plays optimally:

σ ∈ arg max
σ̂

∫︂ (︁
p− c(v)

)︁
α(p, tb )σ̂(dp|ts )P(dts , dtb, dv);

3. Beliefs satisfy Bayes rule on path: for every measurable D ⊂ℝ× Ts × Tb × V ,∫︂
D
ν(dv|p, tb )σ(dp|ts )P(dts , dtb, V ) =

∫︂
D
σ(dp|ts )P(dts , dtb, dv).

We have formulated Seller’s optimality requirement ex ante, but Buyer’s at each in-
formation set. The latter is needed to capture sequential rationality. The former is for
(notational) convenience; this choice is inconsequential because Seller moves before
Buyer.

Hereafter, “equilibrium” without qualification refers to a wPBE. As is well under-
stood, wPBE permits significant latitude in beliefs off the equilibrium path. We will
subsequently discuss refinements.

2.3 Implementable payoffs and canonical information structures

We now define the set of implementable equilibrium outcomes—that is, the payoffs that
obtain in some equilibrium under some information structure—and some canonical
classes of information structures.

For a game (�, τ), let the equilibrium payoff set be

	(�, τ) ≡ {︁(πb, πs ) : ∃ wPBE of (�, τ) with payoffs (πb, πs )
}︁

.

Denote the class of all information structures by T and define

�(�) ≡
⋃︂
τ∈T

	(�, τ).

That is, for environment �, �(�) is the set of all equilibrium payoff pairs that obtain
under some information structure.

Uninformed seller An information structure has uninformed Seller if Ts is a singleton:
Seller’s own signal contains no information about Buyer’s value v, and hence neither
about Seller’s cost c(v).12 When discussing such information structures, we write the

12Among all reasonable notions of uninformed Seller (e.g., one might only require Seller to have no infor-
mation about 𝔼[v], while permitting information about c(v)), we take the most restrictive one. Our results
will imply that a more permissive notion would not change the relevant implementable sets—in particu-
lar, that characterized in Theorem 2. This point also applies to our notion of more informed Buyer defined
shortly.
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associated distribution as just P(tb, v) and Seller’s strategy as just σ(p), omitting the
argument ts in both cases. The class of all uninformed Seller information structures is
denoted Tus .

Fully informed buyer An information structure has fully informed Buyer if Buyer’s sig-
nal fully reveals his value v. Formally, this holds if Tb = V and the conditional distribu-
tion on V , P(·|tb ), satisfies P({tb}|tb ) = 1. We denote the class of fully informed Buyer
information structures by Tfb. Note that a fully informed Buyer need not know Seller’s
signal; but that is irrelevant to Buyer, because his optimal action after any price only
depends on his known value.

More informed buyer An information structure has more informed Buyer if Buyer has
more information than Seller. Formally, this holds when v and ts are independent
conditional on tb, that is, for any measurable Ds ⊂ Ts and Dv ⊂ V , P(Ds × Dv|tb ) =
P(Ds|tb )P(Dv|tb ). Another way to interpret this requirement is that random variable
tb must be statistically sufficient for ts with respect to v, that is, tb is more informative
than ts about v in the sense of Blackwell (1953). We denote the class of more informed
Buyer information structures by Tmb. Naturally, information structures with uninformed
Seller or fully informed Buyer are cases of more informed Buyer: both Tus and Tfb are
subclasses of Tmb.

No updating from price For more informed Buyer information structures, it is desir-
able to impose further requirements on Buyer’s equilibrium belief. Since Seller’s price
can only depend on her own signal, and this signal contains no additional information
about v given Buyer’s signal, the price is statistically uninformative about v given Buyer’s
signal. Consequently, Buyer’s posterior belief should be price independent once his sig-
nal has been conditioned upon. Formally, regardless of the price p, the equilibrium
belief ν(·|p, tb ) must satisfy∫︂

D
ν(dv|p, tb )P(dtb, Ts , V ) =

∫︂
D
P(dtb, Ts , dv)

for any measurable D ⊂ Tb ×V . We refer to this condition as price independent beliefs.13

Note that although we have motivated the condition by Buyer being more informed than
Seller, the condition is meaningful even otherwise, capturing the notion of equilibria in
which there is no signaling by Seller, or, more precisely, that Buyer does not learn any-
thing about his value v from the price that he does not already learn from his own signal.
In a more informed Buyer information structure, price independent beliefs would be
implied by the “no signaling what you do not know” requirement (Fudenberg and Tirole
(1991)) frequently imposed in versions of perfect Bayesian equilibrium, and the concept
of sequential equilibrium (Kreps and Wilson (1982)) in finite versions of our setting.14

13The condition is distinct from “passive beliefs,” which is typically used to restrict beliefs after off the
equilibrium path events.

14An example clarifying our terminology may be helpful. If both Seller and Buyer are fully informed of v,
then the natural equilibrium—the unique sequential equilibrium in a finite version of the game—has Seller
pricing at p = v and Buyer’s belief being degenerate on v regardless of Seller’s price. This equilibrium has
price independent beliefs, even though Seller’s price and Buyer’s belief are perfectly correlated ex ante. The
point is that Buyer’s belief does not depend on price conditional on his signal.
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Some more notation will be helpful. Define

	∗(�, τ)

≡ {︁(πb, πs ) : ∃ wPBE of (�, τ) with price independent beliefs and payoffs(πb, πs )
}︁

,

�∗(�) ≡
⋃︂
τ∈T

	∗(�, τ), and

�∗
i (�) ≡

⋃︂
τ∈Ti

	∗(�, τ) for i = us, fb, mb.

So, 	∗ and �∗ are analogous to the implementable payoff sets 	 and � defined earlier,
but restricted to equilibria with price independent beliefs. �∗

us , �∗
fb, and �∗

mb are the
implementable payoff sets when further restricted to uninformed Seller, fully informed
Buyer, and more informed Buyer information structures. Plainly, for any environment �,

�∗
us(�) ∪�∗

fb(�) ⊂�∗
mb(�) ⊂�∗(�) ⊂ �(�).

3. Main results

Our goal is to characterize equilibrium payoff pairs across information structures in an
arbitrary environment �. In particular, we seek to characterize the five sets �(�), �∗(�),
�∗

mb(�), �∗
us(�), and �∗

fb(�). Let

S(�) ≡ 𝔼
[︁
v − c(v)

]︁
be the (expected) surplus from trade in environment �. This quantity will play an im-
portant role.

3.1 All information structures

Define Seller’s payoff guarantee as

πs(�) ≡ max
{︁
v −𝔼

[︁
c(v)
]︁
, 0
}︁

.

To interpret this quantity, observe that it is optimal for Buyer to accept the price
v no matter his belief. Therefore, Seller can guarantee herself the (expected) profit
v−𝔼[c(v)] no matter what the information structure is. More precisely, she can guaran-
tee v−𝔼[c(v)]−ε for any ε > 0, since sequential rationality requires Buyer to accept any
price v − ε. Similarly, Seller can also guarantee zero profit offering a price p> v. Hence,
Seller’s payoff in any equilibrium with any information structure must be at least πs(�).

Turning to the buyer, he can guarantee himself the payoff πb = 0 by rejecting all
prices. It follows that the implementable set �(�) must satisfy three simple constraints:
(1) Seller’s “individual rationality” constraint πs ≥ πs(�); (2) Buyer’s “individual ratio-
nality” constraint πb ≥ 0; and (3) the feasibility constraint πb +πs ≤ S(�).

Our first result is that these individual rationality and feasibility constraints are also
sufficient for a payoff pair to be implementable.
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Theorem 1. The set of implementable outcomes under all information structures and
equilibria is

�(�) =

⎧⎪⎨⎪⎩
πb ≥ 0

(πb, πs ) : πs ≥ πs(�)
πb +πs ≤ S(�)

⎫⎪⎬⎪⎭ .

Proof. See Appendix A.

Theorem 1 says that the set �(�) corresponds to the triangle AFG in Figure 1. In
particular, Buyer can receive the entire surplus beyond Seller’s payoff guarantee. This
is perhaps surprising, as Seller has substantial bargaining power. Note that when v ≤
𝔼[c(v)], a reasonable condition, Seller’s payoff guarantee is zero; in that case, Theorem 1
implies that Buyer can obtain the entire surplus.15

The proof of Theorem 1 is in fact straightforward. Suppose, for expositional simplic-
ity, v ≥ 𝔼[c(v)]. Fix the trivial information structure in which neither player receives any
information and consider the following family of strategy profiles. Seller randomizes
between two prices, some pl ∈ [v, 𝔼[v]] and ph = 𝔼[v], with probability σ(pl ) ∈ [0, 1].
Buyer accepts pl with probability one and accepts ph with probability α(ph ), where
α(ph ) ∈ [0, 1] is specified to make Seller indifferent between the two prices. That is,
α(ph )(ph −𝔼[c(v)]) = pl −𝔼[c(v)]. The expected payoffs from this strategy profile are

πb = σ(pl )
(︁
𝔼[v] −pl

)︁
and πs = pl −𝔼

[︁
c(v)
]︁
.

As pl traverses the interval [v, 𝔼[v]], Seller’s payoff πs traverses [πs(�), S(�)]. Given
any pl, Buyer’s payoff πb traverses [0, S(�) − πs] as σ(pl ) traverses [0, 1]. Therefore, the
proposed strategy profiles induce all the payoff pairs stated in Theorem 1.

We are left to specify beliefs ν for Buyer. After prices pl and ph Buyer holds the prior
belief μ. After any other (necessarily off-path) price Buyer’s belief is that v = v, and so
Buyer rejects all prices p ∈ [v, ∞) \ {pl, ph}. It is straightforward to confirm that the
specified (σ , α, ν) constitute a wPBE.

To get more insight into the construction above, consider its implication for
monopoly pricing with c(·) = v. The equilibrium with pl = v (hence α(ph ) = 0, i.e., the
buyer rejects the higher price) and σ(pl ) = 1 corresponds to the monopolist determinis-
tically pricing at v and Buyer purchasing. Given that both sides of the market receive no
information, why does the monopolist not deviate to any price in (v, 𝔼[v])? The reason is
that in this equilibrium, the consumer will then not buy because he updates his belief to
v = v. Such updating is compatible with wPBE because the equilibrium concept places
no restrictions on off-path beliefs. This may seem like a game-theoretic misdirection:
Buyer’s beliefs are not consistent with “no signaling what you don’t know.” Put differ-
ently, since we have a (weakly) more informed Buyer information structure, we ought
to impose the price-independent beliefs condition described in Section 2.3; that would
imply Buyer must purchase at any price p< 𝔼[v].

15In monopoly pricing with c(·) = v, Seller’s payoff guarantee of zero is lower than the revenue guarantee
identified by Du (2018, Section 5), which is typically positive. Du’s notion is different from ours.
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But the message of Theorem 1 does not rely on the permissiveness of wPBE. To il-
lustrate, continue with the above monopoly pricing environment, and suppose v has
positive prior probability. Consider Buyer remaining uninformed but Seller learning
whether v = v or v > v. Now Buyer’s off-path belief that v = v is consistent with “no
signaling what you do not know.” More generally, using richer information structures,
we can prove that any payoff pair identified in Theorem 1 can be approximately imple-
mented as a sequential equilibrium (Kreps and Wilson (1982)) in a suitably discretized
game.

Theorem 1∗ . Fix any ε > 0. There is � > 0 such that for any finite price grid with size
�, there is a finite information structure inducing a game with a set of sequential equi-
librium payoffs that is an ε-net of �(�), the set of implementable outcomes under all
information structures and equilibria.16

Proof. See Appendix B.

In fact, the proof of Theorem 1∗ establishes more: the sequential equilibria in the
discretized games satisfy a natural version of the D1 refinement (Cho and Kreps (1987)).
We relegate the logic to the Appendix, but mention here that we use imperfectly corre-
lated signals for Buyer and Seller.17

Even when our environment is specialized to monopoly pricing, it is worth high-
lighting two contrasts between Theorem 1/1∗ and results of Bergemann, Brooks, and
Morris (2015) and Roesler and Szentes (2017). First, we find that by not restricting the
monopolist to be uninformed, the implementable payoff set typically expands rather
dramatically: trade can be efficient with the monopolist securing none of the surplus
beyond her payoff guarantee, πs, which may be zero. (Roesler and Szentes establish,
implicitly, that the implementable set with an uninformed monopolist is a superset of
Bergemann, Brooks, and Morris’s, where the consumer is fully informed.) We will see in
Section 3.2 that what is crucial to this expansion is price dependent beliefs. In particu-
lar, the proof of Theorem 1∗ uses an information structure in which Buyer is not better
informed than Seller—if he were, then sequential equilibrium would imply price inde-
pendent beliefs. Second, Theorem 1∗ establishes that for a given ε > 0, a single infor-
mation structure (and price grid) can be used to approximate the entire payoff set �(�),

16An information structure is finite if the signal spaces Tb and Ts are finite. A finite price grid of size �

means that the set of prices is finite, with minimum price no higher than v and maximum price no lower
than v, and any two consecutive prices are no more than � apart. Sequential equilibrium is defined in the
obvious way for the “induced” finite game where Nature directly draws (tb, ts ), rather than first drawing v,
and players’ payoffs from trading are defined directly as (𝔼[v|tb, ts ] −p, p−𝔼[c(v)|tb, ts ]).

For Y ⊂ ℝ
2 and ε > 0, the set A ⊂ Y is an ε-net of Y if for each y ∈ Y there is a ∈ A such that ∥y − a∥< ε,

where ∥·∥ is the Euclidean distance.
17The idea behind D1 is to ask, for any off-path price, whether one type of Seller would deviate for any

Buyer mixed response that another type would. Our construction has multiple Buyer types that are imper-
fectly correlated with Seller types. So, different types of Seller have different beliefs about Buyer types. This
blunts the power of dominance considerations, to the point where D1 does not exclude any Seller type from
the support of Buyer’s off-path belief.
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analogously to the construction described after Theorem 1 that used a single informa-
tion structure.18 Bergemann, Brooks, and Morris (2015) and Roesler and Szentes (2017)
instead vary information structures to span their payoff sets.

3.2 More informed buyer and price independent beliefs

In some economic settings, it is plausible that Buyer is more informed than Seller. How
does a restriction to such information structures, that is, τ ∈ Tmb, affect the imple-
mentable payoff set? It turns out that what is in fact crucial is price independent be-
liefs. We have explained earlier why it is desirable to impose this condition when Buyer
is more informed than Seller, but that the condition is well-defined even otherwise.
If Buyer is not more informed than Seller, then price independent beliefs ought to be
viewed as an equilibrium restriction. Readers should bear in mind that, to reduce repeti-
tion, the qualifier “with price independent beliefs” applies for the rest of this subsection
unless stated explicitly otherwise.

It is useful to define

πus
s (�) ≡ inf

{︁
πs : ∃(πb, πs ) ∈�∗

us(�)
}︁

(1)

as the infimum payoff that an uninformed Seller can obtain, no matter Buyer’s infor-
mation (among equilibria with price independent beliefs, we stress). Plainly, πus

s (�) ≥
πs(�). In monopoly pricing with V = [v, v] and c(·) = v, Roesler and Szentes’s (2017)
characterization of the consumer-optimal information structure identifies πus

s , estab-
lishing that πus

s > πs. If there is no trade due to adverse selection when Seller is unin-
formed and Buyer has some information, then πus

s = πs = 0. We do not have a general
explicit formula for πus

s ; Section 4.3 provides it for linear c(·). Nonetheless, we estab-
lish next that (i) the only additional restriction on equilibrium payoffs imposed by price
independent beliefs is a lower bound of πus

s for Seller, and (ii) uninformed-Seller infor-
mation structures implement all such payoffs.

Theorem 2. The set of implementable outcomes under all information structures in
equilibria with price independent beliefs is the same as the set of implementable outcomes
under uninformed-Seller information structures in equilibria with price independent be-
liefs. Moreover:

1. �∗(�) =�∗
mb(�) =�∗

us(�).

2. �∗
us(�) = {(πb, πs ) ∈�(�) : πs ≥ πus

s (�)}.

3. For any (πb, πs ) ∈ �∗
us(�) with πs > πus

s (�), there is τ ∈ Tus with 	(�, τ) = {(πb, πs )}.

Proof. See Appendix C.

18In fact, if one lets the price grid vary with ε, then a single information structure implements exactly,
rather than approximately, in sequential equilibrium all payoffs ε-away from the boundary of �(�). See
Proposition B.1 in the Appendix for a formal statement.
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Remark 1. We believe the substance of Theorem 2 would hold using discretizations and
sequential equilibria, analogous to Theorem 1∗. As previously noted, sequential equilib-
rium implies price independent beliefs when Buyer is more informed than Seller.

To digest Theorem 2, note that �∗(�) ⊃ �∗
mb(�) ⊃ �∗

us(�) is trivial. So, part 1 of the
theorem amounts to establishing the reverse inclusions. The intuition for those—given
part 2’s characterization of �∗

us—is fairly straightforward: with price independent be-
liefs, additional information cannot harm Seller, even though it could alter the set of
equilibria. So, Seller’s lowest payoff obtains when she is uninformed.

The characterization in part 2 of payoffs with an uninformed Seller corresponds to
the triangle ADE in Figure 1. Part 3 of the theorem assures “unique implementation”
of all implementable payoffs satisfying πs > πus

s (�). That is, for any such payoff pair,
there is an uninformed-Seller information structure such that all equilibria (with price
independent beliefs) induce exactly that payoff pair. Unique implementation is appeal-
ing for multiple reasons, one of which is that it obviates concerns about which among
multiple payoff-distinct equilibria is more reasonable.

Let us describe how we obtain the characterization of �∗
us(�) and unique implemen-

tation. There are two steps. The first ensures that there is some information structure,
call it τ∗ ∈ Tus , that implements Seller’s payoff πus

s (�). That is, we ensure that the infi-
mum in (1) is in fact a minimum.19 While this argument is technical, knowing τ∗ exists
is useful in what follows. The second, and economically insightful, step is to construct
information structures that implement every point in the triangle �∗

us(�) by suitably gar-
bling the information structure τ∗. The construction is illustrated in Figure 2. Consider
the distribution of Buyer’s posterior mean of his valuation v in information structure
τ∗. (Given price independent beliefs, Buyer’s posterior mean is a sufficient statistic for
his decision.) For simplicity, suppose this posterior-mean distribution has a density, as
depicted by the red curve in Figure 2. Fix any (πb, πs ) ∈�∗

us(�).

Figure 2. Construction of garbling of τ∗.

19The difficulty is in establishing suitable continuity. Uninformed Seller information structures can be
viewed as probability measures over Buyer’s beliefs, with convergence in the sense of the weak* topology.
This topology ensures continuity, with respect to probability measures, of expectations of continuous or
at least Lipschitz (and bounded) functions. However, Seller’s expected payoff is not the expectation of a
Lipschitz function, as Seller’s profit is truncated at the price she charges.
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First, there is some number z∗ such that πb+πs is the total surplus from trading only
when Buyer’s posterior mean is greater than z∗. Next, there is some price p∗ ≥ z∗ such
that Seller’s payoff is πs if all these trades were to occur at price p∗.20 Note that p∗ must
be no larger than the expected Buyer posterior mean conditional on that being above
z∗, for otherwise πb < 0. We claim that the information structure τ∗ can be garbled so
that p∗ is an equilibrium price and trade occurs only when Buyer’s posterior mean is
greater than z∗. The garbling is illustrated in Figure 2 as the distribution depicted by the
blue curve and line. There is one signal that Buyer receives when the original posterior
mean is between z∗ and p∗, and also receives with some probability when the original
posterior mean is above p∗. The probability is chosen to make the posterior mean from
this signal exactly p∗. Apart from this one new signal, Buyer receives the original signal
in τ∗. Plainly, this is a garbling of τ∗, and hence is feasible.

Figure 2 makes clear why the new information structure has an equilibrium with
price p∗ and Buyer breaking indifference in favor of trading: (i) Seller’s profit from post-
ing any price below z∗ is the same as under τ∗, and hence no larger than πus

s (�); (ii)
similarly, Seller’s profit from posting any price above p∗ is no higher than some fraction
of πus

s (�); and (iii) any price between z∗ and p∗ is worse that price p∗. Moreover, since
Seller’s profit from offering any price other than p∗ is no more than πus

s (�), it follows
that when πs > πus

s (�), Buyer must break indifference as specified for Seller to have an
optimal price, and the equilibrium payoffs are unique.

Remark 2. The above logic establishes that given any τ ∈ Tus that implements some
(πb, πs ), τ can be garbled to uniquely implement any (π ′

b, π ′
s ) ∈ �(�) such that π ′

s > πs.
That is, an uninformed Seller’s payoff can always be strictly raised, and Buyer’s payoff
reduced (strictly, so long as it was not already zero), by garbling Buyer’s information.
Even when specialized to the case of monopoly pricing, this provides a different per-
spective on why Roesler and Szentes (2017) obtain a payoff triangle. More importantly,
our methodology also handles the case of interdependent values—specifically, a non-
linear cost function c(·).

Remark 3. According to Theorems 1/1∗ and Theorem 2, uninformed-Seller informa-
tion structures cannot implement all implementable payoff pairs in an environment
� if and only if πus

s (�) > πs(�). This inequality fails if πus
s (�) = 0, since that implies

πus
s (�) = πs(�) = 0. An example is when there is no trade due to adverse selection when

Seller is uninformed and Buyer has some information. Conversely, πus
s (�) >πs(�) if

v ≤ 𝔼
[︁
c(v)
]︁

and ∀v ∈ V , c(v) < v. (2)

To see why, notice that in any uninformed Seller information structure, Seller can price
at slightly less than Buyer’s highest posterior mean valuation and guarantee trade with
only (a neighborhood of) that Buyer type. If c(v) < v for all v, this gives Seller a positive

20That p∗ ≥ z∗ follows from πs ≥ πus
s (�), as πus

s (�) itself is weakly larger than Seller’s payoff from posting
price z∗ (and thus trading with the same set of Buyer posterior means) under information structure τ∗.
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expected payoff, and hence πus
s (�) > 0.21 But the first inequality in (2) is equivalent to

πs(�) = 0. Hence, (2) implies πus
s (�) >πs(�). We observe that Condition (2) is compati-

ble with severe adverse selection resulting in very little trade when Seller is uninformed
and Buyer is (partially or fully) informed.

3.3 Fully informed buyer

We now turn to the third canonical class of information structures: Buyer is fully in-
formed of his value v. As this is a special case of a more informed Buyer, we maintain
price independent beliefs throughout this subsection.

Faced with a fully informed Buyer and any sequentially rational Buyer strategy, an
uninformed Seller can guarantee the profit level

π
fb
s (�) ≡ sup

p

∫︂ v

p

(︁
p− c(v)

)︁
μ(dv)

regardless of her information. Plainly, πfb
s (�) ≥ πus

s (�). In monopoly pricing with c(·) =
v, Roesler and Szentes (2017) have shown that π

fb
s > πus

s ; if there is no trade due to

adverse selection when Buyer is fully informed and Seller is uninformed, then π
fb
s =

πus
s = 0. We establish below that when Buyer is fully informed, πfb

s is the only additional
constraint on equilibrium payoffs.

Theorem 3. The set of implementable outcomes under fully informed Buyer information
structures and equilibria with price independent beliefs is

�∗
fb(�) = {︁(πb, πs ) ∈ �(�) : πs ≥ π

fb
s (�)

}︁
.

Proof. See Appendix D.

The payoff set characterized in Theorem 3 corresponds to the triangle ABE in
Figure 1. Here is the idea behind the result. When Buyer is fully informed, an infor-
mation structure can be viewed as dividing v’s prior distribution, μ, into a set of μi that
average to μ, with Seller informed of which μi she faces. Theorem 3 is proven by estab-
lishing that we can divide μ suitably so that against each μi, Seller is indifferent between

pricing at all prices in the support of μi, including the price corresponding to π
fb
s in that

environment. Such a μi is analogous to an “extremal market” introduced by Bergemann,
Brooks, and Morris (2015) in the context of monopoly pricing. To highlight the profit im-
plication of such a distribution and because that implication is relevant across multiple
information structures in our paper, we call such a μi an isoprofit distribution or IPD.

21More precisely, as V is compact, c(v) < v for all v implies there exists ε > 0 such that v− c(v) > ε. Given
any uninformed Seller information structure, let mv be the highest posterior mean valuation in the support
of the posterior means induced by Buyer’s signals. So, there is positive probability of Buyer signals with
posterior mean valuations at least mv − ε/2. By pricing at mv − ε/2, Seller’s expected cost conditional on
trade is bounded above by mv −ε, and hence Seller’s profit conditional on trade is at least ε/2 > 0. It follows
that πus

s > 0.
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Definition 2. ν is an isoprofit distribution (IPD) if∫︂ v

p

(︁
p− c(s)

)︁
ν(ds) = constant ≥ 0, ∀p ∈ Supp(ν).

The Appendix provides a “greedy” algorithm to compute IPDs; the algorithm is de-
fined for finite V , and we take limits to handle the infinite case. We can sketch how
the algorithm works and construct a set of IPDs that average to the prior. Suppose
V = {v1, v2, � � � , vK }, with vi < vi+1 for i ∈ {1, � � � , K − 1} and c(v) < v for all v. Given any
small enough mass of vK , there is a unique mass of type vK−1 that makes Seller indiffer-
ent between charging price vK and vK−1. (If the mass is too low, Seller prefers vK ; if it is
too high, she prefers vK−1.) Iterating down to keep Seller indifferent between all prices
pins down an IPD. Choose the maximum mass of type vK for which this works. Remove
that IPD—that is, take the conditional distribution after removing the masses of each
type according to that IPD—and then repeat the procedure to construct the next IPD.

Crucially, whenever an IPD is removed, the price corresponding to π
fb
s (�) remains

optimal in the remaining “market”; this follows from the IPD’s defining property of Seller
indifference and an accounting identity. Therefore, Seller’s profit in this segmentation

of IPDs remains πfb
s (�). Moreover, it is also optimal for Seller to always (i.e., for each μi)

price so that there is full trade or no trade. Hence, Buyer’s expected payoff can be either

0 or the entire surplus less π
fb
s (�). It follows that the fully informed Buyer information

structure defined by this set of IPDs implements point B and C in Figure 1. The entire
triangle ABC can then be implemented by convexification: randomizing over this infor-
mation structure (and the two equilibria) and full information (where Seller obtains all
the surplus).

Remark 4. In the same vein as part 3 of Theorem 2, one can also establish approxi-
mately unique implementation for Theorem 3’s payoff set: for any (πb, πs ) ∈ �∗

fb(�) and
any ε > 0, there is τ ∈ Tfb with 	(�, τ) ⊂ Bε(πb, πs ).

Remark 5. Theorems 1–3 imply that fully informed Buyer information structures im-

plement all implementable payoff pairs if and only if πfb
s (�) = πs(�). In that case, trian-

gles AFG and ABC coincide in Figure 1. It follows that πfb
s (�) = πs(�) only when a fully

informed Buyer and uninformed Seller can result in full trade (v ≥ 𝔼[c(v)] and Seller
prices at v) or no trade (v ≤ 𝔼[c(v)] and Seller prices at some p ≥ v). Interestingly, when

π
fb
s (�) > πs(�), fully informed Buyer information structures cannot even implement

all payoff pairs implementable by uninformed Seller information structures; that is, tri-
angles ABC and ADE in Figure 1 are distinct if and only if triangles ABC and AFG are

distinct. Or to put it another way, when (and only when) πfb
s (�) >πs(�) there is an un-

informed Seller information structure that implements some πs < π
fb
s (�).22 Theorems

2–3 further imply that this property also characterizes when Buyer can benefit from not

22Pick any p′ > v such that p′ −𝔼[c(v)] <π
fb
s (�). Following the construction described after Theorem 2,

we can mix all valuations v ≤ p′ with a fraction λ > 0 of valuations v > p′ so that the mixture has posterior
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being fully informed. In the context of monopoly pricing, that can be viewed as charac-
terizing when the buyer can benefit from strategic learning (Roesler and Szentes (2017))
rather than market segmentation (Bergemann, Brooks, and Morris (2015)).

Remark 6. Restricting attention to posted prices is without loss for Theorems 1–3.
Since we have implemented all payoffs that are feasible and individually rational for
Seller, allowing Seller to use more complicated mechanisms cannot enlarge the imple-
mentable payoff sets. To see why all our payoffs can still be obtained as well, note that
for Theorem 1, Seller’s deviation to any other mechanism can simply be deterred by a
pessimistic belief. For Theorems 2–3, since Buyer is more informed than Seller, a posted
price is optimal for Seller among all mechanisms (Myerson (1981)).

4. Discussion

This section discusses some extensions and refinements of our results.

4.1 Multidimensionality

Suppose Buyer and Seller’s cost and valuation pair (c, v) is a two-dimensional random
variable distributed according to joint distribution μ with a compact support in ℝ

2. The
extension of our maintained assumption of commonly known gains from trade is: for
all (c, v) ∈ Supp(μ), v ≥ c; and 𝔼[v − c] > 0. An information structure is now a joint
distribution P(tb, ts, c, v) whose marginal distribution on (c, v) is μ.

The substance of Theorems 1/1∗, Theorem 2 and Theorem 3 still hold.23 To see why,
let v be the lowest valuation in the support of μ. Seller’s individual rationality constraint
is now max{v − 𝔼[c], 0}, as she can guarantee this profit by setting either a sufficiently
high price or a price (arbitrarily close to) v, regardless of her signal. Abusing notation,
we can define a cost function c(v′ ) ≡ 𝔼μ[c|v = v′] ≤ v′. This results in an environment
satisfying all the maintained assumptions of our baseline model, except that c(·) may
not be continuous. Such continuity plays no role in proving Theorem 1 nor Theorem 1∗.
Both Theorem 2 and Theorem 3 use continuity of c(·) to guarantee that 𝔼ν[c(v)] is a
continuous function of ν ∈ �(V ) for certain convergence arguments. However, in the
two-dimensional type environment, 𝔼ν[c] is still a continuous function of ν ∈ �(C × V ).
Theorem 3 uses upper semicontinuity of Seller’s profit in price; boundedness of c and
c ≤ v is sufficient for such upper semicontinuity.

mean exactly p′. The remaining fraction 1 − λ of valuations above p′ are revealed to Buyer. With this unin-
formed Seller information structure, consider any equilibrium in which Buyer purchases when indifferent.

(Such an equilibrium with price independent belief exists.) Seller’s profit is at most (1 − λ)π
fb
s (�) from any

price p>p′, and p′ −𝔼[c(v)] from price p = p′. Hence, Seller’s profit is strictly less than π
fb
s (�).

23A caveat is that in this multidimensional setting, we do not know whether our maintained assumption
that Seller only posts a price is without loss—that is, we do not rule out that certain payoff pairs are not
implementable when Seller can use nonposted price mechanisms (which she might use to improve her
payoff). By contrast, in our baseline one-dimensional setting, our results would not be affected if we had
allowed Seller to use arbitrary mechanisms. See Che and Zhong (2025) and Deb and Roesler (2024) for work
on information design in multidimensional screening problems.
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4.2 Negative trading surplus

Returning to our baseline model, we next discuss what happens when trade sometimes
generates negative surplus. That is, we drop the assumption that c(v) ≤ v; we do not
require 𝔼[v− c(v)] > 0 either. Define Sλ(�) for λ ∈ [1, ∞) as

Sλ(�) ≡
∫︂ v

v

[︁
v − c(v) + λ(v − v)

]︁+
μ(dv),

where [·]+ ≡ max{·, 0}. The function Sλ(�) is a weighted sum of Buyer and Seller payoff
assuming that trade occurs at price p = v whenever trade creates a positive weighted
total payoff, and there is no trade otherwise. It is readily verified that S1(�) = 𝔼[[v −
c(v)]+] and limλ→∞ Sλ(�)/λ = 𝔼[v]−v. Allowing negative trading surplus does not affect
our definition of wPBE. So, the notation �(�) and πs(�) still have the same meanings as
before. The next proposition shows that �(�) is now characterized by three constraints:
as before, the two individual rationality constraints, πs ≥ πs(�) and πb ≥ 0; and different
now, a Pareto frontier defined by all Sλ(�).

Proposition 1. Consider all information structures and equilibria when trade can gen-
erate negative surplus.

�(�) =

⎧⎪⎨⎪⎩
πb ≥ 0

(πb, πs ) : πs ≥ πs(�)
λπb +πs ≤ Sλ(�), ∀λ ≥ 1

⎫⎪⎬⎪⎭ .

Proof. See Appendix E.

Figure 3 depicts Proposition 1. The blue triangle’s frontier corresponds to total sur-
plus under full trade.24 The union of the blue and red regions is the set �(�). Each
outer blue line has a slope −λ, with λ ≥ 1, and represents a frontier λπb + πs = Sλ(�);
the frontier of the red region is defined by their envelope.

Let us explain some of the logic underlying Proposition 1/Figure 3. Begin by observ-
ing that all the payoffs in the figure’s blue triangle can be implemented analogously to
our discussion of Theorem 1. It is also straightforward that some payoffs outside this set
can be implemented. In particular, an information structure that publicly reveals only
whether trade is efficient (i.e., whether v ≥ c(v) or not) can implement efficient trade
with all the surplus accruing to Seller: the point (0, S1(�)) in Figure 3. Why does max-
imizing Buyer’s payoff now generally require some inefficiency (i.e., why is the red re-
gion’s frontier not linear when S1(�) > 𝔼[v − c(v)])? Consider, for simplicity, v ≥ 𝔼[c(v)],
so that πs(�) = v − 𝔼[c(v)]. The bottom-right corner of Figure 3’s blue triangle is then
achieved by having trade with probability one at the price v, with corresponding Buyer
payoff 𝔼[v]−v. No higher Buyer payoff is implementable because Seller will never sell at

24The figure is drawn assuming 𝔼[v − c(v)] > 0, which ensures the blue triangle in the figure is nonde-
generate. If instead 𝔼[v− c(v)] ≤ 0, then πs(�) = max{v−𝔼[c(v)], 0} = 0, and the blue triangle would be the
singleton (0, 0).
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Figure 3. Outcome when trading surplus can be negative.

a price below v, and subject to that constraint; this outcome maximizes v − p for every
v. In other words, the maximum implementable Buyer’s payoff goes hand in hand with
implementing all inefficient trade.

It remains to sketch why the frontier of �(�) is characterized by the lines defined
by {λπb + πs = Sλ(�)}λ≥1. When type v trades at price p ≥ v, the (ex post) weighted
total payoff is p − c(v) + λ(v − p), which is weakly below v − c(v) + λ(v − v) because
λ ≥ 1 and v ≤ p. When trade does not happen, the weighted total payoff is 0. There-
fore, the weighted total payoff is bounded above by [v − c(v) + λ(v − v)]+, and hence
each Sλ(�) is an upper bound for the expected weighted total payoff. The proof of
Proposition 1 establishes that each of these upper bounds is tight: for each λ, there exists
an information structure implementing expected weighted total payoff equal to Sλ(�).
The information structure simply publicly reveals whether the weighted total payoff at
price v is negative (a “negative signal”) or not (a “positive signal”). For all v, such that
v − c(v) + λ(v − v) < 0, it holds that v − c(v) < (1 − λ)(v − v) ≤ 0. Thus, the negative
signal creates common knowledge that total surplus is negative, and hence there is no
trade. After a positive signal, instead, Seller can be induced to sell at price v just as in the
discussion of Theorem 1. Therefore, the equilibrium expected weighted total payoff is
𝔼[[v− c(v) + λ(v− v)]+] = Sλ(�).

We should note that in certain cases there may not be a tradeoff between maximizing
Buyer’s payoff and efficiency. Specifically, consider the profit level ˆ︁πs that is the maxi-
mum of 0 and Seller’s profit from efficient trade at price v:

ˆ︁πs ≡
[︃∫︂

1v≥c(v)
(︁
v − c(v)

)︁
μ(dv)

]︃+
.

For profit levels above ˆ︁πs, the situation is analogous to our baseline model once we use
a public signal to reveal that trade is efficient, and so the implementable equilibrium
payoffs with πs ≥ ˆ︁πs constitute a triangle, as seen in Figure 3. Hence, if ˆ︁πs = 0, then
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there is no tradeoff between efficiency and maximizing Buyer’s payoff. But whenˆ︁πs > 0,
then so long as some trades generate negative surplus, ˆ︁πs > πs and there is a tradeoff.

4.3 Affine cost function

Returning to our baseline model, recall that Seller’s minimum implementable payoff
πus
s (�) under price independent beliefs (Theorem 2) is not amenable to a closed-form

formula in general. We now provide such a formula when the cost function c(v) is affine.
According to our discussion in Section 4.1, an affine c(v) subsumes richer environments
in which conditional expectations are affine, such as under Gaussian primitives (cf. Bar-
Isaac, Jewitt, and Leaver (2021)).

Condition 1. c(v) = λv + γ, for some λ, γ ∈ℝ.

Let F(v) be the cumulative distribution function (CDF) corresponding to the prior
measure μ. Let D(μ) be the set of all distributions whose CDF G satisfies∫︂

V
vdG(v) =

∫︂
V
vdF(v) and

∫︂ v

v
G(s) ds ≤

∫︂ v

v
F(s) ds, ∀v ∈ V .

That is, D(μ) contains all distributions that are mean-preserving contractions (MPC) of
μ. It is well known that D(μ) characterizes the set of distributions of Buyer posterior
means that can be generated by any (uninformed Seller) information structure. We fo-
cus on a special family of IPDs (see Definition 2) whose supports are intervals [v∗, v∗].
Such IPDs have an analytical expression under Condition 1:

G(v) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0 if v ≤ v∗
1 if v ≥ v∗

1 −
(︃

(1 − λ)v − γ

(1 − λ)v∗ − γ

)︃ 1
λ−1

if v ∈ (v∗, v∗ ) and λ ≠ 1

1 − e
v−v∗
γ if v ∈ (v∗, v∗ ) and λ= 1.

(3)

G(v) is smooth everywhere except for a mass point at v∗. Our maintained assump-
tion that v ≥ c(v) implies (1 − λ)v ≥ γ. Therefore, Equation (3) defines an increasing
function, that is, a well-defined CDF. Given any v∗, a higher v∗ corresponds to increas-
ing G(v) in the sense of first-order stochastic dominance; hence, there is a unique v∗
determined by the condition 𝔼G[v] = 𝔼F [v]. So, the family of IPDs is parametrized by a
single parameter v∗; accordingly, we denote such an IPD by CDF Gv∗ with density gv∗ on
(v∗, v∗ ). The domain for v∗ is [v, 𝔼[v]). We separately define G𝔼[v](v) = 1v≥𝔼[v].

It can be verified that a higher v∗ lowers the corresponding v∗ (i.e., the corresponding
intervals [v∗, v∗]’s are nested) and that Gv∗(v) is pointwise decreasing in v∗ within the
common support. As a result, for any two different v∗’s the corresponding Gv∗ ’s cross
once. Consequently, all IPDs are ordered according to the MPC order (increasing in v∗ ∈
[v, 𝔼[v]]). Not every Gv∗ is in D(μ), but Gv∗ ∈ D(μ) for all v∗ larger than some threshold.
The following proposition shows that this threshold pins down πus

s .
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Proposition 2. Assume Condition 1 and let p∗ ≡ min{v∗|Gv∗ ∈ D(μ)}. It holds that
πus
s (�) = p∗ −𝔼μ[c(v)].

Proof. See Appendix F.

Proposition 2 states that an uninformed Seller’s minimum payoff (with price inde-
pendent beliefs) is characterized by a specific IPD of Buyer posterior means. By the
Seller indifference property of IPDs and that v∗ is the minimum of Gv∗ ’s support, Seller’s
profit when facing IPD Gv∗ is v∗ −𝔼[c(v)]. Proposition 2 thus implies that an uninformed
Seller’s minimum payoff is implemented by the most dispersed IPD that is a MPC of the
prior distribution.

In proving Proposition 2, the key step is to show that given the prior μ, garbling
Buyer’s information so that the posterior mean distribution becomes an IPD makes
Seller weakly worse off. As such, it is without loss to only consider IPDs to implement
πus
s (�). This makes the problem one-dimensional and tractable. To elaborate on the

key step, suppose we find a distribution G(v) such that: (i) G ∈ D(μ); (ii) G is an IPD;
and (iii) there is a p ∈ Supp(G) such that

∫︁ v
p G(s) ds = ∫︁ vp F(s) ds. Such a G is the most

dispersed IPD that is a MPC of the prior μ. Consider the following two identities derived
using integration by parts:25

λ

∫︂ v

p
F(s) ds = − (︁1 − F(p−)

)︁(︁
p− c(p)

)︁+ λ(v−p) +
∫︂ v

p

(︁
p− c(s)

)︁
dF(s), (4)

λ

∫︂ v

p
G(s) ds = − (︁1 −G(p−)

)︁(︁
p− c(p)

)︁+ λ(v−p) +
∫︂ v

p

(︁
p− c(s)

)︁
dG(s). (5)

First, by property (iii) above, the LHS of Equation (4) equals the LHS of Equation (5).
Second, the MPC condition implies

∫︁ v
v (F(s) −G(s)) ds ≤ 0 for all v and it reaches 0 when

v = p, it holds that F(p−) ≤ G(p−). Therefore, the integral term on RHS of Equation (4)
must be greater than that of Equation (5). Notice that the integral term on either RHS is
Seller’s profit when offering price p. This implies that the profit from offering p given
Buyer mean valuation distribution G(v) is lower than Seller’s maximum profit given
F(v). At the same time, by the IPD property, p is an optimal price given G(v). Therefore,
the optimal profit under valuation distribution F must be no lower than that under G.
It follows that to minimize Seller’s profit, it is without loss to consider only IPDs within
the set D(μ), which is a one-dimensional subspace.

The logic above generalizes that of Roesler and Szentes (2017). Their monopoly-
pricing environment with c(·) = v is covered by Condition 1 with λ = 0 and γ = v. The
distribution G in (3) then reduces to that identified by Roesler and Szentes.26

If the prior μ has binary support, then any cost function c(v) is affine. This case
permits an explicit solution for πus

s (�).

25F(p−) is defined as the left limit of F at p, and similarly G(p−). The integration by parts formula is for
Lebesgue–Stieltjes integral.

26In recent work, Inostroza and Tsoy (2025) extend Proposition 2 to a setting in which Seller does not
have all the bargaining power.
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Corollary 1. Assume μ has binary support: V = {v1, v2} with v1 < v2. Let λ = (c(v2 ) −
c(v1 ))/(v2 − v1 ), and let p be the unique solution to(︁

p− c(p)
)︁ 1
λ−1
(︁
p−𝔼

[︁
c(v)
]︁)︁= (︁v2 − c(v2 )

)︁ λ
λ−1 . (6)

It holds that πus
s (�) = max{p, v1} −𝔼[c(v)].

Proof. See Appendix G.

Appendix A: Proof of Theorem 1

Proof. We first show that {(πb, πs ) : πb ≥ 0, πs ≥ πs(�), πb + πs ≤ S(�)} ⊂ �(�). Con-
sider a trivial information structure τ0 in which both player’s signal spaces are single-
tons. Note that τ0 has more informed Buyer, but since we are interested in � rather than
�∗, we do not require Buyer’s belief to be price independent. For any (πb, πs ) ∈ �(�),
define strategies and beliefs as follows. Let pl = πs + 𝔼[c(v)] ∈ [v, 𝔼[v]] and ph = 𝔼[v] >
𝔼[c(v)].

• Buyer’s strategy:

α(ph ) = pl −𝔼
[︁
c(v)
]︁

ph −𝔼
[︁
c(v)
]︁ , α(pl ) = 1, and α(p) = 1p≤v ∀p /∈ {pl, ph},

where 1p≤v denotes the indicator function for the set {p : p ≤ v}.

• Seller’s strategy:

σ(pl ) = πb

𝔼[v] −pl
and σ(ph ) = 1 − πb

𝔼[v] −pl
.

Note that 𝔼[v] −pl = S(�) −πs ≥ πb guarantees that σ(pl ), σ(ph ) ∈ [0, 1].

• Beliefs:

ν(v|pl ) = ν(v|ph ) = μ(v) and ν(v|p) = δv(v) ∀p /∈ {pl, ph}.

It is straightforward that the payoff from this strategy profile is (πb, πs ). So, we need
only verify that (σ , α, ν) constitutes a wPBE. First, Buyer’s strategy is optimal given be-
liefs because 𝔼[v] − ph = 0, 𝔼[v] − pl ≥ 0, and for any other price, Buyer’s belief is
a point mass on v. Second, Seller’s strategy is optimal: α(ph ) is defined such that
α(ph )(ph − 𝔼[c(v)]) = pl − 𝔼[c(v)]. So, Seller is indifferent between offering pl and ph.
Any other price above v is rejected and so is no better than pl and ph. Seller’s payoff
is pl − 𝔼[c(v)] = πs ≥ πs(�), so any price below v is also no better. Third, since Seller’s
strategy is type independent and ν = μ on path, Bayes rule is satisfied on path.

It remains to prove that �(�) ⊂ {(πb, πs ) : πb ≥ 0, πs ≥ πs(�), πb + πs ≤ S(�)}. Pick
any signal structure and any wPBE with belief ν. Since Supp(ν) ⊂ V , sequential ra-
tionality implies that Buyer buys with probability one after any price p < v and with
probability zero when p> v. Therefore, Seller must obtain payoff πs ≥ πs(�) ≡ max{v −
𝔼[c(v)], 0}. It is straightforward that Buyer’s payoff πb ≥ 0 and πb +πs ≤ S(�).
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Appendix B: Proof of Theorem 1∗

We first prove Proposition B.1 below, which we will use to prove Theorem 1∗.

B.1 A related result

Proposition B.1. Fix any ε > 0. ∃ a finite information structure such that ∀(πb, πs ) ∈
{(πb, πs ) : πb ≥ ε, πs ≥ πs(�) + ε, and πb + πs ≤ S(�) − ε}, ∃ a finite price grid defining a
game that has a sequential equilibrium with payoffs (πs, πb ).

One aspect of this result is weaker than Theorem 1∗ because the price grid here
varies with the equilibrium payoffs (πb, πs ). But another aspect is stronger: all payoffs ε
away from the boundary of �(�) are obtained, rather than just an ε-net of payoffs.

Proof. Let us initially prove the statement assuming ℙ(v) > 0. First, choose any δ ∈
(0, 1

2 ) and any η ∈ (0, ℙ(v = v)). For now, we keep δ and η as free parameters and we
define the information structure and the corresponding equilibrium. At the end of the
proof, we will verify that when δ and η go to zero, the equilibrium payoffs span the target
set of payoffs in Proposition B.1.

We first define the information structure. Buyer is uninformed: Tb = {∅}. Seller gets
two signals: Ts = {l, h}, with distribution given by

P(l, ∅, v) = ηδv(v),

P(h, ∅, v) = μ(v) −ηδv(v).

That is, v = v is revealed to Seller with probability η using signal “l.” In the rest of the
proof, we omit tb, as Buyer is uninformed.

We next specify certain prices and a property of the finite price grid. Choose any
σh ∈ [δ, 1 − δ]. Define

ph = 𝔼[v] −ηv

1 −η
and p

h
= ηv+ (1 −η)σhph

η+ (1 −η)σh
.

That is, ph is 𝔼[v|ts = h] and p
h

is the expectation of v conditional on the event that pools

σh proportion of ts = h with all ts = l. Pick any pl ∈ [max{𝔼[c(v)]−ηc(v)
1−η , v}, ηv+(1−η)δph

η+(1−η)δ ).27

It holds that v ≤ pl < p
h
< 𝔼[v] < ph. Consider any finite grid of prices that contains

{pl, ph
, ph}, and is otherwise arbitrary.

Now we specify the strategy profile and beliefs, and verify equilibrium.

• Case 1: c(v) > 𝔼[c(v)]. Seller’s and Buyer’s strategies, σ and α, and Buyer’s beliefs ν

are, respectively,

σ(p
h

|h) = σh, σ(pl|h) = 1 − σh, and σ(p
h

|l) = 1;

27Fixing δ > 0, the interval is nonempty when η is sufficiently close to 0.
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α(p
h

) =
pl −

𝔼
[︁
c(v)
]︁−ηc(v)

1 −η

p
h

− 𝔼
[︁
c(v)
]︁−ηc(v)

1 −η

, α(pl ) = 1, and ∀p /∈ {pl, ph
}, α(p) = 1p≤v;

ν(v|p
h

) = η(1 − σh )δv(v) + σhμ(v)

η(1 − σh ) + σh
,

ν(v|pl ) = μ(v) −ηδv(v)
1 −η

, and ∀p /∈ {pl, ph
}, ν(v|p) = δv(v).

That is, Seller with signal h randomizes between prices p
h

and pl, while after signal
l she chooses p

h
. Buyer randomizes after price p

h
, accepts pl, and off-path accepts

prices below v and rejects otherwise.
Let us verify that (σ , α, ν) is a sequential equilibrium. Buyer’s sequential ratio-

nality is straightforward, as 𝔼ν[v|pl] = ph > pl, 𝔼ν[v|p
h

] = p
h

and 𝔼ν[v|p] = v for
any other p. For Seller, note that by definition of α(p

h
), Seller with signal h is in-

different between offering pl and p
h

. Since c(v) > 𝔼[c(v)] by hypothesis, Seller with
signal l finds it strictly better offering p

h
than pl. Any other price p is worse than

offering pl for both Seller types. Finally, for consistency of Buyer’s belief: Bayes’
rule is straightforward on the equilibrium path. The off-path belief can be de-
rived from the limit of Seller’s fully mixed strategy˜︁σn(p|h) = n2−1

n2 σ(p|h) + 1
n2×k

and˜︁σn(p|l) = n−1
n σ(p|l) + 1

n×k , where k is the number of prices in the grid.

• Case 2: c(v) ≤ 𝔼[c(v)]. Now consider

σ(ph|h) = σh, σ(pl|h) = 1 − σh, and σ(pl|l) = 1;

α(ph ) =
pl −

𝔼
[︁
c(v)
]︁−ηc(v)

1 −η

ph − 𝔼
[︁
c(v)
]︁−ηc(v)

1 −η

, α(pl ) = 1, and ∀p /∈ {pl, ph}, α(p) = 1p≤v;

ν(v|ph ) = μ(v) −ηδv(v)
1 −η

,

ν(v|pl ) = ησhδv(v) + (1 − σh )μ(v)
ησh + (1 − σh )

, and ∀p /∈ {pl, ph}, ν(v|p) = δv(v).

That is, Seller with signal h randomizes between prices ph and pl, while after
signal l she chooses pl. Buyer randomizes after price ph, accepts pl, and off-path
accepts prices below v and rejects otherwise.

Let us verify that (σ , α, ν) is a sequential equilibrium. Buyer’s sequential rational-
ity is straightforward, as 𝔼ν[v|pl] ≥ ηv+(1−η)δph

η+(1−η)δ > pl, 𝔼ν[v|ph] = ph, and 𝔼ν[v|p] = v

for any other p. For Seller, note that by definition of α(ph ), Seller with signal h is
indifferent between offering pl and ph. Since c(v) ≤ 𝔼[c(v)] by hypothesis, Seller
with signal l finds it weakly better offering pl than ph. Any other price is worse than
offering pl for both Seller types. Finally, for consistency of Buyer’s belief: Bayes’
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rule is straightforward on the equilibrium path. The off-path belief can be de-
rived from the limit of Seller’s fully mixed strategy˜︁σn(p|h) = n2−1

n2 σ(p|h) + 1
n2×k

and˜︁σn(p|l) = n−1
n σ(p|l) + 1

n×k , where k is the number of prices in the grid.

Now we calculate the players’ payoffs in the above equilibria.

• Case 1: c(v) > 𝔼[c(v)]. In this case, it is optimal for Seller to offer pl after signal h
and p

h
after signal l. Therefore, in equilibrium

πs = (1 −η)pl +ηp
h

−𝔼
[︁
c(v)
]︁−η

(︁
1 − α(p

h
)
)︁(︁
p
h

− c(v)
)︁
.

Note that p
h

depends on σh but pl does not. For any σh ∈ [δ, 1 − δ], when pl =
max{𝔼[c(v)]−ηc(v)

1−η , v},

πs ≤ pl −𝔼
[︁
c(v)
]︁+η(p

h
−pl )

≤ max
{︃

η

1 −η

(︁
𝔼
[︁
c(v)
]︁− c(v)

)︁
, v −𝔼

[︁
c(v)
]︁}︃+η

(︁
𝔼[v] − v

)︁
.

When pl = ηv+(1−η)δph
η+(1−η)δ ,

πs ≥ pl −𝔼
[︁
c(v)
]︁−η

(︁
𝔼[v] −𝔼

[︁
c(v)
]︁)︁= ηv + (1 −η)δph

η+ (1 −η)δ
−𝔼
[︁
c(v)
]︁−ηS(�).

Therefore, when pl traverses its domain, πs traverses a set containing the interval

Is =
[︃

max
{︃

η

1 −η

(︁
𝔼
[︁
c(v) − c(v)

]︁)︁
, v −𝔼

[︁
c(v)
]︁}︃

+η
(︁
𝔼[v] − v

)︁
,
ηv+ (1 −η)δph

η+ (1 −η)δ
−𝔼
[︁
c(v)
]︁−ηS(�)

)︃
.

In other words, ∀πs ∈ Is and ∀σh ∈ [δ, 1 − δ], there exists pl(σh ) such that Seller’s
payoff is πs. Now consider Buyer’s payoff holding πs fixed. When σh traverses [δ, 1−
δ], πb changes continuously. If σh = 1 − δ, then πb = (1 − η)δ(ph − pl ) ≤ δ(v − v).
If σh = δ, then with at most η + δ − ηδ probability the offer is rejected, and hence
πs +πb ≥ S(�) − (η+ δ)(v − inf c(v)).

• Case 2: c(v) ≤ 𝔼[c(v)]. In this case, it is optimal for both Seller to offer pl no matter
her signal, which induces Buyer to accept with probability 1. Therefore, in equi-
librium πs = pl − 𝔼[c(v)]. Buyer is indifferent between accepting the offer or not
at ph. So, Buyer gets positive payoff only when the price offered is pl, and hence
πb = (ησhv+ (1 −σh )𝔼[v]) − (ησh + (1 −σh ))pl. Similar to Case 1, we can calculate
that as pl traverses its domain, πs traverses the interval[︃

max
{︃

η

1 −η

(︁
𝔼
[︁
c(v) − c(v)

]︁)︁
, v −𝔼

[︁
c(v)
]︁}︃

,
ηv+ (1 −η)δph

η+ (1 −η)δ
−𝔼
[︁
c(v)
]︁)︃

.

Holding any pl fixed, as σh traverses the interval [δ, 1 − δ], πb traverses[︁
η(1 − δ)v + δ𝔼[v] − (︁η(1 − δ) + δ

)︁
pl, ηδv + (1 − δ)𝔼[v] − (︁ηδ+ (1 − δ)

)︁
pl

]︁
.
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It follows that in either case, as η and δ converge to zero (with the order η first and δ

second), Seller’s payoff that obtain across the family of equilibria we have constructed
converges to (max{0, πs(�)}, S(�)). For any such πs, Buyer’s payoff that obtain converges
(uniformly) to (0, S(�)−πs ). This completes the proof of Proposition B.1 when ℙ(v) > 0.

When ℙ(v) = 0, we first modify the original environment by pooling a small mass
of valuations near v = v (which is feasible since v is the lowest value in the support of
V ). Call this modified environment ˜︁�. Plainly, S(˜︁�) = S(�) and πs(˜︁�) ≈ πs(�). There-
fore, ∀ε > 0, there exists such˜︁� such that �(˜︁�) covers all payoffs in �(�) that are more
than 1

2ε away from the boundary of �(�). We can now apply the previous argument
with a positive probability of the lowest valuation and find an information structure ˜︁τ
that implements all payoffs in �(˜︁�) that are more than 1

2ε away from the boundary of
�(˜︁�). The proof is completed by converting˜︁τ to an information structure for the original
environment �.

B.2 Proof of Theorem 1∗

Proof. We utilize the construction in the proof of Proposition B.1. First, ∀ε > 0, choose
δ and η as the corresponding parameters derived in Proposition B.1 such that the
implementable payoffs cover all points ε/2 away from the boundary of �(�). Then
ph = 𝔼[v]−ηv

1−η . Choose grid size � ∈ (0, 1
2 |ph − 𝔼[v]|). Construct an arbitrary grid of

[v, v] with grid size �. By the definition of grid size, there exists an on-grid price

p′
h ∈ [ph − �, ph]. Now choose η′ ≤ η such that p′

h = 𝔼[v]−η′v
1−η′ . Note that p′

h ≥ ph − �

implies 1−η′
η′(𝔼[v]−v) ≤ 1

η
1−η (𝔼[v]−v)−�

. From now on, we fix �, η′, δ, p′
h and the grid.

Pick any (πb, πs ) ∈ �(�) that is ε/2 away from the boundary of �(�). Note that re-
ducing η to η′ expands the set of implementable payoffs in Proposition B.1. Therefore,
given δ, η′, the construction in Proposition B.1 defines an information structure such
that (πb, πs ) is an equilibrium payoff pair. Let (pl, σh ) define the constructed equilib-
rium.28 Now we modify pl and σh to “snap” the on-path prices onto the grid. Choose
p′
l to be the on-grid price no greater than and closest to pl. So, pl − p′

l < �. Let p′
h

be

the on-grid price closest to p
h

such that σ ′
h = η′

1−η′
p′
h
−v

p′
h−p′

h

∈ [δ, 1 − δ] (note that since σ ′
h

is increasing in p′
h

, this is achieved by one of the two grid points to the left and right of
p
h

). It can be easily verified that p′
l < p′

h
< 𝔼[v] <p′

h. Observe that⃓⃓⃓⃓
dσh

dp′
h

⃓⃓⃓⃓
= η′(︁

1 −η′)︁2 𝔼[v] − v(︁
p′
h −p′

h

)︁2 ≤ η′(︁
1 −η′)︁2 𝔼[v] − v(︁

p′
h −𝔼[v]

)︁2
= 1

η′(︁
𝔼[v] − v

)︁ ≤ 1

1 −η′
1

η

1 −η

(︁
𝔼[v] − v

)︁−�
,

where the last inequality is from 1−η′
η′(𝔼[v]−v) ≤ 1

η
1−η (𝔼[v]−v)−�

. Therefore, |p
h

− p′
h

| ≤ � im-

plies |σh − σ ′
h| ≤ 1

1−η′ �
η

1−η (𝔼[v]−v)−�
.

28All other parameters defining the equilibrium are calculated from η′, pl , σh. Recall that the on-path
prices are pl , p

′
h, p

h
.
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Take the information structure and equilibrium from the proof of Proposition B.1
corresponding to parameters η′, p′

l, and σ ′
h. Now we calculate the equilibrium payoffs

and compare that to (πb, πs ). We discuss the two cases separately:
In case 1 (c(v) > 𝔼[c(v)]), we first bound |α′(p′

h
) − α(p

h
)|:⃓⃓

α′(︁p′
h

)︁− α(p
h

)
⃓⃓

≤
⃓⃓
p′
l −pl

⃓⃓
p
h

−𝔼
[︁
c(v)|v > v

]︁ +
⃓⃓⃓⃓
p′
l −𝔼

[︁
c(v)|v > v

]︁
p
h

−𝔼
[︁
c(v)|v > v

]︁ − p′
l −𝔼

[︁
c(v)|v > v

]︁
p′
h

−𝔼
[︁
c(v)|v > v

]︁ ⃓⃓⃓⃓

≤ 2�

p
h

−𝔼
[︁
c(v)|v > v

]︁ .

The second inequality follows from p′
h
> p′

l and |p′
l − pl|, |p′

h
− p

h
| < �. In this case,

Seller’s payoff is α′(p′
h

)(p′
h

− 𝔼[c(v)]) (note that Seller always finds p′
h

optimal, which is
accepted with probability α′). Therefore,⃓⃓

πs −π ′
s

⃓⃓≤ ⃓⃓α′(︁p′
h

)︁− α(p
h

)
⃓⃓(︁
p
h

−𝔼
[︁
c(v)
]︁)︁+ α′(︁p′

h

)︁⃓⃓
p′
h

−p
h

⃓⃓≤ 3�,

where the last inequality uses 𝔼[c(v)] > 𝔼[c(v)|v > v]. Buyer’s payoff is π ′
b = 𝔼[v] −p′

h
+

(1 − η′ )(1 − σ ′
h )(p′

h
− p′

l ) (note that Buyer always finds accepting the on-path prices
optimal). Therefore,⃓⃓

πb −π ′
b

⃓⃓≤⃓⃓p
h

−p′
h

⃓⃓+ (︁1 −η′)︁(︁⃓⃓σ ′
h − σh

⃓⃓
(p

h
−pl ) + (︁1 − σ ′

h

)︁(︁⃓⃓
p
h

−p′
h

⃓⃓+ ⃓⃓pl −p′
l

⃓⃓)︁)︁
≤3�+ (v − v)

1

1 −η′
�

η

1 −η

(︁
𝔼[v] − v

)︁−�
.

In case 2 (c(v) ≤ 𝔼[c(v)]), Seller finds it optimal to always offer pl; hence, πs = pl −
𝔼[c(v)]. Therefore, ⃓⃓

πs −π ′
s

⃓⃓≤ ⃓⃓pl −p′
l

⃓⃓≤ �.

Buyer’s payoff is π ′
b = 𝔼[v] − p′

l − (1 − η′ )σ ′
h(p′

h − p′
l ) (note that Buyer always finds ac-

cepting the on-path prices optimal). Therefore,⃓⃓
πb −π ′

b

⃓⃓≤⃓⃓pl −p′
l

⃓⃓+ (︁1 −η′)︁(︁⃓⃓σ ′
h − σh

⃓⃓
(p

h
−pl ) + σ ′

h

(︁⃓⃓
p
h

−p′
h

⃓⃓+ ⃓⃓pl −p′
l

⃓⃓)︁)︁
≤3�+ (v − v)

1

1 −η′
�

η

1 −η

(︁
𝔼[v] − v

)︁−�
.

In either case,

⃦⃦
(πb, πs ) − (︁π ′

b, π ′
s

)︁⃦⃦≤ 6�+ 2�(v− v)

η
(︁
𝔼[v] − v

)︁− (1 −η)�
.

By choosing � sufficiently small, we bound ||(πb, πs ) − (π ′
b, π ′

s )|| above by ε.
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To summarize, ∀ε > 0, there exist parameters δ, η, η′, and � such that for an arbitrary
grid of [v, v] with grid size �, for any (πb, πs ) ∈�(�), we construct an information struc-
ture with sequential equilibrium payoff within the ε-neighborhood of (πb, πs ). That is,
the set of payoffs from sequential equilibria corresponding to some information struc-
ture is an ε-net of �(�).

Appendix C: Proof of Theorem 2

We prove the theorem via three lemmas.

Lemma C.1. ∀(π∗
b , π∗

s ) ∈ �∗
us(�), ∀πs ∈ [π∗

s , S(�)], and πb ∈ [0, S(�) − πs], there exists˜︁τ ∈ Tus such that (πb, πs ) ∈	∗(�,˜︁τ).

In words, this lemma says that the set �∗
us(�) consists of all payoff pairs in �(�) such

that Seller’s payoff is above some floor. By definition, the floor is πus
s (�) defined in (1).

Hart and Reny (2019, Theorem 12, part (2) implies that the floor is achieved. Hence, the
lemma implies part 2 of Theorem 2.

Proof. Let γ = S(�) − (πb + πs ) be the loss of total surplus for payoff pair (πb, πs ). We
construct an information structure˜︁τ such that the efficiency loss is γ, Seller’s payoff is
πs and Buyer’s payoff is πb. Let P(tb, v) be the joint distribution specified by an Seller-
uninformed information structure τ for which (π∗

b , π∗
s ) ∈	∗(�, τ).

First, we determine the types that are not traded. For this, we find a threshold value
z∗ such that trading all expected valuations strictly below z∗ and some fraction of ex-
pected valuation z∗ generates surplus γ. Consider the function

y(z) =
∫︂
𝔼[v|tb]<z

(︁
v − c(v)

)︁
P(dtb, dv),

which is well-defined because the domain of integration is measurable. The set
{tb|𝔼[v|tb] < z} expands when z increases. So, y(z) is increasing in z. Moreover,
y(∞) = S(�) and y(−∞) = 0. So, there exists z∗ such that y(z) ≤ (≥)γ for z < (>)z∗. By
definition, {tb|𝔼[v|tb] < z} =⋃︁ε>0{tb|𝔼[v|tb] < z − ε}, so y(z) is a left-continuous func-
tion. Hence, y(z∗ ) ≤ γ. Define β by

γ = y
(︁
z∗)︁+β

∫︂
𝔼[v|tb]=z∗

(︁
v − c(v)

)︁
P(dtb, dv)

The RHS is y(z∗ ) ≤ γ when β = 0 and limz→z∗+ y(z) ≥ γ when β = 1. So, β ∈ [0, 1]. In
words, excluding all tb that induces 𝔼[v|tb] < z∗ and β portion of tb inducing 𝔼[v|tb] = z∗
leads to efficiency loss γ.

Next, we construct˜︁τ ∈ Tus such that all remaining surplus is realized and Seller gets
payoff πs. If Seller sells at price p and trades with all remaining types, Seller’s payoff is∫︂

𝔼[v|tb]>z∗

(︁
p− c(v)

)︁
P(dtb, dv) + (1 −β)

∫︂
𝔼[v|tb]=z∗

(︁
p− c(v)

)︁
P(dtb, dv).
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Therefore, Seller’s payoff is πs when trading with all remaining types at the price29

p∗ =
πs +

∫︂
𝔼[v|tb]>z∗

c(v)P(dtb, dv) + (1 −β)
∫︂
𝔼[v|tb]=z∗

c(v)P(dtb, dv)∫︂
𝔼[v|tb]>z∗

P(dtb, dv) + (1 −β)
∫︂
𝔼[v|tb]=z∗

P(dtb, dv)
.

To ensure that all nonexcluded Buyer types accept price p∗, we construct˜︁τ by pooling
all nonexcluded types such that 𝔼[v|tb] <p∗ and a λ fraction of those with signal tb such
that 𝔼[v|tb] ≥ p∗. The fraction λ is determined as follows:

λ

∫︂
𝔼[v|tb]≥p∗

(︁
v −p∗)︁P(dtb, dv) +

∫︂
z∗<𝔼[v|tb]<p∗

(︁
v −p∗)︁P(dtb, dv)

+ (1 −β)
∫︂
𝔼[v|tb]=z∗

(︁
v −p∗)︁P(dtb, dv) = 0

=⇒ λ=

∫︂
z∗<𝔼[v|tb]<p∗

(︁
p∗ − v

)︁
P(dtb, dv) + (1 −β)

∫︂
𝔼[v|tb]=z∗

(︁
p∗ − z∗)︁P(dtb, dv)∫︂

𝔼[v|tb]>p∗

(︁
v −p∗)︁P(dtb, dv)

,

where λ ∈ [0, 1] follows from the fact that the LHS of the first equality traverses from
negative to positive when λ traverses [0, 1].

Let ˜︁Tb = Tb ∪ {t∅}, where t∅ is topologically disjoint from Tb. The information struc-
ture˜︁τ ∈ Tus is given by the following distribution:

˜︁P(tb, v) =

⎧⎪⎪⎨⎪⎪⎩
(1 − λ)P(tb, v) ∀ tb such that 𝔼[v|tb] ≥ p∗

P(tb, v) ∀ tb such that 𝔼[v|tb] < z∗

βP(tb, v) ∀ tb such that 𝔼[v|tb] = z∗;

˜︁P(t = t∅, v) = λ

∫︂
𝔼[v|tb]≥p∗

P(dtb, v) +
∫︂
z∗<𝔼[v|tb]<p∗

P(dtb, v) + (1 −β)
∫︂
𝔼[v|tb]=z∗

P(dtb, v).

(It can be verified that ˜︁P defines a valid information structure.)
Now we define Buyer’s strategy ˜︁α. Let α be Buyer’s strategy corresponding to the

wPBE of game (�, τ). Define ˜︁α(p, tb ) = α(p, tb ) when tb ≠ t∅, and ˜︁α(p, t∅ ) = 1p≤p∗ . Se-
quential rationality of˜︁α is straightforward.

It remains only to verify that pricing at p∗ is optimal for Seller. There is no profitable
deviation to any higher price because

sup
p>p∗

∫︂ ˜︁α(p, tb )
(︁
p− c(v)

)︁˜︁P(dtb, dv) = (1 − λ)
∫︂

α(p, tb )
(︁
p− c(v)

)︁
P(dtb, dv) ≤ (1 − λ)π∗

s .

There is no profitable deviation to any price lower than z∗ because

sup
p≤z∗

∫︂ ˜︁α(p, tb )
(︁
p− c(v)

)︁˜︁P(dtb, dv) ≤ sup
p≤z∗

∫︂
α(p, tb )

(︁
p− c(v)

)︁
P(dtb, dv) ≤ π∗

s .

29Note that πs ≤ S(�) − γ guarantees that p∗ ≥ z∗.
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By construction, there is no tb that induces a belief with 𝔼˜︁ν[v|tb] ∈ (z∗, p∗ ). Therefore, it
is suboptimal for Seller to post any price in (z∗, p∗ ). It follows that it is optimal (strictly
optimal when πs > π∗

s ) for Seller to offer p∗ and get payoff πs. Buyer’s payoff is all the
remaining surplus: S(�) − γ −πs = πb.

Remark 7. If πb = S(�) −πs, the market is efficient, z∗ = −∞, and p∗ = inftb 𝔼[v|tb].

Lemma C.2. �∗
us(�) =�∗(�).

In words, this lemma says that uninformed Seller information structures imple-
ment all payoff pairs implementable with price independent beliefs under any infor-
mation structure. As it is trivial that �∗

us(�) ⊂ �∗
mb(�) ⊂ �∗(�), this establishes part 1 of

Theorem 2.

Proof. �∗
us(�) ⊂ �∗(�) is trivial, so we need only prove the opposite direction. Suppose

that under some information structure τ there is a wPBE (σ , α, ν) with price indepen-
dent beliefs and payoffs (πb, πs ). Consider an information structure τ′ ∈ Tus defined by
Q(tb, v) = P(Ts , tb, v). ν is a consistent belief system given information structure τ and
strategy σ . Now we verify that ∀σ ′, ν is a consistent belief system given τ′ and σ ′. For
every measurable rectangle D⊂ℝ× Tb × V ,∫︂

D
ν(dv|p, tb )σ ′(dp)Q(dtb, V )

=
∫︂
Dp

σ ′(dp) ·
∫︂
Dtb ,v

ν(dv|p, tb )P(Ts , dtb, V )

=
∫︂
Dp

σ ′(dp) ·
∫︂
Dtb ,v

P(Ts , dtb, dv)

=
∫︂
D
σ ′(dp)Q(dtb, dv),

where Dp and Dtb,v are the projection of D on dimension p and tb, v, respectively. The
first and third equalities use the definition of measure Q. The second equality is the def-
inition of price independent belief. Since the product sigma algebra is uniquely defined
by the product of sigma algebras, verifying on all rectangular D guarantees that ν is a
consistent belief system. Therefore, α remains a best response for Buyer. Moreover,

sup
σ ′

∫︂ (︁
p− c(v)

)︁
α(p, tb )σ ′(dp)Q(dtb, dv)

= sup
σ ′

∫︂ (︁
p− c(v)

)︁
α(p, tb )σ ′(dp)P(dts , dtb, dv)

≤
∫︂ (︁

p− c(v)
)︁
α(p, tb )σ(dp|ts )P(dts , dtb, dv) = πs.

The first line is achievable by a Seller’s strategy when α is modified to break ties in favor
of Seller. Therefore, πs ≥ πus

s (�), and hence (πb, πs ) ∈ �∗
us(�).
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Lemma C.3. For any (πb, πs ) ∈ �∗
us(�) with πs > πus

s (�), there is τ ∈ Tus with 	(�, τ) =
{(πb, πs )}.

This “unique implementation” lemma corresponds to part 3 of Theorem 2.

Proof. We have established thatπus
s (�) is achieved in an equilibrium. Use πus

s (�) as the
π∗
s in the proof of Lemma C.1 and construct the corresponding information structure.

Note that given the information structure, Seller’s payoff from any deviation to a price
other than p∗ is bounded above by π∗

s < πs. As a result, p∗ is the uniquely optimal price
given Buyer’s best response˜︁α.

Now we show that for any other α′ that is sequentially rational, Seller’s payoff is
still bounded above by π∗

s . Suppose not, to contradiction. Then there is p such that∫︁
α′(p, tb )(p − c(v))P(dtb, dv) > π∗

s . Let Tp be the subset of all Buyer’s signals tb for
which 𝔼[v|tb] = p —signals making Buyer indifferent between buying or not. Note that
any two sequentially rational Buyer strategies differ only on Tp. We have

lim
p′→p−

∫︂
α̃
(︁
p′, tb

)︁(︁
p′ − c(v)

)︁
P(dtb, dv)

=
∫︂
𝔼[v|tb]≥p

(︁
p− c(v)

)︁
P(dtb, dv)

=
∫︂

α′(p, tb )
(︁
p− c(v)

)︁
P(dtb, dv) +

∫︂
tb∈Tp

(︁
1 − α′(p, tb )

)︁(︁
p− c(v)

)︁
P(dtb, dv)

≥
∫︂

α′(p, tb )
(︁
p− c(v)

)︁
P(dtb, dv) >π∗

s .

The first two equalities are from the fact that α̃ and α′ differ from 1𝔼[v|tb]≥p only on Tp.
The inequality is from 𝔼[v|tb] = p on Tp, v ≥ c(v) and α′ ≤ 1. This implies that there
exists p′ <p giving Seller payoff strictly above π∗

s , which is a contradiction.
Therefore, when πs > π∗

s , the information structure constructed in Lemma C.1 im-
plements the unique equilibrium payoff pair (πb, πs ). The result follows from choosing
π∗
s = πus

s (�).

Appendix D: Proof of Theorem 3

Proof. We first introduce some notation. Given the continuous cost function c(v), any
Buyer belief ν ∈ �(V ), and any price p ∈ V , define

π(c, ν, p) =
∫︂
v≥p

(︁
p− c(v)

)︁
ν(dv),

π∗(c, ν) = max
p∈V

π(c, ν, p),

σ∗(c, ν) = arg max
p∈V

π(c, ν, p).

In words, π is Seller’s payoff from offering an arbitrary price p, π∗ is Seller’s payoff from
an optimal price, and σ∗ is the set of optimal prices. Our assumption that v − c(v) ≥ 0
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implies that π(c, ν, p) is a left-continuous function of p that only jumps up, and hence
it is upper semicontinuous. Therefore, π∗ is well-defined and σ∗(c, ν) is nonempty and
compact.

We prove Theorem 3 in 4 steps. In step 1, we define a discretized environment for a
grid size d. In step 2, we construct a distribution of IPDs for the discretized environment.
In step 3, we show that as d → 0, the distributions in step 2 converge to a distribution of
IPDs whose expectation is the prior μ. In step 4, we construct an information structure
and equilibrium for the original environment utilizing the distribution derived in step 3.

Step 1. We discretize the problem. Pick any d > 0. Discretize the support V to a
grid V ′ = {v1, � � � , vn} such that vi+1 − vi < d, v1 ≤ v and vn > v. Let p∗ be an element of
σ∗(c, μ) and include p∗ in V ′. Define

μ′
i =
∫︂

1vi≤v<vi+1μ(dv),

c′(vi ) =
∫︂

1vi≤v<vi+1c(v)μ(dv).

Now consider a new environment �′ = (c′, μ′ ) with the discrete support V ′. �′ augments
� by grouping all Buyer types in interval [vi, vi+1 ) and assuming Buyer behaves as if the
valuation is vi. A key property of the environment �′ is that ∀vi ∈ V ′, π(�′, vi ) = π(�, vi ),
that is, Seller’s payoff from offering on-grid prices is invariant under the environment
change. Since p∗ ∈ V ′, π∗(�′ ) = π∗(�).

Step 2. The following lemma—whose proof is provided after the current proof is
completed—implies that there exist IPDs {νj }Jj=1 and {pj } ∈ �(J ) such that

∑︁
pjνj = μ′

and σ∗(c′, μ′ ) ⊂ ∩σ∗(c′, νj ).

Lemma D.1. When Supp(μ) is finite, there exists IPDs {νj }Jj=1 and {qj } ∈ �(J ) such that∑︁
qjνj = μ and σ∗(c, μ) ⊂ σ∗(c, νj ).

Step 3. For each dn = 1
2n , go through steps 1–2 and construct a collection {pj , νj }.

This collection resembles a probability measure Pn ∈ �2(V ). By construction, any
ν ∈ Supp(Pn ) is an IPD satisfying p∗ ∈ σ∗(c, ν). We use the following lemma—whose
proof is provided after the current proof is completed—to construct a measure P∗ whose
support contains only those IPDs such that p∗ is an optimal price (P∗ is a limit point of
Pn under the weak topology.

Lemma D.2. Suppose the sequence (Pn ) in �2(V ) satisfies
∫︁
νPn(dν)

w−→ μ and ∀ν ∈
Supp(Pn ), ν is an IPD satisfying p∗ ∈ σ∗(c, ν). Then ∃P∗ ∈ �2(V ) such that

∫︁
νP∗(dν) = μ

and ∀ν ∈ Supp(P∗ ), ν is an IPD satisfying p∗ ∈ σ∗(c, ν).

Then ∫︂
π∗(c, ν)P∗(dν) =

∫︂
π
(︁
c, ν, p∗)︁P∗(dν) = π∗(c, μ). (D.1)

Step 4. Now we define a fully informed Buyer information structure that implements

any (πb, πfb
s (�)) ∈ �(�). Let β ∈ [0, 1] satisfy πb = β(S(�) − π

fb
s (�)). Take the signal
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space Ts = �(V ) and define the signal distribution by
∫︁
D P(dts, dv) = ∫︁D ts(dv)P∗(dts ).

That is, the information structure τ = (Ts , P ) ∈ Tfb induces Seller’s belief ν according to
distribution P∗(ν).

Buyer’s strategy is α(v, p) = 1v≥p, which is obviously optimal. Seller’s strategy is
σ(p|ts = ν) = βδp=min Supp(ν) + (1 −β)δp=max Supp(ν). Then ∀σ ′:∫︂ (︁

p− c(v)
)︁
1v≥pσ

′(dp|ts )P(dts, dv) =
∫︂ (︁

p− c(v)
)︁
1v≥pσ

′(dp|ν)ν(dv)P∗(dν)

=
∫︂

π(c, ν, p)σ ′(dp|ν)P∗(dν)

≤
∫︂

π∗(c, ν)P∗(dν) because π(c, ν, p) ≤ π∗(c, ν),

where the equalities are accounting identities. Meanwhile, Seller’s payoff using strategy
σ is ∫︂ (︁

p− c(v)
)︁
1v≥pσ(dp|ts )P(dts , dv)

=
∫︂

βπ
(︁
c, ν, min Supp(ν)

)︁+ (1 −β)π
(︁
c, ν, max Supp(ν)

)︁
P∗(dν)

=
∫︂

π∗(c, ν)P∗(dν) = π
fb
s (�),

where the second equality is from ν being an IPD and the third equality is from

Equation (D.1). Therefore, σ is optimal for Seller and Seller’s equilibrium payoff is π
fb
s .

Buyer’s payoff is∫︂
(v −p)1v≥pσ(dp|ts )P(dts, dv)

=
∫︂

β
(︁
v − min Supp(ν)

)︁
1v≥min Supp(ν)

+ (1 −β)
(︁
v − max Supp(ν)

)︁
1v=max Supp(ν)ν(dv)P∗(dν)

=
∫︂

β
(︁
v − c(v) − (︁min Supp(ν) − c(v)

)︁)︁
ν(dv)P∗(dν)

= β

(︃
S(�) −

∫︂
π∗(c, ν)P∗(dν)

)︃
= πb,

where second equality is from v−max Supp(ν)1v=max Supp(ν) = 0, the third equality is from
ν ∈ Supp(P∗ ) being an IPD, and the last equality is from Equation (D.1).

To sum up, we construct τ ∈ Tfb such that (πb, πfb
s (�)) ∈ 	∗(�, τ). Since (0, S(�))

can be implemented by perfect revealing v to Seller, any other (πb, πs ) in �∗
fb(�) can

be implemented by public randomization, which means Buyer is better informed in the
strong sense that his information is a refinement of Seller’s.

Proof of Lemma D.1. We prove the result by induction. When | Supp(μ)| = 1, the
statement is trivially true. Now we assume by induction that the statement is true for
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| Supp(μ)| ≤ n and prove it for | Supp(μ)| = n + 1. Let V = Supp(μ) = {v1, � � � , vn+1}. We

discuss two cases separately:

• Case 1: vi > ci for all i ≤ n. Define ν̂n+1 = 1 and recursively define

ν̂i =

n+1∑︂
j=i+1

ν̂j · (vi+1 − vi )

vi − ci

for i = n � � �1. Normalize {ν̂i} to a probability vector ν = 1∑︁
i ν̂i

ν̂. Then it is easy to

verify that ν ∈ �V and ν is an IPD:

π(c, ν, vi+1 ) −π(c, ν, vi ) =
n+1∑︂
j=i+1

νj · (vi+1 − vi ) − νi · (vi − ci ) = 0, ∀i.

Therefore, σ∗(c, ν) ⊃ V .

• Case 2: vi = ci for some i ≤ n. Let i0 be the smallest i such that this is true. Define

ν̂i0 = 1 and recursively define ν̂i =
∑︁n+1

j=i+1 ν̂j ·(vi+1−vi )
vi−ci

for i = 1, � � � , i0. Normalize {ν̂i}

to ν = 1∑︁
i ν̂i

ν̂. Then the exactly same argument as in Case 1 implies that ν ∈ �V and

ν is an IPD. Moreover, since vi0 = ci0 , π∗(c, ν) = 0. Therefore, σ∗(c, ν) ⊃ Supp(ν) ∪
[vi0 , +∞) ⊃ V .

Next, we “remove ν from μ” to reduce its support size. Let q = min{μi
νi

} and μ̂ = μ− q · ν.

By definition, | Supp(μ̂)| ≤ n. Normalize μ̂ to μ′ = 1∑︁
i μ̂i

μ̂. Then ∀i, i′ ∈ (1, � � � , n+ 1),

(︃∑︂
ℓ

μ̂ℓ

)︃(︁
π
(︁
c, μ′, vi

)︁−π
(︁
c, μ′, vi′

)︁)︁
= π(c, μ, vi ) −π(c, μ, vi′ ) − q · (︁π(c, ν, vi ) −π(c, ν, vi′ )

)︁
= π(c, μ, vi ) −π(c, μ, vi′ )

=⇒ σ∗(︁c, μ′)︁= σ∗(c, μ).

The first equality is from the linearity of π and the second equality is from σ∗(c, ν) ⊃ V .

Then, by induction, there exists IPDs νj and qj such that
∑︁

qjνj = μ′ and σ∗(c, μ) =
σ∗(c, μ′ ) ⊂ σ∗(c, νj ). Therefore, the statement is proved by appending ν to (νj ), and

normalizing the probability to (qj ·∑︁ μ̂i, q).

Proof of Lemma D.2. By Prokhorov’s theorem, there exists a convergent subsequence

of Pn; without loss we suppose Pn
w−→ P∗ (i.e., weak convergence, which is implied by
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convergence in the Prokhorov metric). Let μn = ∫︁ νPn(dν). By assumption, μn
w−→ μ. It

follows that
∫︁
νP∗(dν) = μ.30

Now we show that ∀ν ∈ Supp(P∗ ), ν is an IPD. First, Lemma D.3 shows that there
exists a subsequence nk → ∞ and νnk ∈ Supp(Pnk ) such that νnk

w−→ ν. Then ∀p ∈
Supp(ν), there exists a subsequence nks → ∞ and pnks

∈ Supp(νnks ) such that pnks
→ p.

Lemma D.4 proves that π(c, ν, p) ≥ limπ(c, νnks , pnks ) = limπ∗(c, νnks ). The equality is
from νnks being IPD and pnks

being in its support. Hart and Reny (2019, Theorem 12,
part 1) proves that π∗(c, ν) ≤ limπ∗(c, νnks ). Therefore, π(c, ν, p) = π∗(c, ν), and hence
ν is an IPD.

In the previous analysis, if we pick p = p∗, then since p∗ ∈ Supp(νnk ), it follows that
pnk = p∗, and hence trivially pnk → p∗. Therefore, π(c, ν, p∗ ) = π∗(c, ν).

Lemma D.3. Let (S, ρ) be a separable metric space, {Pn} ⊂ �(S) and Pn
w−→ P . Then ∀s ∈

Supp(P ), ∃ sequence snk ∈ Supp(Pnk ) such that nk → ∞ and snk
ρ−→ s.

Proof. For any s ∈ Supp(P ), suppose towards contradiction that the statement is not
true. Then we claim that ∃ε > 0, N ∈ ℕ such that ∀n ≥ N Supp(Pn )

⋂︁
Bε(s) = ∅. Oth-

erwise, ∀ε > 0, N ∈ ℕ exists n ≥ N such that Supp(Pn )
⋂︁

Bε(s) ≠ ∅ =⇒ pick any N = k

and ε = 1
k , there exists nk ≥ k and snk ∈ Supp(Pnk ) such that ρ(s, snk ) < 1

k , and hence the
assumption is not true.

Since ∃ε > 0 and N such that ∀n ≥ N Supp(Pn )
⋂︁

Bε(s) = ∅, this implies
limPn(Bε(s)) = 0 ≥ P(Bε(s)) (by the Portmanteau theorem). This contradicts the as-
sumption that s ∈ Supp(P ).

Lemma D.4. Let c ∈ C(V ), {νn} ⊂ �(V ), {pn} ⊂ V . If νn
w−→ ν and pn → p, then

π(c, ν, p) ≥ limπ(c, νn, pn ).

Proof. Define

hδ,p(v) = v −p+ δ

δ
∧ [0, 1], (D.2)

where · ∧ [0, 1] is the truncation functional on [0, 1]. Then hδ,p is a continuous and
bounded function and 1v≥p ≤ hδ,p(v) ≤ 1v≥p−δ. Then ∀η> δ> 0:∫︂ ∞

p−η

(︁
p− c(v)

)︁
ν(dv) ≥

∫︂
hδ,p−η+δ(v)

(︁
p− c(v)ν(dv)

)︁
= lim

n→∞

∫︂
hδ,p−η+δ(v)

(︁
p− c(v)

)︁
νn(dv)

30For any continuous h(v), ν ↦→ ∫︁
h(v)ν(dv) is a bounded and continuous function on �(V ) under the

Prokhorov metric. Therefore, since μn
w−→ μ and Pn

w−→ P∗,∫︂
h(v)μn(dv) →

∫︂
h(v)μ(dv) and

∫︂∫︂
h(v)ν(dv)Pn(dν) →

∫︂∫︂
h(v)ν(dv)P∗(dν).

Since
∫︁
h(v)μn(dv) = ∫︁∫︁ h(v)ν(dv)Pn(dν), it follows that

∫︁
νP∗(dν) = μ.
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≥ lim
n→∞

∫︂ ∞

p−η+δ

(︁
p− c(v)

)︁
νn(dv)

≥ lim
n→∞

∫︂ ∞

p−η+δ

(︁
p+η− c(v)

)︁
νn(dv) −η

≥ lim
n→∞

∫︂ ∞

pn

(︁
p+η− c(v)

)︁
νn(dv) −η

≥ lim
n→∞

∫︂ ∞

pn

(︁
pn − c(v)

)︁
νn(dv) −η.

The first inequality above is because hδ,p−η+δ(v) ≤ 1v≥p−η and ∀v ∈ [p − η, p − η + δ],

p > v ≥ c(v). The first equality is from νn
w−→ ν and the integrand being continuous and

bounded. The second inequality is from hδ,p−η+δ(v) ≥ 1v≥p−η+δ and ∀v ∈ [p − η, p −
η+δ] p> v ≥ c(v). The third inequality is straightforward. The fourth inequality is from
limpn > p−η+ δ. The last inequality is from limpn < p+η.

Letting η → 0, we obtain π(c, ν, p) ≥ limπ(c, νn, pn ).

Appendix E: Proof of Proposition 1

Proof. We first show that �(�) is included in the set defined in Proposition 1. ∀(πb,
πs ) ∈ �(�), it is clear that πb ≥ 0 and πs ≥ πs(�). Now we prove that the inequality
λπb + πs ≤ Sλ(�) is satisfied for any λ ∈ [1, ∞). Let τ be the information structure and
(σ , α, ν) be an equilibrium with payoff (πb, πs ). We define the following Borel measure
β: for any Borel set V ′ ⊂ ℝ,

β
(︁
V ′)︁= ∫︂

v∈V ′
α(p, tb )σ(dp|ts )P(dtb, dts, dv).

In words, β calculates the trading probability for a given set of types V ′. By definition,

πb =
∫︂ (︁

v −𝔼[p|v]
)︁
β(dv),

πs =
∫︂ (︁

𝔼[p|v] − c(v)
)︁
β(dv),

and hence

λπb +πs =
∫︂ (︁

𝔼[p|v] − c(v) + λ
(︁
v −𝔼[p|v]

)︁)︁
β(dv)

=
∫︂ (︁

λv− c(v) − (λ− 1)𝔼[p|v]
)︁
β(dv)

≤
∫︂ (︁

λv − c(v) − (λ− 1)v
)︁
β(dv)

≤ Sλ(�),

where the first inequality uses any on-path price being no lower than v and λ≥ 1.
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Now we show that all payoff pairs (πb, πs ) satisfying the inequality constraints can be
implemented by equilibrium payoffs in �(�). ∀λ ∈ [1, ∞) and α ∈ [0, 1], define βα(v) =
1λv+v>c(v)+λv + α1λv+v=c(v)+λv. Let us ignore the individual rationality constraint πs ≥ 0
for now.

Construct the following information structure: a public signal is sent to both play-
ers indicating whether βα(v) = 0. Following the positive signal, construct an informa-
tion structure as in Theorem 1 that induces Seller selling with probability one at p = v

almost surely in the subgame.31 When βα(v) = 0, trading surplus is nonpositive, as
c(v) ≥ v+(λ−1)(v−v) and so an equilibrium with no trade exists. The realized weighted
total surplus is exactly Sλ(�), with Buyer’s payoff

∫︁
βα(v)(v− v)μ(dv) and Seller’s the re-

maining
∫︁
βα(v)(v−c(v))μ(dv). Note that Buyer’s payoff is continuously increasing in α.

Therefore, ∀λ ∈ [1, ∞), we can implement an interval (possibly degenerate) on the fron-
tier Sλ(�) defined by {(πα

b , πα
s ) = (

∫︁
βα(v)(v − v)μ(dv),

∫︁
βα(v)(v − c(v))μ(dv))}α∈[0,1].

Since we construct the equilibria explicitly, this interval satisfies all other constraints.
Next, we show two key properties of the interval {(πα

b , πα
s )}α∈[0,1].

• ∀λ ≥ 1, ∀δ > 0, (π′
b, π ′

s ) = (π1
b +δ, π1

s −λδ) violates some frontier Sλ′(�) with λ′ > λ.
It is straightforward to calculate

λ′π ′
b +π ′

s = (︁λ′ − λ
)︁(︁
π1
b + δ

)︁+ Sλ(�),

and hence

λ′π ′
b +π ′

s − Sλ(�)

λ′ − λ
= (︁π1

b + δ
)︁
.

Now we calculate Sλ′(�):

Sλ′(�) − Sλ(�)
λ′ − λ

=

∫︂
λ(v−v)+v−c(v)≥0

(︁
λ′ − λ

)︁
(v − v)μ(dv)

λ′ − λ

+

∫︂
λ(v−v)+v−c(v)∈[(λ′−λ)(v−v),0)

(︁
λ′(v − v) + v − c(v)

)︁
μ(dv)

λ′ − λ

→
∫︂

β1(v)(v − v)μ(dv) = π1
b when λ′ → λ.

The limit is derived by canceling out (λ′ − λ) in the first line and observing the in-
tegrand is bounded by (λ′ − λ)(v − v) in the second line. Since δ > 0, we have that
when λ′ − λ is sufficiently small, λ′π ′

b +π ′
s > Sλ′(�), violating the frontier Sλ′(�).

• ∀λ > 1, ∀δ > 0, (π′
b, π ′

s ) = (π0
b −δ, π0

s +λδ) violates some frontier Sλ′(�) with λ′ < λ.
The argument is symmetric.

31In the subgame following βα(v) > 0, the support of v might not contain v. This does not affect the
consistency of off-path beliefs as we use wPBE as the equilibrium notion (without imposing subgame per-
fection).
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Any point on the frontier S1(�) between (0, S1(�)) and (π1
b , π1

s ) can be implemented
by public randomization. Therefore, any payoff pair on the envelope of all frontiers is
implementable (while ignoring Seller’s individual rationality constraint). Then we can
just truncate below by the extra constraint πs ≥ 0. The implementation of (0, πs(�)) is
trivial. Then public randomization implements all other points in the set.

Appendix F: Proof of Proposition 2

Proof. As discussed in the main text, it is sufficient to show the existence of cdf
G(v) such that (1) G ∈ D(μ), (2) G is an IPD, (3) ∃p ∈ Supp(G) such that

∫︁ p
v G(s) ds =∫︁ p

v F(s) ds.
First, we show that ∀v∗ ∈ [v, 𝔼μ[v]] such that v∗ > c(v∗ ) and v∗ ≥ c(𝔼[v]), IPD Gv∗

exists.
Case 1: λ ≠ 1. The indifference condition of IPD is equivalent to

d
dv

∫︂ v∗

v

(︁
v − c(s)

)︁
dGv∗(s) = 0

⇐⇒ −(︁v − c(v)
)︁
gv∗(v) + (︁1 −Gv∗(v)

)︁= 0

⇐⇒ (︁
c(v) − v

)︁
d log

(︁
1 −Gv∗(v)

)︁= 1

⇐⇒ Gv∗(v) = 1 −C
(︁
c(v) − v

)︁ 1
λ−1 .

Using condition Gv∗(v∗ ) = 0, we can pin down C:

Gv∗(v) = 1 −
(︃

v − c(v)
v∗ − c(v∗ )

)︃ 1
λ−1

.

Lastly, v∗ can be pinned down using the following condition:32

(︁
1 −Gv∗

(︁
v∗)︁)︁(︁v∗ − c

(︁
v∗)︁)︁= v∗ − c

(︁
𝔼μ[v]

)︁
=⇒ (1 − λ)v∗ − γ = (︁v∗ − c

(︁
𝔼[v]
)︁)︁ λ−1

λ
(︁
(1 − λ)v∗ − γ

)︁ 1
λ .

Note that if v∗ → 𝔼[v], then v∗ → 𝔼[v]. One can also verify that v∗ increases when v∗
decreases:

dv∗

dv∗
= (︁v∗ −𝔼[v]

)︁(︁
v∗ − c

(︁
𝔼[v]
)︁)︁− 1

λ
(︁
(1 − λ)v∗ − γ

)︁ 1−λ
λ ≤ 0.

Case 2: λ = 1 (hence γ < 0). The indifference condition of IPD is equivalent to

d
dv

log
(︁
1 −Gv∗(v)

)︁= 1
γ

⇐⇒ Gv∗(v) = 1 −C · e v
γ .

32It is easy to verify that the condition is equivalent to
∫︁
vdGv∗ (v) = 𝔼μ[v].
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We pin down C and v∗ using the CDF at v∗ and the mean preserving spread condition:⎧⎪⎨⎪⎩
C = e

− v∗
γ

v∗ = v∗ + γ log
(︃
v∗ − c

(︁
𝔼μ[v]

)︁
−γ

)︃
.

Second, we show that there exists v∗ such that the corresponding IPD Gv∗(v) satisfies
condition (1) and (3). It is trivial that if v∗ = 𝔼μ[v], then Gv∗ has unit mass at 𝔼μ[v], which
is included in D(μ). By the linearity of c, v = c(v) can only happen on the boundaries of
V . Therefore, v∗ = inf{v′ ∈ (max{v, c(𝔼[v])}, 𝔼μ[v]]|Gv′ ∈ D(μ)} is well-defined. We now
consider three cases separately:

• Case 1: v∗ > max{c(v∗ ), c(𝔼[v])}. In this case νv∗ is well-defined. By the formula of
Gv′(v), it is continuous in v′ for each v. Obviously, CDFs are uniformly bounded. So,
by dominated convergence theorem, ∀q:∫︂ v

v
Gv∗(s) ds = lim

v′→v+∗

∫︂ v

v
Gv′(s) ds.

This implies Gv∗ ∈ D(μ). Now we claim that there exists p ∈ [v∗, v∗] such that∫︁ p
v F(s) ds = ∫︁ pv Gv∗(d) ds. If not, this implies

∫︁ p
v F(s) ds <

∫︁ p
v Gv∗(d) ds ∀p ∈ [v∗, v∗].

Then choosing v∗ slightly smaller, Gv∗ is still in D(μ), contradiction.

• Case 2: v∗ = c(v∗ ) ≥ c(𝔼[v]). We show that this case is never possible. Since c is
linear, this can happen only when v∗ = v and λ≤ 0. Consider v′∗ = v+ε where ε > 0.
Then Gv′∗ ∈ D(μ) when ε is very small. However, v∗ is pinned down by

(1 − λ)v∗ = γ + (︁v′∗ − c
(︁
𝔼[v]
)︁)︁ λ−1

λ
(︁
(1 − λ)ε

)︁ 1
λ .

When ε → 0, v∗ → ∞, so Gv′∗ /∈D(μ) for sufficiently small ε, contradiction.

• Case 3: v∗ = c(𝔼[v]) > v. In this case, Gv∗ gives Seller zero profit and Gv∗ ∈ D(μ).
Then πus

s (�) = 0. So, the proof of Proposition 2 is already done.

Appendix G: Proof of Corollary 1

Proof. It straightforward to verify that the solution to Equation (6) is unique; denote
it by p. When V is binary, c(v) is trivially affine. Let λ = c(v2 )−c(v1 )

v2−v1
and γ = c(vi ) − λvi.

Then Condition 1 is satisfied and Proposition 2 applies. Let v∗ be the corresponding
parameter defining profit minimizing IPD. Since V is binary,

∫︁ v
v F(s) ds is a piecewise

linear function with two kinks at v1, v2. Meanwhile,
∫︁ v
v Gv∗(s) ds is strictly convex on its

support (v∗, v∗ ). Therefore,
∫︁ v
v F(s) ds cannot intersect

∫︁ v
v Gv∗(s) ds at any v ∈ (v∗, v∗ ).

So, either (v∗ = v1 and v∗ ≤ v2) or (v∗ = v2 and v∗ ≥ v1).
We begin with the conjecture that v∗ = v2. This implies(︁

1 −Gv∗(v2 )
)︁(︁
v2 − c(v2 )

)︁= v∗ −𝔼μ
[︁
c(v)
]︁

=⇒ (︁
v∗ − c(v∗ )

)︁ 1
λ−1
(︁
v∗ −𝔼μ

[︁
c(v)
]︁)︁= (︁v2 − c(v2 )

)︁ λ
λ−1 ,
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that is, v∗ solves Equation (6) and v∗ = p. Therefore, only when p ≥ v1 the conjecture is
valid, in which case p is an optimal price and πus

s (�) = p−𝔼[c(v)].
Otherwise, if p< v1, the conjecture v∗ = v2 is not valid, so v1 is an optimal price and

πus
s (�) = v1 −𝔼[c(v)]. To sum up, πus

s (�) = max{p, v1} −𝔼[c(v)].
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