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Chaos and unpredictability with time inconsistent policy
makers

Marco Battaglini
Department of Economics, Cornell University

We analyze the existence of equilibria with complex dynamics in a policy frame-
work with time inconsistency. We consider an economy where, in each period,
the policy maker in power determines the level of a durable public good (or bad)
that creates strategic linkages across policy periods. When the decision-making
process is time consistent—such as when a benevolent planner sets policy in ev-
ery period—the economy exhibits a unique equilibrium where the state converges
to a deterministic steady state. When the identity of the decision maker changes
probabilistically over time as in a political equilibrium, the decision-making pro-
cess becomes time inconsistent. In this scenario, we identify conditions under
which equilibria with cycles of more than two periods and chaotic dynamics can
emerge. Depending on the economy’s fundamental parameters, these equilibria
may produce ergodic distributions in which the state variable either persistently
overshoots the planner’s steady state or fluctuates around it. The extent of chaotic
behavior is influenced by the degree of time inconsistency: as the degree of time
inconsistency approaches zero, the size of the support of the ergodic distribution
converges to zero as well.

Keywords. Complex dynamics, ergodic chaos, time inconsistency, dynamic pub-
lic policy.

JEL classification. C61, C62, C73, D78.

1. Introduction

Environments characterized by dynamic inconsistencies are pervasive in economics.
They not only include settings with time-inconsistent preferences, but also many natu-
ral strategic interactions in which the players have “standard” exponential preferences,
such as voluntary contribution games and common pool problems, various political
economy problems such as positive models of public debt, or models of durable public
goods.1 In dynamic political economy games, time inconsistency in decision making
emerges from the fact that decision makers change over time and have heterogeneous

Marco Battaglini: battaglini@cornell.edu
For useful comments and discussions, I thank Ali Khan, Thomas Palfrey, Mike Woodford, and Christian
Hellwig, who first suggested to work on this topic. I also thank seminar participants at Caltech, Cor-
nell, Johns Hopkins University, Microsoft, Stanford GSB, the University of Arizona, UCSD, the University
of Washington in St. Louis, Vanderbilt, and the Wallis conference at the University of Rochester. Aviv Caspi,
Neelanjan Datta, and Senan Hogan-Hennessy provided outstanding research assistance.

1For examples of models of common pool problems or contribution games, see Levhari and Mirman
(1980), Fershtman and Nitzan (1991), Marx and Matthews (2000), Battaglini, Nunnari, and Palfrey (2014),
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preferences; in voluntary contribution and common pool games, time inconsistency
stems from externalities in the individual decisions of multiple decision makers.2

Despite the importance of these problems, there is still a limited understanding of
the strategic behavior in stochastic games with time inconsistency. In applied work, the
focus has been either on simplified environments such as, for example, models with fi-
nite horizons or models in which the players have dominant strategies, where equilibria
are more readily characterized; or on environments in which well-behaved equilibria ex-
ist and can be relied upon to make predictions. The equilibria in these games often look
like solutions to a constrained planner’s problems, in which the state variable monoton-
ically converges to a steady state—albeit too low as in dynamic public good games, or
too high, as in political economy models of public debt.3

In this paper, we study a simple dynamic policy game with time inconsistency and
we ask whether it can generate equilibria with complex dynamics in generic economies,
since most existing models that generate complex dynamics rely on nongeneric condi-
tions. Specifically, we aim at characterizing conditions under which time inconsistency
allows for the existence of equilibria with cycles (with possibly arbitrarily long periods)
and equilibria in which the state variables follow chaotic trajectories. In the latter equi-
libria, the state variable can be considered unpredictable because it is highly sensitive
to the initial state: two identical economies, starting from arbitrarily close but different
initial conditions, can diverge significantly in the long term in ways that are difficult to
predict, even in the absence of shocks. If the initial state is observed with noise, as is
naturally assumed, then long-term behavior remains unpredictable, even if the noise is
arbitrarily small and there are no stochastic shocks to the economies.

To analyze the issue, we study an infinite-horizon game in which an incumbent pol-
icy maker selects the level of a durable public good (or bad) that strategically links policy
making periods. We study the political equilibrium of this economy assuming that two
parties alternate in power as in the classic game by Alesina and Tabellini (1990).4

In the absence of time inconsistency, the economy has a unique equilibrium, and
this equilibrium has simple dynamics in which the state variable monotonically con-
verges to a unique steady state. When policies are selected in a political equilibrium,
however, the set of equilibria is very different and equilibria with complex dynamics
may emerge. We first focus the analysis to the case in which preferences are quasilinear.

among others. For political economy models of public debt, see Persson and Svensson (1989), Alesina and
Tabellini (1990), Battaglini and Coate (2008), and Yared (2010). For models of durable public goods, see
Battaglini and Coate (2007).

2In all the example presented above, a decision maker at t + 1 faces a different intertemporal rate of
substitution between t + 1 and t + 2 than a decision maker at t. A more detailed discussion of the relation-
ship between these models and single agent models with time inconsistent preferences will be presented
in Section 5.2.

3Models in which political equilibria can be characterized as solutions of constrained planner’s problems
have been provided by, among others, Battaglini and Coate (2008), Klein, Krusell, and Rios-Rull (2008),
Yared (2010).

4As we explain in detail below, the logic of the model can be applied with minor changes to other eco-
nomic environments, such as single agent consumption savings decision problems with quasi-hyperbolic
discounting; dynamic free rider problems, such as voluntary contribution and common pool games; or
more sophisticated political economy games with noncooperative bargaining.
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We demonstrate that, regardless of the degree of time inconsistency, Markov equilibria
with persistent cycles and chaotic dynamics exist if the relative importance of the public
good component is sufficiently high or, ceteris paribus, if the degree of time inconsis-
tency is not excessively large. We then extend the analysis to a more general class of
utility functions.

In the equilibria with chaos, starting from almost any initial condition, the state vari-
able converges to a region with positive measure and then “wanders around” in its in-
side, following a deterministic but aperiodic trajectory. Under general conditions, the
state variable behaves like a random variable with a continuous distribution, in the
sense that the ergodic distribution of the state variable converges to an absolutely con-
tinuous distribution on the set (a phenomenon often referred to as “ergodic chaos”). For
some equilibria, this absolutely continuous distribution can be characterized in closed
form as a function of the parameters of the economy (such as the degree of time incon-
sistency and the importance of the public good).

Existence and the properties of these equilibria are intimately connected to the pres-
ence of time inconsistency. The size of the set in which the state wanders around de-
pends on the degree of time inconsistency: as time inconsistency converges to zero,
chaotic equilibria continue to exist, but the size of the set in which the state wanders
around shrinks to zero. A similar phenomenon occurs for equilibria with cycles: as
time inconsistency converges to zero, the distance between the states in the periods
converges to zero. This implies that depending on the degree of time inconsistency,
equilibria with complex dynamics can be consistent with a variety of phenomena: from
describing environments with large, possibly cyclical policy swings, when time incon-
sistency is large; to environments with small, noisy perturbations around a steady state
generating a “fog of predictions” around an expected long term value, when time incon-
sistency is small. Failure to converge to a deterministic outcome in these equilibria high-
lights a novel source of inefficiency, distinct from the typical inefficiencies highlighted in
the literature, where steady states are usually characterized as having too little of a good
thing or too much of a bad thing. We show that when there are equilibria with persistent
cycles, or equilibria with chaos, we do not necessarily have a simple “one-dimensional”
bias. It is possible to construct equilibria under which the state of the economy fluctu-
ates around the planner’s optimum. This outcome is even worse than reaching a con-
stant steady state equal to the inefficient expected value since preferences are concave
in the state variable.

A limitation of the results described above is that the chaotic behavior we character-
ize is not typical of all equilibria of our dynamic economy, but it is instead a feature of
the specific class of equilibria whose existence we prove. Our results can be collectively
interpreted as an impossibility result : for the simple yet natural economy we consider, it
is impossible to predict equilibrium behavior in the sense that there are always chaotic
equilibria that make deterministic predictions impossible even in the absence of shocks.

The paper contributes to three main lines of research: the economic literature on
complex dynamics and chaos; the literature on dynamic decision with time inconsistent
decision makers; and the literature in political economy and public economics in which
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time inconsistency emerges in equilibrium despite players having standard exponential
preferences.

The question of whether dynamic economic models can generate complex dynam-
ics and chaos has been studied extensively in the 1980s and 1990s. Identifying natural
examples of economic environments with robust chaotic dynamics occurring in equi-
librium, however, has proven to be an elusive task. Early economic examples of models
with complex dynamics relied on a sufficient condition proposed by Li and Yorke (1975)
that, while relatively easy to establish, did not exclude the typical case in which trajecto-
ries with complex dynamics are unstable and reachable only from a measure zero of ini-
tial conditions, making cycles with more than 2 periods or chaotic behavior unobserv-
able (this form of unobservable chaotic behavior is sometimes refereed to as topological
chaos).5 Economic examples with more robust forms of complex dynamics, such as
the ergodic chaos mentioned above, have been presented in the subsequent literature.
These applications, however, relied on sufficient conditions that require the difference
equation describing the dynamics to assume specific functional forms: piecewise lin-
ear maps, typically “V” or “inverse V” shaped; or piecewise smooth, expansive maps
(i.e., functions with nondifferentiable “spikes” and derivative larger than one in abso-
lute value on both sides of the “spike”). These properties are not naturally derived for
optimal investment functions, except if specific technologies, or exogenous constraints
are imposed, such as credit constraints or other constraints that force the state variable
to become nonmonotonic.6 While there are environments in which these assumptions
are appropriate, our results rely neither on the assumptions nor on the techniques used
in these works. Alternatively, the literature allows for smooth difference equations for
which it is easier to provide a microeconomic foundations (S-unimodal maps), but only
for nongeneric parametrizations. Our contribution relies on the construction of a novel
class of equilibria, one that is large enough to select an equilibrium with the right prop-
erties for complex dynamics, in each parametrization of the environment. The charac-
terization, in turn, is a consequence of the presence of time inconsistency.

The second literature to which our paper contributes is the literature on dynamic
decision with time inconsistency. Phelps and Pollak (1968) started this literature by
characterizing the linear Markov equilibrium in a single agent model of intertemporal
consumption allocation. A general characterization of the Euler equations in similar

5Early seminal work include Day (1982), Benhabib and Day (1982), Grandmont (1985), who study over-
lapping generation models; Boldrin and Montrucchio (1986), Matsuyama (1999); Bewley (1986) and Wood-
ford (1988) who study models with market imperfections. A critique of the notion of topological chaos used
in some of the early literature is presented by Grandmont (1985) and Melese and Transue (1986). More re-
cent related work includes Khan and Mitra (2005), GRSS+ (2022), and Mignot, Tramontana, and Westerhoff
(2023). See Majumdar, Mitra, and Nishimura (2000), Hommes (2013), Rosser (2021), and Bischi, Cerboni
Baiardi, Lamantia, and Radi (2024) for surveys of this literature and its implications for economics.

6Economic examples with these properties have been presented, for example, by Day and Shafer (1987),
Day and Pianigiani (1991), Deneckere and Judd (1992), and more recently, Matsuyama, Sushko, and Gardini
(2016). In these examples, the state xt evolves according to a system xt+1 = y(xt ) in which y(·) is assumed
either piecewise linear and “V” shaped; or to be “expansive,” i.e., satisfying inf(y ′(x)) > 1, so that if there
is a maximum, it occurs in a non-differentiable “spike.” These results rely on sufficient conditions first
presented by Lasota and Yorke (1973) and/or its subsequent refinements.
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problems is presented in Harris and Laibson (2001), and analyses of saving dynamics
for a representative agent with quasi-geometric preferences are presented by Morris and
Postlewaite (1997), Chatterjee and Eyigungor (2016), Cao and Werning (2018a,b), among
others. Krusell and Smith (2003) also studied the issue of multiplicity of equilibria in
these problems, and highlighted indeterminacy due to multiple possible equilibrium
steady states. The problem we study in this paper is different: while we also obtain mul-
tiple equilibria, our main result is the proof of the existence of equilibria with complex,
deterministic dynamics. In these equilibria, unpredictability occurs for a given equilib-
rium, not because of multiplicity.

Finally, our work contributes to the study of applied models where time incon-
sistency emerges in equilibrium despite players having standard exponential prefer-
ences. We have already cited above works on voluntary contribution and common
pool games and political economy. As mentioned, this literature has mostly focused
on well-behaved equilibria or environments in which the state converges to a determin-
istic steady state. Among the exceptions, Boylan, Ledyard, and McKelvey (1996) and Bai
and Lagunoff (2011) study the problem in a political economy setting, while Battaglini,
Nunnari, and Palfrey (2012) study voluntary contributions to a public good. Boylan,
Ledyard, and McKelvey (1996) consider a model in which simple cycles with finite orbit
may emerge when the policy maker selects policies that can be defeated by the small-
est possible majority, and s/he can commit for at least 3 periods into the future; the
length of the commitment period determines the length of the cycle in this model.7 Bai
and Lagunoff (2011) study a dynamic political game in which policies at t affect politi-
cal turnover at t + 1. They show conditions under which the equilibrium may converge
to a stable steady state following a dampened cycle. Battaglini, Nunnari, and Palfrey
(2012) study a model of free riding in which n agents independently contribute to a
public good: using numerical examples, they show the existence of Markov equilibria
with dampened cycles and with cycles of period 2.8 None of these papers, nor to our
knowledge any other in the political economy literature, has examined the emergence
of complex cycles with period longer than 2 and/or chaotic behavior.9

2. Model

Consider an economy in which two parties alternate in power, call them A and B. Each
party is associated to a constituency of citizens. We assume that there is a continuum of

7The authors also show that in their model no cycles are possible if the policy makers can not commit to
a policy.

8The NBER working paper Battaglini, Nunnari, and Palfrey (2012) was published as Battaglini, Nunnari,
and Palfrey (2014), but some of the results on cyclical equilibria were omitted in the 2014 version.

9A different (and less related to our work) body of research is the literature on the so called “political
business cycles.” This literature looks at models in which fluctuations in economic activity are generated
by recurrent stimuli right before an election by an incumbent attempting to signal his/her competence to
influence the electoral outcome; or right after an election as the uncertainty on the type of the winning party
is resolved. These are typically stationary models with no underlying state variable, in which fluctuations
coincide with the electoral cycle, not with a long term evolution of a state variable. See Alesina (1988),
among others, for a survey.
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citizens and we normalize the size of the constituency of each party to one. The party
in power at time t selects a policy pt from a set of feasible policies. The policy generates
immediate costs or benefits for the citizens, and it also contributes to a long term state
variable xt that also affects the citizens’ utility. For example, pt may be a polluting ac-
tivity that generates economic benefits to all (or a subset of) the citizens, yet it increases
the stock of pollution (as measured by xt ).

The state variable xt takes values in the real line ℝ, and it evolves according to: xt+1 =
(1 − γ)xt + pt , where γ is the rate of depreciation of xt .10 The policy pt takes values in
the set P = [−l, ∞) for some l > 0, and thus it must be such that the state xt+1 satisfies
xt+1 ≥ (1 − γ)xt − l. The lower bound reflects the fact that there may be limits on the
feasibility of a reduction in the state x.

In every period t, party j ∈ {A, B} has a probability 1/2 to be in power. This assump-
tion reflects the idea that the constituencies of the two parties have the same size, so the
identity of the majority party at t is determined by chance. Citizens are assumed to be
identical, except for the party whose constituency they belong to. Define ui,j(p, x) as the
indirect utility function of a citizen in the constituency of party iwhen the party in office
is j, the state at the beginning of the period is x, and the policy is p= y− (1 −γ)x, where
y is the state at the end of the period. A policy p can be interpreted as the expenditure
on local public goods, subsidies, or other policies that the party in office can target to
its constituency. Utility ui,j(p, x) depends on the party in power j because even if the
levels of expenditure is the same for the two parties, the policy mix chosen by each party
would naturally be different. The function ui,j(p, x) is assumed to be weakly concave in
p, strictly concave in x, and continuously differentiable in both terms, with derivative
with respect to the rth component equal to ui,jr (·) for r = 1, 2. We assume ui,i1 (·)> ui,j1 (·)
and ui,i1 (·) > 0: citizens’ marginal utility for policies targeted to them is positive, and
they derive higher utility from policies targeted to them than from policies targeted to
the other constituency. The spillover of policies by policy maker j (targeted to district j)
on district i can be positive (i.e., ui,j1 (·) > 0), as in the case of a highway or a bridge; or

negative (i.e., ui,j1 (·) < 0), as in the case of a polluting power plant that benefits only to
j’s constituency, but that yet pollutes the air of both i’s and j’s constituencies. A specific
example of these indirect utility functions is described below.

In this economy, an allocation is described by an infinite sequence x∞ where x∞ =
(x0, � � � , xt , � � �) and x0 is exogenously given. The intertemporal utility at t = 1 of an agent
in party i’s constituency is Ui(x∞ ) = ∑︁∞

t=1 δ
t−1[ui,ι(t )(xt − (1 − γ)xt−1, xt−1 )], where δ is

the discount factor, ι(t ) is the incumbent party in office at time t.
In Section 3, we study the case in which preferences are quasilinear and separable in

x and p. Specifically, we assume the per period utility function:

ui,j(p, x) = αi,jK ·p− e(x), (1)

10Depending on the interpretation of the model xt may be interpreted as a stock of capital that may
generate positive or negative externalities, or just the stock of pollution (see Section 3.3 for a more extensive
discussion of this point). In the second case, γ should be interpreted as the regeneration rate (i.e., the
natural decline in the stock of pollutant).



Theoretical Economics 21 (2026) Chaos with Time Inconsistent Policy Makers 247

where K is a strictly positive constant and e(x) is strictly convex in x.11 We assume
that αi,i = αj,j = 1 and αi,j = α < 1 when i ≠ j: so, for a member of constituency i, the
marginal utility ofp is 1 when i’s party is in office, and it is strictly lower than 1 otherwise.
The parameter α is a direct measure of the time inconsistency generated by the political
alternation of power. When α = 1, there is no political conflict and no time inconsis-
tency, since the policies of the two parties have the same effects on all citizens.12 When
α ∈ [0, 1), the policy benefits both the constituency of the party in power and the con-
stituency of the party out of power, albeit less for the latter if α < 1. When α ∈ (−∞, 0),
instead, the policy benefits the constituency of the party in power, but generates nega-
tive externalities for the rest of the citizens.13 Later in this section and then in Section 3,
we also assume a quadratic cost function:

e(x) = (β/2)(x−ˆ︁x)2, (2)

where we assume β> 0 and ˆ︁x≥ 0. We will relax this assumption in Section 4.
We focus the analysis on symmetric Markov perfect equilibria, in which the parties

use the same strategy, and in each period t these strategies are time-independent func-
tions of the state xt . Non-Markovian strategies will be discussed in Section 4.14 A Marko-
vian strategy is a function p(·), where p(x) is the policy of the party in power when the
state is x. Oncep(·) is defined, then the state variable at t+1 is automatically defined as:
y : x→ (1 − γ)x+ p(x). In the following, it will be more convenient to define equilibria
in terms of y(·). We refer to y(·) as the investment function. Associated with any invest-
ment function y is a value function v, which specifies the expected discounted future
payoff to an agent when the state is x.

An investment function y and an initial state x0 define a dynamical system in which
xt+1 = y(xt ). We are interested in studying the dynamics that can emerge in equilib-
rium. It is worth stressing that the dynamics of the state in a symmetric equilibrium is
deterministic and fully determined by the equilibrium y. The two parties in power alter-
nate in power with probability 1/2, but they adopt the same strategy y in equilibrium,
so the evolution of x does not depend on the outcome of the election but only on the
initial condition x0 and the shape of the investment function y(·).15 Define [y]1(·) = y(·)

11When e(x) is increasing in x, then −e(x) may be interpreted as a cost generated by x (e.g., pollution
cost generated by the state x). But e(x) is not necessarily increasing as, for example, when (2) with ˆ︁x > 0 is
assumed. This implies that the model allows a variety of interpretations as it will be discussed in Section 3.3.

12The fact that with α = 1 we do not have time inconsistency does not imply that policies are Pareto
efficient: even with α= 1, the policy maker in office ignores the externality on the constituency of the other
policy maker.

13The indirect utility function (1) has a simple microfoundation. Assume that there are two possible
policies: pA that generates a marginal utilityK on partyA’s constituency and αK on B’s constituency; and
a symmetric pB that generates a marginal utility K on party B’s constituency and αK on A’s constituency.
In a Markov equilibrium, for any level of expenditure p, party i would spend all in pi , implying (1).

14The main result of our analysis is in proving the existence of equilibria with cycles, and/or unpre-
dictable and chaotic behavior. The focus on Markov equilibria therefore is without loss of generality and
makes the results stronger as it relies on simpler strategies.

15The fact that parties alternate in power stochastically is important only to the extent that it generates
dynamic time inconsistency. In Section 5.2, I present an alternative decision model with a single decision
maker with hyperbolic discounting and no shocks, as an example in which time inconsistency emerges
even in the absence of shocks. More examples are presented in the working paper (Battaglini (2023)).
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and, for any k ≥ 1, [y]k(·) = y([y]k−1(·)). For any starting condition x0, [y]k naturally
defines a trajectory {x1, � � � xk, xk+1, � � �} in which xk = [y]k(x0 ). A cycle of period τ is a
set {x1, � � � , xτ} such that xk = [y]τ(xk ) for all k = 1, .., τ; any element of a cycle with τ
element is called a periodic point of period τ. The simplest, and most widely studied,
case of cycle is a steady state, which is a cycle of period 1. We define a cycle {x1, � � � , xτ}
to be attracting (or asymptotically stable) if for all points xk in the cycle there exists an
open neighborhood U of xk such that for all x ∈U , we have [y]mτ(x) ∈U for any integer
m≥ 1 and limm→∞[y]mτ(x) = xk. When a cycle is attracting, a small perturbation to the
state variable does not alter the long run behavior of the system.

The mathematical literature has offered various definition of “chaotic” behavior of
deterministic dynamical systems. The intuitive features of a “chaotic” system in a set I
are that: (a) the system is invariant in I; (b) it has an aperiodic trajectory dense in I; and
it has sensitive dependence, meaning that even an arbitrarily change in the initial con-
dition leads to a large deviation in the long term. Dynamical systems with these prop-
erties are said to be incomputable or unpredictable in the sense that they give different
predictions for arbitrarily close initial conditions (see, e.g., Devaney (1989)).

A standard formal definition of chaotic behavior is provided by Devaney (1989). We
say that an investment function y is transitive in I if for any openU , V ⊂ I, there exists a
k such that [y]k(U ) ∩ V ≠ ∅. Intuitively, a topologically transitive map “wanders” in the
invariant set I, moving under iteration from one arbitrarily small neighborhood to any
other. An investment function y exhibits topological chaos in a set I if it is transitive and
it has a set of periodic points that is dense in I. If the two conditions of this definition
are satisfied, then it can be shown that y is sensitive on initial conditions in the sense
that there exists a χ such that, for any x ∈ I and any neighborhood N of x there exists a
z ∈N and am≥ 0 such that |[y]m(x) − [y]m(z)|>χ.16

A dynamical system is said to display ergodic chaos if the system is ergodic and the
unique invariant distribution of the Perron–Frobenius operator is absolutely continu-
ous with respect to the Lebesgue measure. This definition implies that, starting from
a generic initial condition, the orbit described by y “fills up” the entire support of the
ergodic distribution, and thus defines extremely complex dynamics. As we will see, our
equilibria will satisfy both the topological and the ergodic definition of chaos. We will
formally define and discuss ergodic chaos in Section 3.2.

Before studying equilibrium behavior in the model described above, it is useful to
characterize the optimal policy when it is selected by a utilitarian planner (henceforth,
the planner) under Assumptions (1) and (2) as a benchmark. Define the feasible set as
ℱ(x; γ, l) = {y ∈ℝ|y ≥ (1 − γ)x− l}. The planner solves the following problem:

V (x) = max
y∈ℱ(x;γ,l)

{︁

(x, y; α, γ) + δV (y )

}︁
(3)

16Devaney (1989) originally included sensitive dependence on initial conditions in the definition of topo-
logical chaos; BBCD+ (1992) subsequently proved that it is implied by transitivity and a dense orbit. Indeed,
for continuous maps on an interval (the class of maps of interest in the analysis of this paper), Vellekoop
and Berglund (1994) proved that transitivity also implies a dense set of periodic points, so that topological
transitivity is the essential property defining chaos.
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where 
(x, y; α, γ) = (1 + α)K · (y − (1 − γ)x) − 2e(x) and V (y ) is the planner’s contin-
uation value function at y. Note that 
(x, y; α, γ) is continuous, differentiable in y for a
given x, and concave in x, y, strictly with respect to x alone. By a standard argument, we
can show that there exists a unique V ∗ satisfying (3); and that this V ∗ is strictly concave
and differentiable. In the quasilinear environment with quadratic e(·) described above,
the optimal policyY ∗ that solves (3) is also uniquely defined and admits a unique steady
state: x∗∗ =ˆ︁x+ [(1 + α)/(2β)] · (1/δ− (1 − γ))K. The state variable monotonically con-
verges to x∗∗ for any initial condition x0.

3. Political equilibrium

3.1 Existence of equilibria with no attracting steady state

We now turn to the study of the equilibria of the game in which policies are chosen by
the incumbent party (henceforth, the incumbent) under the assumption of quasilinear
preferences (1). The goal of this subsection is to prove the existence of equilibria with
cycles or aperiodic dynamics. The exact type of dynamics that is possible is studied in
the next subsection.

The incumbent’s problem can be written as follows:

max
y≥(1−γ)x−l

{︁
K

[︁
y − (1 − γ)x

]︁ − e(x) + δv(y )
}︁

. (4)

The incumbent maximizes the expected utility of her constituency taking the expected
continuation value v as given, thus ignoring the cost/benefit for the constituency of the
other party, αK[y− (1−γ)x]−e(x). In equilibrium, the expected continuation in state x,
the value function v must satisfy

v(x) = 1
2

[︁
K

(︁
y(x) − (1 − γ)x

)︁ + δv(︁y(x)
)︁]︁

+ 1
2

[︁
αK

(︁
y(x) − (1 − γ)x

)︁ + δv(︁y(x)
)︁]︁ − e(x). (5)

If x is the state, each party suffers a disutility e(x) for sure; with probability 1/2 the in-
cumbent remains in office and selects y(x), obtaining K(y(x) − (1 − γ)x) + δv(y(x));
with probability 1/2 the party is no longer in office and receives only αK(y(x) − (1 −
γ)x) + δv(y(x)), since the policy y(x) is selected by the other party. An equilibrium is
characterized by a pair of functions y(·) and v(·) such that for all states x, y(·) solves (4)
given v(·) and v(·) solves (5) given y(·).

The incumbent’s trade-off can be described as follows. By increasing y, s/he in-
creases current utility for his/her district; by increasing y, however, s/he also affects fu-
ture’s utility for all through the effects on the expected continuation function v evaluated
at y. There are two key differences between (4)–(5) and the planner’s problem (3). The
first is that, as we mentioned above, in any given period the incumbent selects a policy
that maximizes the expected utility of his/her constituency alone, ignoring the spillover
effects on the constituency of the other party. The second (and most important) differ-
ence is that the value of the incumbent’s problem (4) does not coincide with the incum-
bent’s continuation value function (5) except in the special case in which α = 1. The
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value of (4) is the expected value for the incumbent; in the continuation of the game,
however, the incumbent at t will remain incumbent only with probability 1/2. This fea-
ture make the incumbent’s problem time inconsistent since her objective function when
selecting the policy does not coincide with the expected continuation value.

In the planner’s solution, the marginal effect of the state on the expected continua-
tion value is independent of expected future policy y:[︁

V ∗]︁′(x) = −(1 + α)(1 − γ)K − 2e′(x) + [︁
(1 + α)K + δ[︁V ∗]︁′(︁Y ∗(x)

)︁]︁[︁
Y ∗]︁′(x)

= −(1 + α)(1 − γ)K − 2e′(x) (6)

where [Y ∗]′ is the derivative of the planner’s policy function and the second equality
follows from the envelope theorem.

In the political equilibrium, however, the standard envelope theorem is not directly
applicable, making the optimal decision for the incumbent critically dependent on her
expectation of future behavior of the other party. The incumbent’s value function (5)
can be written as

v(x) = [︁
K

(︁
y(x) − (1 − γ)x

)︁ + δv(︁y(x)
)︁]︁ − e(x)

− 1
2

(1 − α)K · [︁y(x) − (1 − γ)x
]︁

(7)

where the first line on the right-hand side is the objective function that is maximized by
the incumbent at t+ 1, and the second line collects the wedge between the incumbent’s
objective function and the expected continuation value. Applying the envelope theorem
to the first line of (7),17 we have

v′(x) = −e′(x) − (1 + α)K(1 − γ)/2 − (1 − α)Ky ′(x)/2. (8)

The key feature of this expression is that the marginal change in the value function de-
pends on the expected policies selected by future incumbents, i.e., y(·). If the incumbent
at t expects the incumbent in the following period (herself or the opponent) to rapidly
increase the policy as a function of the state (i.e., a high positive y ′(·)), then s/he will
have higher incentives to keep the state low; similarly, if s/he expects the future incum-
bent to reduce the state or to increase it slowly (i.e., a low or negative y ′(·)), then s/he
will have higher incentives to increase the state. The important question for predicting
behavior in a political equilibrium is what kind of expectations on y(·) are consistent
with equilibrium behavior.

In equilibrium, the policy must solve (4). At a state x that satisfies the first-order
condition for optimality in (4), we therefore must haveK = −δv′(x). Ignoring the policy
constraint for the moment, an interior equilibrium satisfies both this condition and (8).
Combining these two conditions, we obtain

K/δ= e′(x) + (1 + α)K(1 − γ)/2 + (1 − α)Ky ′(x)/2. (9)

17The assumption of differentiability here is without loss of generality, since as we will show in Proposi-
tion 1, the equilibrium is almost everywhere differentiable (and always in the relevant region). We assume
here differentiability only for ease of notation, since the same argument can be made without assuming
differentiability.
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This is a simple differential equation that can be solved in closed form up to a free con-
stant c. The solution can be written as

�(x, c) = 2/δ− (1 + α)(1 − γ)
1 − α · x− 2

K(1 − α)
e(x) + c (10)

Under assumption (2), a functional form that we will assume for the rest of this section
and in Section 4, the solution of (9) becomes

ψ(x, c) = ϕ1 · x−ϕ2 · x2 + c, (11)

where

ϕ1 = 2/δ− (1 + α)(1 − γ) + 2βˆ︁x/K
1 − α , and ϕ2 = β

(1 − α)K

The following Proposition 1 characterizes a sufficient condition such that an equilib-
rium exists in which the investment function coincides with (11) in all periods, except
for at most a finite transition period where the policy must accommodate the feasibility
constraint.

Figure 1 illustrates the equilibrium construction. The figure shows ψ(x, c) (the
dashed curve) and its relationship with the full equilibrium investment function (the
solid curve y∗(x, c), partly overlapping with ψ(x, c), formally described below). The
quadratic curve described by ψ(x, c) reaches a maximum x(c) = ψ(x∗, c) at x∗ =
ϕ1/(2ϕ2 ), and has two fixed points at x∗−(c) and x∗+(c). If ψ(·, c) were the equilib-
rium investment function for the entire domain of x, then the policy would increase
the state variable for states in (x∗−(c), x∗+(c)), since in this region ψ(x, c) > x; and it
would decrease the state variable for states x < x∗−(c) and x > x∗+(c), since in this re-
gion ψ(x, c) < x. For high values of x above x∗+(c), or low values below x∗−(c), how-
ever, we may have ψ(x, c) < (1 − γ)x − l; a violation of the feasibility constraint. To
avoid this, the equilibrium construction of Proposition 1 truncates ψ(·, c) on the left,
setting it equal to ψ(x∗−(c), c) for x ≤ x∗−(c); and, on the right, by setting it equal to
max{ψ(x∗+(c), c), (1 − γ)x − l} for x ≥ x∗+(c). This gives us an “adjusted” investment
function:

y∗(x, c) =
{︄

max
{︁
ψ

(︁
x(c), c

)︁
, ψ(x, c)

}︁
x≤ x(c)

max
{︁
ψ

(︁
x(c), c

)︁
, (1 − γ)x− l}︁ x > x(c),

(12)

where x(c) = x∗−(c) and x(c) = ψ(ϕ1/(2ϕ2 ), c). Proposition 1 proves that, for an appro-
priately chosen set 𝒞∗ of integration constants c, (12) is an equilibrium investment func-
tion with no attracting steady states.

The proof has three steps. First, we show that, for an appropriate choice of c, ψ(·, c)
does not have attracting steady states, and it is such that once the state enters the set
[x(c), x(c)], it never exits. Using this result, we then find conditions under which (12)
does not violate the feasibility constraint, it admits no attracting steady state, and it
is such that the state variable enters the set [x(c), x(c)] in finite time and never exits
it. Finally, and most importantly, we prove that if players expect (12) as an investment
function, then they find it optimal to invest according to (12).
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Figure 1. The equilibrium construction.

Lets us start from the first property. A key feature ofψ(x, c), as illustrated in panel 1.a

of Figure 1, is that for any x ∈ [x(c), x(c)] we have ψ(x, c) ∈ [x(c), x(c)], and the deriva-

tive ψ′(x, c) of ψ(x, c) with respect to x is larger than 1 in absolute value at any fixed

point in [x(c), x(c)], so the policy is repelled by them. These properties, however, de-

pend on the choice of the constant of integration c. As we shift c up or down, we shift

ψ(·, c) up or down; and we thus change the dynamics associated to it. On the one hand,

the parameter c cannot be selected too small, otherwise x∗+(c) would be too close to

x∗, and the absolute value of the derivative at x∗+(c) would be lower than 1, thus mak-

ing x∗+(c) an attracting steady state. On the other hand, c cannot be selected too high:

x = ψ(x∗, c) would be too high, ψ(x, c) too small, and ψ(x, c) < x(c); so, ψ(x, c) would

not be a self-map in [x(c), x(c)].
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The following lemma characterizes the exact conditions on c for ψ(x, c) to be a self-
map in [x(c), x(c)] with no attracting steady state. To state it, define the following cor-
respondence: X∗(c) = [x(c), x(c)], where the thresholds x(c) and x(c) are defined as
above. Under the assumption that e(x) is quadratic as in (2), an assumption that is
maintained in this and the next sections, we have

x(c) = ϕ1 − 1 −
√︂

(ϕ1 − 1)2 + 4ϕ2c

2ϕ2
, and x(c) = ϕ2

1 + 4ϕ2c

4ϕ2

We can now state the following.

Lemma 1. Let c ∈ 𝒞∗, where 𝒞∗ is defined as

𝒞∗ =
[︃

(3 −ϕ1 )(1 +ϕ1 )
4ϕ2

, (4 −ϕ1 )(2 +ϕ1 )/(4ϕ2 )

]︃
(13)

Then ψ(·, c) has no attracting steady state and ψ(x, c) ∈X∗(c) for any x ∈X∗(c).

Proof. See Section A.1 in the Appendix.

We will now use Lemma 1 to find conditions under which y∗(·, c) is feasible and ad-
mits no attracting steady state. The policy function is feasible if y∗(x, c) ≥ (1−γ)x− l for
all x ∈ ℝ. By construction, it is certainly the case that y∗(x, c) is feasible for all γ ∈ (0, 1),
l > 0, and x ≤ x∗−(c), since we must have (1 − γ)x∗−(c) − l < x∗−(c). We might however
have that (1 −γ)x(c) − l > y∗(x(c), c), which would imply y∗(x, c) violates feasibility in a
neighborhood of x(c). Naturally, we can always find thresholds on γ and l such that fea-
sibility is satisfied. We can however characterize a more general condition on the pref-
erences of the players and the technology such that feasibility is satisfied for any γ and
l. Define R to be the ratio R=β/K. This ratio captures the temptation for an incumbent
to abuse its position in selecting the policy. The numerator measures the importance of
the externality generated by x on society; the denominator measures the importance of
the private benefit of the policy for the incumbent. To state Lemma 2 below, define the
threshold:

R∗(α) = 4δ(1 − α)(2 − γ) + δ(1 + α)(1 − γ)γ− 2γ
2δ(ˆ︁xγ+ l) (14)

We have the following.

Lemma 2. IfR≥R∗(α) and c ∈ 𝒞∗, then the investment function y∗(·, c) as defined in (12)
is feasible, it has no attracting steady states, and it is such that the state variable enters the
setX∗(c) in finite time and never leaves it.

Proof. See Section A.2 in the Appendix.

We will study in detail in the next section what type of dynamics is impressed by
y∗(x, c) on the state x, i.e., the type of cycles that are feasible in equilibrium and whether
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chaotic trajectories exist. Before turning to that, we complete here the equilibrium char-
acterization by proving that y∗(x, c) is indeed a best response, and thus an equilibrium.
This is done in the proof of the following proposition.

Proposition 1. Consider an economy with R≥R∗(α):

• For any c ∈ C∗, y∗(x, c) is an equilibrium policy function with no attracting steady
state.

• In this equilibrium, the state variable is in X∗(c) for all periods except at most for a
finite transition period.

Proof. We have already proven in Lemmata 1–2 that y∗(·, c) is a feasible self-map in
[x(c), x(c)] that admits no attracting steady state. We now prove that if the players ex-
pect y∗(·, c) to be the equilibrium policy used by future policy makers, then they find it
optimal to invest according to y∗(·, c). A policy maker chooses a policy θ that solves (4),
and thus maximizes the objective function: P : θ→Kθ+ δv(θ). We will show that P is
almost everywhere differentiable (and indeed differentiable in (x(c), x(c))), concave in
ℝ, and maximal in [x(c), x(c)]. This implies that that for any x, it is optimal to choose a
point y∗(x, c) ∈ [x(c), x(c)]. We proceed in 3 steps.

Step 1. Consider first policies θ ∈ [x(c), x(c)]. In this region, we have y∗(·, c) =
ψ(·, c), as defined in (9). By the definition of ψ(·, c), we therefore have v′(·) = −K/δ,
so P is constant and differentiable in this interval. In (x(c), x(c)), the derivative of the
objective function is such that

P ′(θ) =K + δv′(θ) =K − δ
[︃
e′(θ) + (1 + α)K(1 − γ)

2
+ (1 − α)K

2
ψ′(θ, c)

]︃
= 0, (15)

where in the last equality we used (9).
Step 2. Consider now policies θ < x(c) and θ > x(c). In this region, P(·) is also ob-

viously differentiable, since the policy if constant in this region. Assume first θ > x(c).
Note that

x(c) =ψ
(︃
ϕ1

2ϕ2
, c

)︃
≥ 1

4ϕ2

[︁
ϕ2

1 + 1 − (ϕ1 − 1)2]︁ = ϕ1

2ϕ2
= x∗

where x∗ = arg maxz ψ(z, c). Since x(c) ≥ ϕ1/(2ϕ2 ), ψ(·, c) is concave, and ψ′(ϕ1/(2ϕ2 ),
c) = 0, we conclude that ψ′(θ, c) ≤ 0. We therefore have

P ′(θ) ≤K − δ
[︃
e′(θ) + (1 + α)K(1 − γ)

2

]︃
≤K − δ

[︃
e′(θ) + (1 − α)K

2

(︁
(1 − γ) +ψ′(θ, c)

)︁]︃ = 0 (16)

for any θ > x(c). Consider now x < x(c). Naturally, x(c)<ϕ1/(2ϕ2 ), so

P ′(θ) =K − δ
[︃
e′(θ) + (1 + α)K(1 − γ)

2

]︃
≥K − δ

⎡⎣ e′(θ)

+ (1 − α)K
2

(︁
(1 − γ) +ψ′(θ, c)

)︁
⎤⎦ = 0.

(17)
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Step 3. Conditions (16) and (17) imply that P(·) achieves a maximum at any point in
[x(c), x(c)]. To see the concavity of P(·), note that it is continuous, concave with positive
derivative in θ < x(c), flat in θ ∈ [x(c), x(c)], and concave with negative derivative in
θ > x(c). To see that y∗(x, c) is an optimal policy for the incumbent in state x note that
by (15)–(17), P(·) achieves a maximum in [x(c), x(c)] and that, when c ∈ 𝒞∗, y∗(x, c) ∈
[x(c), x(c)] for any x for which it is feasible; and for a state x in correspondence of which
no θ in [x(c), x(c)] is feasible, then the policy is at a constrained optimum.

Figure 1 illustrates y∗(·, c) and its relationship with the objective function in (4). In
x ∈ [x(c), x(c)], y∗(x, c) is equal to ψ(x, c) and this function maps [x(c), x(c)] to itself.
Because of this, the players expect that the future dynamics is driven by ψ(·, c). By its
definition, this function keeps the expected utility of a policy maker (i.e., the objective
function in (4)) constant and at its maximal level. Because y∗(x, c) ∈ [x(c), x(c)] for any
x ∈ ℝ, not just x ∈ [x(c), x(c)], the policy is optimal. The players are indifferent between
all policies chosen in equilibrium in any state just as in a mixed equilibrium, but the in-
vestment function is uniquely defined up to the constant c since the derivative of ψ(·, c)
(and thus y∗(·, c)) must be such that the policy makers are indifferent in [x(c), x(c)].

We conclude this section with five remarks on this equilibrium. Readers interested
in the characterization of equilibrium dynamics may skip the rest of this section on a
first read and proceed directly to Section 3.2.

Why is the investment function hump shaped? A key feature of y∗(·, c), which allows it
to be a self-map and, as we will see, to generate cycles and chaotic behavior is that it
is nonmonotonic and hump-shaped. This shape endogenously emerges from the equi-
librium condition (9) discussed above when e(·) is a convex function of x. Recall that
ψ(·, c) is chosen so that an incumbent politician in state xt is indifferent when choos-
ing different values of xt+1. An increase in xt+1 generates a constant marginal benefit
K, and an increasing marginal cost e′(xt+1 ), for the policy maker. To make the policy
maker at t indifferent between different levels of xt+1, these effects must be compen-
sated in equilibrium. This is achieved by a strategy where future policy makers react to
the increase in xt+1 by reducing the marginal rate of increase in the state. In the pol-
lution example, future policy makers move from strategic complements for low states
(when they respond to increases in pollution with increases), to strategic substitutes for
high states (when they respond to increase in pollution with reductions). In the equilib-
ria of Proposition 1, this induces hump-shaped investment functions in which the rate
of investment [y∗]′(·, c) is declining, first positive and then negative as in Figure 2.

Multiplicity and the role of the constant of integration c. Proposition 1 characterizes
the set of values of c for which it is possible to construct an equilibrium in which the dy-
namics is driven by the solution of (11), except for at most a finite transition period. As
mentioned, these are equilibria analogous to mixed-strategy equilibria: the strategy is
optimal because policy makers at t+1 choose policies in [x(c), x(c)] according to a strat-
egy that makes the policy maker at t indifferent between policies in [x(c), x(c)]. There is
a continuum of equilibria in the model because the condition under which policy mak-
ers are indifferent between values of x in [x(c), x(c)] defines the investment function
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only up to a constant. The set of admissible constants is restricted by other equilibrium
conditions, but it is still a nonempty compact set.

The value of the constant of integration c is important because it determines the
slope of the solution ψ, and thus of the investment function, in correspondence to its
fixed point x∗+(c). Consider the example illustrated in Figure 1, in whichψ(x∗, c)> x∗. If
we choose a very small c, we have x∗ ≃ ψ(x∗, c): so, x∗ ≃ x∗+(c), implying ψ′(x∗+(c), c) ≃
0>−1. In this case, x∗+(c) is an attracting steady state, and we cannot have stable cycles
or chaos. For larger values of c, Lemma 1 shows that we can have ψ′(x∗+(c), c) < −1.
In this case, x∗+(c) is repelling and we cannot have a stable steady state in X∗(c); the
equilibrium must generate a stable cycle or chaos.

In terms of economic interpretation, a higher value of c, corresponds to situations in
which, in a neighborhood of the steady state x∗+(c), the policy maker at t + 1 responds
to a marginal increase in the state xt at t by a larger decrease in xt+1. If we interpret xt
as pure pollution therefore equilibria with larger c correspond to situations in which in
a neighborhood of the steady state x∗+(c) policy makers respond to a marginal increase
in pollution by reducing pollution more aggressively, thus cleaning up more aggressively
“the mess” inherited by the previous generation of policy makers. Note that the marginal
response of policy makers at x∗+(c) is important because it determines how strongly the
state is repelled from x∗+(c): depending on how strongly it is repelled (and, therefore, on
c), we may have stable cycles or chaotic trajectories.

How strong is the existence condition? A number of parameters in the model contribute
to making it easier or more difficult to have equilibria with a nonconverging orbit. For
example, it is clear that if both γ = 0 and l is arbitrarily close to 0, then it is impossible to
construct cycles or nonconverging orbits. The reason is that in this case the policy con-
straint xt+1 ≥ (1 − γ)xt − l forces the policy to be monotonically increasing over time,
since xt+1 = y(xt ) ≥ xt for γ = 0, l→ 0. And indeed, consistently with this observation,
we have that R∗(α) → ∞ as both γ → 0 and l → 0. Remarkably, however, cycles and
nonconverging orbits exist even for arbitrarily small (but strictly positive) values of γ
and l, if we choose the other parameters δ, ˆ︁x, and α appropriately. For example, it can
be verified that R∗(1) < 0, so the equilibrium of Proposition 1 always exists when α is
sufficiently close to 1, i.e., when time inconsistency is not too large (as we will discuss
more extensively in Section 4.1). Two other important variables are the discount fac-
tor δ and the ideal point for society ˆ︁x. The threshold R∗(α) is increasing in δ, so the
smaller is the discount factor the easier is to satisfy the sufficient condition in Proposi-
tion 1. It is indeed interesting to note that a small enough discount factor is sufficient
for the existence of nonconverging equilibria. A small discount factor however is not
necessary, and the sufficient condition can be satisfied for any δ. On the contrary, the
threshold R∗(α) is decreasing in ˆ︁x, so a larger ideal point makes nonconverging equi-
libria easier to achieve. Nonconverging orbits are however possible even if ˆ︁x = 0. The
most interesting variable inR∗(α) is α, which measures the degree of time inconsistency
in the economy. We postpone the discussion of the relationship between time consis-
tency and nonconverging equilibria to Section 4.1. In the model of Section 2, we have
assumed that ˆ︁x≥ 0 and l > 0, although possibly both variables may be arbitrarily small.
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The result of Proposition 1 does not require these natural but simplifying assumptions.
The general sufficient condition for Proposition 1 is (32) in Section A.2, where Lemma 2
is proven. If we assume ˆ︁x < 0 and/or l ≥ 0, but ˆ︁xγ + l ≥ 0, (32) continues to imply (33),
so the analysis remains completely unchanged (with the minor convention of defining
R∗(α) = ∞ if ˆ︁xγ + l = 0). If ˆ︁x < 0 and/or l ≥ 0, but ˆ︁xγ + l < 0, instead (32) requires
R ≤ R∗(α). This means that when the ideal point ˆ︁x is negative and sufficiently large in
absolute value, then the feasibility condition in Proposition 1 holds if R is sufficiently
small.

Unstable steady states. In the equilibria characterized in Proposition 1, the state vari-
able never diverges to ±∞, since y∗(x, c) is bounded for any x0 ∈ ℝ (see (12)). The equi-
libria, however, besides the stable cycles and nonperiodic trajectory that we will study
in greater detail in the next section, admit unstable steady states. For instance, consider
the points x∗+(c) and x∗−(c) = x(c) in Figure 1, whereψ(x, c) intersects the 45o line. These
points are unstable because, for any open neighborhood U containing them, there ex-
ist points within U from which the trajectory moves away from the steady state. The
first is unstable for perturbations that move the state both to the right or left, while the
second is unstable for perturbations that move the state to the right. Starting from any
generic initial state x0 > x

∗−(c) different from x∗+(c), the equilibrium investment func-
tion pushes the state away from x∗+(c) and x(c), making them “invisible.” The unstable
steady state x∗+(c) is inevitable and present in any equilibrium; however, the second,
x(c), can be eliminated in almost all parametrizations with a minor adjustment to the
equilibrium construction. To see this, note that to prevent the state from diverging to
−∞ in (12) for x0 < x(c), we require the investment function to remain constant and
equal to ψ(x(c)), c) for states to the right of x(c), creating a kink that “touches” the 45◦
line from above (see, for instance, Figure 1). However, this is unnecessary for any c ∈ 𝒞∗∗,
where

𝒞∗∗ =
(︃

(3 −ϕ1 )(1 +ϕ1 )
4ϕ2

,
(4 −ϕ1 )(2 +ϕ1 )

4ϕ2

]︃
.

For c ∈ 𝒞∗∗, we have ψ(x, c) ∈ (x(c), x(c)] for any x ∈ (x(c), x(c)], so that we have
y∗(x, c) ∈ (x(c), x(c)] for all x ∈ ℝ if we define y∗(x, c) = max{ψ(x(c)) + ϵ, c), ψ(x, c)}
when x ≤ x(c), for some ϵ > 0 sufficiently small. Let x(c, ϵ) the point such that
ψ(x(c, ϵ), c) = ψ(x(c)) + ϵ. With this modification, the investment function is flat and
equal to ψ(x(c)) + ϵ for x≤ x(c, ϵ), and equal to (12) for x > x(c, ϵ); that is, it is just like
(12), but it is flattened at a marginally higher value for low values of x. The resulting in-
vestment function intersects the 45◦ line only at the unstable steady state x∗+(c): starting
from any x0 ∈ℝ, the state enters the set (x(c), x(c)] and never exits. It is straightforward
to verify that for sufficiently small ϵ (which indeed can be made arbitrarily small), the
modified investment function satisfies the feasibility constraints and remains a best re-
sponse, as proven in Proposition 1. While the change described above slightly compli-
cates the formula for y∗(x, c), restricting c to 𝒞∗∗ does not qualitatively alter the results,
as the equilibria generated with c ∈ 𝒞∗∗ are sufficient to produce stable cycles with more
than two periods and chaotic behavior.
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An upper bound on investment. In the preceding analysis, we assumed a lower bound
in investments so that y ≥ (1 − γ)x − l for γ ∈ (0, 1) and l > 0, but no upper bound.
Bounds on investments are implicit in the model because the marginal cost of large in-
vestments is increasing in x and diverges to −∞ as x→ ∞. The assumption of no ex-
plicit upper bound, however, clearly helps to simplify the presentation; we could have
instead assumed, for example, an upper bound y ≤ �1x + �2 for some �1 > 1 and
�2 > 0. In Figure 1, this would appear as a positively sloped line above the 45o line. For
�1, �2 sufficiently large, the constraint would not be binding, but it may be depending
on the parametrization of the model.

3.2 Characterization of the dynamics

Proposition 1 does not specify whether the equilibrium dynamics is cyclical, and if it
is cyclical, the period of the orbit. When the equilibrium orbit converges to a stable
cycle, the equilibrium is inefficient, but it is predictable since the orbit follows a well-
defined deterministic path. Unpredictability becomes a problem only when the orbit is
aperiodic and chaotic (as defined in Section 2). What kind of dynamics can we generate
as we vary c in the set 𝒞∗?

To address this question, it is useful to “rescale” (12) by an homeomorphism h.18 Let
us denote the composition of two functions by f ◦ g(·) = f (g(·)).

Definition 1. Let f : Z1 → Z1 and g : Z2 → Z2 be two maps, we say that f and g are
topologically conjugate if there exist a homeomorphism h : Z1 → Z2 such that h ◦ f =
g ◦ h.

It is important to establish whether two functions f and g are topologically conju-
gate, because topologically conjugate functions have the same dynamical properties.
We have that [f ]n = [h−1 ◦ g ◦ h]n = h−1 ◦ gn ◦ h, so if x is a fixed point of [f ]n, then h
must be a fixed point of [g]n, since we have [g]n ◦ h(·) = h ◦ [f ]n(·) = h(·). Indeed, the
function h gives a one-to-one correspondence between the periodic points of f and g.
Periodic and aperiodic orbits of f are mapped by h into qualitatively similar orbits of g.
Moreover, f is topologically chaotic (following Devaney (1989, Chapter 1.7)) and admits
an absolutely continuous ergodic distribution if and only if the same is true for g. We
can therefore study the properties of f by studying g.

An adequate rescaling of (11) by an homeomorphism simplifies the analysis of the
equilibria of Proposition 1 because it allows us to link equilibrium dynamics to the dy-
namics of the logistic function Lη : x→ ηx(1 − x), one of the few nonlinear functions
for which the dynamics has been extensively studied (see, for instance, Ulam and von
Neumann (1947), Ruelle (1977), Jakobson (1981)). Naturally, an equilibrium y∗(·, c) will
never be conjugate to the logistic Lη on the entire real line, since Lη is an unbounded
function while the equilibrium must satisfy the feasibility constraint y ≥ (1 − γ)x− l. To
characterize the equilibrium dynamics, however, it is sufficient to have conjugacy on a
superset of the support of the states reached in equilibrium. We have the following.

18A function between two topological spaces I and J, g : I → J, is said to be a homeomorphism if it is
one-to-one, onto, continuous, and its inverse g−1 is also continuous.
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Lemma 3. Assume R ≥ R∗(α) as defined in Proposition 1. For any η ∈ [3, 4], there is a
constant

c(η; ϕ1, ϕ2 ) = 1
ϕ2

[︁
(ϕ1/2)(1 −ϕ1/2) − (η/2)(1 −η/2)

]︁
(18)

such that the equilibrium investment function y∗(·, c(η; ϕ1, ϕ2 )) on X∗(c(η; ϕ1, ϕ2 )) is
topologically conjugate to Lη on [0, Lη(1/2)].

Proof. See Section A.3 in the Appendix.

Consider an equilibrium with constant c ∈ 𝒞∗. By Proposition 1, once the state x
enters X∗(c), it never exits. But what are the characteristics of the dynamic behavior
in this set? Lemma 3 allows to characterize its dynamics. It tells us that there is a con-
stant η= c−1(c; ϕ1, ϕ2 ) such that y∗(·, c) is conjugate inX∗(c) to Lη in [0, Lη(1/2)].19 It
follows that the dynamics of y∗(·, c) is qualitatively equivalent to the dynamics of Lη.

Perhaps more interestingly, Lemma 3 allows to construct equilibria with cycles of
various periods. Given any type of dynamics generated by Lη, we can find a constant
c = c(η; ϕ1, ϕ2 ) such that there is an equilibrium function y∗(·, c) having the same dy-
namics. It is well known that for values η ∈ [3, 1 + √

6], the logistic has a unique stable
cycle of period 2.20 We can therefore construct an equilibrium with a cycle of period 2 by
setting the constant c∗ in the equilibrium y∗(x, c∗ ) of Proposition 1 at c∗ = c(ˆ︁η; ϕ1, ϕ2 )
for any ˆ︁η ∈ [3, 1 + √

6]. For example, the equilibrium in the left panel of Figure 2 is con-
structed by setting c∗ in (11) equal to c(3.3; ϕ1, ϕ2 ).21 As η increases beyond 1 + √

6,
cycles of order 2m for anym≥ 1 emerge; and for η> 1 + 2

√
2 there are isolated values of

η for which cycles with period 3 appear.22 The equilibrium with a stable cycle of period
3 in Figure 2 is indeed constructed setting c∗ = c3 = c(3.839; ϕ1, ϕ2 ).23

In addition to stable cycles, the literature has also identified specific values of η in
[η∞ ≃ 3.5699, 4] for which Lη displays chaotic behavior, for example, η = 4 (see Ulam
and von Neumann (1947)); or the Ruelle’s constantη∗, which is approximately 3.6785735
(see Ruelle (1977)).24 Lemma 3 shows that both c(4; ϕ1, ϕ2 ) or c(η∗; ϕ1, ϕ2 ) are in 𝒞∗; we

19Note that c(η; ϕ1, ϕ2 ) is invertible in η ∈ [3, 4]. We denote here its inverse c−1(c; ϕ1, ϕ2 ) for c ∈ 𝒞∗.
20See Devaney (1989), among others.
21Specifically, to construct the left panel of Figure 2, we set the exogenous parameters of the model to

δ= 0.95, γ = 0.1, α= 0.8, x= 1, and β/K = 2, which imply ϕ1 = 22.876, ϕ2 = 10, and μ= 3.3. In this case,
we obtain c(3.3; ϕ1, ϕ2 ) = −11.832. The periodic points of the attracting 2-period cycle are x1 = 1.1372 and
x2 = 1.2504.

22The existence of stable cycles of order 3 is particularly important because by the Sarkovski theorem
they imply the existence of cycles of any order. This has sometimes been equated to the presence of chaos.
This is however not a completely legitimate interpretation. The logistic has a unique stable cycle and the
dynamics converges to it starting from all points in its support except from a subset of measure zero. The
additional cycles are unstable cycles that exist only for initial values in a set of measure zero. These cycles
are often referred to as “invisible” since for all practical purposes they are unobserved. The lower bound for
the existence of a cycle of period 3 has been proven to be 1 + 2

√
2 by, among others, Bechhoefer (1996).

23Specifically, to construct the right panel of Figure 2, we assume that the exogenous parameters of the
model (i.e., δ, γ, α, ˆ︁x, β, K) are such that ϕ1 = 22.876, ϕ2 = 10 (as in the left panel), and μ = 3.839. In
this case, we have c(3.839; ϕ1, ϕ2 ) = −11. 762. The periodic points of the attracting 3-period cycle are x1 =
1.0087, x2 = 1.1382, and x3 = 1.3181. Note that the critical point x∗ that maximizes ϕ(x, c(3.839; ϕ1, ϕ2 )) is
not a periodic point, since x∗ = 1.1435.

24Ruelle’s constant η∗ is the only real solution η∗ of (η∗ − 2)2(η∗ + 2) = 16.
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Figure 2. One economy, two equilibria with stable cycles of periodsm= 2 andm= 3. The solid
(black) line are the investment function y∗(x, c), the dashed (green) line are the iterated maps
[y∗]2(x, c) and [y∗]3(x, c) for respectively c(3.3; ϕ1, ϕ2 ) and c(3.839; ϕ1, ϕ2 ).

can therefore generate equilibria with the same qualitative properties by setting c = c4 =
c(4; ϕ1, ϕ2 ) or c = cη∗ = c(η∗; ϕ1, ϕ2 ). The top panel of Figure 3 presents the trajectories
of two chaotic equilibria with c equal to c(4; ϕ1, ϕ2 ) and c(η∗; ϕ1, ϕ2 ), respectively (the
parametrizations are always the same as in Figure 2).

The following result is an immediate implication of Proposition 1 and Lemma 3.

Proposition 2. Assume an economy with R≥R∗(α) as defined in (14):

• For every value m≥ 2, there is at least an equilibrium y∗(x, cm ) associated to a point
cm ∈ 𝒞∗ with a unique stable cycle of period at least m. The orbit of this equilibrium
is in [[y∗]2(x∗, cm ), y∗(x∗, cm )], and its periodic points belong to the set of fixed points
of [y∗]m(x, cm ), as defined in (12).

• For values c ∈ CD = (c(η∞; ϕ1, ϕ2 ), c(4; ϕ1, ϕ2 )] whereη∞ ≃ 3.5699, the equilibrium
y∗(·, c) has an invariant set in which the map is chaotic (topological chaos or ergodic)
on [[y∗]2(x∗, c), y∗(x∗, c)].

Proof. See Section A.4 in the Appendix.

Given Proposition 2, it is also natural to ask what the properties of the long term
distribution of states induced by iterations of y∗ are. A particularly important property
is whether the distribution is absolutely continuous, invariant, and ergodic.25

Definition 2. We say that a dynamical system displays ergodic chaos if there is an ab-
solutely continuous probability measure that is ergodic and invariant.

When we have ergodic chaos, the behavior of the dynamical system in the long
term can be described by a distribution function. Ulam and von Neumann (1947)

25A distribution μ is said to be invariant if y∗μ = μ, where y∗μ is the push forward measure y∗μ(A) =
μ(y−1(A)). A distribution is ergodic if limT→∞

∑︁T
k=1ϕ([y]k(x)) = ∫︁

ϕdμ for almost all x.
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have famously shown that L4 admits an ergodic distribution that can be character-
ized in closed form and is equal to the Arcsine distribution with density function:
λ : x→ π−1(x(1 − x))−1/2 (see Jakobson (1981)). While this is the only case (apart from
topological conjugacy) for which the ergodic distribution of the logistic has been char-
acterized in closed form (and one of the very few dynamical systems for which it can
be characterized), subsequent work has shown that there is a set of positive measure of
values of η such that Lη admits an ergodic distribution, one of which is Ruelle’s number
η∗ (see Jakobson (1981) and Benedicks and Carleson (1985)).

By Lemma 3, for each of these values, there is an equilibrium of the policy game
that qualitatively inherits the same properties. The equilibrium investment function
y∗(x, c4 ) in X∗(c) with c4 = c(4; ϕ1, ϕ2 ) has the same properties of the logistic function
L4 on [0, 1]. This implies that the distribution generated by the equilibrium correspon-
dent to c4 can be characterized in closed form, although now its “shape” depends on the
fundamentals of the economy. Define the following density μ(x; ω) onX∗(c4 ):

μ(x; ω) = 2R
π

⎛⎜⎝16(1 − α)2 −
⎛⎝2Rx−

⎡⎣2
δ

− (1 + α)(1 − γ)

+2R ·ˆ︁x
⎤⎦⎞⎠2

⎞⎟⎠
−1/2

, (19)

where ω = (R, α, δ, γ, ˆ︁x) is the vector of parameters characterizing the economy. We
have the following.

Proposition 3. Assume an economy with R≥ R∗(α). There is a subset of 𝒞E ⊂ 𝒞D with
positive measure such that the equilibria y∗(·, c) with c ∈ 𝒞E display ergodic chaos in
[[y∗]2(x∗, c), y∗(x∗, c)]. Among these equilibria, the equilibrium y∗(x, c4 ) admits the in-
variant distribution μ(x; ω) in [[y∗]2(x∗, c4 ), y∗(x∗, c4 )] defined in (19).

Proof. See Section A.5 in the Appendix.

As it can be seen from Figure 3, the density associated to μ(x; ω) does not look like
the familiar unimodal densities, such as the normal: it has modal values at the extremes,
instead than in the interior of its support.26 This occurs because y∗(·, c4 ) is topologically
conjugate onX∗(c) toL4(·) on [0, 1], and the ergodic distribution generated byL4 is the
Arcsine law, which has model values at the extremes, and thus looks like a “U .” It should
however be noted that the Arcsine law naturally emerges in simple examples. It can be
proven that the proportion of time that the one-dimensional Wiener process is positive
follows an Arcsine distribution (see Theorem 2 in Feller (1950)), which perhaps suggests
that extreme realizations should be less surprising than they are generally expected to
be. A nice feature of this example is that despite the equilibrium being chaotic, we can
derive a precise relationship between the fundamentals of the model and the ergodic
distribution of the state in equilibrium.

26Figure 3 has the same parametrization as Figure 2, except that c(4; ϕ1, ϕ2 ) is used to construct the solid
trajectory in the top panel and the darker ergodic density in the bottom panel, and c(η∗; ϕ1, ϕ2 ) is used for
the dashed trajectory in the top panel and the lighter density in the bottom panel.
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It is important to note that, if we take the investment function y∗(x, c∗ ) = ϕ1 −ϕ2x+
c∗ as an exogenous function of x (i.e., with fixed, exogenous parameters ϕ = (ϕ1, ϕ2 )
and c∗), the existence of the ergodic distribution generated by its dynamics would not
be a robust phenomenon, since the set of parameters c∗ for which y∗(x, c∗ ) converges
to a stable cycle is open and dense in [c(1; ϕ1, ϕ2 ), c(4; ϕ1, ϕ2 )].27 For any y∗(x, c∗ )
that displays ergodic chaos, we have an arbitrarily close investment function that does
not. The cases in which the investment function is exogenous are a relevant bench-
mark since in the literature the investment function is either assumed as exogenous,
or derived in simple models with a unique equilibrium, in which case the function
is determined by the parametrization of the environment (i.e., the parameters corre-
sponding to ϕ1, ϕ2).28 The key observation here is that the existence of the equilib-
rium with chaos is a robust phenomenon. Proposition 2 shows that if we perturb to
the economy (ϕ1, ϕ2 ) to a nearby economy (˜︁ϕ1, ˜︁ϕ2), then there is a “nearby” equi-
librium y∗(x, ˜︁c) = ˜︁ϕ1 − ˜︁ϕ2x+ c(c−1(c∗; ϕ1, ϕ2 ); ˜︁ϕ1, ˜︁ϕ2 ) that generates chaotic behavior
(here c−1(·; ϕ1, ϕ2 ) is the inverse of c(·; ϕ1, ϕ2 )). The constant c in the equilibrium con-
struction is indeed an endogenous variable, not a parameter given by nature such as ϕ1,
ϕ2.29

We conclude this section discussing the geometric properties characterizing the in-
vestment functions y∗(·, c) for c ∈ 𝒞E , which generate ergodic chaos. First, note that all
equilibrium investment functions y∗(·, c) of Proposition 1, both with and without stable
cycles, qualitatively look like the hump shaped functions illustrated in Figure 2. While
there is no general characterization of necessary and sufficient conditions on the shape
of the investment function y to generate ergodic (or topological) chaos, there is a known
general sufficient condition that gives us insights on the geometric features of y that
are associated to chaotic behavior.30 Recall that x∗ is the critical point of y∗(·, c), i.e.,
the point that maximizes y∗(·, c); and x∗−(c) and x∗+(c) are the lower and higher fixed
points of y∗(·, c), respectively. For these investment functions, x∗ ∈ (x∗−(c), y∗(x∗, c)),
so the maximum y∗(x∗, c) is above the 45o line: for any initial x0 ∈ [x∗−(c), y∗(x∗, c)],
the state remains in [x∗−(c), y∗(x∗, c)] for all iterations. Moreover, we have no stable
steady state because the slope of y is larger in absolute value than one at x∗−(c) and x∗+(c)
(the two unstable steady states). Given this, there are three forces “pushing around” the
state. When the state is close to x∗+(c), it is repelled by it since [y∗]′(x∗+(c), c)<−1. The
state can move down below x∗+(c), or up above x∗+(c). If the state is pushed down to-
ward x∗−(c), then it is repelled again to a higher state, so the state must be eventually be
pushed up, above x∗+(c). In this case, however, it eventually reaches a point x < y∗(x∗, c)

27This follows from the fact that by Lemma 3 y∗(x, c(μ; ϕ1, ϕ2 )) for μ ∈ [1, 4] is topologically conjugated
to the logistic with parameter μ, and a fundamental theorem in Graczyk and Światek (1997) proving that
the logistic has an attracting cycle for an open and dense set of parameters μ in [1, 4].

28See, for instance, Day (1982) and Benhabib and Day (1982).
29To evaluate the comparative statics of the equilibrium dynamics with respect to the change of an ex-

ogenous variable, we therefore need a theory of how the players select an equilibrium after the change. A
reasonable hypothesis is that after marginal change in the environment, the players would select an equi-
librium that leads to similar behavior.

30The examples presented in Figure 3 satisfy this condition.
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Figure 3. Two equilibria with ergodic chaos existing for the same economy. The first equi-
librium is topologically conjugate to von Neumann and Ulam’s example, the second to Ruelle’s
example. The top panel shows the state trajectories, and the bottom panel shows the corre-
sponding ergodic distributions.

at which y∗(x, c)< x, so it will have to move down. These dynamics may induce the sys-

tem to converge to a cycle with periodic points in (x∗−(c), y∗(x∗, c)), as in Figure 2. It can

however be shown that under regularity conditions satisfied by the equilibria of Propo-

sition 1, a necessary condition for this to occur (and thus for the existence of a stable

cycle) is that the orbit originated from the critical point x∗ converges to a stable cycle

(see Theorem II.4.1 in Collet and Eckmann (1980)). It follows that whenever the orbit

starting from the critical point does not converge to a stable cycle, then a stable cycle

of any period does not exist. While this does not necessarily imply that we have ergodic

chaos, it is indeed the case with sufficient regularity as the equilibria of Proposition 1.31

31Ergodic chaos requires convergence of the ergodic distribution to an absolutely continuous distribu-
tion. A “geometric” sufficient condition is presented by Misiurewicz (1981); it requires that the orbit starting
from the critical point x∗ enters an unstable cycle. This condition is satisfied by both examples in Figure 3.
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3.3 On the interpretations of the model

In light of the characterizations of Proposition 1 and 2, it is useful to return on the inter-
pretation of the model. An advantage of its simplicity is that it easily lends itself to alter-
native interpretations, depending on the choice of its parametrization. Two interpreta-
tions stand out. In the first, x is a stock of investments that generates local effects and
global externalities. Examples of these investments include investments in highways,
airports, or power plants, which are typically at the center of political economic deci-
sions. Power plants have positive effects near their location since they provide cheaper
and more reliable electricity, but they may also generate positive or negative externali-
ties to other far away localities (because of, say, pollution). In this interpretation, we may
have a positive marginal impact on utility of x for low values, and negative for large val-
ues. In this interpretation, the strictly concave function x−e(·) is the instantaneous util-
ity for setting the state at x. This is a completely standard assumption in dynamic public
finance models (see, e.g., Battaglini and Coate (2007, 2008) and references therein).32

Under this interpretation, it is natural to assume ˆ︁x > 0. A superficial objection to this
interpretation is that the impact of the state enters the utility as a “−e(x),” so as a nega-
tive value. But this is conceptually irrelevant. We could have assumed that the impact of
x was, say, z1 + z2e(x) for z1 > 0, and the analysis would have been analogous. Adding
a constant z1 to the utility function does not really change the preferences in a qualita-
tive way. The feature that is important for the analysis is the marginal effect of x on the
utility. The key assumption that we make is that the players utility is strictly concave in
x.33

An alternative appealing interpretation of the model is that x is just a stock of pol-
lution. In this interpretation, it would be appropriate to assume e′(x) > 0 for all x ∈ ℝ.
This interpretation is absolutely consistent with the model. For example, it is consis-
tent with the assumption of a quadratic cost function as (2) with ˆ︁x = 0 when the state
variable is only positive (so that e′(x) > 0 for all x ∈ ℝ). Examples of this situation can
be easily illustrated. Assume α = 0.9, δ = 0.9, β/K = 0.1, ˆ︁x = 0, and some γ ∈ (0, 1)
and l > 0. Suppose, for example, we choose c so that we have 2-period cycle. De-
spite having e′(x) > 0, we have ϕ1 = 5.1222, ϕ2 = 1 and c = c(3.3, ϕ1, ϕ2 ) = −2.9256,
so,ψ(x, c) = 5.1222 ·x−x2 −2.9256, which is a hump shaped function with an attractive
2-period cycle with periods x1 = 3.629 and x2 = 2.4932. IfR>R(α), Proposition 1 shows
that we can construct an equilibrium investment function y∗(·, c) that has a unique sta-
ble cycle with periods x1 = 3.629 and x2 = 2.4932. Another assumption that would be
completely consistent with the assumption of x as pollution is the assumption of an
exponential cost function e(x) =ϑ1 · exp(x−ϑ2 ) for some ϑ1, ϑ2 > 0, discussed in Ex-
ample 1 below. Looking at (10), we can see that it is not necessary for the results that

32In Battaglini and Coate (2008), choosing an investment xt at t generates an investment cost xt −
(1 − γ)xt−1 at t, and a concave utility u(xt ) at t + 1. This implies that at t the instantaneous utility of
an investment xt is xt + δu(xt ), plus a constant. This corresponds to the model presented here in which
e(xt ) = −δu(xt ).

33Naturally, the specific thresholds characterized in Proposition 1 depend on the functional form in (2),
but as we discuss in Section 3.1 they can be generalized to a general class of convex and smooth function
e(x).
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e(·) has minimum (as, say, in (2) when ˆ︁x > 0): to obtain cycles and chaos, we really need
ψ(·, c), not e(·), to be “hump shaped” as in the figures. For this property, the assump-
tion that e(x) has a minimum at ˆ︁x (and so that −e(x) has a maximum) is not necessary.
Since the first term of ψ(x, c) (i.e., ϕ1 · x) has always positive derivative, ψ(·, c) is hump-
shaped even if the “cost function” e(·) is always increasing (which is consistent with the
interpretation of the state as pure pollution).

4. The effect of time inconsistency

4.1 Time inconsistency and the “size” of the chaotic region

In the model of Sections 2–4, the degree of time inconsistency impressed on the econ-
omy by the decision process plays a particularly important role in determining “how
much” chaos we can observe in equilibrium. Time inconsistency consists in the dis-
crepancy between objective function maximized by the incumbent selecting the policy
(i.e., (4)), and the expected continuation value function at t before the incumbent at t+1
is determined (i.e., (7)). In the planner’s problem, there is no difference between these
two functions. By comparing (4) and (7), we can see that in the political game, instead,
the functions differ by

− (1 − α)K
2

[︁
y(x) − (1 − γ)x

]︁
.

The parameter α ∈ (−∞, 1] captures time inconsistency: as α→ 1, time inconsistence
converges to zero; as we reduce α, time inconsistency is increased.34 In this limit case
as α→ 1, v′(x) is independent of y ′(x) and the equilibrium qualitatively looks like the
planner’s problem. Ignoring the feasibility constraint, the incumbent’s optimal policy is

ynt =ˆ︁x+ K

2β
· (︁1/δ− (1 − γ)

)︁
,

and so the equilibrium policy is ynt(x) = max{ynt , (1 − γ)x− l}. This simple dynamical
system has a unique steady state ynt that differs from the planner’s steady state x∗∗ only
because it is lower. The effect of α on the “degree of chaos” in the equilibria constructed
in the previous sections can be seen from its effect on the size of the chaotic region
𝒦α(c) = ∥y∗(x∗, c) − [y∗]2(x∗, c)∥, i.e., the difference between the maximal and minimal
values assumed by the state in the chaotic region. While this region depends on the
specific equilibrium (and so on c), it is always the case that it is contained inX∗(c) and,
as it is easy to verify, we have ∥X∗(c)∥ ≤ 4(1 −α)K/β. It follows that 𝒦α(c) → 0 as α→ 1.
It is therefore the case that, as α→ 1 we can still have chaos, but the size of the set in
which the state can “wander around” collapses to zero.

Time inconsistency is an important factor to allow complex dynamics in generic en-
vironments because it is the reason why we have multiplicity of equilibria in the model.
When α= 1, (8) shows that the marginal impact of x in equilibrium depends only on the

34When α = 1, the effect of private expenditure is the same on the constituencies of the party in power
and of the other party. The equilibrium policy is still not the utilitarian policy because the incumbent does
not internalize the negative externality of x; but it is time consistent.
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fundamentals of the model (just as in the planner’s case): we cannot have multiple equi-
libria in this case, since investment is uniquely defined by exogenous marginal cost and
benefits. It is only when α < 1 that the marginal impact of x on the policy maker’s util-
ity also depends on the expected policy y(·) adopted by future policy makers: different
policy can therefore be self-generated by the expectations that they generate. Thanks to
the multiplicity of equilibria, for any parametrization such that R > R∗(α), we can find
a c ∈ CD (i.e., an equilibrium) such that complex dynamics occurs.

4.2 Alternative economic models with time inconsistency

In the previous analysis, we have assumed a stylized dynamic political economy model
in which two parties alternate in power. In this section, we show that the logic behind
the type of equilibria with cycles and chaotic behavior studied above applies to an en-
vironment in which there is a single decision maker with hyperbolic discounting (this
continues to be a strategic environment in which the players are the different selves of
the agent). In the working paper (Battaglini (2023)), I also illustrate how the analysis
can be applied to dynamic multi-agent problems with free riding, and to cases in which
policies are decided in a process of noncooperative bargaining as in Battaglini and Coate
(2007, 2008) and Battaglini (2011).

In the case of a single decision maker with β-δ preferences as in Phelps and Pollak
(1968) and Laibson (1997), the policy solves:35

max
y≥(1−γ)x−l

{︁
K

[︁
y − (1 − γ)x

]︁ − e(x) +βδv(y )
}︁

, (20)

where the only difference with (4) is that there is an additional term, the hyperbolic dis-
count factor β < 1. The decision maker plays a game against his/her future selves. The
expected continuation value v(·) must satisfy v(x) =K(y(x)−(1−γ)x)−e(x)+δv(y(x)),
where y(x) is the expected future policy and β does not appear. This expression can be
written as:

v(x) = max
y≥(1−γ)x−l

{︁
K

[︁
y − (1 − γ)x

]︁ − e(x) +βδv(y )
}︁ + (1 −β)δv

(︁
y(x)

)︁
. (21)

Condition (20) and (21) correspond to conditions (4) and (7) presented above. The sec-
ond term in (21), (1 − β)δv(y(x)), is the time inconsistency gap, i.e., the difference be-
tween the decision-maker’s objective function and the expected value function. Because
of this additional term, the shape of the expected value function directly depends on the
expected future investment function y(·) as in (7). Differentiating (21) and using the
first-order necessary condition K/(βδ) = −v′(x) from (20), we obtain a condition anal-
ogous to (11) in the analysis of Section 3:

y(x, c) =
[︃

1 − (1 − γ)δβ
δ(1 −β)

]︃
· x− β

(1 −β)k
· e(x) + c.

35The parameter β was used in Sections 3 and 4 in the definition of e(x). We use it for the time prefer-
ences since this is the traditional notation for hyperbolic discounting and there is no risk of confusion since
e(·) can be assumed here to be a general convex function.
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5. General preferences

In the previous analysis, we made two simplifying assumptions on the functional form of
the utility function. In (1), we assumed a quadratic cost function e(·) and, more impor-
tantly, quasilinear preferences. We discuss and relax these assumptions in this section.

5.1 A sufficient condition for chaos with a general e(·)
The assumption of a quadratic e(·) allows us to provide a tractable solution for ψ(·, c)
in (11) and an exhaustive characterization of the possible equilibrium dynamics. Dis-
pensing this assumption, however, does not qualitatively change the analysis. As shown
in (10), the differential equation (9) does not require a quadratic functional form to be
solved and, for a generic convex and differentiable e(·), it generates a nonmonotonic,
hump shaped investment function �(x, c), a feature that is key to obtain cycles and
complex dynamics (see Figure 2 for an illustration). Whether such an investment func-
tion generates an attracting cycle or a chaotic trajectory depends on the shape of e(·).36

To generalize the analysis, we only need a mild strengthening of the assumptions on e(·).

Assumption 1. The function �(x, c) defined in (10) is strictly concave and thrice con-
tinuously differentiable with negative Schwarzian derivative with respect to x.

Many common functions have negative Schwarzian derivative including, for in-
stance, any polynomial of degree larger than or equal to 2 with real valued critical points
(and thus the quadratic used in Section 4) and the exponential function.37 Note that the
specific value of c is irrelevant for Assumption 1, so it is just an assumption on the exoge-
nous function a1x− a2e(x), where e(x) is exogenous and a1 and a2 are the coefficients
in (10), defined by the parameters of the model. Let x∗ be the critical point of �(·, c)
and define �2,3(c) = [�]3(x∗, c) − [�]2(x∗, c). This is the gap between the third and the
second iteration starting from the critical point x∗ (i.e., the point at which the maximum
is attained), which is an easily computed function of c given (10). We have the following.

Proposition 4. Assume that �(x, c) satisfies Assumption 1 and there is a c such that
�2,3(c) < 0, then there exists a c∗ such that �(x, c∗ ) defined in (10) is topologically con-
jugate to L4(·), and thus displays ergodic chaos on [[�]2(x∗, c∗ ),�(x∗, c∗ )].

Proof. See Section A.6 in the Appendix.

Given Assumption 1, the requirement in Proposition 4 that there exists a c such that
�2,3(c)< 0 is easy to satisfy, for example, it is always satisfied when e(·) is quadratic; and
it is always satisfied if [2/δ− (1 + α)(1 − γ)]/(1 − α) > 1 when e(·) is exponential. The
following example illustrates Proposition 4 with an exponential cost function.

36Li and Yorke (1975) have shown that, if continuous in x, a dynamical system y(x) has cycles of any
order in a set X if there is a x′ ∈ X such that [y]3(x′ ) < x′ < y(x′ ) < [y]2(x′ ). Li and Yorke’s condition is
relatively easy to verify, but it does not generally guarantee that the region in which �(x, c) is chaotic (the
scrambling set) has positive measure, leaving open the possibility that the chaotic region is reached only
from a measure zero set of states.

37For a definition of the Schwarzian derivative, see Collet and Eckmann (1980, Section II.4).
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Example 1. Assume that α = .8, δ = .95, γ = .5, l = .5, K = 2, but e(x) = 5 exp(x− 10).
Using (10), it is easy to verify that for c = 5.8,�2,3(c) = −300.99< 0. The value c∗ is found
solving �2,3(c∗ ) = 0, which gives us c∗ = 15.692453. We thus have �(x, c) = 6.0263(x−
10) − 5 exp(x− 10) + 15.692453. It is easy to verify that this function has a critical point
at x∗ = 10.18670, it is S-unimodal and chaotic in [9.4301, 10.7912]. ◊

The requirement in Proposition 4 that there exists a c such that �2,3(c) < 0 is nec-
essary for the existence of a c such that �(·, c) is topologically conjugate to L4(·), and
it is not always satisfiable. For example, when e(·) is exponential, if the parameters are
such that [2/δ− (1 +α)(1 − γ)]/(1 −α) = 1/2 and 2/[K(1 −α)] = 1, then�(·, c) satisfies
Assumption 1, but we have �2,3(c)> 0 for all c: indeed, in this case,�(·, c) has a unique
fixed point for all c, so it is never topologically conjugate to L4(·).

Proposition 4 is a simple application of the equilibrium construction in Proposi-
tion 1 leading to (10), and of a theorem by Misiurewicz (1981). Misiurewicz’s theorem
proves that if a dynamical system y is S-unimodal and such that the iterates [y]n(x∗ )
of the critical point x∗ converge to an unstable cycle, then y has exactly one absolutely
continuous invariant measure.38 Proposition 4 shows a condition under which at least
a solution of (10) satisfies this property.

Clearly, the condition requiring [y]n(x∗ ) to enter an unstable cycle as n → ∞ is a
knife-edge condition. Proposition 4 however allows to construct equilibria with ergodic
chaos that exist for generic parametrizations because c is endogenous: it can generically
be selected to make sure that there is an n and a c∗ such that [�]n(x∗, c∗ ) enters an unsta-
ble cycle (in the construction of Proposition 4, an unstable steady state corresponding to
the lowest fixed point of�(x, c)). This is the key contribution of our paper. Note that the
condition in Proposition 4 is only sufficient and indeed it can be easily extended using
the same logic if we are willing to check conditions on higher iterates of�(x, c).39

5.2 Other preferences

Relaxing the assumption of quasilinear preferences has a more interesting impact on
the analysis because, although the logic remains the same, it requires a generalization
of the equilibrium construction. We discuss this point in the reminder of this section.
Consider the more general utility functions described in Section 2 and define for conve-
nience: u(y, x) = ui,i(y − (1 − γ)x, x), and φ(y, x) = ui,j(y − (1 −γ)x, x) for i and j ≠ i to
be respectively the citizens’ utilities when their party is in office, and when their party is
out of office. To study this environment it is useful to move beyond the special case of
Markov equilibria and define a slightly more general strategy function y(z, x) with one
period memory, depending on the current state z and the precedent state x. The strategy
defined in the previous section can be seen as a special case of y(z, x).

38See Corollary 6 in Grandmont (1992) and Theorem II.8.3 and Corollary II.8.4 in Collet and Eckmann
(1980).

39The condition in Proposition 4 is indeed sufficient to have the second iterate enter the repelling steady
state x∗−(c). It is easy to verify that the second example in Figure 1 (the one constructed with Ruelle’s con-
stant) has the property that it is the third iterate to enters the repelling steady state x∗+(c).
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The problem of the incumbent at t − 1 in state xt−1 = x is to find a state z that solves

max
z≥(1−γ)x−l

{︁
u(z, x) + δv(z, x)

}︁
. (22)

where v(z, x) is the expected value function evaluated at t when the state chosen at t
is xt = z, and the state at t − 1 was xt−1 = x (the state xt−2 is irrelevant for the set of
solutions of (22), so it can be ignored for the discussion here). As in Section 3.1, v(z, x)
can be written as

v(z, x) = 1
2
u
(︁
y(z, x), z

)︁ + 1
2
φ

(︁
y(z, x), z

)︁ + δv(︁y(z, x), z
)︁

= u
(︁
y(z, x), z

)︁ + δv(︁y(z, x), z
)︁ −�(︁

y(z, x), z
)︁

(23)

where we define �(y(z, x), z) = (1/2)[u(y(z, x), z) − φ(y(z, x), z)]. Assuming (without
loss of generality) differentiability, the envelope theorem allows us to differentiate the
value function with respect to the first argument, z:

v1(z, x) = u2
(︁
y(z, x), z

)︁ −�1
(︁
y(z, x), z

)︁
y1(z, x) −�2

(︁
y(z, x), z

)︁ + δv2
(︁
y(z, x), z

)︁
(24)

where vq, uq, and �q for q = 1, 2 are the derivatives with respect to the qth arguments
of v, u, and �. This condition still depends on the value function, through its derivative
with respect to the second term. Using (23) again, we can see that this derivative in a
state s, z can be written as

v2(s, z) = [︁
u1

(︁
y(s, z), s

)︁ + δv1
(︁
y(s, z), s

)︁]︁
y2(s, z) −�1

(︁
y(s, z), s

)︁ · y2(s, z)

= −�1
(︁
y(s, z), s

)︁ · y2(s, z)

where in the last equality we again apply the envelope theorem. Combining the equa-
tion above with (24), and using the first-order necessary condition from (22), we obtain

−u1(z, x)
δ

= u2
(︁
y(z, x), z

)︁ −�1
(︁
y(z, x), z

)︁
y1(z, x) −�2

(︁
y(z, x), z

)︁
− δ�1

(︁
y
(︁
y(z, x), z

)︁
, y(z, x)

)︁ · y2
(︁
y(z, x), z

)︁
(25)

Condition (25) and the function y(z, x) that satisfies it play the same role as condi-
tion (9) and �(·, c) studied in Section 3.1. The key difference is that while (9) defines
a simple differential equation, now the functional equation (25) defines a significantly
more complex partial differential equation (PDE). The reason for this is intuitive. As the
policy maker in x selects z at t − 1, a marginal change in z affects the future in two ways.
First, it affects the policy y(z, x) chosen at t, which is a function of z as in Section 3. The
policy change at t affects the expected value function at t because the envelope theo-
rem does not fully apply given that the problem is time inconsistent. But now we have
a novel second effect. A marginal change of the policy z at t − 1 also affects the way in
which the policy maker at t + 1 reacts to the policy maker at t, i.e., for any choice y(z, x)
made at t, now a marginal change in z induces a policy change at t + 1 by y2(y(z, x), z).
Once again, part of this effect is “neutralized” by the envelope theorem applied at t + 1,
but part of it remains through the marginal effect on �(y(y(z, x), z), y(z, x)).



270 Marco Battaglini Theoretical Economics 21 (2026)

The second effect described above is present because we have assumed a strategy
y(z, x) with one period memory. Condition (25) makes it clear why it is necessary to
consider a strategy y(z, x) with one period memory. When u(z, x) is quasilinear as in
the previous sections, u1(z, x) is independent of x. It follows that the right-hand side of
(25) is also independent of x, implying that the equilibrium strategy satisfying (25) must
be only a function of z. In the general case, however, u1(z, x) is a function of x, implying
that we need to allow y(z, x) to be a function of x as well to satisfy (25). The reason is
that y(z, x) is designed to make the policy maker in state x indifferent with respect to z:
if the marginal utility of a change in z at t − 1 depends on x, then future policy makers
must adjust accordingly.

The functional equation (25) combines elements of a PDE, since it is a function of
the partial derivatives y1(z, x) and y2(y(z, x), z); and elements of a difference equation,
since the partial derivatives are evaluated at states xt−1 = x, xt = z, and states xt = z,
xt+1 = y(z, x). Because of this, (25) does not allow to have a simple analytical charac-
terization, except for the quasilinear case studied in the previous section (which can be
seen as just a special case of ((25))). The analysis of the previous section helps because
it gives us a closed-form solution in the limit case with quasilinear utilities that can be
used to compute numerical solutions. A numerical study of (25) with examples of cycles
and aperiodic behavior is presented in the working paper (Battaglini (2023)).

6. Conclusions

We have studied a simple dynamic game in which in every period a politically moti-
vated decision maker selects a policy that affects a state variable strategically linking
policy-making periods. Because of political turnover, the preference of the policy maker
may change over time, causing the decision process to be time inconsistent. We ask the
question: under what conditions can such a simple model generate cycles and complex,
unpredictable dynamics? Complex dynamics are impossible when policies are selected
by a benevolent, time-consistent policy maker. In the presence of time inconsistency
generated by the political process, however, simple sufficient conditions guarantee the
existence of equilibria with cycles of any order and even chaos for generic economies.
The degree of instability and unpredictability depends on the degree of time inconsis-
tency: as time inconsistency converges to zero, chaotic equilibria continue to exist, but
the size of the region containing the chaotic or cycling trajectories vanishes.

A limitation of our results is that the chaotic behavior we characterize is not typical of
all equilibria of our dynamic economy, but instead of the specific class of equilibria that
we have characterized. Still, they show simple yet realistic environments in which pre-
dicting dynamic public policies is impossible in the sense that there are always chaotic
equilibria that make it impossible. The problem is not that there are multiple equilib-
ria, but that once we know the equilibrium, the dynamics are effectively unpredictable,
even without random shocks to the system. Equilibria with complex dynamics, more-
over, highlight a new source of inefficiency generated in political equilibria that has no
correspondent in standard planner’s problems: the instability of policies even in the
absence of external shock.
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Appendix

A.1 Proof of Lemma 1

For any real number c satisfying c ≥ (3−ϕ1 )(1+ϕ1 )/(4ϕ2 ), define, as in Section 3, x∗−(c),
x∗+(c) to be, respectively, the lowest and the largest fixed points of ψ(x, c). We have

x∗−(c) = ϕ1 − 1 −
√︂

(ϕ1 − 1)2 + 4ϕ2c

2ϕ2
, x∗+(c) = ϕ1 − 1 +

√︂
(ϕ1 − 1)2 + 4ϕ2c

2ϕ2
.

We proceed in four steps.

Step 1. We first prove that for c ∈ 𝒞∗, then [ψ]2(ϕ1/(2ϕ2 ), c) ≥ x(c), where [ψ]k(x, c)
is the kth iteration of ψ, [ψ]k(x, c) = ψ(ψk−1(x, c), c). A sufficient condition for
[ψ]2(ϕ1/(2ϕ2 ), c) ≥ x(c) is

ϕ1 −
√︂
ϕ2

1 + 4ϕ2
(︁
c − x(c)

)︁
2ϕ2

≤ ϕ2
1

4ϕ2
+ c ≤

ϕ1 +
√︂
ϕ2

1 + 4ϕ2
(︁
c − x(c)

)︁
2ϕ2

. (26)

Note that c ≥ (3 −ϕ1 )(1 +ϕ1 )/(4ϕ2 ) implies ϕ2
1/(4ϕ2 ) +k≥ ϕ1/(2ϕ2 ). It follows that the

first inequality in (26) is always satisfied. So, we need

ϕ2
1

4ϕ2
+ c −

ϕ1 +
√︂
ϕ2

1 + 4ϕ2
(︁
c − x(c)

)︁
2ϕ2

≤ 0. (27)

We now show that this condition is satisfied for any c ∈ 𝒞∗. To this goal, we proceed by
induction.

Step 1.1. Given c ≥ (3 −ϕ1 )(1 +ϕ1 )/(4ϕ2 ) = c0, we have

x(c) = ϕ1 − 1 −
√︂

(ϕ1 − 1)2 + 4ϕ2c

2ϕ2
≤

(︃
ϕ1 − 3

2ϕ2

)︃
.

So, [ψ]2(ϕ1/(2ϕ2 ), c) ≥ x(c), if

ϕ2
1

4ϕ2
+ c ≤

ϕ1 +
√︄
ϕ2

1 + 4ϕ2

(︃
c− ϕ1 − 3

2ϕ2

)︃
2ϕ2

. (28)

After a change in variable, (28) can be written as ξ2 − 2ξ− 6 ≤ 0, where

ξ=
√︂
ϕ2

1 + 4ϕ2
(︁
c − (ϕ1 − 3)/2ϕ2

)︁
.

It follows that we need
√︂
ϕ2

1 + 4ϕ2(c − (ϕ1 − 3)/2ϕ2 ) ≤ 1 + √
7, or c ≤ [3 + 2

√
7 − (ϕ1 −

1)2]/(4ϕ2 ). We therefore conclude that [ψ]2( ϕ1
2ϕ2

, c) ≥ x(c) is satisfied for any

c ∈
[︃

(3 −ϕ1 )(1 +ϕ1 )
4ϕ2

,
3 + 2

√
7 − (ϕ1 − 1)2

4ϕ2

]︃
,

which gives us a nonempty set.
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Step 1.2. We now prove that if [ψ]2(ϕ1/(2ϕ2 ), c) ≥ x(c) in for any c ∈ [(3 − ϕ1 )(1 +
ϕ1 )/(4ϕ2 ), cn] for some cn < (4 − ϕ1 )(2 + ϕ1 )/(4ϕ2 ), then we can find a cn+1 > cn such
that the property [ψ]2(ϕ1/2ϕ2, c) ≥ x(c) is satisfied in c ∈ [(3 −ϕ1 )(1 +ϕ1 )/(4ϕ2 ), cn+1].
From the previous step, we know that this property is true for c1 = (3 + 2

√
7 − (ϕ1 −

1)2 )/4ϕ2. Let us assume we have proven it up to some cn ∈ [(3 + 2
√

7 − (ϕ1 −
1)2 )/(4ϕ2 ), (4 −ϕ1 )(2 +ϕ1 )/(4ϕ2 )). Note that if c ≥ cn, then we have

x(c) ≤ ϕ1 − 1 −
√︂

(ϕ1 − 1)2 + 4ϕ2cn

2ϕ2
= ϕ1 − 2 − Sn

2ϕ2
,

where Sn = 1 − √︁
(ϕ1 − 1)2 + 4ϕ2cn is the slope of ψ(x, cn ) at its largest fixed-point xn+.

Note that (27) is implied by

ϕ2
1 + 4ϕ2

(︃
c− ϕ1 − 2 + Sn

2ϕ2

)︃
− 2(2 − Sn ) − 2

√︄
ϕ2

1 + 4ϕ2

(︃
c − ϕ1 − 2 + Sn

2ϕ2

)︃
≤ 0.

After a change in variable, this condition can be written as ξ2 − 2ξ − 2(2 − Sn ) ≤ 0, so

ξ≤ 1 + √
1 + 2(2 − Sn ), where ξ=

√︂
ϕ2

1 + 4ϕ2(c − (ϕ1 − 2 + Sn )/(2ϕ2 )). So, we need√︄
ϕ2

1 + 4ϕ2

(︃
c− ϕ1 − 2 + Sn

2ϕ2

)︃
≤ 1 +

√︁
1 + 2(2 − Sn )

⇔ c ≤
3 + 2

√︃
3 + 2

√︂
(ϕ1 − 1)2 + 4ϕ2cn − (ϕ1 − 1)2

4ϕ2
= cn+1.

We have the result if cn+1 > cn. For this, we need 3 + 2
√︂

3 + 2
√︁

(ϕ1 − 1)2 + 4ϕ2cn − (ϕ1 −
1)2 > 4ϕ2cn. It is easy to see that this inequality is satisfied for 4ϕ2cn + (ϕ1 − 1)2 ≤ 9,
or cn < (4 − ϕ1 )(2 + ϕ1 )/(4ϕ2 ), which is always satisfied since we are assuming it in the
induction step.

Step 1.3. The sequence cn is bounded above by (4−ϕ1 )(2+ϕ1 )/(4ϕ2 ), thus it converges
to c∞ = (4 −ϕ1 )(2 +ϕ1 )/(4ϕ2 ). Since [ψ]2(ϕ1/(2ϕ2 ), c) is continuous in c, we have that
[ψ]2(ϕ1/(2ϕ2 ), c) ≥ x(c) for any c ∈ [(3−ϕ1 )(1+ϕ1 )/(4ϕ2 ), (4−ϕ1 )(2+ϕ1 )/(4ϕ2 )], thus
proving the result.

Step 2. We now prove that ψ(x, c) ∈ X∗(c) for any x in X∗(c) and c satisfying c ∈
𝒞∗. To see this, first note that for any x ∈ X∗(c), we have ψ(x, c) ≤ maxz ψ(z, c) =
ψ(ϕ1/(2ϕ2 ), c) = x(c), where the equality follows from the fact that ψ(z, c) achieves a
maximum at ϕ1/(2ϕ2 ), and the second equality from the definition of x(c). Then note
that for any x ∈X∗(c),

ψ(x, c) ≥ min
z∈{x(c),x(c)}

ψ(z, c) ≥ min
{︁
ψ

(︁
x(c), c

)︁
, x(c)

}︁ ≥ x(c), (29)

where the first inequality follows from the concavity of ψ(·, c) in X∗(c), and the second
from ψ(x(c), c) = x(c), and the last inequality from ψ(x(c), c) = [y]2(ϕ1/(2ϕ2 ), c) ≥ x(c)
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when c satisfies c ∈ 𝒞∗. We conclude thatψ(x, c) ∈X∗(c) for any x inX∗(c). It can also be
verified that for any initial condition x0, the state eventually enters inX∗(c) in at most a
finite number of steps.

Step 3. We finally show that for any c ∈ 𝒞∗, ψ(·, c) does not admit a stable steady
state. Note that ψ(x, c) = x at the points x∗−(c) and x∗+(c). We have that for c ∈ 𝒞∗:

[ψ]′(x∗+(c), c) = 1 − √︁
(ϕ1−1)2 + 4ϕ2c <−1 and [ψ]′(x∗−(c), c) = 1 + √︁

(ϕ1−1)2 + 4ϕ2c >

1: so, neither x∗−(c) nor x∗+(c) are attracting steady states.

A.2 Proof of Lemma 2

Assume R ≥ R∗(α), where R∗(α) is defined in (14). We show here that then y∗(x, c) is
feasible for all x. Define x−

l (c), x+
l (c) the points at which ψ(x, c) intersects (1 − γ)x− l,

that is,

x−
l (c) = ϕ1 − (1 − γ) −

√︂(︁
ϕ1 − (1 − γ)

)︁2 + 4ϕ2(c + l)
2ϕ2

,

x+
l (c) = ϕ1 − (1 − γ) +

√︂(︁
ϕ1 − (1 − γ)

)︁2 + 4ϕ2(c + l)
2ϕ2

.

It is immediate to verify that ψ(x, c) ≥ (1 − γ)x− l for x ∈ [x−
l (c), x+

l (c)]. To prove fea-
sibility, we can therefore focus on states x < x−

l (c) and x > x+
l (c). Consider the case of

states x > x−
l (c) first. We can write:

x−
l (c) − x(c) = 1

2ϕ2

[︁
γ+

√︂
(ϕ1 − 1)2 + 4ϕ2c−

√︂(︁
ϕ1 − (1 − γ)

)︁2 + 4ϕ2(c + l)]︁. (30)

For feasibility, we need to have x−
l (c) − x(c) ≤ 0. Note that

(ϕ1 − 1)2 + 4ϕ2c ≤ (︁
ϕ1 − (1 − γ)

)︁2 + 4ϕ2(c + l) ⇔ γ2 + 2γ(ϕ1 − 1) + 4ϕ2l ≥ 0. (31)

Assume first that (31) is satisfied. In this case, the square parenthesis in (30) is increasing
in c and x−

l (c) − x(c) can be bounded above inserting the upper bound of 𝒞∗:

x−
l (c) − x(c) ≤ 1

2ϕ2

[︁
γ+

√︂
(ϕ1 − 1)2 + 9 − (ϕ1 − 1)2

−
√︂(︁
ϕ1 − (1 − γ)

)︁2 + 4ϕ2l+ 9 − (ϕ1 − 1)2
]︁

= 1
2ϕ2

[︁
γ+ 3 −

√︂
9 + γ2 + 2γ(ϕ1 − 1) + 4ϕ2l

]︁
.

So, we have x−
l (c) − x(c) ≤ 0 if ϕ1 ≥ 4 − 2ϕ2l/γ. Consider now the case: γ2 + 2γ(ϕ1 −

1) + 4ϕ2l < 0. Now x−
l (c) − x(c) can be bounded above inserting the lower bound
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of 𝒞∗:

x−
l (c) − x(c) ≤ 1

2ϕ2

[︁
γ+

√︂
(ϕ1 − 1)2 + 4 − (ϕ1 − 1)2

−
√︂(︁
ϕ1 − (1 − γ)

)︁2 + 4ϕ2l+ 4 − (ϕ1 − 1)2
]︁

= 1
2ϕ2

[︁
γ+ 2 −

√︂
4 + γ2 + 2γ(ϕ1 − 1) + 4ϕ2l

]︁
.

So, we have x−
l (c) − x(c) ≤ 0 if ϕ1 ≥ 3 − 2ϕ2l/γ. It follows that a sufficient condition is

that ϕ1 ≥ 4 − 2ϕ2l/γ = ϕ∗
11.

Consider now states x > x+
l (c). We can write

x+
l (c) − x(c) = 1

4ϕ2

[︁
2ϕ1 − 2(1 − γ) + 2

√︂(︁
ϕ1 − (1 − γ)

)︁2 + 4ϕ2(c + l) − (︁
ϕ2

1 + 4ϕ2c
)︁]︁

.

For feasibility, we need x+
l (c)(ϕ1 ) − x(c) ≥ 0. The right-hand side is concave in c, so it is

minimized at one of the extremes. If the minimum is at the lower bound, we have

x+
l (c) − x(c) = 1

4ϕ2

[︁
2ϕ1 − 2(1 − γ) + 2

√︂(︁
ϕ1 − (1 − γ)

)︁2 + 4ϕ2(c + l) − (︁
ϕ2

1 + 4ϕ2c
)︁]︁

≥ 1
4ϕ2

[︁−5 + 2γ+ 2
√︂
γ2 + 2(ϕ1 − 1)γ+ 4 + 4ϕ2l

]︁
.

It follows that x+
l (c)−x(c) ≥ 0 ifϕ1 ≥ 3

8γ [3−4γ]−2ϕ2l/γ. If the minimum is at the upper
bound, we have

x+
l (c) − x(c) ≥ 1

4ϕ2

[︁−10 + 2γ+ 2
√︂
γ2 + 2(ϕ1 − 1)γ+ 9 + 4ϕ2l

]︁
,

which can be written as ϕ1≥[8 − 4γ]/γ − 2ϕ2l/γ. Therefore, a sufficient condition for
x+
l (c)−x(c) ≥ 0 is thatϕ1 ≥ [8−4γ]/γ−2ϕ2l/γ = ϕ∗

12. Note thatϕ∗
12 −ϕ∗

11 = 8(1/γ−1)>
0. We conclude that y∗(x, c) is feasible if ϕ1 ≥ ϕ∗

12. The condition can be written as

1
1 − α

[︃
2
δ

− (1 + α)(1 − γ) + 2β
K

ˆ︁x]︃ ≥ 1
γ

[8 − 4γ] − 2
l

γ
· β

(1 − α)K
(32)

Since γˆ︁x≥ 0 and l > 0, we have that γˆ︁x+ l ≥ 0 and we can rewrite (32) as

R= β

K
≥ 4δ(1 − α)(2 − γ) + δ(1 + α)(1 − γ)γ− 2γ

2δ(ˆ︁xγ+ l) =R∗(α). (33)

It follows that ψ(x, c) ≥ (1 − γ)x− l for x ∈ [x(c), x(c)] if R ≥ R∗(α). Moreover, y∗(x, c)
obviously satisfies the constraint y ≥ (1 − γ)x− l for x > x(c). Finally, we have that (1 −
γ)x− l ≤ (1 − γ)x(c) − l ≤ψ(x(c), c) = y∗(x, c) in x < x(c).

To prove that, for any initial condition x0, the state xt enters X∗(α) in finite time,
note that y∗(x, c) = max{ψ(x(c), c), (1 − γ)x − l} for x ≥ x(c) where ψ(x(c), c) < x(c).
It follows that for any x ≥ x(c) there is a k ∈ [1, ∞) such that [y∗]k(x, c) ≤ x(c). Since
y∗(x, c) = x(c) for x ≤ x(c), it follows that for any x ∈ ℝ there is a k ∈ [1, ∞) such that
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[y∗]k(x, c) ∈X∗(c). To see that y∗(x, c) admits no attracting steady state, note that the
only possible candidates are x∗−(c) and x∗+(c). By Lemma 1, the the derivative at x∗+(c) is
strictly lower than −1 and right derivative at x∗−(c) is strictly larger than 1.

A.3 Proof of Lemma 3

We proceed in three steps.

Step 1. We first observe that yc(·) =ψ(·, c), as defined in (11), is conjugate toQk = x2 +
k for k= (ϕ1/2)(1 −ϕ1/2) −ϕ2c by the homeomorphism ξ : x→ ϕ1/2 −ϕ2x. To see this,
note that ξ ◦ yc(x) = ϕ1/2 +ϕ2

2x
2 −ϕ1ϕ2x− cϕ2 and, moreover,

Qk ◦ ξ(x) = [ϕ1/2 −ϕ2x]2 + (ϕ1/2)(1 −ϕ1/2) −ϕ2c

= ϕ1/2 +ϕ2
2x

2 −ϕ2(ϕ1x+ c) = ξ ◦ yc(x).

So, we have Qk ◦ ξ = ξ ◦ yc . Similarly, we can show that Lη is conjugate to Qk with k =
η/2(1 −η/2) by the homeomorphism hη = −ηx+η/2.

Step 2. Let us now define c(η; ϕ1, ϕ2 ) such that η/2(1 −η/2) = (ϕ1/2)(1 −ϕ1/2) −ϕ2 ·
c(η; ϕ1, ϕ2 ), that is,

c(η; ϕ1, ϕ2 ) = 1
ϕ2

[︁
(ϕ1/2)(1 −ϕ1/2) −η/2(1 −η/2)

]︁
.

We can then write

Lη = h−1
η ◦Qη/2(1−η/2) ◦ hη = h−1

η ◦ [︁
ξ ◦ yc(η;ϕ1,ϕ2 ) ◦ ξ−1]︁ ◦ hη

= [︁
h−1
η ◦ ξ]︁ ◦ yc(η;ϕ1,ϕ2 ) ◦ [︁

ξ−1 ◦ hη
]︁ = [︁

ξ−1 ◦ hη
]︁−1 ◦ yc(η;ϕ1,ϕ2 ) ◦ [︁

ξ−1 ◦ hη
]︁

= z−1
η ◦ yc(η;ϕ1,ϕ2 ) ◦ zη ⇔ zη ◦Lη = yc(η;ϕ1,ϕ2 ) ◦ zη

where zη = ξ−1 ◦hη. This implies thatLη is topologically conjugate toψ(x, c(η; ϕ1, ϕ2 ))
through the homeomorphism zη.

Step 3. From Proposition 1, y∗(x, c(η; ϕ1, ϕ2 )) is a self-map inX∗(c(η; ϕ1, ϕ2 )) and an
equilibrium if c(η; ϕ1, ϕ2 ) ∈ C∗ as defined in (13). We have

1
ϕ2

[︁
(ϕ1/2)(1 −ϕ1/2) −η/2(1 −η/2)

]︁ ≥ 4 − (ϕ1 − 1)2

4ϕ2
⇔ η/2(1 −η/2) ≤ −3

4
.

Moreover, we need

1
ϕ2

[︁
(ϕ1/2)(1 −ϕ1/2) −η/2(1 −η/2)

]︁ ≤ 9 − (ϕ1 − 1)2

4ϕ2
⇔ η/2(1 −η/2) ≥ −2.

We can therefore construct an equilibrium that is conjugate toLη if −2 ≤ η/2(1−η/2) ≤
−3/4. We conclude that for 3 ≤ η≤ 4, y∗(x, c(η; ϕ1, ϕ2 )) inX∗(c(η; ϕ1, ϕ2 )) is topologi-
cally conjugate to Lη(·) in [0, Lη(1/2)].
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A.4 Proof of Proposition 2

The result follows from the argument in the text. For the existence of values ηk in [3, 4]
such that Lηk has a stable cycle of period k or displays topological chaos, see Devaney
(1989).

A.5 Proof of Proposition 3

The fact that we have a set of positive measures of values in 𝒞∗ such that an equilibrium
with ergodic distribution exists follows from Lemma 3 and the discussion in Section 3.
We proceed to the characterization of the ergodic distribution for c = c(4; ϕ1, ϕ2 ). Let μ
be the measure that is invariant under L4, so that μ = L4∗μ. It is well known that μ is
the Arcsine law μ(x) = 1/(π

√
x(1 − x)) (see, e.g., Jakobson (1981)). Let us define the so

called “push forward” measure z4∗μ by z4∗μ(X ) := μ(z−1
4 (X )) for any set X ⊂ ℝ, where

z4 is the homeomorphism such that y∗ ◦ z4 = z4 ◦ L4, defined in the proof of Lemma 3.
We have:

z4∗μ= z4∗[L4∗μ] = (z4 ◦L4 )∗μ= (︁
y∗ ◦ z4

)︁
∗μ= (︁

y∗)︁
∗(z4∗μ),

where in the second and fourth equalities we use the definition of the push forward
measure, and in the third the fact that y∗ ◦ z4 = z4 ◦L4. So. we have (y∗ )∗(z4∗μ) = z4∗μ.
To find z4∗μ, note that z4 = (ϕ1 − 4)/(2ϕ2 ) + (4/ϕ2 )x, so x= ϕ2z4/4 − (ϕ1 − 4)/8. Using
the Perron–Frobenius operator, it follows that:

μ∗(x, α, R) = 1

π
√︁
x(1 − x)

⃓⃓
z′

4(x)
⃓⃓ = b(α, R)

4π ·
√︄(︃

ϕ2

4
x− ϕ1 − 4

8

)︃(︃
1 − ϕ2

4
x+ ϕ1 − 4

8

)︃
= 2R

π(1 − α) ·
√︄

16 −
(︃

2R

(1 − α)
x− 1

1 − α
[︃

2
δ

− (1 + α)(1 − γ) + 2Rˆ︁x]︃)︃2
,

which gives us (19) in the statement of Proposition 3.

A.6 Proof of Proposition 4

Given Assumption 1, the function �(x, c) defined in (10) is strictly concave and thrice
continuously differentiable with negative Schwarzian derivative in [[�]2(x∗, c),�(x∗, c)]
for any c, where x∗ is the critical point of �(x, c). Define ˜︁c the point such that
�(x∗; ˜︁c) = x∗. If we select c′ >˜︁c sufficiently close to ˜︁c, then x∗+(c), the fixed point on the
right of x∗, is an attractive steady state and [�]3(x∗, c′ )−[�]2(x∗, c′ )> 0. By assumption,
moreover, there is a c′′ such that [�]3(x∗, c′′ ) − [�]2(x∗, c′′ )< 0. It follows that, by conti-
nuity, there must be a c∗ ∈ [c′, c′′] such that [�]2(x∗, c∗ ) = [�]3(x∗, c∗ ), and necessarily it
must be that �(x∗, c∗ )> x∗. This implies that �(x, c∗ ) satisfies assumptions S1–S3, S4”
and S5 of Corollary 6 in Grandmont (1992); and it is such that, starting from x∗, the state
enters a repelling steady state at the second iteration. We conclude from Corollary 6 in
Grandmont (1992) that �(x, c∗ ) has a unique absolutely continuous invariant ergodic



Theoretical Economics 21 (2026) Chaos with Time Inconsistent Policy Makers 277

measure in [[�]2(x∗, c∗ ),�(x∗, c∗ )]. Moreover,�(·, c∗ ) has the same kneading sequence
(the itinerary starting from �(x∗, c∗ )) as L4(x), so �(·, c∗ ) on [[�]2(x∗, c∗ ),�(x∗, c∗ )]
is topologically conjugate to L4(·) on [0, 1] by Theorem II.6.1.A in Collet and Eckmann
(1980).
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