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A Bayesian game is said to have nested information if the players are ordered and
each player knows the types of all players that follow her in that order. We prove
that all multiplayer Bayesian games with finite action spaces, bounded payoffs,
Polish type spaces, and nested information admit a Bayesian equilibrium.
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1. Introduction

Although models of incomplete information are abundant in economic modeling, gen-
eral results on the existence of equilibrium are hard to come by. In particular, while
often it is natural to model the possible rewards and beliefs of agents using a continuum
of possibilities, there are relatively few general existence results at our disposal, and they
use fairly restrictive assumptions on the players’ information. In this paper, we exam-
ine games under a naturally arising information structure, namely, nested information,
where the players can be ordered according to the amount of information they possess,
from the most knowledgeable to the least knowledgeable.

Harsanyi (1967) laid the foundation of games of incomplete information, also known
as Bayesian games, which have greatly influenced the development of game theory. In
that model, each agent has a type, which includes her belief about payoffs, others’ beliefs
about the payoffs, others’ beliefs about others’ beliefs about the payoffs, and so forth.
There is a prior over the possible type profiles that may occur. Each agent is informed
of her own type and must choose her policy as a function of it. Payoffs are a function of
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types and actions, and agents try to maximize their expected payoffs, given the strategies
of the others, leading to the notion of Bayesian equilibrium, the natural generalization
of Nash equilibrium to the incomplete-information setup.

While games in which agents may have only finitely many types pose no difficulty
for equilibrium existence, when there is a continuum of types, the situation becomes
much thornier. These are standards frameworks in economic modeling, as it is natural
and convenient to allow, e.g., prices, quantities, and profits, to assume any value (within
some range). However, the use of a continuum of types makes it extremely difficult to
show that Bayesian equilibrium must exist.

One of the very few general existence results is Milgrom and Weber (1985), who as-
sumed that the prior belief of the agents is either independent across types or at least
absolutely continuous with respect to some independent prior (i.e., absolutely contin-
uous with respect to the product of the marginals). It remained for some time an open
question as to whether, failing this condition, equilibria could fail to exist. Simon (2003)
showed that this was indeed the case by constructing an example of a Bayesian game
with a continuum of types and no Bayesian equilibrium. Hellman (2014) provided an
example of a two-player Bayesian game with finite action spaces and no Bayesian ε-
equilibrium for all ε > 0 sufficiently small; that is, for every strategy profile, a positive
probability of types of one of the players can profit more than ε by deviating. Simon and
Tomkowicz (2018, 2023) provided examples of, respectively, three-player and two-player
Bayesian games that do not admit a Harsanyi ε-equilibrium for ε > 0 sufficiently small;
that is, for every strategy profile, at least one player can profit more than ε by deviating
at the ex ante stage game.

The information structure we examine in this paper is that of nested information;
that is, the players can be ordered from most knowledgeable to least knowledgeable.
The most knowledgeable player (say, player 1) knows everything player 2 knows (and
possibly more), player 2 knows everything player 3 knows (and possibly more), etc. Such
structures have been modeled in hierarchical organization paradigms, financial market
games, persuasion models, and others; we recall some of these works and more below.
Such games generally do not satisfy the absolute continuity condition of Milgrom and
Weber (1985). For instance, if there are three agents, two of whom are informed of a value
v in some range [v, v] that distributes continuously while the third is not, the possible
type profiles distribute continuously along a diagonal and do not satisfy the absolute
continuity condition.

In this work, we study these games when players have finitely many actions at their
disposal. Our main result shows that in such games, Bayesian equilibria do exist, thereby
exhibiting an additional class of incomplete information games possessing equilibria.
(A discussion on models with a continuum of actions appears in Section 7.1.) Our proof
introduces two new tools to the study of Bayesian games, which may prove useful also
for other classes of games as well as other questions on Bayesian games.

The first tool, used for establishing existence of Bayesian ε-equilibrium, is a finite
approximation of the belief hierarchy. As is well known, the players’ belief about the
payoffs, the others’ beliefs, the others’ beliefs about the others beliefs, and so forth, form
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an infinite hierarchy. When information is nested, as we will elaborate below, this infi-
nite hierarchy is determined by the first n orders of the ladder, where n is the number
of players. This finiteness of the relevant levels will allow us to construct a finite ap-
proximation of the space of infinite hierarchies that is sufficient for our purpose: We will
define an approximating Bayesian game whose finite type spaces are induced by this fi-
nite approximation and show that a Bayesian equilibrium of this game, which exists by
Harsanyi (1967), yields a Bayesian ε-equilibrium of the original game.

The second tool, used for establishing existence of Bayesian equilibrium, is the
measurable “measurable choice” theorem of Mertens (1987), a tool that had previously
been used in the study of stochastic games, but is novel in its application to Bayesian
games.1 To construct a Bayesian equilibrium, we would like to take a limit of Bayesian
ε-equilibria as ε goes to 0. However, it is well known that in the limit, correlation may
be introduced; see Stinchcombe (2011). Conceptually, we construct the equilibrium
among the accumulation points of a sequence of Bayesian 1

n -equilibria, step by step,
starting from the least knowledgeable player, and for each player we need to use a purifi-
cation result to guarantee appropriate consistency with the selections already chosen.
Not only is the purification done repeatedly, but it needs to be done a continuum-many
times at each stage, all in a measurable fashion; this is precisely where the measurable
“measurable choice” theorem comes into play.

Structure of the paper The paper is organized as follows. Section 2 discusses related
literature on Bayesian games and on nested information structures. Section 3 presents
the model and the main result. Section 4 gives heuristic overviews of the proofs. Dis-
cussion and open problems appear in Section 5. The proof of the main result appears in
Section 6. Section 7 presents two extensions of the main result.

2. Literature on Bayesian equilibrium and on nested information

Bayesian equilibria Since Bayesian (and even Harsanyi) ε-equilibria need not exist in
Bayesian games, it is important to find sufficient conditions on the parameters of the
game that ensure they exist. A large literature expanded the sufficient conditions iden-
tified by Harsanyi (1967) and Milgrom and Weber (1985).

Stinchcombe and White (1992) proved that when all players share the same infor-
mation or when there are two players and information is nested, a Harsanyi equilib-
rium exists. Ui (2016) proved the existence and uniqueness of Bayesian equilibrium
in Bayesian games where the payoff function is continuously differentiable on the ac-
tion space for each vector of types and its gradient satisfies certain conditions. Hellman
and Levy (2017, 2019) studied Bayesian games with purely atomic types; they showed
that a Bayesian equilibrium exists when the common knowledge relation is smooth,
namely, the common knowledge classes are level sets of a Borel function. Moreover,
for any common knowledge relation that is not smooth, there exists a type space that
yields this common knowledge relation and payoff functions such that the resulting

1An application of the measurable “measurable choice” theorem to a one-sender–many-receivers game
can be found in Zeng (2023).
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Bayesian game does not have a Bayesian ε-equilibrium, provided ε is sufficiently small.
Carbonell-Nicolau and McLean (2018) extended the result of Milgrom and Weber (1985)
to Bayesian games with general action sets by requiring that the payoff functions are
upper semi-continuous and satisfy a condition related to Reny’s uniform payoff security
(Reny (1999)). Olszewski and Siegel (2023) simplified the application of Reny”s (1999)
better-reply security to Bayesian games where players’ types are independent and used
this condition to prove the existence of Harsanyi equilibria for classes of games in which
payoff discontinuities arise only at “ties.”

Several papers provided sufficient conditions that guarantee the existence of a pure
Bayesian equilibrium; see, e.g., Radner and Rosenthal (1982), Vives (1990), Khan and Sun
(1999), Reny (2011), and Barelli and Duggan (2015). While Radner and Rosenthal (1982)
assumed the players’ types are independent, and Barelli and Duggan (2015) made the
more general assumption of Milgrom and Weber (1985) regarding the absolute continu-
ity of the joint distribution of types, the other works do not make these assumptions.
Existence of equilibria in Bayesian games with infinitely many players was studied by,
e.g., Kim and Yannelis (1997), Balbus, Dziewulski, Reffett, and Woźny (2015), and Yang
(2022).

It is interesting to note that Bayesian games with nested information can be recast as
regular projective games (see Myerson and Reny (2020), Section 9). It follows from The-
orem 9.3 in Myerson and Reny (2020) that for every ε > 0, Bayesian games with nested
information admit a Bayesian ε-equilibrium under proper technical conditions, which
include the continuity of the payoff function over the type space and the fact that the
type distribution has a continuous density function. Our paper strengthens Myerson
and Reny (2020) by (i) proving the result for ε= 0 and (ii) weakening the conditions re-
quired to derive the existence result (while requiring that the set of actions is finite rather
than general) by dropping the requirement that the prior has a density with respect to a
product distribution on types, which would not be satisfied in many nested information
structures of interest.

Nested information Nested information arises naturally in strictly hierarchical organi-
zations, where higher-level managers have more information than lower-level managers
and workers. For example, Taneva and Mathevet (2022) considered a game where these
information structures arise endogenously. In their case, before the agents simultane-
ously take their payoff-relevant action, there is cheap-talk communication between the
players following the strict order prescribed by the hierarchy; that is, each agent sends
messages to the agent immediately below her. It can be shown that regardless of the ex-
act information transmitted, the information structure endogenously generated in the
cheap-talk stage will be nested.

Nested information also arises naturally in situations where players obtain or are
exposed to different levels of information. For example, managers of firms are more
informed about the firm’s financial situation than large investors, who in turn are more
informed than small investors. Experiments on financial market games where investors
can predict future dividends or the future value of a certain stock for different spans of
time have been reported by, e.g., Toth, Scalas, Huber, and Kirchler (2007) and Huber,
Kirchler, and Sutter (2008).
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Another model with nested information is when players are divided into two sub-
sets: those who obtain symmetric information about the state of the world and those
who are completely ignorant about it. For example, Debo, Parlour, and Rajan (2012) and
Kremer and Debo (2016) study service system that can provide service in various quali-
ties. Customers have two possible types: some know the service quality, while the others
are not exposed to this information. Additional literature on service systems with similar
features can be found in Hassin (2016).

A more general information structure is considered in Wu, Amin, and Ozdaglar
(2021), who study a routing model where the players are divided into groups and the
players in each group obtain the same information on the state of nature. When the
number of groups is 2 and the players in one of the groups obtain no information or
when the signals that the groups share are nested, this model exhibits nested informa-
tion as well.

Finally, nested information arises in two-player models, where one player is more
informed than the other, like dynamic games with asymmetric information (e.g., Au-
mann and Maschler (1968, 1995), Cardaliaguet and Rainer (2012), Grün (2013), De An-
gelis, Merkulov, and Palczewski (2022), and Jacobovic (2022)) and Bayesian persuasion
models (e.g., Kamenica and Gentzkow (2011) and Kamenica (2019)).

3. The model and main result

Notations Let 𝒩 = {1, 2, � � � , n} with n finite. Whenever (Xi )i∈𝒩 is a collection of
sets, we denote their Cartesian product by X ≡ ∏︁

i∈𝒩 Xi; for j ∈ 𝒩 , we denote X−j ≡∏︁
i∈𝒩 \{j}Xi. For any 1 ≤ j1 ≤ j2 ≤ n, denote [j1 : j2] ≡ {j1, j1 + 1, j1 + 2, � � � , j2} and

Xj1:j2 ≡ ∏︁j2
i=j1 Xi. A product of measurable spaces will always be considered a mea-

surable space with the product σ-field. Whenever x = (xi )i∈𝒩 is a vector and j ∈ 𝒩 ,
we set x−j ≡ (xi )i∈𝒩 \{j}, and for any 1 ≤ j1 ≤ j2 ≤ n, we set xj1:j2 ≡ (xj1 , xj1+1, � � � , xj2 ).
When (Ui )ni=1 are real-valued functions, we denote by Uj1:j2 the vector-valued function
(Uj1 , Uj1+1, � � � ,Uj2 ).

For every measurable set X , we denote by �(X ) the set of probability distributions
on X . We consider �(X ) as a topological space, e.g., by endowing it with some metric
like the total variation metric or the Prokhorov metric. When X and Y are two random
variables, we say that Y is determined by X if there exists a measurable function κ(·)
such that κ(X ) = Y with probability 1.

Definition 1 (Bayesian Game). A Bayesian game � consists of:

• A finite set of players 𝒩 ≡ {1, 2, � � � , n} for some n≥ 2.

• For each i ∈ 𝒩 , a Polish2 space 𝒯i.

• A common prior distribution ℙ on 𝒯 ≡ ∏︁
i∈𝒩 𝒯i.

• For each i ∈ 𝒩 , a finite set 𝒜i of actions. Recall that 𝒜 = ∏︁
i∈𝒩 𝒜i.

2Recall that a Polish space is a separable completely metrizable topological space; that is, a space home-
omorphic to a complete metric space that has a countable dense subset.



Theoretical Economics 21 (2026) Bayesian games with nested information 209

• For each i ∈ 𝒩 , a bounded and measurable payoff function Ri : 𝒯 × 𝒜 → ℝ. For
each i ∈ 𝒩 , we denote by Ri(a) : 𝒯 → ℝ the a-section of Ri for each a ∈ 𝒜 and by
Ri(t ) : 𝒜 → ℝ the t-section of Ri for each t ∈ 𝒯 . We also set R≡ (Ri )i∈𝒩 .

We will denote by t = (t1, t2, � � � , tn ) a random type profile, so that ti is the random
type of player i.

For every i ∈ 𝒩 , denote by 𝒳i ≡ �(𝒜i ) the set of mixed actions of player i. A (behav-
ior) strategy of player i is a measurable function si : 𝒯i → 𝒳i. This definition indicates
the interpretation of the type spaces: each player i ∈ 𝒩 knows her own type and is not
told the types of the other players. Denote by 𝒮i the set of strategies of player i, so that
𝒮 ≡ ∏︁

i∈𝒩 𝒮i is the set of all strategy profiles.
Every strategy profile s ∈ 𝒮 induces a probability distribution over 𝒯 × 𝒜, denoted

ℙs , which satisfies

ℙs(T ×B1 × · · · ×Bn ) =
∫︂
T

∏︂
i∈𝒩

si(ti )(Bi ) dℙ(t ) (1)

for every Borel set T ⊆ 𝒯 and every measurable sets Bi ⊆ 𝒜i for i ∈ 𝒩 . Denote by 𝔼s the
corresponding expectation operator. For every s ∈ 𝒮 , whenever the expectation of Ri
with respect to ℙs is well defined, player i’s expected payoff under the strategy profile s
is the real number

Ui(s) ≡ 𝔼s[Ri],

and her conditional payoff given her information is the random variable (determined by
ti)3

Ui(s|ti ) ≡ 𝔼s[Ri|ti].
The solution concept we will concentrate on in this paper is Bayesian ε-equilibrium.

Definition 2 (Bayesian ε-Equilibrium). Given ε ≥ 0, a strategy profile s∗ ∈ 𝒮 is a
Bayesian ε-equilibrium if for every player i ∈ 𝒩 and every strategy si ∈ 𝒮i,

Ui
(︁
si, s

∗
−i|ti

)︁ ≤Ui
(︁
s∗|ti

)︁ + ε, ℙ-a.s. (2)

Remark 1 (The Relation Between Bayesian and Harsanyi Equilibria). Given ε ≥ 0, a
strategy profile s∗ ∈ 𝒮 is a Harsanyi ε-equilibrium if for every player i ∈ 𝒩 and every
strategy si ∈ 𝒮i,

Ui
(︁
si, s

∗
−i

)︁ ≤Ui
(︁
s∗

)︁ + ε. (3)

Standard conditioning implies that every Bayesian ε-equilibrium is a Harsanyi ε-
equilibrium. When (𝒯 , ℬ(𝒯 ), ℙ) is complete, a Harsanyi 0-equilibrium is also a Bayesian
0-equilibrium. When ε > 0, a Harsanyi ε-equilibrium is not necessarily a Bayesian ε-
equilibrium. Indeed, modifying a Bayesian 0-equilibrium on a set of types of sufficiently

3Here, for simplicity, we abuse notation. Formally, Ui(s|ti ) is the conditional expectation of Ri given the
sigma-field ℬ(𝒯i ) × ∏︁

j≠i{𝒯j , ∅}.
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small measure arbitrarily will generically yield such an example. In fact, the example
provided by Hellman (2014) shows that when ε > 0 is sufficiently small, Harsanyi ε-
equilibria may exist while Bayesian ε-equilibria do not. See Hellman and Levy (2022) for
further discussion on this issue.

Harsanyi (1967) first presented the model of Bayesian games, and proved that when
all sets that define the game are finite, a Bayesian equilibrium exists. Milgrom and We-
ber (1985) studied Bayesian games with general type spaces and proved that a Harsanyi
equilibrium exists in distributional strategies when ℙ is absolutely continuous with re-
spect to the product of its marginals, that is, with respect to ℙ1 ⊗ℙ2 ⊗· · ·⊗ℙn, where ℙi is
defined by ℙi(Bi ) ≡ ℙ((

∏︁
j≠i 𝒯j )×Bi ) for every i ∈ 𝒩 and everyBi ∈ ℬ(𝒯i ).4 As mentioned

in the Introduction, Simon (2003) and Hellman (2014) (resp., Simon and Tomkowicz
(2018, 2023)) provided examples of Bayesian games with finite action spaces and no
Bayesian ε-equilibria (resp., no Harsanyi ε-equilibria) for ε > 0 sufficiently small. Ad-
ditional sufficient conditions on the parameters of the game that ensure the existence
of a 0-equilibrium have already been reviewed in the Introduction.

In this paper we concentrate on Bayesian games where the information of the play-
ers is nested.

Definition 3 (Nested Information). We say that the information of the players in a
Bayesian game is nested if ti+1 is determined by ti for every i = 1, 2, � � � , n− 1; that is, if
for each i < n, there is a mapping κi : 𝒯i → 𝒯i+1 such that5

ℙ
(︁
ti+1 = κi(ti ) for every 1 ≤ i < n)︁ = 1. (4)

Remark 2 (Players Possessing the Same Information). Note that the definition allows
for two or more players to possess the same information. Indeed, players i and i + 1
have the same information if the function κi in (4) is a bijection.

Remark 3 (ℙ-a.s. Versus Everywhere in (4)). Nested information requires that ti+1 =
κi(ti ), ℙ-a.s. and not everywhere. This distinction is irrelevant for our purposes. Indeed,
let ℚ be the measure on

∏︁
i∈I 𝒯i whose marginal on 𝒯1 coincides with that under ℙ, and

that is determined by its marginal on 𝒯1 and the functions κ1, � � � , κi−1. We then have
ℙ= ℚ.

4Milgrom and Weber (1985) include an assumption, denoted there (R1), which requires that for each
player i and each ε > 0, there is a subset E ⊆ 𝒯 such that the collection {Ri(t, ·)}t∈E is equicontinuous.
When actions sets are finite, as in our model, (R1) holds vacuously; indeed, any collection of functions on
a finite set is equicontinuous. In fact, that assumption holds vacuously under the more general model of
Milgrom and Weber (1985)—a model we discuss later in Section 7.1—allowing for compact action sets and
payoffs that are Borel, bounded, and continuous in actions for each fixed type profile. This observation
follows from Scorza–Dragoni type theorems (see, e.g., Kucia (1991, Theorem 1)), of which the following
classical version is a particular case: Let T , X , Y be Polish spaces, let μ be a Borel measure on T , and
let f : T ×X → Y be a Borel function such that for each fixed t ∈ T , f (t, ·) is continuous. Then there is a
compact set E ⊆ T such that f |E×X is (jointly) continuous.

5More generally, we could say that the information of the players is nested if the condition in Definition 3
holds after a permutation of the players.
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Remark 4 (Nested Information and Absolute Continuity of Information). We here show
that a Bayesian game with nested information may not satisfy the requirement of abso-
lute continuity of information structure, as studied by Milgrom and Weber (1985). In-
deed, suppose that 𝒯i = [0, 1] for each i ∈ 𝒩 and that ℙ is the uniform distribution on
the diagonal {t1 = t2 = · · · = tn}. The resulting measure

⨂︁n
i=1 ℙi is the Lebesgue measure

on [0, 1]n and, hence, ℙ is concentrated on a set of (
⨂︁n
i=1 ℙi )-measure 0. Therefore, this

information structure does not satisfy the absolute continuity condition of Milgrom and
Weber (1985), yet the players have nested information.

Since Bayesian games that satisfy absolute continuity of information structures do
not necessarily have nested information (see, e.g., Example 2 in Milgrom and Weber
(1985)), it follows that nested information is unrelated to absolute continuity of infor-
mation structure.

The main result of the present work is the following theorem.

Theorem 1 (Existence of 0-Equilibrium). Every Bayesian game with nested information
admits a Bayesian 0-equilibrium.

Remark 5 (Extensions of Theorem 1). Below we will discuss three extensions of Theo-
rem 1 to games with inconsistent beliefs (Section 5), compact action sets (Section 7.1),
and tree-like information structure (Section 7.2).

Remark 6 (Games With Two Players and Nested Information). Example 3.3 in Stinch-
combe and White (1992) implies that in the presence of two players who have nested
information (and concave payoffs in their actions), a Harsanyi 0-equilibrium exists. As
mentioned in Remark 1, when (𝒯 , ℬ(𝒯 ), ℙ) is complete, this implies the existence of a
Bayesian 0-equilibrium. Thus, Theorem 1 extends the result of Stinchcombe and White
(1992) to any number of players.

Remark 7 (Comparison With Levy (2024)). Levy (2024) examines Bayesian games in
which the type space can be partitioned into a collection, generally a continuum, of
components, such that each component is common knowledge and the game on each
component possesses an equilibrium. That paper introduces conditions under which
an equilibrium can be selected on each component in a measurable manner to induce
an equilibrium in the entire game. (That work generalizes Hellman and Levy (2017),
who established a similar result under the additional assumption that each common
knowledge component is countable.) In the framework of nested information, for every
t ′n ∈ 𝒯n, the set {t ∈ 𝒯 : tn = t ′n} is a common knowledge component, yet there is no result
that guarantees the existence of a Bayesian 0-equilibrium on each connected compo-
nent.

4. The driving force behind our proofs

This section gives a heuristic explanation of our methodology. The proof is divided into
two main parts: The first establishes the existence of ε-equilibria, while the second uses
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the measurable “measurable choice” theorem to construct an appropriate limit of ap-
proximate equilibria that constitute an exact equilibrium. As remarked earlier, we point
out that it is a well known problem that in games with a continuum of states, limits of
approximate equilibria do not, in general, naturally induce exact equilibria, as the lim-
iting process can induce correlation; for an elaboration on this point, see Stinchcombe
(2011).

Belief hierarchies In Bayesian games, to determine her action, on top of her own in-
formation on the players’ types, a player also needs to take into account the following
information:

- Her information on the information the other players have on the players’ types.

- Her information on the information each player i has on the information each
player j ≠ i has on the players’ types.

- Her information on the information each player i has on the information each
player j ≠ i has on the information each player k ≠ j has on the players’ types.

- And so forth

In general, the information encapsulated in higher levels cannot be deduced from the
information encapsulated in lower levels. This gives rise to an infinite belief hierarchy,
which typically depends on the players’ types.

The belief hierarchy of a player identifies the set of type profiles that should be taken
into account when determining the player’s action. In fact, the belief hierarchies of the
players divide the set of type profiles into disjoint subsets, called minimal belief sub-
spaces, such that the type profiles in each subspace are closed, in the sense that when
the actual type profile is in a given subspace, only type profiles in that subspace need
to be considered to determine the players’ actions in equilibrium. As shown by Simon
(2003), even if the game restricted to each of the minimal belief subspaces has an equi-
librium, the amalgamation of these equilibria need not be measurable.

When information is nested, the infinite belief hierarchy can be deduced from its
first n levels, where n is the number of players. Indeed, if, say, there are two players
and player 1 is more informed than player 2, then player 2’s infinite belief hierarchy
can be deduced from her own information on the players’ types and her information on
player 1’s information on the players’ types; and player 1’s infinite belief hierarchy can
be deduced from her own information on the players’ types, and player 2’s information
on the players’ types and on player 1’s information on the players’ types. For example,
the next level in the belief hierarchy of player 2 corresponds to player 2’s information on
player 1’s information on player 2’s information on the players’ types, which coincides
with player 2’s information on the players’ types. Similarly, the next level in the belief
hierarchy of player 1 corresponds to player 1’s information on player 2’s information on
player 1’s information on the players’ types, which coincides with player 2’s information
on player 1’s information on the players’ types. Thus, when information is nested, there
is no need to consider infinite belief hierarchies, and the game has a finite structure.
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ε-Equilibrium: Approximating belief hierarchies The observation made in the previous
paragraph leads us to define a finite approximation of the belief hierarchy when infor-
mation is nested, which is useful in proving the existence of a Bayesian ε-equilibrium.
Let us explain this approximation.

Assume that the action spaces are finite and suppose again that there are two play-
ers, where player 1 is more informed than player 2. When player 1 observes the type pro-
file realization t = (t1, t2 ), player 1 has a belief over the matrix game that is being played.
As at present the payoffs are bounded and we are interested in an ε-equilibrium, we can
assume that the collection ℛ of all possible matrix games is finite. Fixing δ > 0, we can
choose a δ-dense subset 𝒟1 of the set �(ℛ) of probability distributions over ℛ, and ap-
proximate player 1’s belief at t by the closest point in 𝒟1, denoted ϕ1(t ). We can then
consider the mapping ψ2 that assigns to each t the pair (ϕ1(t ), R(t )), namely, player 1’s
approximated belief at t and the payoff matrix at t, and consider the distribution of this
vector given t2, which is player 2’s information at t. Since the mapping ϕ1 takes only
finitely many values and since the number of possible payoff matrices is finite, the range
of ψ2 is finite dimensional and, hence, can be in turn δ-approximated by a mapping ϕ2

with finitely many values; the range of ϕ2 is a δ-dense subset 𝒟2 of �(𝒟1 ×ℛ). The map-
ping ϕ2 represents the approximated information player 2 has at t, on both the payoff
matrix and on player 1’s information on the payoff matrix. Finally, we say that player 1’s
approximated belief is composed by the pair (ϕ1, ϕ2 ), and player 2’s approximated belief
is composed solely of ϕ2.

Since the approximating information divides the state space into finitely many sets,
the resulting game admits a Bayesian 0-equilibrium. The properties of the approxima-
tion then imply that this Bayesian 0-equilibrium is a Bayesian ε-equilibrium, provided
δ is sufficiently small.

Correlation of limits To construct a Bayesian 0-equilibrium, we would like to consider
an accumulation point of a sequence of Bayesian 1

n -equilibria as n→ ∞. Unfortunately,
as mentioned above and discussed in Milgrom and Weber (1985) (see also Stinchcombe
(2011)), when the type space is general, a limit of strategy profiles may be a correlated
strategy profile. We will illustrate this issue using a variation of Example 2 of Milgrom
and Weber (1985).

There are three players, and the incomplete information concerns the value of a
state variable that is uniformly distributed in [0, 1]: Players 1 and 2 know the state, while
player 3 does not obtain any information on the state. Thus, the game exhibits nested
information. Formally, 𝒯1 = 𝒯2 = [0, 1], 𝒯3 is the singleton ∅, and ℙ(t1 = t2 ) = 1. Each
player has two actions, L and R, and the payoff function, which is independent of the
state, is given in Figure 1.

For every k ∈ ℕ, the following strategy profile sk is a Bayesian 0-equilibrium: Player 1
(resp., player 2) selects L for every t1 (resp., t2) such that the integer part of kt1 (resp.,
kt2) is odd, and R otherwise (i.e., the two players alternate their action according to the
kth Rademacher function); player 3 selects L.

The limits of the strategies (sk1 )k∈ℕ, (sk2 )k∈ℕ, and (sk3 )k∈ℕ in the weak-* topology on
L∞([0, 1], �({L, R})) are the strategies in which at every t1 (resp., t2), player 1 (resp.,
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Figure 1. A three-player game: Player 1 (resp., 2, 3) selects a row (resp, column, matrix).

player 2) selects [ 1
2 (L), 1

2 (R)] and player 3 selects L. However, this limit strategy profile
is not a Bayesian 0-equilibrium, since player 3 can profit by deviating to R.

The only reasonable limit of the profiles (sk )k∈ℕ is the correlated strategy that always
mixes between (L, L, L) and (R, R, L) with equal probabilities, which is their limit in the
weak-* topology on L∞([0, 1], �({L, R}3 )). This resulting correlation hints at the need
for purification tools.

We note that this difficulty is not helped by working with distribution strategies,
as in Milgrom and Weber (1985); the weak-∗ convergence on L∞([0, 1], �({L, R}))
(resp., L∞([0, 1], �({L, R}3 ))) is equivalent to the weak convergence of the measures
induced by the Lebesgue measure and these strategies (resp., profiles of strategies) on
[0, 1] × �({L, R}) (resp., [0, 1] × �({L, R}3 )). The difficulty runs much deeper, and re-
quires the use of properties of the information structure; in this case, the nested infor-
mation. Indeed, in Simon (2003), ε-equilibria exist for each ε > 0, but no exact equilibria
exist.6

Exact equilibrium: Using the measurable “measurable choice” theorem To overcome
the difficulty of correlations in the limit, we use iteratively an extension of Mertens’
(1987) measurable “measurable choice” theorem.

To illustrate the construction, consider first a three-player Bayesian game where, as
above, 𝒯1 = 𝒯2, 𝒯3 = {∅}, the prior ℙ is concentrated on the set {t1 = t2}, each player has
two actions,L andR, and the payoff function is bounded and measurable. In this frame-
work, equilibrium existence had been previously an open question.

Fix a sequence of approximate equilibria (sk )k∈ℕ, where sk is a Bayesian 1
k -equilib-

rium for every k ∈ ℕ. As described above, an accumulation point s∗ of (sk )k∈ℕ may fail
to be a Bayesian 0-equilibrium, because, e.g., the payoff U3(s∗1:2, L|∅) may differ from

liml→∞U3(skl1:2, L|∅), where (kl )l∈ℕ is some sequence such that s∗ = liml→∞ skl .
To avoid this problem, we need (kl )l∈ℕ to be such that not only does (skl3 (∅))l∈ℕ con-

verge, but so do the sequences (U3(skl1:2, L|∅))l∈ℕ and (U3(skl1:2, R|∅))l∈ℕ. Denote the cor-
responding limits by ρ3[L] and ρ3[R]. The selection of s∗1:2(t1 ) over t1 ∈ 𝒯1 is done among

the accumulation points of (skl1:2(t1 ))l∈ℕ so that, in the aggregate, U3(s∗1:2, a3|∅) = ρ3[a3]
for a3 ∈ {L, R}. The resulting selections together with s∗3 can be shown to be an equilib-
rium.

To be more precise, and of particular relevance as the examples become more com-
plex and we look toward a general technique, is that we do not actually fix a specific
subsequence of indices (kl )l∈ℕ; what we do is stipulate that in the latter stage, when we

6See Hellman and Levy (2022) for a thorough discussion on this issue.
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select among accumulation points of (sk1:2(t1 ))k∈ℕ, we only select among limits of subse-

quences whose indices (kl )l∈ℕ ensure not only the convergence skl3 (∅) → s∗3(∅), but also

the convergence U3(skl1:2, L|∅) → ρ3[L] and U3(skl1:2, R|∅) → ρ3[R]. There may be many
such subsequences (kl )l∈ℕ, and we do not select a particular one. Rather, we select the
limits we desire and make sure that future selections are consistent with these limits.

In the example above, for every t ∈ [0, 1], the set of accumulation points of (sk(t ))k∈ℕ
is {(L, L, L), (R, R, L)}, and any strategy profile s∗ in which, on a set T ⊆ [0, 1] of
Lebesgue measure 1

2 , both players 1 and 2 selectL on T c, they both selectR, and player 3
selects L, is a selection that satisfies our requirements.

Now, let us spice up the example. Suppose there are four players: Player 4 knows
nothing, player 3 knows something, and players 1 and 2 know everything. Formally,
𝒯1 = 𝒯2 and a.s. t1 = t2 (that is, κ1(t1 ) = t1), 𝒯3 is nontrivial (there is some κ2 : 𝒯2 → 𝒯3),
while 𝒯4 is a singleton ∅ (κ3(t3 ) = ∅). Again, assume players have two actions L and
R. We fix a sequence of strategy profiles (sk )k∈ℕ, where sk is a Bayesian 1

k -equilibrium.
Once again, starting with the least knowledgeable player, we select some accumulation
point of the triplet (sk4 (∅), U4(sk1:3, L|∅), U4(sk1:3, R|∅))k∈ℕ to (s∗4(∅), ρ4[L], ρ4[R]).

Move on to the second-least-informed player, player 3, who has partial knowledge.
We need to take care that the construction of s∗3 would leave open the door for construc-
tion of s∗1:2 with ρ4[L] = U4(s∗1:3, L|∅) and ρ4[R] = U4(s∗1:3, R|∅). To this end, for each
t3 ∈ 𝒯3, we choose an accumulation point that is consistent with the convergence we
have already established of the 9-tuple of sk3 (t3 ) and Uj(sk1:2, a3, a4|t3 ) for each j = 3, 4
and each a3, a4 ∈ {L, R}, where U4(·|t3 ) means U4(·|κ3(t3 )). That is, we keep track not
only of player 3’s strategy, but also of the expected payoffs to player 3 and player 4 for
each action profile of these players. Denote a chosen accumulation point of this 9-tuple
as s∗3(t3 ) and ρ3[j, a3, a4](t3 ) for j = 3, 4 and a3, a4 ∈ {L, R}. As in the previous example, it
is not sufficient to choose any accumulation points across different t3 ∈ 𝒯3; we must take
care that these accumulation points are chosen so that if player 4 imagines the setup in
which it is only her and player 3, and payoffs are given by ρ3, then her expected payoff
for an action a4 ∈ {L, R} when player 3 uses s∗3 is precisely ρ4[a4], i.e., for a4 ∈ {L, R},
ρ4[a4] = ∫︁

𝒯3
ρ3[4, s∗3(t3 ), a4]ℙ(dt3 ). This establishes a certain consistency between ρ4, ρ3,

and s∗3.
In the next step, consider players 1 and 2, who have full knowledge because

t3 = κ2(t1 ) and κ3(t3 ) = ∅. We need to choose for each t1 an accumulation point
of (sk1:2(t1 ))k∈ℕ that is consistent with previous selections for this particular κ2(t1 ),
i.e., along subsequences of indices that give the chosen accumulation points s∗4(∅),
s∗3(κ2(t1 )), and ρ3[j, a3, a4] of sk4 (∅), sk3 (κ2(t1 )), and Uj(sk1:2(t1 ), a3, a4|κ2(t1 )) for j = 3, 4
and a3, a4 ∈ {L, R}, respectively. Furthermore, we need that the selection is done across
all t1 ∈ 𝒯1 = 𝒯2, so that, for each t3 ∈ 𝒯 , the expected payoffs to player j = 3, 4 under
s∗1:2 for any pair of actions a3, a4 ∈ {L, R} they may play, Uj(s∗1:2, a3, a4|t3 ) agrees with
ρ3[j, a3, a4](t3 ). To do it for all t3 ∈ 𝒯3 in parallel in a measurable fashion, we appeal to
the measurable “measurable choice” theorem of Mertens (1987).

The proof in general is a formalization of the ideas above, although we note that we
go player by player, without “bunching together” players who have identical informa-
tion.
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5. Discussion

Our study raises several extensions and open problems, which we present in this section.

Inconsistent beliefs We assumed that all players share the same beliefℙ on 𝒯 . Our result
holds also when beliefs are inconsistent, namely, each player i ∈ 𝒩 holds a different
belief ℙi on 𝒯 . In this case, each player’s payoff is defined relative to ℙi (rather than
relative to ℙ). The condition of nested information, in this case, is as follows: for each
i < n, there is a mapping κi : 𝒯i → 𝒯i+1 such that

ℙj
(︁
ti+1 = κi(ti ) for every 1 ≤ i < n)︁ = 1 ∀j = 1, � � � , n. (5)

Equivalently, defining ℙ = 1
n

∑︁n
i=1 ℙi, it is the requirement that for each i < n, there is a

mapping κi : 𝒯i → 𝒯i+1 such that

ℙ
(︁
ti+1 = κi(ti ) for every 1 ≤ i < n)︁ = 1. (6)

To see why this extension holds, define an auxiliary Bayesian game �′ with type space
𝒯 , common prior ℙ, and payoffs (R′

i )i∈𝒩 given by R′
i(t, a) = dℙi

dℙ (t )Ri(t, a), where dℙi
dℙ is a

fixed Borel version of the Radon–Nikodym derivative. Given a profile of strategies s, the
expected payoff to player i in �′ is the same as the expected payoff of player i in �. Since
the Radon–Nikodym derivative is bounded (by n), (R′

i )i∈I are bounded. Theorem 1 guar-
antees the existence of a Bayesian 0-equilibrium in �′, which is a Bayesian 0-equilibrium
in �.

On the continuity of the payoff function in type One could ask whether the proof of
our result simplifies if we assume that payoffs depend continuously on types. We are
not aware of any method achieving such a simplification and we doubt that such an as-
sumption would simplify matters much at all. Indeed, consider the three-player exam-
ple presented in Section 4, in which two players know everything while the third knows
nothing. Even for this relatively simple case, existence of equilibrium had been an open
question. However, it is known (e.g., Kechris (1995, 13.11)) that given a Borel function on
a Polish space, the topology on the Polish space can be refined so that it remains Polish
but the function is now continuous. Hence, in this example, since the payoff functions
depend on a single type (and not a product), we could have assumed without loss of
generality that payoffs are continuous in the type.

Multistage Bayesian games We showed that nested information is a sufficient con-
dition for the existence of a Bayesian 0-equilibrium in a general class of single-stage
Bayesian games. A natural question regards the existence of a Bayesian 0-equilibrium in
multistage Bayesian games with nested information.

Specifically, a multistage Bayesian game with m ≥ 2 stages is similar to a Bayesian
game as in Definition 1, except that the players play for m stages and player i’s type is
stage dependent. That is, player i’s type is a vector ti = (t1i , t2i , � � � , tmi ), the collection of
types of the players are drawn at the outset, and at each stage 1 ≤ k ≤ m, each player
learns her own stage type tki . Player i’s payoff at each stage k depends on the players’
stage types (tki )i∈𝒩 and the players stage actions.
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Repeating the arguments of the current paper implies existence of 0-Bayesian equi-
librium in the multistage game whenever the nested information assumption is replaced
by the following two conditions:

A1. Information is nested: For each k ∈ {1, 2, � � � ,m} and each i ∈ {1, 2, � � � , n− 1}, tki+1
is a determined by tki .

A2. Information is revealed with delay of one stage: For every k ∈ {1, 2, � � � ,m− 1}, tk1
is determined by tk+1

n ; i.e., the information of player 1 is available to player nwith
delay of one stage.

Models of multistage Bayesian games that satisfy these two assumptions have been
studied in the literature on control under the name information structure with one-step
delay; see, e.g., Aicardi, Davoli, and Minciardi (1987), Nayyar, Mahajan, and Teneket-
zis (2010), and Varaiya and Walrand (1978). We conjecture that condition A1 (without
A2) is not sufficient to guarantee the existence of a Bayesian 0-equilibrium in multistage
Bayesian games.

Stopping games with asymmetric information One class of multistage Bayesian games
is the class of stopping games with asymmetric information. In stopping games, play-
ers choose in each round to stop or continue; the game ends when at least one player
chooses to stop, and the payoff profile is given by an ℝn-valued stochastic process that
depends on the set of players who chose to stop. There is also some designated pay-
off in case the game never terminates. Incomplete and asymmetric information can be
introduced by adding uncertainty on the payoff process.

Such games have been studied both in the framework of discrete time and that
of continuous time; see, e.g., Grün (2013), Lempa and Matomäki (2013), Gensbittel
and Grün (2019), Esmaeeli, Imkeller, and Nzengang (2019), Gapeev and Rodosthenous
(2021), Pérez, Rodosthenous, and Yamazaki (2024), Jacobovic (2022), and De Angelis,
Ekström, and Glover (2022), De Angelis, Merkulov, and Palczewski (2022). The open
problem we raised for multistage Bayesian games translates to the following: Does
every stopping game (in discrete or continuous time) with finite horizon and infor-
mation structure that satisfies A1 (or a continuous-time analog) admit a Bayesian 0-
equilibrium?

Nested information and the value of information Various aspects of the value of infor-
mation in two-player zero-sum Bayesian games have been studied, e.g., by De Meyer,
Lehrer, and Rosenberg (2010), Lehrer and Rosenberg (2006), and Ui and Yoshizawa
(2015). As we now argue, nested information is related to the study of the value of infor-
mation in multiplayer Bayesian games with symmetric information. Indeed, define the
value of the information of player i as the difference between player i’s highest expected
equilibrium payoff in a multiplayer Bayesian game with symmetric information and her
highest expected equilibrium payoff in the same game, when she does not obtain any
information (while the other players obtain the symmetric information).7 As the latter

7In case the highest expected payoff is not attained by a Bayesian 0-equilibrium, consider the supremum
of player i’s expected equilibrium payoffs.
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game has nested information, our result ensures that it admits at least one Bayesian 0-
equilibrium, and, hence, the measure suggested above (and other natural variants) are
well defined.

The universal belief space The universal belief space is the space that contains all infi-
nite belief hierarchies; see Mertens and Zamir (1985). As we have seen, when informa-
tion is nested, the players’ belief hierarchies are determined by the first n levels in the
belief hierarchy. It will be interesting to know whether there is a canonical form to the
universal belief space in this case.

In Aumann’s model of incomplete information, the information of a player is given
by a partition of the state space, and the information structure is nested if, under some
ordering of the players, player i’s partition refines player j’s partition whenever i < j. Call
an information structure finite if each belief hierarchy is determined by its first k levels
for some k ∈ℕ. Nested information structures are finite. An example of a finite informa-
tion structure that is not nested is that of a “piecewise” nested information structure: the
state space is divided into several common knowledge components and in each compo-
nent, the information is nested, possibly with a different ordering between the players.
Are the piecewise nested information structures all finite information structures?

6. Proof of Theorem 1

The proof of Theorem 1 consists of two steps. In Section 6.1, we prove the existence of
a Bayesian ε-equilibrium8 for every ε > 0. In Section 6.2, we use this result to prove the
existence of a Bayesian 0-equilibrium.

6.1 Existence of a Bayesian ε-equilibrium

In this section. we prove the existence of a Bayesian ε-equilibrium for every ε > 0. To
this end, we approximate the information structure in a way that is related to the ap-
proximation used by Shmaya and Solan (2004). In Section 6.1.1, we review the notion
of δ-approximation defined over a compact set in a metric space. This notion is ap-
plied in Section 6.1.2 to approximate the information structure of the players in � (un-
der the nested information assumption). We then define a new game, which is identical
to � except that the information of the players is replaced by its approximation. In Sec-
tion 6.1.3, we show that this approximated game has a Bayesian 0-equilibrium and that
this Bayesian 0-equilibrium is a Bayesian ϵ-equilibrium of the original game �.

6.1.1 δ-Approximations We begin by recalling definitions related to dense subsets.

Definition 4 (δ-Dense Subset). LetU be a set in a metric space (ℳ, d) and fix δ > 0. A
set V ⊆U is δ-dense in U if for every u ∈U , there is v ∈ V such that d(u, v)< δ.

When U is contained in a compact set, the δ-dense set V that we will consider will
be implicitly assumed to be finite. In this case, there exists a measurable mapping vδ :

8This part of the proof does not require that the type spaces are Polish.
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U → V such that d(u, vδ(u)) < δ for every u ∈ U . For every u ∈ U , the image vδ(u) is
called a δ-approximation of u (by V ). When 
 is a measurable space and y : 
→ U is
measurable, the mapping vδ(y(·)) :
→ V will be a measurable δ-approximation of y.

For every random vector Z : 𝒯 → ℝd with finite range 𝒵 and every i ∈ 𝒩 , denote the
conditional distribution of Z given ti by

ℙ(Z|ti ) ≡ (︁
ℙ(Z = z|ti )

)︁
z∈𝒵 .

Thus, ℙ(Z|ti ) is a vector determined by ti and contained in the (|𝒵| − 1)-dimensional
simplex. Since the (|𝒵| − 1)-dimensional simplex is compact, there exists a δ-approxi-
mation ϕ(·)(ti ) of ℙ(Z|ti ) that belongs to the (|𝒵| − 1)-simplex and satisfies∑︂

z∈𝒵

⃓⃓
ℙ(Z = z|ti ) −ϕ(z)(ti )

⃓⃓
< δ, ℙ-a.s.

6.1.2 A finite approximation of the information structure In this section, we present a
finite approximation of the information structure, which is suited to games where infor-
mation is nested.

Fix a Bayesian game with nested information � and denote by M a bound on the
payoff function. Since in this section, we are interested in proving the existence of a
Bayesian ε-equilibrium, we can assume without loss of generality that the range of the
payoff function R is finite. Namely, there is a finite collection ℛ of functions from 𝒜 to
[−M ,M]n such that for every t ∈ 𝒯 , the function R(t ) = (Ri(t ))i∈𝒩 is an element of ℛ.

For every i ∈ 𝒩 , every strategy si ∈ 𝒮i, and every action ai ∈ 𝒜i, denote by si(ai )(ti )
the probability that player i selects the action ai under si when her type is ti. For every
strategy profile s ∈ 𝒮 and every action profile a ∈ 𝒜, the probability under s that a is
selected by the players is the random variable ps(a) defined by

ps(a)(t ) ≡
n∏︂
i=1

si(ai )(ti ) ∀t ∈ 𝒯 .

Define

ps−i(a−i )(t−i ) ≡
∏︂
j≠i
sj(aj )(tj ) ∀i ∈ 𝒩 , s ∈ 𝒮 , a ∈ 𝒜, t ∈ 𝒯 .

We are now going to recursively define approximations of the information that the
players have. Fix δ > 0. Let ψ1 : 𝒯 → ℛ be the random vector defined by

ψ1(t ) ≡R(t ) ∀t ∈ 𝒯 .

Denote r ≡ |ℛ|, so that ℙ(ψ1|t1 ) is in the (r − 1)-dimensional standard simplex, ℙ-a.s.
Equip ℝr with the L1 norm. Let ϕ1 ≡ ϕ1(·)(t1 ) be a measurable δ-approximation of
ℙ(ψ1|t1 ), so that ϕ1 has a finite range and∑︂

z∈ℛ

⃓⃓
ℙ(ψ1 = z|t1 ) −ϕ1(z)(t1 )

⃓⃓
< δ, ℙ-a.s.
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For i ∈ 𝒩 \ {1}, suppose we have already defined random vectors ψ1, ϕ1, � � � , ψi−1,
ϕi−1, all with finite ranges, whereψj : 𝒯 → ∏︁j−1

k=1 𝒟k×ℛ and ϕj : 𝒯j → �(
∏︁j−1
k=1 𝒟k×ℛ) ⊆

ℝ
∏︁i−1
j=1 |𝒟j |×r , where for each 1 ≤ j ≤ i− 1, 𝒟j ⊆ �(

∏︁j−1
k=1 𝒟k ×ℛ) is the range of ϕj . Define

ψi(t ) ≡ (︁
ϕ1(t1 ), ϕ2(t2 ), � � � , ϕi−1(ti−1 ), R(t )

)︁ ∈
i−1∏︂
j=1

𝒟j ×ℛ, ℙ-a.s., (7)

which is a random vector with a discrete distribution. The range of ψi is finite and

contains at most
∏︁i−1
j=1 |𝒟j| × r elements. Equip ℝ

∏︁i−1
j=1 |𝒟j |×r with the L1-norm, so

the (
∏︁i−1
j=1 |𝒟j| × r − 1)-dimensional simplex is compact. Let ϕi be a measurable δ-

approximation of ℙ(ψi|ti ) and, hence,∑︂
z∈∏︁i−1

j=1 𝒟j×ℛ

⃓⃓
ℙ(ψi = z|ti ) −ϕi(z)(ti )

⃓⃓
< δ, ℙ-a.s. (8)

Thus, the range of ϕi is contained in a finite δ-dense subset of the (
∏︁i−1
j=1 |𝒟j| × r − 1)-

dimensional simplex.
The random vectors ϕ1, ϕ2, � � � , ϕn have an intuitive interpretation.

• The vector ϕ1(t1 ) is an approximation of the information that player 1 has on the
payoffs when her type is t1.

• The vector ϕ2(t2 ) is an approximation of the information that player 2 has when her
type is t2 on the payoffs and on the approximated information that player 1 has on
the payoffs.

• The vector ϕ3(t3 ) is an approximation of the information that player 3 has when her
type is t3 on (i) the payoffs, (ii) the approximated information that player 1 has on
the payoffs, and (iii) the approximated information that player 2 has on the payoffs,
and on the approximated information that player 1 has on the payoffs.

• And so forth.

For every i ∈ 𝒩 and every Borel function f :
∏︁i−1
j=1 𝒟j × ℛ → ℝ, let 𝔼ϕi[f ] be the ran-

dom variable given by

𝔼ϕi[f ](ti ) ≡
∑︂

z∈∏︁i−1
j=1 𝒟j×ℛ

f (z) ·ϕi(z)(ti ), ℙ-a.s.

The next lemma relates 𝔼ϕi[f ] to the conditional expectation of f given ti.

Lemma 1. Fix i ∈ 𝒩 and let f :
∏︁i−1
j=1 𝒟j × ℛ → ℝ be a real-valued Borel function that is

bounded byM > 0. Then⃓⃓
𝔼

[︁
f (ψi )|ti

]︁ −𝔼ϕi[f ](ti )
⃓⃓
<Mδ, ℙ-a.s.
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Proof. The claim holds since ℙ-a.s. we have⃓⃓
𝔼

[︁
f (ψi )|ti

]︁ −𝔼ϕi[f ](ti )
⃓⃓ ≤

∑︂
z∈∏︁i−1

j=1 𝒟j×ℛ

⃓⃓
f (z)

⃓⃓ · ⃓⃓ℙ(ψi = z|ti ) −ϕi(z)(ti )
⃓⃓

≤M
∑︂

z∈∏︁i−1
j=1 𝒟j×ℛ

⃓⃓
ℙ(ψi = z|ti ) −ϕi(z)(ti )

⃓⃓
<Mδ,

where the second inequality holds by (8) and the assumption that f is bounded by M .

For each i ∈ 𝒩 , let

τi ≡ τi(ti:n ) ≡ ϕi:n(ti:n ) = (︁
ϕi(ti ), ϕi+1(ti+1 ), � � � , ϕn(tn )

)︁
.

Intuitively, τi represents the approximated information of player i: player i knows ϕi,
and since information is nested, she also knowsϕi+1, � � � , ϕn. The following result, which
follows by the construction of (τi )i∈𝒩 , details basic properties of this approximated in-
formation structure.

Lemma 2.

P1. For each i ∈ 𝒩 , τi has a finite image.

P2. For every 1 ≤ i≤ j ≤ n, τj is determined by τi.

P3. For each i ∈ 𝒩 , τi(ti:n ) is determined by ti.

P4. For each i ∈ 𝒩 , ϕi(ti ) is determined by τi(t1:n ), ℙ-a.s.

Proof. P1, P2, and P4 follow from the construction. We show that P3 holds as well. Fix
then i ∈ 𝒩 and recall that since the information is nested, ti:n is determined by ti. Thus,
τi(t1:n ) is determined by ti and, hence, P3 follows.

Remark 8. Due to P3, from now on, for each i ∈ 𝒩 , we shall write τi ≡ τi(ti ) ≡ τi(ti:n ).

6.1.3 Proof: Existence of Bayesian ε-equilibrium We now define a Bayesian game ˜︁�,
which is similar to �, except that the information available to each player i ∈ 𝒩 is τi
rather than ti. Specifically, ˜︁� is given by the following parameters.

• A finite set of players ˜︁𝒩 ≡ 𝒩 = {1, 2, � � � , n}.

• For every i ∈ 𝒩 , the set of types of player i is the range of τi = ϕi:n, i.e., 𝒯i ≡ ∏︁n
j=i𝒟j

and, hence, ˜︁𝒯 ≡ ∏︁
i∈𝒩 ˜︁𝒯i.

• A common prior distribution ˜︁ℙ on ˜︁𝒯 , which is the push-forward probability mea-
sure induced by τ1:n with respect to the probability measure ℙ:

˜︁ℙ(˜︁t ) ≡ ℙ(τ1:n =˜︁t ) ∀˜︁t ∈ ˜︁𝒯 .

Denote by ˜︁𝔼[·] the expectation operator that corresponds to ˜︁ℙ.
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• For each i ∈ 𝒩 , the set of actions available to player i is ˜︁𝒜i ≡ 𝒜i, so that ˜︁𝒜 = 𝒜.

• For each i ∈ 𝒩 , a measurable payoff function ˜︁Ri : ˜︁𝒯 ×𝒜 →ℝ is given by

˜︁Ri(˜︁t, a) ≡ 𝔼
[︁
Ri(a)|τ1:n =˜︁t]︁

for every a ∈ 𝒜 and˜︁t ∈ ˜︁𝒯 for which ˜︁ℙ(˜︁𝒯 =˜︁t )> 0. When ˜︁ℙ(˜︁𝒯 =˜︁t ) = 0, the definition
of ˜︁Ri(˜︁t, a) is irrelevant. For each i ∈ 𝒩 , denote by ˜︁Ri(a) : 𝒯 → ℝ the a section of ˜︁Ri
for each a ∈ 𝒜 and denote by ˜︁Ri(˜︁t ) : 𝒜 → ℝ the˜︁t section of ˜︁Ri for each˜︁t ∈ 𝒯 . We also
set ˜︁R≡ ( ˜︁Ri )i∈𝒩 .

The tower rule implies that for every a ∈ 𝒜 and i ∈ 𝒩 ,

˜︁𝔼[︁˜︁Ri(˜︁t, a)
]︁ = 𝔼

[︁
Ri(t, a)

]︁
.

For each i ∈ 𝒩 , τi:n is determined by τi, and, hence, for every i ∈ 𝒩 , a ∈ 𝒜, and ˜︁t =
(˜︁ti )i∈I ∈ ˜︁𝒯 for which ˜︁ℙ(˜︁t )> 0, the tower rule also implies that

˜︁𝔼[︁˜︁Ri(a)|˜︁ti]︁ = 𝔼
[︁
Ri(a)|τi =˜︁ti]︁. (9)

This means that the expected payoff of player i in ˜︁� given her type ˜︁ti is the same as her
expected payoff in � given the event {τi =˜︁t}.

A strategy of player i in ˜︁� is a function˜︁si : ˜︁Ti → �(𝒜i ). Such a function can be inter-
preted as a strategy in � that is determined by τi (which, in turn, is determined by ti). To-
gether with (9), this implies that a strategy profile˜︁s = (˜︁si )i∈𝒩 is a Bayesian 0-equilibrium
in ˜︁� if and only if for every i ∈ 𝒩 and every strategy si ∈ 𝒮i determined by τi,

Ui(˜︁s)(ti ) = 𝔼
[︁
Ri(˜︁s)|τi

]︁ ≥ 𝔼
[︁
Ri(si,˜︁s−i )|τi]︁ =Ui(si,˜︁s−i )(ti ), ℙ-a.s. (10)

Since the sets of types in ˜︁� are finite, this game admits a Bayesian 0-equilibrium.
The next lemma concerns the original game � and states that if each player j ∈ 𝒩 \ {i}

adopts a strategy sj that is determined by τj (i.e., a strategy that is also feasible to her in˜︁�), then player i has a (δM|𝒜|)-best response that is determined by τi (i.e., a (δM|𝒜|)-
best response in � that is also feasible to her in ˜︁�). In view of (10), this implies that every
Bayesian 0-equilibrium in ˜︁� is a Bayesian (δM|𝒜|)-equilibrium in �.

Lemma 3. Let i ∈ 𝒩 be a player and let s−i ≡ (sj )j∈𝒩−i ∈ 𝒮−i be a strategy profile such that
sj is determined by τj for every j ∈ 𝒩 \ {i}. Then supsi∈𝒮i Ui(si, s−i|ti ) is a random variable
and there exists s∗i ∈ 𝒮i that is determined by τi such that

Ui
(︁
s∗i , s−i|ti

)︁ ≥ sup
si∈𝒮i

Ui(si, s−i|ti ) − δM|𝒜|, ℙ-a.s.

Proof. Player i’s (random) expected payoff given her information, when she selects ac-
tion ai ∈ 𝒜i and the other players follow the strategy profile s−i, is the random variable
mi(ai ) determined by ti and defined as

mi(ai )(ti ) ≡
∑︂

a−i∈𝒜−i

𝔼
[︁
Ri(ai, a−i )ps−i(a−i )|ti

]︁
, ℙ-a.s. (11)
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Since 𝒜i is a finite set, the best payoff that player i can achieve is the random variable ˜︁mi
determined by ti and defined by

˜︁mi(ti ) ≡ max
{︁
mi(ai )(ti ) : ai ∈ 𝒜i

}︁ ∀ti ∈ 𝒯i.

In particular, supsi∈𝒮i Ui(si, s−i|ti ) = ˜︁mi is a random variable.
Let us show that for each ai ∈ 𝒜i, there exists a random variable ˆ︁mi(ai ) that is deter-

mined by τi and such that ⃓⃓ˆ︁mi(ai ) −mi(ai )
⃓⃓
< δM|𝒜|, ℙ-a.s. (12)

Before proving the existence of such random variables ( ˆ︁mi(ai ))ai∈𝒜i
, we will show how

the lemma follows from their existence. First, denote

ˆ︁mi ≡ max
{︁ˆ︁mi(ai ) : ai ∈ 𝒜i

}︁
, (13)

which is a random variable determined by τi, and notice that by (12), |mi− ˆ︁mi|< δM|𝒜|,
ℙ-a.s. Each of the random variables ( ˆ︁mi(ai ))ai∈𝒜i

is determined by τi, and, hence, the
set of maximizers arg max{ˆ︁mi(ai ); ai ∈ 𝒜i} is finite and also determined by τi. Therefore,
there is a Borel selector9 Ai of arg max{ˆ︁mi(ai ); ai ∈ 𝒜i}, that is,

Ai ∈ arg max
{︁ˆ︁mi(ai ) : ai ∈ 𝒜i

}︁
, ℙ-a.s.,

which is determined by τi; hence,Ai satisfies the requirements of the lemma.
We turn to prove the existence of ˆ︁mi(ai ). Recall that ψi = (ϕ1, ϕ2, � � � , ϕi−1, R). The

strategy sj is determined by τj for every j ∈ 𝒩 \ {i}, and by P2 it is also determined by
τ1. Therefore, ps−i(a−i ) is also determined by τ1 = ϕ1:n for every a−i ∈ 𝒜−i. By (11), there
exists a measurable function fa−i : Supp(ψi, ϕi:n ) → [−M ,M] such that

mi(ai )(ti ) =
∑︂

a−i∈𝒜−i

𝔼
[︁
fa−i (ψi, ϕi:n )|ti

]︁
, ℙ-a.s. (14)

By definition, τi = ϕi:n. Hence, by P3, ϕi:n is also determined by ti. Therefore,

mi(ai )(ti ) =
∑︂

a−i∈𝒜−i

∫︂
𝔼

[︁
fa−i(ψi, x)|ti

]︁
χϕi:n(ti )(dx), ℙ-a.s., (15)

where χϕi:n(ti ) is the Dirac measure concentrated at {ϕi:n(ti )}. Define

ˆ︁mi(ai )(ti ) ≡
∑︂

a−i∈𝒜−i

∫︂
𝔼ϕi

[︁
fa−i(·, x)

]︁
(ti )χϕi:n(ti ) dx (16)

=
∑︂

a−i∈𝒜−i

𝔼ϕi
{︁
fa−i

[︁·, ϕi:n(ti )i:n(ti )
]︁}︁

(ti ), ℙ-a.s.,

9Let X , Y be topological spaces and let � :X⇉ Y be a correspondence (a set-valued mapping). A Borel
selector of � is a Borel mapping f :X → Y such that f (x) ∈�(x) for all x ∈X .
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and notice that ˆ︁mi(ai )(ti ) is determined byϕi(ti ) andϕi:n(ti ) for every realization of types
profile t ∈ 𝒯 . Since both ϕi and ϕi:n(ti ) are determined by τi, ˆ︁mi(ai ) is also determined
by τi. Finally, by (15), (16), and Lemma 1,⃓⃓ˆ︁mi(ai )(ti ) −mi(ai )(ti )

⃓⃓
<

∑︂
a−i∈𝒜−i

∫︂ ⃓⃓
𝔼

[︁
fa−i(ψi, x)|ti

]︁ −𝔼ϕi
[︁
fa−i(·, x)

]︁
(ti )

⃓⃓
χϕi:n(ti )(dx)

< δM|𝒜−i|, ℙ-a.s.,

and (12) follows.

6.2 Existence of a Bayesian 0-equilibrium

In this section we derive Theorem 1 from the existence of Bayesian ε-equilibria for ε > 0,
which exist by the results in Section 6.1. We will fix a sequence (sk )k∈ℕ of Bayesian 1

k -
equilibria, and show that this sequence has a measurable accumulation point which is
a Bayesian 0-equilibrium. In Section 6.2.1, we present tools related to the existence of
measurable selections and their integration. In Section 6.2.2, we represent the condi-
tional expected payoff in a useful way. In Section 6.2.3, we define the correspondences
(�i )i∈𝒩 of the accumulation points of (sk )k∈ℕ and study some of their properties, In Sec-
tion 6.2.4, we characterize Bayesian 0-equilibria in terms of (�i )i∈𝒩 . In Sections 6.2.5
and 6.2.6, we show that there exist measurable selections of (�i )i∈𝒩 satisfying the char-
acterization of the 0-equilibrium presented in Section 6.2.4.

6.2.1 Selectors and integration Let X , Y be standard Borel spaces10 and let � :X⇉ Y

be a correspondence (a set-valued mapping). We say that � has nonempty compact
values if �(x) is nonempty and compact for every x ∈X . The following classical result
provides topological conditions that guarantee the existence of a Borel selector.11

Theorem 2 (Kuratowski and Ryll-Nardzewski (1965)). Suppose the correspondence � :
X⇉ Y has a Borel graph and nonempty compact values. Then � has a Borel selector.

Let S� denote the collection of all Borel selectors of �. Suppose Y is a subset of a
Euclidean space and let ℙ be a finite Borel measure on X . The Aumann integral of �
(with respect to ℙ) is ∫︂

X
�(x)ℙ(dx) ≡

{︃∫︂
X
f (x)ℙ(dx) : f ∈ S�

}︃
.

The following result appears in Aumann (1965) and the references therein whenX =
[0, 1] and ℙ is the Lebesgue measure; the general case follows by minor modifications,
or from more general results, like Theorem 4 below.

10A standard Borel space is a topological space homeomorphic to a Borel subset of a Polish space.
11Kuratowski and Ryll-Nardzewski (1965) state the measurability assumption on � in a way that, for

nonempty compact-valued correspondences, is equivalent to the one we provided here; see, e.g., Himmel-
berg (1975).
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Theorem 3. Suppose the correspondence� :X⇉ℝn is bounded12 and has a Borel graph
and nonempty compact values. Then

∫︁
X �(x)ℙ(dx) is nonempty and compact.

We need the following slight generalization of Theorem 3.

Proposition 1. Let X be a standard Borel space and let Y be a compact metric space.
Suppose the correspondence� : X⇉ Y has a Borel graph and nonempty compact values.
Let ζ : Y →ℝn be continuous. Then the set{︃∫︂

X
ζ ◦ f (x)ℙ(dx) : f ∈ S�

}︃
⊂ ℝn (17)

is nonempty and compact.

Proof. Define � : X → ℝn by � = ζ ◦ �, i.e., �(·) = ζ(�(·)). Since Y is compact, ζ is
continuous, and � has nonempty compact values, it follows that � is bounded and has
nonempty compact values. We contend that

{ζ ◦ f : f ∈ S�} = S�,

from which the proposition will follow due to Theorem 3. Clearly, {ζ ◦ f : f ∈ S�} ⊆ S�,
as ζ ◦ f ∈ S� for each f ∈ S�. Conversely, suppose g ∈ S�. Since Y , the domain of ζ,
is a nonempty compact set and ζ is continuous, the correspondence ζ−1(·) : �(X ) →
Y has a Borel graph and nonempty compact values. Thus, Theorem 2, applied to the
correspondence ζ−1(·), yields a Borel mapping ζ′ : Image(ζ ) → Y such that ζ ◦ ζ′ = id.
Hence, f := ζ′ ◦ g satisfies g= ζ ◦ f and f ∈ S�.

When (fk )∞k=1 is a sequence of mappings between two topological spaces X and Y ,
we denote by Lim((fk )k ) : X⇉ Y the correspondence such that Lim((fk )k )(x) is the set
of all accumulation points of (fk(x))∞k=1 for every x ∈ X . When X and Y are standard
Borel spaces with Y compact, this correspondence has a Borel graph with nonempty
compact values; see Mertens (1987, Prop. 10.1).

Lemma 4. Let (X , ℙ) be a standard Borel measure space, let Y be a compact metrizable
space, and for each k ∈ ℕ, let fk : X → Y be measurable. Let ζ : Y → ℝn be continuous
and suppose that ∫︂

X
ζ
(︁
fk(x)

)︁
ℙ(dx) −−−→

k→∞
z∗.

Then there is a Borel selector f ∗ : X → Y of Lim((fk )k ) such that

z∗ =
∫︂
X
ζ
(︁
f ∗(x)

)︁
ℙ(dx).

12That is, there is a boundedW ⊆ ℝn such that �(x) ⊆W for every x ∈X .
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When Y ⊆ ℝn and ζ = id, Lemma 4 was proven in, e.g., Himmelberg (1975, p. 69) or
Aumann (1976).13

Proof. Denote for simplicity ℒ = Lim((fk )k ) and ˆ︁ℒ = Lim((ζ ◦ fk )k ). Applying the re-
sult in the restricted case Y ⊆ ℝn and ζ = id to the series (ζ ◦ fk )k shows that there is a
Borel selector g∗ of ˆ︁ℒ such that

z∗ =
∫︂
X
g∗(x)ℙ(dx).

We claim that14

ˆ︁ℒ(x) ⊆ ζ(︁ℒ(x)
)︁ ∀x ∈X . (18)

Indeed, if y ∈ ˆ︁ℒ(x), then there are indices (kl )l∈ℕ such that liml→∞ ζ(fkl (x)) = y. Letting
z be an accumulation point of (fkl (x))l∈ℕ, which exists by compactness and metrizabil-
ity of Y , we deduce by the continuity of ζ that z ∈ ℒ(x) and y = ζ(z).

As in the proof of Proposition 1, the correspondence ζ−1 has a Borel graph and
nonempty compact values, and, hence, so does ζ−1(g∗(·)). Thus, (18) implies that for
every x ∈X , ζ−1(g∗(x)) is a nonempty compact subset of ℒ(x). It remains to apply The-
orem 2 to the correspondence ζ−1(g∗(·)).

The following result is a slight generalization of the measurable “measurable choice”
theorem from Mertens (1987), adapted to a bounded Borel setting;15 it deals with the
caseW ⊆ ℝn, ζ = id, and B= Y ×Z.

Theorem 4. Let Y and Z be Borel spaces, and let F be a correspondence from a Borel
set B ⊆ Y ×Z to a compact metric space W , with nonempty compact values and a Borel
graph. Let ζ : W →ℝn be continuous and let q be a Borel transition kernel16 from Y to Z,
such that q(By |y ) = 1 for each y ∈ Y , where By ≡ {z ∈ Z : (y, z) ∈ B} is the y-section of B.
Define a correspondence F⋄ : Y ⇉ℝn by

F⋄(y ) ≡
{︃∫︂

By

ζ ◦ f (y, z)q(dz|y ) : f ∈ SF(y, ·)
}︃

. (19)

Then the following statements hold:

• The correspondence F⋄ is bounded, and has nonempty compact values and a Borel
graph Gr(F⋄ ).

13Aumann (1976) addresses the case where ℙ is non-atomic; the case where ℙ may have atoms follows
by passing to a sequence (fk )∞k=1 that converges on atoms, using a diagonalization construction.

14In fact, there is equality in (18). However, we only need this inclusion.
15A similar but weaker result is proven in Artstein (1989), which only gives an “almost everywhere” type

of selection.
16A transition kernel is a map from Y to �(Z ), the space of Borel probability distributions on Z, such

that for each Borel B⊆ Y , the mapping z→ q(B|z) is Borel.
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• There is a Borel mapping g : Gr(F⋄ ) ×Z→ ℝn such that for each (y, u) ∈ Gr(F⋄ ) and
each z ∈ By , we have g(y, u, z) ∈ ζ ◦ F(y, z) and

u=
∫︂
Z
ζ ◦ g(y, u, s)q(ds|y ).

Proof. As mentioned, Mertens (1987) proved the case B= Y ×Z (in which case By =Z
for each y ∈ Y ), W ⊆ ℝn, and ζ = id. To prove the general case, fix x0 ∈ ℝn, and define˜︁F : Y × Z ⇉ ℝn by ˜︁F = ζ ◦ F on B and ˜︁F ≡ {x0} outside of B. The argument from the
proof of Proposition 1, together with the fact that q(By |y ) = 1 for each y ∈ Y , shows that

F⋄(y ) =
{︃∫︂

Z

˜︁f (y, z)q(dz|y ) : ˜︁f ∈ S˜︁F(y, ·)
}︃

.

Since W is compact, F⋄ is bounded, and by Proposition 1, it has nonempty compact
values. By Mertens (1987), F⋄ is measurable and, hence, the first bullet holds.

By Mertens (1987) once again, F⋄ has a Borel selector, i.e., a Borel mapping˜︁g : Gr(F⋄ ) × Z → ℝn such that g(y, u, z) ∈ ˜︁F(y, z) for each (y, u) ∈ Gr(F⋄ ) and z ∈ Z
(and, hence, g(y, u, z) ∈ ζ ◦ F(y, z) for z ∈ By ), and

u=
∫︂
Z

˜︁g(y, u, s)q(ds|y ).

By applying the same arguments as in the proof of Lemma 4, there is a Borel mapping
ζ′ : Image(ζ ) →W such that ζ ◦ ζ′ = id. Setting g = ζ′ ◦ ˜︁g yields the mapping indicated
in the second bullet.

6.2.2 Conditional expected payoffs Recall thatM is a bound on the payoffs in the game.
For each i ∈ 𝒩 , set 𝒫i:n ≡ [−M ,M](n−i+1)×|𝒜i:n| , so that R(t ) ∈ 𝒫1:n for every t ∈ 𝒯 . Each
vector ρi:n ∈ 𝒫i:n corresponds to a vector of payoff functions for the set of players [i :
n], where the players’ actions are (𝒜j )nj=i. For such a vector, we denote by ρj(ai:n ) the
coordinate that corresponds to player j and to the action profile ai:n. The multilinear
extension of ρj is still denoted by ρj , so that

ρj(xi:n ) ≡
∑︂

ai:n∈𝒜i:n

ρj(ai:n )
n∏︂
k=i
xk(ak ) ∀xi:n ∈ 𝒳i:n.

Denote byUj(s1:i, ai+1:n|tk ) the expected payoff of player j when players [1 : i] follow
the strategies s1:i and players [i+ 1 : n] select the actions ai+1:n, given that player k’s type
is tk. It will be convenient to denote by

Ui+1:n(s1:i, ·|ti+1 ) ≡ (︁
Ui+1:n(s1:i, ai+1:n|ti+1 )

)︁
ai+1:n∈𝒜i+1:n

∈ 𝒫i+1:n

the payoff function of players [i + 1 : n] that is induced by the strategy profile s1:i

and the type ti+1. The multilinear extension of Ui+1:n(s1:i, ·|ti+1 ) is still denoted by
Ui+1:n(s1:i, ·|ti+1 ), and it is a mapping from 𝒳i+1:n to ℝn−i.
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6.2.3 The limit of 1
k -equilibria: The operator �i Since information is nested, ti deter-

mines ti+1, ti+2, � � � , tn. For convenience, when j > i and sj is a strategy of player j, we
will sometimes write sj(ti ) instead of sj(κj−1 ◦ κj−2 ◦ · · · ◦ κi(ti )).

Fix a sequence (sk )∞k=1 of strategy profiles such that sk ≡ (sk1 , � � � , skn ) is a 1
k -Bayesian

equilibrium for each k ∈ ℕ, which in turn is guaranteed by the result obtained in Sec-
tion 6.1. We would like to prove that an appropriate limit of (sk )∞k=1 is a Bayesian 0-
equilibrium. To this end, we will consider for each i ∈ 𝒩 the accumulation points of
the sequence ((ski:n(ti )), Ui:n(sk, ·|ti ), Ui+1:n(sk, ·|κi(ti )))∞k=1, and show that proper Borel
selectors of these correspondences (indexed by i) induce a Bayesian 0-equilibrium.

Define a correspondence�n : 𝒯n⇉𝒳n ×𝒫n by

�n(tn ) ≡ {︁
(xn, ρn ) ∈ 𝒳n ×𝒫n : (xn, ρn ) ∈ Lim

(︁(︁
skn (tn ), Un

(︁
sk|tn

)︁)︁
k

)︁}︁
(20)

and, for every i < n, define the correspondence�i : 𝒯i ×𝒳i+1:n ×𝒫i+1:n⇉𝒳i:n ×𝒫i:n by

�i(ti, xi+1:n, ρi+1:n )

≡ {︁(︁
(xi, xi+1:n ), ˆ︁ρi:n)︁ ∈ 𝒳i:n ×𝒫i:n (21)

:
(︁
(xi, xi+1:n ), ˆ︁ρi:n, ρi+1:n

)︁ ∈ Lim
(︁(︁
ski:n(ti ), Ui:n

(︁
sk1:i−1, ·|ti

)︁
, Ui+1:n

(︁
sk1:i, ·⃓⃓κi(ti ))︁)︁k)︁}︁.

Note that �i may have empty values. This happens, for example, when xi+1:n is not
an accumulation point of (ski+1:n(ti ))∞k=1. The definition implies that if (ˆ︁xi:n, ˆ︁ρi:n ) ∈
�i(ti, xi+1:n, ρi+1:n ), then ˆ︁xi+1:n = xi+1:n. The relation between ˆ︁ρi:n and ρi+1:n is more
complex and we will not need it.

The following lemma holds from the definitions and since each 𝒫i is compact.

Lemma 5. For i ∈ 𝒩 ,�i has a Borel graph and nonempty compact values.

If (x1:n, ˆ︁ρ1:n ) ∈�1(t1, x2:n, ρ2:n ), then ˆ︁ρ1:n is a vector of payoff functions for all play-
ers. In particular, the j’s coordinate ˆ︁ρj of ˆ︁ρ1:n satisfies17

ˆ︁ρj(a) =Uj(a|t1 ) =Rj(t, a) (22)

for all a ∈ 𝒜1:n, where t = (t1, κ1(t1 ), � � � , κn−1 ◦ · · · ◦ κ2 ◦ κ1(t1 )).

6.2.4 Equilibrium characterization via �1,�2, � � � ,�n In this section, we will provide
a characterization of Bayesian 0-equilibria in terms of the mappings�1,�2, � � � ,�n.

Lemma 6. For each i ∈ 𝒩 , ℙ-a.e. ti ∈ 𝒯i, xi+1:n ∈ 𝒳i+1:n, and ρi+1:n ∈ 𝒫i+1:n, if (xi:n, ˆ︁ρi:n ) ∈
�i(ti, xi+1:n, ρi+1:n ), then

xi ∈ argmax
yi∈𝒳i

ˆ︁ρi(yi, xi+1:n ). (23)

17Below, Uj(a|t1 ) = Uj(s|t1 ), where s = (si )i∈𝒩 is the strategy profile in which each player selects the
action ai at all types.
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The expression under the argmax on the right-hand side of (23) is the expected
payoff of player i under the payoff function ˆ︁ρi when players [i : n] use mixed actions
yi, xi+1, � � � , xn, respectively. Lemma 6, which follows by continuity arguments, is the
only place in the proof where the fact that sk is a 1

k -equilibrium for each k ∈ ℕ is directly
used.

Proof of Lemma 6. Fix a player i < n, ti ∈ 𝒯i, xi+1:n ∈ 𝒳i+1:n, ρi+1:n ∈ 𝒫i+1:n, and ˆ︁ρi:n ∈
𝒫i:n such that (xi, ˆ︁ρi:n ) ∈�i(ti, xi+1:n, ρi+1:n ). By assumption, there is a sequence of in-
dices (kl ) such that

lim
l→∞

(︁
s
kl
i:n(ti ), Ui:n

(︁
s
kl
1:i−1, ·|ti

)︁)︁ = (︁
(xi, xi+1:n ), ˆ︁ρi:n)︁.

For each l = 1, 2, � � �, the expected payoff of player i with type ti, playing mixed action
yi ∈ 𝒳i while the others follow strategy profile skl , is

Ui
(︁
s
kl
−i, yi|ti

)︁ =
∑︂
ai∈𝒜i

∑︂
ai+1:n∈𝒜i+1:n

yi(ai ) ·
(︄

n∏︂
j=i+1

s
kl
j (ti )(aj )

)︄
·Ui

(︁
s
kl
1:i−1, ai:n|ti

)︁
.

Since skl is a 1
kl

-equilibrium, there is a set �l ⊆ 𝒯i with ℙ(�l ) = 0 such that for every
ti /∈�l,

Ui
(︁
s
kl
−i, yi|ti

)︁ ≤Ui
(︁
skl |ti

)︁ + 1
kl

,

that is,

∑︂
ai∈𝒜i

∑︂
ai+1:n∈𝒜i+1:n

yi(ai ) ·
(︄

n∏︂
j=i+1

s
kl
j (ti )(aj )

)︄
·Ui

(︁
s
kl
1:i−1, ai:n|ti

)︁

≤ 1
kl

+
∑︂
ai∈𝒜i

∑︂
ai+1:n∈𝒜i+1:n

s
kl
i (ai ) ·

(︄
n∏︂
j=i
s
kl
j (ti )(aj )

)︄
·Ui

(︁
s
kl
1:i−1, ai:n|ti

)︁
. (24)

Taking l→ ∞ gives that for every ti ∈ 𝒯i\⋃︁
l∈ℕ�l,

∑︂
ai∈𝒜i

∑︂
ai+1:n∈𝒜i+1:n

yi(ai ) ·
(︄

n∏︂
j=i
xj(aj )

)︄
· ˆ︁ρi(ai:n )

≤
∑︂
ai∈𝒜i

∑︂
ai+1:n∈𝒜i+1:n

xi(ai ) ·
(︄
n∏︂
j=i
xj(aj )

)︄
· ˆ︁ρi(ai:n ),

and the claim follows. The proof for i = n is similar yet simpler, since in (24) the inner
summations on the two sides are vacuous.

Corollary 1. Let s ∈ 𝒮 be a strategy profile. Suppose that for ℙ-almost every tn ∈ 𝒯n,(︁
sn(tn ), Un(sn|tn )

)︁ ∈�n(tn ),
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and for each i < n and ℙ-almost every ti ∈ 𝒯i,(︁
si:n(ti ), Ui:n(s|ti )

)︁ ∈�i
(︁
ti, si+1:n(ti ), Ui+1:n(s|ti+1 )

)︁
. (25)

Then s is a Bayesian 0-equilibrium.

6.2.5 Selections from (�i )i∈𝒩 Recall that κi : 𝒯i → 𝒯i+1 is the mapping that indicates
the type of player i+ 1 for each type of player i. In particular, κ−1

i (ti+1 ) ≡ {ti ∈ 𝒯i|κi(ti ) =
ti+1} is the set of all types of player i that are consistent with the type of player i+ 1.

An element (xi:n, ρi:n ) ∈ 𝒳i:n × 𝒫i:n is a pair consisting of a mixed action vector for
players [i : n] and a payoff function for a game restricted to these players. It will prove
convenient to denote, for each j ∈ [i : n], player j’s payoff in this game by

γj(xi:n, ρi:n ) ≡ ρj(xi:n )

and set

γi:n(xi:n, ρi:n ) ≡ (︁
γj(xi:n, ρi:n )

)︁n
j=i.

The next lemma intuitively states that every point (ti, xi:n, ρi+1:n, ˆ︁ρi:n ) in the graph of
�i can be extended to a point in the graph of�i−1.

Lemma 7. Fix i = 2, 3, � � � , n, ti ∈ 𝒯i, xi+1:n ∈ 𝒳i+1:n, and ρi+1:n ∈ 𝒫i+1:n. If (xi:n, ˆ︁ρi:n ) ∈
�i(ti, xi+1:n, ρi+1:n ), then �i−1(ti−1, xi:n, ˆ︁ρi:n ) ≠ ∅ for each ti−1 ∈ κ−1

i−1(ti ); for i = n, the
terms xi+1:n and ρi+1:n are vacuous. Moreover, there exists a Borel mapping f : 𝒯i−1 →
𝒳i−1:n ×𝒫i−1:n such that

f (ti−1 ) ∈�i−1(ti−1, xi:n, ˆ︁ρi:n ) ∀ti−1 ∈ κ−1
i−1(ti ) (26)

and

ˆ︁ρi:n =
∫︂
𝒯i−1

γi:n
(︁
f (ti−1 )

)︁
ℙ(dti−1|ti ). (27)

Equation (26) states that for any fixed (xi:n, ˆ︁ρi:n ), on κ−1
i−1(ti ), f (·) is a selector of the

correspondence

ti−1 ⇉�i−1(ti−1, xi:n, ˆ︁ρi:n ),

which, by Lemma 5, has a Borel graph and nonempty compact values.

Proof of Lemma 7. Suppose that (xi:n, ˆ︁ρi:n ) ∈�i(ti, xi+1:n, ρi+1:n ). Then there is a se-
quence of indices (kl )∞l=1 such that

xi:n = lim
l→∞

s
kl
i:n(ti ) and ˆ︁ρi:n = lim

l→∞
Ui:n

(︁
skl , ·|ti

)︁
. (28)

Applying Lemma 4 to X = 𝒯i−1, ℙ(dx) = ℙ(dti−1|ti ), Y = 𝒳i:n × 𝒫i:n, fl(ti ) = (skli:n(ti ),

Ui:n(skli:n|ti )) for each l ∈ ℕ, ζ = γi:n, and z∗ = (xi:n, ˆ︁ρi:n ), we conclude that there is a Borel
selector f of the correspondence

ti−1 ⇉ Lim
(︁(︁
s
kl
i−1:n(ti−1 ), Ui−1:n

(︁
s
kl
1:i−1, ·|ti−1

)︁)︁
l

)︁
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such that (27) holds. Condition (28) implies that

∅ ≠ Lim
(︁(︁
s
kl
i−1:n(ti−1 ), Ui−1:n

(︁
s
kl
1:i−1, ·|ti−1

)︁)︁
l

)︁ ⊆�i−1(ti−1, xi:n, ˆ︁ρi:n ),

which completes the proof.

The next result is a measurable version of Lemma 7.

Lemma 8. For each i = 2, � � � , n, there is a mapping fi−1 : 𝒯i−1 × Gr(�i ) → 𝒳i−1:n × 𝒫i−1

such that for each (ti, xi+1:n, ρi+1:n, xi:n, ˆ︁ρi:n ) ∈ Gr(�i ),

fi−1(ti−1, ti, xi:n, ρi+1:n, ˆ︁ρi:n ) ∈�i−1(ti−1, xi:n, ˆ︁ρi:n ) ∀ti−1 ∈ κ−1
i−1(ti ) (29)

and

ˆ︁ρi:n =
∫︂
𝒯i−1

γi:n
(︁
fi−1(ti−1, ti, xi:n, ρi+1:n, ˆ︁ρi:n )

)︁
ℙ(dti−1|ti ). (30)

For i= n, in both (29) and (30), the term ρi+1:n is vacuous.

Remark 9 (Dependence of f on ρi+1:n). The dependence of f on ρi+1:n seems super-
fluous, but may be indispensable. This dependence parallels the dependence of the
equilibria in stochastic games on the previous state and on the current state, whose
existence was proved by Mertens and Parthasarathy (1991) using the measurable “mea-
surable choice” theorem of Mertens (1987).

Remark 10. By the properties of�i−1, if

(˜︁xi−1:n, ˜︁ρi−1:n ) = fi−1(ti−1, ti, xi:n, ρi+1:n, ˆ︁ρi:n ),

then ˜︁xi:n = xi:n. Later we will make use of this observation.

Proof of Lemma 8. Fix i= 2, � � � , n and apply Theorem 4 with the parameters:

• Y = Gr(�i )

• Z = 𝒯i−1

• B= {(ti−1, ti, xi+1:n, ρi+1:n, xi:n, ˆ︁ρi:n ) ∈Z ×Y |ti = κi−1(ti−1 )}

• q(ti−1|ti, xi+1:n, ρi+1:n, xi:n, ˆ︁ρi:n ) = ℙ(ti−1|ti )
• W = 𝒳i−1:n ×𝒫i−1:n

• ζ is the evaluation map γi:n on 𝒳i−1:n ×𝒫i−1:n

• F is defined on B by F(ti−1, ti, xi+1:n, ρi+1:n, xi:n, ˆ︁ρi:n ) ≡�i−1(ti−1, xi:n, ˆ︁ρi:n )

• F⋄ : Y → 𝒫i:n as defined in (19).
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By Theorem 4, there is a Borel mapping g : Gr(F⋄ ) × 𝒯i−1 → 𝒳i−1:n × 𝒫i−1:n such that
for every y = (ti, xi+1:n, ρi+1:n, xi:n, ˆ︁ρi:n ) ∈ Y = Gr(�i ), every u ∈ F⋄(y ), and every ti−1 ∈
κ−1
i−1(ti ), we have

g(y, u, ti−1 ) ∈ F(ti−1, y ) =�i−1(ti−1, xi:n, ˆ︁ρi:n )

and

u=
∫︂
𝒯i−1

γi:n
(︁
g(y, u, ti−1 )

)︁
ℙ(dti−1|ti ).

It follows from Lemma 7 that for any y = (ti, xi+1:n, ρi+1:n, xi:n, ˆ︁ρi:n ) ∈ Y , noting that
By = κ−1

i−1(ti ) and, hence, ℙ(By |ti ) = 1, there is f : 𝒯i−1 → 𝒫i−1:n such that f |By is a Borel
selector of ti−1 → F(ti−1, ti, xi+1:n, ρi+1:n, xi:n, ˆ︁ρi:n ) = �i−1(ti−1, xi:n, ˆ︁ρi:n ) and such that
(27) holds, which means that

ˆ︁ρi:n ∈ F⋄(ti−1, ti, xi+1:n, ρi+1:n, xi:n, ˆ︁ρi:n ).

Defining fi−1 : 𝒯i−1 × Gr(�i ) → 𝒳i−1:n ×𝒫i−1:n by

fi−1(ti−1, ti, xi:n, ρi+1:n, ˆ︁ρi:n ) ≡ g(︁(ti, xi+1:n, ρi+1:n, xi:n, ˆ︁ρi:n ), ˆ︁ρi:n, ti−1
)︁

yields the desired result.

6.2.6 Construction of a Bayesian 0-equilibrium In this section, we define a strategy
profile s∗ = (s1∗ , � � � , sn∗ ) and prove that it is a Bayesian 0-equilibrium.

For any set A, denote by πA the projection map to A. Let fn−1, � � � , f1 be the map-
pings given by Lemma 8. Define mappings (gi )ni=1 recursively (backwards) as follows.

• Let gn : 𝒯n → 𝒳n × 𝒫n be a Borel selector of �n, which exists by Theorem 2 (recall
that�n depends only on the type of player n). Define

s∗n ≡ π𝒳n ◦ gn. (31)

• For i = 2, � � � , n, assuming that we have already defined mappings (gj )nj=i, let gi−1 :
𝒯i−1 → 𝒳i−1:n ×𝒫i−1:n be defined by

gi−1(ti−1 ) ≡ fi−1
(︁
ti−1, κi−1(ti−1 ), s∗i:n

(︁
κi−1(ti−1 )

)︁
,

π𝒫i+1:n ◦ gi+1
(︁
κi

(︁
κi−1(ti−1 )

)︁)︁
, π𝒫i:n ◦ gi

(︁
κi−1(ti−1 )

)︁)︁
, (32)

where the penultimate argument is vacuous when i= n− 1, and set

s∗i−1 ≡ π𝒳i−1 ◦ gi−1. (33)

For i= 1, � � � , n− 1, the mapping gi is well defined provided(︁
κi−1(ti−1 ), s∗i+1:n

(︁
κi−1(ti−1 )

)︁
, π𝒫i+1:n ◦ gi+1

(︁
κi

(︁
κi−1(ti−1 )

)︁)︁
,

s∗i:n
(︁
κi−1(ti−1 )

)︁
, π𝒫i:n ◦ gi

(︁
κi−1(ti−1 )

)︁)︁
always lies in Gr(�i ). The next lemma states that this is indeed the case.
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Lemma 9. The mappings (gi )
n−1
i=1 are well defined.

Proof. Denote ti = κi−1(ti−1 ). We will prove that for each ti−1 ∈ 𝒯i−1,(︁
ti, s

∗
i+1:n(ti ), π𝒫i+1:n ◦ gi+1

(︁
κi(ti )

)︁
, s∗i:n(ti ), π𝒫i:n ◦ gi(ti )

)︁ ∈ Gr(�i ) (34)

and

s∗i:n(ti ) = π𝒳i:n ◦ gi(ti ). (35)

Note the slight difference between (33) and (35): in the former, we set s∗j (tj ) to be π𝒳j ◦
gj(tj ), while the latter claims that s∗j (tj ) = π𝒳j ◦gi(ti ) for each j ≥ i; by construction, using
Remark 10, these agree.

We prove (34) and (35) by induction, starting with i = n. In this case, (35) holds by
(31). Moreover, the left-hand side in (34) becomes(︁

tn, s∗n(tn ), π𝒫n ◦ gn(tn )
)︁ = (︁

tn, π𝒳n ◦ gn(tn ), π𝒫n ◦ gn(tn )
)︁ = (︁

tn, gn(tn )
)︁
,

which lies in Gr(�i ) since gn is a selector of�n.
Let now i ∈ [1 : n − 1], and assume by induction that (34) and (35) hold for i + 1.

By (29), (32), and the induction hypothesis,

gi(ti ) ∈�i
(︁
ti, s

∗
i+1:n(ti+1 ), π𝒫i+1:n ◦ gi+1(ti+1 )

)︁
, (36)

where ti+1 = κi(ti ). It follows from the properties of�i—or from Remark 10 and the def-
inition of gi in (32)—that πXi+1:n(gi(ti )) = s∗i+1:n(ti+1 ). By definition, s∗i (ti ) = πXi(gi(t

i )).
Putting these together shows that (35) holds for i. Once we prove that (35) holds for i, we
have (︁

s∗i:n, π𝒫i:n ◦ gi(ti )
)︁ = (︁

π𝒳i:n ◦ gi(ti ), π𝒫i:n ◦ gi(ti )
)︁ = gi(ti ).

Hence, the left-hand side in (34) becomes(︁
ti, s

∗
i+1:n(ti+1 ), π𝒫i+1:n ◦ gi+1

(︁
κi(ti )

)︁
, gi(ti )

)︁
.

By the induction hypothesis (36), this element is in Gr(�i ), as required.

The next result relates Ui:n(s∗, ·|ti ) to gi(ti ).

Lemma 10. For each i ∈ 𝒩 and each ti ∈ 𝒯i,

Ui:n
(︁
s∗, ·|ti

)︁ = π𝒫i:n ◦ gi(ti ). (37)

Proof. We prove the claim by induction on i. We start with i = 1. By (32) and (29), for
each t1 ∈ 𝒯1,

g1(t1 ) ∈�1
(︁
t1, s∗2:n(t1 ), π𝒫2:n ◦ g2

(︁
κ1(t1 )

)︁)︁
,

which, by (22), implies the result for i= 1.
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Fix now i > 1, and suppose the claim holds for i− 1. For each ti ∈ 𝒯i,

Ui:n
(︁
s∗, ·|ti

)︁ =
∫︂
𝒯i−1

γi:n
(︁
s∗i−1:n(ti−1 ), Ui−1:n

(︁
s∗1:i−1, ·|ti−1

)︁)︁
ℙ(dti−1|ti ) (38)

=
∫︂
𝒯i−1

γi:n
(︁
s∗i−1(ti−1 ), π𝒫i−1:n ◦ gi−1(ti−1 )

)︁
ℙ(dti−1|ti ) (39)

=
∫︂
𝒯i−1

γi:n
(︁
gi−1(ti−1 )

)︁
ℙ(dti−1|ti ) (40)

=
∫︂
𝒯i−1

γi:n
(︁
fi−1

(︁
ti−1, ti, s

∗
i:n(ti ), π𝒫i:n ◦ gi(ti ), π𝒫i+1:n

(41)
◦ gi+1

(︁
κi(ti )

)︁)︁)︁
ℙ(dti−1|ti )

= π𝒫i:n ◦ gi(ti ), (42)

where (38) holds since information is nested, (39) holds by the induction hypothesis,
(40) holds by (35), (41) holds by (32), and (42) holds by (30).

We can now conclude the proof of Theorem 1.

Lemma 11. Profile s∗ is a Bayesian 0-equilibrium.

Proof. Fix i ∈ 𝒩 and ti ∈ 𝒯i. Then(︁
s∗i (ti ), Ui:n

(︁
s∗|ti

)︁)︁ = gi(ti ) ∈�i
(︁
ti, s

∗
i+1:n(ti ), π𝒫i+1 ◦ gi+1

(︁
κi(ti )

)︁)︁
=�i

(︁
ti, s

∗
i+1:n(ti ), Ui+1:n

(︁
s∗

⃓⃓
κi(ti )

)︁)︁
,

where the first equality holds by (35) and Lemma 10, the inclusion holds by (32) and (29),
and the second equality holds by Lemma 10. Corollary 1 now implies that s∗ is a Bayesian
0-equilibrium.

7. Extensions

In Remark 5, we mentioned extensions of Theorem 1 to compact metric action spaces
and to tree-like information structure.

In this section, we elaborate on these extensions.

7.1 Compact metric action spaces

Consider Bayesian games where for each player i ∈ 𝒩 , (a) the action space 𝒜i is compact
metric, and (b) the payoff function is continuous over 𝒜 for each type and is integrable,
namely, 𝔼[maxa∈𝒜 |Ri(a)|]<∞. In this model, the existence of a Harsanyi ε-equilibrium
can be established as follows. Since payoffs are integrable, there are M > 0 and 𝒯 ′ ⊆ 𝒯
such that maxa∈𝒜 |Ri(t, a)| ≤M for each t ∈ 𝒯 ′ and 𝔼[1𝒯 \𝒯 ′ maxa∈𝒜 |Ri(a)|] ≤ ε

2 . Define a
revised game �′ with payoffs agreeing with R in 𝒯 ′ and 0 otherwise. Then for any δ > 0,
a Harsanyi δ-equilibrium of �′ is a Harsanyi (δ+ ε)-equilibrium of �.
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Once this reduction is made, a Scorza–Dragoni type theorem (see footnote 4) shows
that there is a set of types 𝒯 ′′ ⊆ 𝒯 ′ such that ℙ(𝒯 ′′ ) ≥ 1 − ε and the family of functions
(R(t, ·))t∈𝒯 ′′ is uniformly equicontinuous. We can thus let �′′ be the game with type
space 𝒯 ′′ and with action spaces (𝒜′

i )i∈𝒩 that are finite subsets of (𝒜i )i∈𝒩 , respectively,
such that for each player i and each t ∈ 𝒯 ′′, the family of functions (Ri(t, ai, ·))ai∈𝒜′

i
on∏︁

j≠i𝒜i is ε-uniformly dense in (Ri(t, ai, ·))ai∈𝒜i
. A Bayesian 0-equilibrium of �′′ can

then be shown to be a Harsanyi 2(M + 1)ε-equilibrium of �′, which is a Harsanyi (2M +
3)ε-equilibrium of �. Such a Bayesian 0-equilibrium exists by virtue of Theorem 1.

In a subsequent paper, we strengthen this result and establish the existence of an
ε-Bayesian equilibrium in this model.

7.2 Tree-like information

In our model, the players are ordered, and each player knows the types of all the players
who follow her in that order. In some setups, such as hierarchical organizations, the in-
formation structure is tree-like; that is, the players are vertices of a tree, and each player i
knows the types of all her descendants, denotedD(i). That is, for each i ∈ 𝒩 , there exists
a measurable mapping κi : 𝒯i ↦→ ∏︁

j∈D(i) 𝒯j such that ℙ(((tj )j∈D(i) ) = κi(ti )) = 1.

Denote by D(i) the lineage set of player i, namely, the set that includes the ances-
tors of i, the descendants of i, and i herself. We here explain how to extend our result to
Bayesian games with tree-like information structure, provided the payoff of each player
is affected only by the types and actions of the players in D(i). Specifically, we explain
how to generalize the two steps of the proof: the existence of ε-equilibrium, which was
demonstrated in Section 6.1, and the existence of 0-equilibrium, which was demon-
strated in Section 6.2.

For the former, note that there is at least one i ∈ 𝒩 such that D(i) = ∅, because
𝒩 is finite. In the notation of Section 6.1, for each i such that D(i) = ∅, define
ψi(t ) ≡ (Rj(t ))j∈D(i) and let ϕi(t ) be a δ-approximation of ℙ(ψi|ti ). Recursively, for
each i ∈ 𝒩 for which ϕj has already been defined for every j ∈ D(i), denote ψi(ti ) ≡
((ϕj )j∈D(i), (Rj )j∈D(i) ) and let ϕi be a δ-approximation of ℙ(ψi|ti ).

The auxiliary game with a finite type space �′ is defined by setting player i’s type
to τi ≡ (ϕi, (ϕj )j∈D(i) ), and the probability measure in that game is the push-forward
measure of (τi )i∈𝒩 with respect to ℙ.

The proof that �′ admits a Bayesian 0-equilibrium, and that this Bayesian 0-
equilibrium induces a Bayesian ε-equilibrium in �, are analogous to those given in
Section 6 for Bayesian games with nested information.

The construction of a Bayesian 0-equilibrium from a sequence of Bayesian 1
k -

equilibria also follows via a similar modification to the construction carried out in Sec-
tion 6.2: The construction of an equilibrium strategy profile, which had been carried
recursively from the least knowledgeable player toward the most knowledgeable players
in the nested-information model, is now carried out beginning with those players i ∈ 𝒩
for whomD(i) = ∅ and then recursively for those players i ∈ 𝒩 for whom the equilibrium
strategy has already been defined for all j ∈D(i). The relevant construction remains well
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defined by virtue of our assumption that each player’s payoff depends only on the action
of players in their lineage.

We note that every Bayesian game � (without necessarily nested information) can
be presented as a Bayesian game �′ with a tree-like information structure; however, this
representation cannot always be done in a way that guarantees that each players’ payoff
depends only on players in their lineage. Indeed, denoting by 𝒩 the set of players in �,
we can define �′ with the set of players 𝒩 ∪ {∗}, where player ∗ knows the types of all
players in 𝒩 and has a single action (so she is a dummy player), and each player in 𝒩
knows only her own type. As mentioned above, there are examples of Bayesian games
without Bayesian 0-equilibria and Bayesian ε-equilibria. In these examples, the payoff
of each player depends on the actions of the other players in 𝒩 . Hence, without the
requirement that the payoff of each player only depends on the actions of the players
in her lineage, games with tree-like information structure need not admit Bayesian 0-
equilibria and Bayesian ε-equilibria.
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