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Strategic exits in stochastic partnerships:
The curse of profitability

Bor1 Xu
Department of Economics, Tippie College of Business, University of Iowa

We study dynamic partnerships where the output evolves stochastically, each
player can exit at any time, and players who have exited continue to accrue some
benefits if the remaining players keep contributing to the partnership. Players
can strategically exit to free-ride on their partners’ contributions, knowing that it
may trigger subsequent exits of their partners. We characterize the unique Pareto-
optimal equilibrium. When players have sufficiently large free-riding incentives
and a medium level of mutual reliance, this equilibrium exhibits a curse of prof-
itability: An increase in the partnership’s output may strictly harm all the players.
Another main finding is that Pareto improvement can be achieved if any player
commits not to exit first.

Keyworbs. Partnerships, strategic exits, curse of profitability, dynamic coordina-
tion, stochastic stopping games.
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1. INTRODUCTION

In some partnerships, partners who have exited continue to accrue some benefits as
long as the remaining partners keep contributing to the partnership. In a startup firm,
for instance, co-founders who have ceased investment can still benefit from the startup’s
later success, including monetary returns (if they still retain some shares of the startup)
and reputation gains. In a cartel, firms that have departed can still benefit from the low
quantities or high prices maintained by those who remain in the cartel. In a financial
institution facing liquidity strains, investors who cease injecting liquidity will suffer less
loss if the other investors fulfill the liquidity demands. In an environmental agreement,
nations that have withdrawn still benefit from the reduction of greenhouse gases by the
remaining participants.

These partnerships face the common problem of strategic exiting: partners may exit
to save their private contribution costs while relying on the continued contributions of
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others. Notice that a partner’s exit makes it more difficult for the remaining partners to
operate the partnership and thus may trigger them to exit as well. Such a ripple effect,
in turn, determines whether a partner would like to strategically exit in the first place.

This paper builds a framework to investigate the dynamics of cooperation in part-
nerships where exited partners continue to benefit from the partnership’s output. In
particular, we focus on stochastic partnerships: the partnership’s flow output, which we
refer to as its level of profitability, changes stochastically over time. This captures the
fact that a partnership’s output is usually affected by some evolving external factors.!

The main finding of this paper is that the partnership may be subject to a curse of
profitability: under some conditions that we specify later, a more profitable partner-
ship leaves all the partners strictly worse off. Intuitively, higher profitability is a double-
edged sword. On the one hand, it means the partnership generates more output. On
the other hand, if some partners exit, higher profitability makes the remaining partners
more willing to keep operating the partnership, which stimulates strategic exiting in the
first place. Moreover, partners have incentives to preempt each other since they prefer
to be the free-riders (those who exit while others remain), and because of that, the free-
riders exit “too early” in equilibrium. As a consequence, all the players—including the
free-riders—may suffer from high profitability.

Our baseline model features two players running a joint project whose profitability
level evolves according to a Brownian motion. Each player can exit at any time to save
his contribution cost.> We refer to the player who exits first as the first mover and his
partner as the second mover.2 The ripple effect is that the second mover, finding it more
difficult to run the project after the first mover exits, may choose to exit as well and thus
terminate the project.

Section 3 analyzes the pure-strategy Markov perfect equilibria (MPE), where each
player decides when to exit based on the project’s current profitability level and whether
his partner has already exited. Theorem 1 shows that in the unigue Pareto-optimal equi-
librium, increasing the partnership’s profitability level may strictly decrease both play-
ers’ continuation value. This finding formalizes this paper’s core insight regarding the
curse of profitability in partnerships. Moreover, we find that the curse of profitability oc-
curs if and only if the players have sufficiently large free-riding incentives and a medium
level of mutual reliance (Corollary 1).

Section 4 studies whether and how the issue of strategic exiting can be mitigated
when one player commits not to exit first. Departing from the baseline model, we an-
alyze an alternative setting where one player, referred to as Susan, commits not to exit

1For instance, a startup faces evolving market competition and financing environment; a cartel faces
fluctuating market demand and is subject to technology shocks; a financial institution faces changing mar-
ket sentiment and regulatory environment; an environmental agreement faces changing public political
attitudes.

2In the baseline model, exits are assumed irreversible (i.e., exited partners cannot reenter the partner-
ship), capturing the idea that reentry is either impossible or costly in many real-world partnerships. On-
line Appendix B.3 of Xu (2025) shows that this paper’s main result remains true under some conditions
when reentry is possible but costly.

3The identities of the first and second movers are endogenously determined by the players’ strategies.
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first and becomes the designated second mover, while the other player, Frank, is des-
ignated as the first mover. This section presents two main findings. First, Theorem 2
shows that Frank may strategically exit only when the partnership’s profitability exceeds
a certain level, which explains some exit patterns observed in practice. For example,
serial entrepreneurs often play a pivotal role during a startup’s early stages but strate-
gically exit as the startup gains traction, shifting their focus to the next startup in their
pipelines.* Second, Theorem 3 shows that Susan’s no-first-exit commitment can lead to
a Pareto improvement over the baseline model, as her benefit from avoiding preemption
outweighs her cost of forgoing the option to exit first.

Section 5 examines the robustness of the paper’s main result. The curse of prof-
itability is shown to persist across various generalizations, including settings with more
than two players, asymmetric payoff structure among players, the possibility for exited
players to reenter the partnership, and the relaxation of several innocuous modeling
assumptions. The Appendix contains all proofs.

Related literature

Broadly speaking, this paper contributes to the study of dynamic incentives in coop-
eration. The most distinctive feature of this paper is that players can irreversibly exit
and continue to free-ride on others’ contributions. Hence, this paper is related to the
following strands of literature.

First, itis related to the literature on dynamic games where players have exit options.
Many papers in this literature feature rippling exits in equilibrium, driven by either pay-
off externalities (i.e., a player’s exit alters others’ payoffs) or information externalities
(i.e., a player’s exit conveys information to others).> Our paper builds on payoff exter-
nalities but introduces a key novelty: we consider two-way externalities, i.e., players who
exit early harm the remaining players but are also harmed if the remaining players later
exit. Hence, players in our paper are concerned about the ripple effect triggered by their
own exits, while such a concern is absent in the existing literature. Because of that, our
paper gives rise to new economic forces like the curse of profitability.

Second, this paper is related to the literature on dynamic contribution games, where
players exert effort over time to build a common stock of public goods (Admati and Perry
(1991), Fershtman and Nitzan (1991), Marx and Matthews (2000), Georgiadis (2015)). In
that literature, a player’s contribution can encourage others to contribute more in the
future; in our paper, similarly, a player’s decision to stay in the partnership can encour-
age others to stay.> Some papers in that literature also highlight economic forces under

4One prominent example is Peter Thiel, who left PayPal after its successful acquisition by eBay and soon
transitioned his investment into other ventures, including Facebook.

5For models with payoff externalities, see Jovanovic and MacDonald (1994) in industry shakeouts, Cete-
men, Urgun, and Yariv (2023) in collective search, etc. For models with information externalities, see
Chamley and Gale (1994), Rosenberg, Solan, and Vieille (2007), Moscarini and Squintani (2010), Murto and
Vilimaki (2011), Guo and Roesler (2018), Margaria (2020), Awaya and Krishna (2021), Kirpalani and Madsen
(2023), etc.

6Model-wise, papers in that literature can be viewed as dynamic games with an endogenous state
variable—the stock of public goods. In our paper, the endogenous state variable is the number of remaining
players.
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which stronger fundamentals of a partnership paradoxically lead to worse outcomes.
For example, Curello (2023) studies a dynamic contribution game where a player’s effort
stochastically increases the stock of public goods, while the opportunity cost of effort
rises with the stock. Due to the opportunity cost, a high stock of public goods may re-
sult in low effort and, consequently, low continuation values for the players. Similarly,
Ramos and Sadzik (2023) study a dynamic contribution game where players accumulate
relational capital. In that paper, a high level of relational capital may weaken players’
relational incentives because of a cap on how much relational capital they can accumu-
late. Our paper contributes to this line of inquiry by introducing a novel economic force
under which strong fundamentals of a partnership can have adverse effects: high prof-
itability of a partnership may incentivize strategic exits, as players anticipate that the
remaining players will be motivated to continue operating the project.

Third, this paper is related to voluntary partnership games, where players repeat-
edly face the prisoner’s dilemma and have the option to opt out (Ghosh and Ray (1996),
Fujiwara-Greve and Okuno-Fujiwara (2009), McAdams (2011)). Despite the similarity,
the purpose of exiting is opposite: players in our paper strategically exit to free-ride on
others’ efforts, while in those papers, the intention of an exit is to punish a free-rider.

Finally, this paper adds to the applications of continuous-time stopping games (also
referred to as real options games), especially those concerning preemption in different
contexts (Fudenberg and Tirole (1985), Dutta and Rustichini (1993), Grenadier (1996),
Weeds (2002), Bobtcheff, Bolte, and Mariotti (2017), Riedel and Steg (2017), Thomas
(2021)).

2. BASELINE MODEL
2.1 Payoff

Time is continuous with an infinite horizon, indexed by ¢ € [0, c0). Two players (i =
1, 2) form a partnership to run a joint project. Player i’s realized lifetime utility is I1; =
f0°° e "' dt, where r > 0 is the common discount rate of the players and m;; is his flow
payoff at time ¢. Players’ flow payoffs are given in Table 1. If both players stay in the
partnership, they each pay a flow contribution cost of ¢ > 0 and receive a flow revenue
of X; > 0. We interpret X; € X = R™ as the project’s level of profitability. It changes
over time, following a geometric Brownian motion, d X,/ X; = udt + o dZ,;, where u <r,
o >0, and Z, is a standard Wiener process.” If player i (he) exits while player j (she)
operates the project alone, two changes in payoff happen. On the one hand, player i
saves his contribution cost while continuing to enjoy a flow revenue of a«.X; with « > 0.
We refer to « as the free-riding parameter as it measures a player’s benefit from free-
riding. On the other hand, player j’s flow cost increases to kc with « > 1, as she now has
to take on the additional responsibilities that player i would have carried out. Her flow
revenue is also changed to BX; with 8 > 0.8 The change in her revenue can be attributed

“Online Appendix B.4 of Xu (2025) shows that this paper’s main result continues to hold if X, follows a
more general diffusion process.

8This encompasses the special case 8 = 1, where player j’s flow revenue remains unchanged after player
i exits.
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TaBLE 1. Flow payoff at time ¢ in the baseline model.

Stay Exit
Stay X[—C, X[—C BXt—KC, OZX[
Exit aX,, BXi— ke 0,0

to two potential factors: the loss of synergy resulting from the other player’s exit, which
tends to reduce B, or the increase in her control over the project, which typically raises
B. To streamline later analysis, we introduce a parameter A := /3, allowing player j’s
flow payoff to be equivalently expressed as B(X; — Ac). We refer to A as the reliance
parameter, as a higher value of A indicates greater difficulty for a single player to operate
the project or, equivalently, a higher degree of mutual reliance between the players in
operating the project. Finally, if both players exit, their payoffs are normalized to zero.
We place two assumptions on the parameters.

AssumpTION 1. Wehave o+ B8 <2 and « > 2.
AssumpTION 2. We have a < 8.

Assumption 1 says that the partnership with a solo contributor generates (weakly)
less revenue and incurs (weakly) more cost than that with two contributors, capturing
the idea that the players create synergy when contributing to the partnership together.
Because of this assumption, strategic exiting is socially inefficient since players’ total
flow payoff with two contributors, 2(X; — ¢), is always higher than that with only one
contributor, (¢ + B)X; — kc. Assumption 2 says that a free-rider receives less revenue
than a contributor, which is realistic for many real-world partnerships. We relegate the
discussion of the less realistic situation where o > 8 to Online Appendix B.5 of Xu (2025),
where we show that the main insights of this paper remain intact except that some ad-
ditional discussion of the parameters is needed.

It is also worth noticing that these two assumptions, when put together, determine
the domains for the parameters («, 8, A). The domain of « is (0, 1). Given the value of
a, the domain of B is (@, 2 — a] and the domain of A is [A, o0), where A :=2/(2 — ) > 1.

2.2 Timeline

Players choose when to exit the partnership, and their past actions are perfectly ob-
served. To allow players to instantaneously react to their partners’ actions, we formulate
the model as a two-stage dynamic game a la Murto and Viliméki (2013).°

Stage 1. In Stage 1, each player chooses when to exit, given that neither has exited yet.
Player i’s strategy in this stage is an #;-adapted stopping time 7/, where H, contains all
the information about the public history, including the history of the state variable dur-
ing [0, ¢] and the history of players’ actions during [0, ¢). Stage 1 ends at 7 := min{r!, 72}.

9t is a common practice in the literature to transform a continuous-time game with irreversible actions
into a game with discrete stages. See also Bulow and Klemperer (1994), Akcigit and Liu (2016), etc.
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It is possible, however, that both players attempt to exit at the same time (i.e., 7' = 72) in

Stage 1. In case that happens, we make the following tie-breaking assumption: Only one
player (selected at random by a coin flip or other fair randomization device) can suc-
cessfully exit.!? Given this assumption, whether or not tie-breaking is necessary, there is
only one player exiting in Stage 1. We call this player the first mover (he).

Stage 2. After the first mover exits, the game immediately proceeds to Stage 2, where
the remaining player, whom we refer to as the second mover (she), chooses when to exit.
Her strategy in Stage 2 is an #,-adapted stopping time 7° > 7. The second mover may
choose to exit immediately after the first mover, i.e., 7¥ = 7. If that happens, we refer to
it as a de facto joint exit. Hence, the loser of the coin flip (if any) in Stage 1 is effectively
given an opportunity to take back her initial decision to exit. If she still opts to exit, her
exit is formally treated as happening in Stage 2 to maintain consistency.

3. EQUILIBRIUM

This section contains the paper’s main results and is organized as follows. Section 3.1
specifies the equilibrium concept, pure-strategy Markov perfect equilibrium (MPE). Un-
less otherwise specified, an “equilibrium” in this paper refers to a pure-strategy MPE.
Sections 3.2 and 3.3 use backward induction to characterize the unique Pareto-optimal
equilibrium. Following the characterization, Section 3.4 studies the properties of this
equilibrium, especially the curse of profitability. Section 3.5 discusses non-Pareto-
optimal equilibria. Finally, Section 3.6 establishes that the unique Pareto-optimal pure-
strategy MPE is also the unique Pareto-optimal subgame-perfect Nash equilibrium
(SPNE), suggesting that the main results of this paper can be applied more broadly to
the equilibrium concept of SPNE.!!

3.1 Equilibrium concept

We focus on pure-strategy Markov perfect equilibrium (MPE), where a player’s exit de-
cision is based on (i) the current state X, and (ii) whether the other player has already
exited. Since we formulate the model as a two-stage dynamic game, the players’ strat-
egy profile in a pure-strategy MPE can be represented by a tuple (X!, X2, x¥). In Stage
1, player i chooses an exit region X' C X, meaning that he intends to exit at time ¢ if and
only if X, € X', In Stage 2, the second mover, whether it is player 1 or player 2, faces
the same single-player decision problem. As we will show later, the solution to this de-
cision problem is unique and, therefore, there is no need to distinguish the two players’
strategies in Stage 2. We describe the second mover’s strategy in Stage 2 as an exit region
X* € X, meaning that she exits at time ¢ if and only if X, € X”*.

10This tie-breaking assumption is common in stopping games (Dutta and Rustichini (1993), Grenadier
(1996), Abreu and Gul (2000), Weeds (2002), Murto (2004)). See Online Appendix B.6 of Xu (2025) for more
discussion.

1 Although the results can be applied more broadly, we still focus on pure-strategy MPE in Section 3, as
it drastically simplifies the analysis.
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3.2 Stage?2

In Stage 2, the second mover faces the following optimal stopping problem: She gets
a flow payoff of B(X; — Ac) until she exits, at which point she collects a zero lump-sum
payoff. Asis standard for a time-homogeneous stopping problem of this sort, the second
mover’s optimal strategy is a (stationary) Markovian decision rule, which can be repre-
sented by an exit region X* C X, as introduced in Section 3.1. This optimal decision rule
induces her a value function that we denote by S(x), reflecting her continuation value
at time ¢ if X, = x. The value function must satisfy the Hamilton-Jacobi-Bellman (HJB)
equation

2
S(x) = max{O, B(x — Ac) + (1 — r)S(x) + 8" (x)px + %S”(x)xz}, 1)

where 0 is the continuation value of exiting and B(x — Ac) + (1 — r)S(x) + S’ (x)ux +
[028"(x)x?]/2 is the continuation value of staying. The following claim describes the
solution to this problem.

CraiMm 1. The second mover’s optimal exit region is X* = (0, x*], with the exit threshold
being x* :=[(r — w)yl/[r(y — )] - Ac, and her value function is

B B, B

Sy={r—mu roord-y)(x)’
0 ifx <x*,

-x7ifx > x¥,

where y := (0% — 2 — /(02 — 2u)? + 8ro2)/(20?) < 0.

Claim 1 suggests that the second mover’s optimal exit region takes a threshold form,
i.e., she exits when the partnership’s profitability level X, falls below x*. Notably, this
threshold is proportional to A, indicating that the second mover is more inclined to exit
under a higher level of mutual reliance. Moreover, when x > x*, the second mover’s
value function S(x) can be decomposed into two parts: the first two terms represent her
expected future payoff if she never exits, whereas the third term reflects her option value
of exiting. In addition, the value of y is determined to make S(x) satisfy the ordinary
differential equation (ODE), S(x) = B(x — Ac) + (1 — r)S(x) + S'(x)ux + [02S" (x)x?]/2
for any x > x*.12

Knowing the second mover’s response in Stage 2, we can derive the first mover’s con-
tinuation value upon exit. After exiting, he continues to receive a flow payoff of a. X, until
the second mover terminates the project, i.e., the next moment that X, falls below x*.
Let F(x) denote the first mover’s continuation value upon exit at time ¢ if X; = x. When
x < x*, we have F(x) = 0 because the first mover’s exit will immediately trigger the sec-
ond mover to exit and terminate the project. When x > x*, the value function F(x) must

1275 the proof will show, the general solution to this ODE is S(x) = B[x/(r — u) — Ac/r] + k1x? + kpx",
where y < 0 and 5 > 0 are the two roots of I'(y) := uy + [02y(y — 1)]/2 —r. Determining the values of k1 and
k» yields the closed-form solution of S(x) presented in Claim 1.
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" - Xi==x
T xX
F1GURE 1. Illustration of F(x) and S(x). The value ¥ is the only intersection of F(x) and S(x) in

the interval (x*, 00).

satisfy the Feynman-Kac formula

0_2

F(x)=ax+ (1 —r)F(x) + F'(x)ux + 7F”(x)xz.
The following claim provides the closed-form solution of F(x).

Cra1M 2. The first mover’s continuation value upon exit is

a a y X
i r_M~x— - 1 ifx > x*,
(x) = (r=pm)(x7) )

0 ifx < x*.

Like what we did, we can interpret F(x) by decomposing it into two parts when x >
. The first term represents the first mover’s expected future payoff if the project is
never terminated, whereas the second term reflects the loss from possible termination
of the project.

Figure 1 depicts the two value functions in the same place to highlight their prop-
erties and facilitate comparison. The function F(x) has a “kink” at x = x*, where it has
a zero left derivative and a strictly positive right derivative. This kink does not violate
the principle of optimal stopping because the threshold x* is not chosen by the first
mover, and, therefore, smooth pasting does not apply. Crucially, this kink suggests the
occurrence of first-mover advantage for an interval of x, as formally shown in Lemma 1.

x*

LeMMA 1. There exists a unique X € (x*, oo) such that

F(x)=S(x) forxe(0,x*],
F(x)>S(x) forxe(x* %),
F(x)=S(x) forx=%,
F(x) <S(x) forxe (X, o0).
Lemma 1 indicates that a first-mover advantage arises in the interval (x*, ), as also

illustrated by Figure 1. Intuitively, when x > x*, the first mover’s payoff differs from the
second mover’s in two aspects: he saves the contribution cost, but also receives less
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revenue than the second mover due to Assumption 2. The partnership’s profitability
level does not affect the first aspect, but is proportional to the second aspect. Hence,
the first-mover advantage arises when X; € (x*, X) as the first aspect dominates, but not
when X; > x as the second aspect becomes dominant.

3.3 Stage 1

Since the second mover’s optimal strategy in Stage 2 is unique (up to the indeterminacy
at the threshold x*), we can induce backward to Stage 1, where the players face the fol-
lowing stopping game. As long as no one has exited, each player receives a flow payoff of
X: — c. If one player chooses to exit at time ¢, he collects a continuation value of F(X;)
as the first mover, while the remaining player receives a continuation value of S(X;) as
the second mover.

In principle, an equilibrium should specify players’ strategies in both Stage 1 (i.e., X!
and X?) and Stage 2 (i.e., X*). However, to save notation, we omit X when specifying
an equilibrium in Section 3.3. This is because X is identical for every equilibrium and
does not play an important role in analyzing the players’ interaction in Stage 1.

LEMMA 2. In Stage 1 of any pure-strategy MPE, both players either always exit or always
contribute for all the values of x in the interval (x*, X). That is, the entire interval (x*, X)
is either included in or excluded from both players’ exit regions in Stage 1.

Lemma 2 is due to the effect of preemption. Notice that (x*, ¥) is a connected set of
values of x that features first-mover advantage. In the presence of first-mover advantage,
once a player intends to exit, his partner will react by choosing to exit slightly earlier
than he does; unraveling thus occurs as the preemption exercise diffuses to the entire
connected set where first-mover advantage exists. With this lemma, any equilibrium
must belong to one of the following two types.

DEerINITION 1. Two types of pure-strategy MPE:
(i) A cooperative equilibrium is a pure-strategy MPE where (x*, ¥)NXx* =@ fori =1, 2.
(ii) A preemptive equilibrium is a pure-strategy MPE where (x*, ¥) C X' fori=1,2.13

3.3.1 Cooperative equilibria To begin with, we characterize the socially optimal out-
come, which will play an important role in analyzing cooperative equilibria. Think about
a social planner who wants to maximize the players’ total welfare by choosing when
each player irreversibly exits. Because strategic exiting is socially inefficient due to As-
sumption 1, the socially optimal outcome is one where both players jointly terminate the
project when the state X, falls below some threshold. By solving the optimal stopping
problem with the flow payoff being X; — ¢ and the lump-sum exit payoff being zero, the

13In a preemptive equilibrium, both players intend to exit in Stage 1 when X, € (x*, ¥). However, un-
der the tie-breaking assumption, the one who (fails the coin flip and) proceeds to Stage 2 will continue to
contribute until the next time that the process X, reaches x*.
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optimal exit threshold is x** := [(r — u)y]/[r(7y — 1)] - c¢. This induces each player a value
function V,(x), representing his continuation value at time ¢ if X; = x:

1 c c
x——+———— .x¥ whenx > x™,

Vi =dr—m o r(1—y (™) 3)
0 when x < x™*.

The derivation of x** and V. (x) is almost identical to that for Claim 1 and is thus omitted.
As before, when x > x**, the first two terms in J.(x) correspond to each player’s expected
future payoffif the projectis never terminated, whereas the third term reflects the option
value from terminating the project. Notably, the threshold x** differs from x* derived in
Claim 1 because x** is the optimal exit threshold with two contributors, whereas x* is the
optimal threshold with only one contributor. Indeed, these two thresholds satisfy x* =
Ax**; as players become more reliant on each other, the gap between the two thresholds
gets larger.

Having specified the socially optimal outcome, the next lemma establishes its con-
nection with cooperative equilibria.

LEMMA 3. If a cooperative equilibrium exists, there must be a cooperative equilibrium
characterized by X! = X? = (0, x**]. This equilibrium implements the socially optimal
outcome.

The intuition of Lemma 3 is as follows. Since the strategy profile X! = X2 = (0, x**]
implements the socially optimal outcome, the value function that it generates to each
player must be point-wise higher than any other strategy profile that satisfies the nec-
essary condition of a cooperative equilibrium as in Definition 1. Hence, among all
the strategy profiles that are potential cooperative equilibria, the one with X1 = x? =
(0, x**] is least vulnerable to strategic exiting. In other words, players who are deterred
from strategic exiting in any cooperative equilibrium must also be deterred from doing
so under X! = X2 = (0, x**]. Therefore, Lemma 3 suggests that the existence of a co-
operative equilibrium boils down to whether X! = X2 = (0, x**] is an equilibrium. That
is, we only need to check whether V. (x)—the value function generated by this strategy
profile to each player—satisfies V. (x) > F(x) for all x € (x**, c0) so that strategic exiting
is never a profitable deviation for each player. This paves the way for the next lemma,
which establishes the key properties of cooperative equilibria.

LemwMmaA 4. (i) There exists a cooperative equilibrium if and only if A > A* :=[(1 — (1 —
a)?)/(@y)] 7.

(i) If X = X*, then X! = X? = (0, x**] is the unique cooperative equilibrium (up to
outcome equivalence and a zero-measured set).

(iii) If A > \*, then there are multiple cooperative equilibria. Among all cooperative
equilibria, the unique one that Pareto-dominates any other cooperative equilibrium (up
to outcome equivalence and a zero-measured set) is X' = X% = (0, x**].14

14The uniqueness in this lemma is up to outcome equivalence because any asymmetric strategy profile
satisfying X1 U X2 = (0, x**] generates the same outcome as X! = X2 = (0, x**], as the players de facto
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F(x) F(x) F)

Xt:I — Xt:I Xt:I
0 2 x* 0 z7a* 2 0 " a*

(@) A > \* (b) A= \* (©) A< ¥

FiGcure 2. Illustration of how the value of A affects the existence of a cooperative equilibrium.
A cooperative equilibrium exists if .(x) > F(x) Vx. In panel (b), x is the tangent point of V. (x)
and F(x).

Henceforth, we refer to X! = X? = (0, x**] as the Pareto-optimal cooperative equi-
librium (if existing). Lemma 4 shows that a cooperative equilibrium (in particular, the
Pareto-optimal cooperative equilibrium) exists when the reliance parameter A is suffi-
ciently large. Intuitively, when it is more difficult for the second mover to run the project
alone, players will be deterred from strategic exiting in the first place. This finding is also
illustrated by Figure 2. Notice that as the reliance parameter A increases, the threshold
x* gets farther away from x**, and, therefore, the continuation value from strategic exit-
ing, F(x), becomes point-wise smaller. When A is large, as in panels (a) and (b), F(x) is
point-wise (weakly) smaller than V;(x), indicating that strategic exiting is never a prof-
itable deviation. When A is small, as in panel (c), F(x) intersects with };(x), so there
exist some values of x where players strictly benefit from strategic exiting.

As a side comment, one may wonder how to derive the closed-form solution of the
threshold A*. As depicted in panel (b), A* makes the corresponding F(x) tangentially
intersect with V. (x) at some X > x*, owing to the strict concavity of F(x) and the strict
convexity of . (x) when x > x*. In the proof, we exploit this geometric property to derive
the closed-form solution of A* (and also &) from solving two simultaneous equations,
F(x; A*) =Ve(X) and F'(x; A*) =V!(X).

3.3.2 Preemptive equilibria Next, we turn to preemptive equilibria, in which both play-
ers intend to exit in Stage 1 when X, € (x*, X¥). Unlike cooperative equilibria, whose ex-
istence depends on the values of parameters, a preemptive equilibrium always exists; in
particular, X! = X2 = (0, X) is always an equilibrium. To see why this is true, notice that
if X; € (0, x*], given that the other player always exits in Stage 1, a de facto joint exit is
unavoidable no matter whether a player exits or not in Stage 1; if X; € (x*, X), a player
finds it optimal to exit in Stage 1 because of the first-mover advantage; if X; € [X, c0),
staying in the partnership is each player’s dominant strategy in Stage 1. However, this
equilibrium may be Pareto-dominated by another preemptive equilibrium, as the next
lemma suggests.

LEMMA 5. (i) A preemptive equilibrium always exists.

jointly exit in the interval (0, x**]. The uniqueness is also up to a zero-measured set because the players are
indifferent between whether or not to exit at the threshold x**.
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Ficure 3. Illustration of the Pareto-optimal preemptive equilibrium. In each panel, the players’
Stage-1 exit regions in this equilibrium are labeled below the horizontal axis; in panel (a), for
instance, both players intend to exit in Stage 1 if and only if X; € (0, 201U (x*, ¥). Also depicted
are V), (x), each player’s expected continuation value in Stage 1 under this equilibrium, and F(x)
and S(x), their respective continuation values once entering Stage 2.

(D) IFA < X :=[r(y — 1)]/[(r — p)y], then X' = X% = (0, %) is the unique preemptive
equilibrium (up to outcome equivalence and a zero-measured set).

(iii) If A > A**, then there are multiple preemptive equilibria. Among all preemptive
equilibria, the unique one that Pareto-dominates any other preemptive equilibrium (up
to outcome equivalence and a zero-measured set) takes the form of X! = x? = (0, x°] U
(x*, %) with x° € (0, x*).15

Lemma 5 characterizes the unique Pareto-optimal preemptive equilibrium, which
we depict in Figure 3. The next two paragraphs are dedicated to explaining why it is
uniquely Pareto-optimal among all preemptive equilibria.

As will be shown in the proof, it is dominant for both players to stay in the partner-
ship when X; > ¥ in Stage 1. Meanwhile, both players exit in Stage 1 when X; € (x*, X)
by the definition of a preemptive equilibrium. Hence, what remains undetermined in a
preemptive equilibrium is the players’ Stage-1 strategies when X, € (0, x*]. Notice that
when X, € (0, x*], any player’s exit always triggers a de facto joint exit. As a consequence,
finding the Pareto-optimal preemptive equilibrium boils down to solving the following
single-player stopping problem within the interval (0, x*]: the flow payoffis X; — ¢, the
exit payoff is zero, and there is an additional constraint that the continuation value is
fixed at zero when X, = x*. This constraint stems from the fact that in any preemptive
equilibrium, both players intend to exit when X, is epsilon-above x*, yielding each of
them an expected continuation value arbitrarily close to [F(x*) + S(x*)]/2 =0.

The solution to this single-player stopping problem depends on the value of A. If
A > A**, as in panel (a), it is optimal to run the project when X; belongs to the interval
(x%, x*]. This is because the condition A > A** is equivalent to x* > ¢, which indicates
that when ¢ < X; < x*, the project still generates a positive flow payoff. It is valuable to

15The uniqueness is up to outcome equivalence and a zero-measured set for the same reason as in foot-
note 14.
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exploit such a payoff until X, falls below the threshold x°, which is, again, determined
by the value matching and smooth pasting conditions, as in standard single-player stop-
ping problems. By contrast, if A < A**, as in panel (b), it is optimal to terminate the
project when X, < x* because the flow payoff is nonpositive.

To intuitively understand this equilibrium in the case of A > A**, we divide X into
four sections according to players’ Stage-1 strategies. When X is very low (X, € (0, x°]),
the players jointly exit, as it is no longer worthwhile to run the project. When X; is mod-
erately low (X, € (x°, x*]), both players stay in the partnership to exploit the project’s
payoff, knowing that anyone’s exit will immediately trigger the other player’s exit and,
thus, the project’s termination. When X, is moderately high (X, € (x*, X)), both play-
ers intend to exit, but only the one who wins the coin flip succeeds in exiting while the
other one will stay in the partnership until x* is reached again; in other words, this is the
region of preemptive strategic exiting. Finally, when X is very high (X, € [X, c0)), both
players find it dominant to stay in the partnership. This equilibrium pattern is notable
in that players’ exit regions do not admit a threshold form, indicating that their incen-
tives to exit are non-monotonic in the partnership’s profitability. In particular, they both
intend to exit when X/ is moderately high but prefer to stay when X; is moderately low.
As a result, their equilibrium continuation value, denoted by V/,(x), is non-monotonic
in x when A > A**. We will revisit this finding in Section 3.4 when discussing the curse of
profitability.

3.3.3 Pareto-optimal equilibrium Lemma 2 suggests that an equilibrium must be ei-
ther a cooperative equilibrium or a preemptive equilibrium. Lemmas 4 and 5 identify
the unique Pareto-optimal cooperative equilibrium (if existing) and the unique Pareto-
optimal preemptive equilibrium (always existing), respectively. Moreover, it is not diffi-
cult to see that the Pareto-optimal cooperative equilibrium, if it exists, Pareto-dominates
the Pareto-optimal preemptive equilibrium because it implements the socially optimal
outcome. The above arguments combined point to a unique equilibrium that Pareto-
dominates any other equilibrium (up to outcome equivalence and a zero-measured set).
Depending on the value of A, this Pareto-optimal equilibrium falls into one of the follow-
ing three scenarios.

Scenario 1. If A > A*, it is the Pareto-optimal cooperative equilibrium. Players’ exit
regions in Stage 1 are X! = X2 = (0, x**].

Scenario 2. If A** < A < A¥, it is the Pareto-optimal preemptive equilibrium. Players’
exit regions in Stage 1 are in the form of X' = X2 = (0, x°] U (x*, X).

Scenario 3. If A < A* and A < A**, it is the Pareto-optimal preemptive equilibrium.
Players’ exit regions in Stage 1 are X1 = X2 = (0, %).

Notice that Scenario 2 occurs if and only if A** < A*. However, neither A* nor A** is
a primitive parameter. Recall that &, which measures the players’ free-riding incentives,
is a primitive parameter that determines the value of A*. We use the value of « to deter-
mine which of the aforementioned scenarios arises in the equilibrium characterization.
As shown in Appendix A.8, there exists a unique « := {a|A* = A**} such that A** < A*
holds if and only if &« > «. This allows us to characterize the unique Pareto-optimal equi-
librium as described in the following theorem.
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F1GURE 4. Illustration of the Pareto-optimal equilibrium when « > «. In each panel, the players’
equilibrium exit regions in Stage 1 are labeled below the horizontal axis. Also depicted are W (x),
each player’s expected continuation value in Stage 1 under this equilibrium, and F(x) and S(x),
their respective continuation values once entering Stage 2. In panel (b), x* corresponds to the
maximum of W (x) in the interval [x°, x*]. Notably, when « < «, this figure can still illustrate the
Pareto-optimal equilibrium, except that panel (b) will disappear.

THEOREM 1. A pure-strategy MPE always exists. Moreover, there uniquely exists a Pareto-
optimal pure-strategy MPE (up to outcome equivalence and a zero-measured set), which
is characterized as follows."®

(i) In Stage 1, the players’ exit regions (X1, X?) are

(0, x™] ifA> A%,
X'=x2=1(0,x"1U(x* %) ifa>aand)e (X 1%,
(0, %) ifa>aand A <A™ orifa <aand A < \*.

(ii) In Stage 2, whoever becomes the second mover adopts the exit region X = (0, x*].

Based on this equilibrium, let W (x) denote each player’s Stage-1 continuation value
at time ¢t when X; = x. It equals V;(x) if the Pareto-optimal cooperative equilibrium
exists and equals V), (x) if not. Figure 4 depicts this equilibrium when « > a.

16The uniqueness is up to outcome equivalence and a zero-measured set for the same reason as in foot-
note 14.
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3.4 Properties of the unique Pareto-optimal equilibrium

3.4.1 Curse of profitability The most noteworthy property of the unique Pareto-
optimal equilibrium is the possibility of a curse of profitability: increasing the project’s
level of profitability may render both players strictly worse off. As depicted in Fig-
ure 4(b), each player’s Stage-1 continuation value W (x) strictly decreases in x when
x € [x%, x*], where x* := argmax,,0 ) W (x).1” This property of W (x) is driven by the
fact that for the equilibrium depicted in Figure 4(b), players intend to exit when X is
moderately high (i.e., X; € (x*, X)) but prefer to stay when X, is moderately low (i.e.,
X, € (x9, x*]), as explained after Lemma 5.

What is the intuition behind the curse of profitability? A larger X, is a double-edged
sword. While it means the project generates higher revenue, it also makes it less chal-
lenging for the second mover to run the project alone, which stimulates strategic exiting
in the first place. Furthermore, the harm of strategic exiting is amplified by players’ pre-
emptive incentives. As a consequence, players can still cooperate when X, e (x%, x*],
but as X, increases to approach x*, they suddenly become enemies and preempt each
other, letting go of the benefits from cooperation.

CoRroLLARY 1. The curse of profitability occurs in the unique Pareto-optimal equilib-
rium if and only if players have sufficiently large free-riding incentives (i.e., « > ) and
a medium level of mutual reliance (i.e., \*™* < A < \*).

Corollary 1 indicates two necessary and sufficient conditions for the curse of prof-
itability to occur. First, players’ free-riding incentives should be sufficiently large. Oth-
erwise (i.e., @ < a), strategic exiting is likely not a concern of the players, who will find
it easy to cooperate as in Figure 4(a); when it does become a concern, their mutual re-
liance must be so low such that there is already no scope for two players to cooperate
given that one player cannot run the project alone, as in Figure 4(c). Second, players
should have a medium level of mutual reliance. Under high mutual reliance (A > A*),
as in Figure 4(a), strategic exiting can be avoided because running the project alone is
too difficult. Under low mutual reliance (A < A**), as in Figure 4(c), running the project
alone is relatively easy, so if a single player does not want to do it, there must also be
no value of cooperation for two players; specifically, when X; < x*, it must follow that
X; <c.

3.4.2 Comparative statics on existence of cooperative equilibrium

CoROLLARY 2. Taking other parameters as given, there exists a* (or B*, «*, r*, u*, o*)
such that a cooperative equilibrium exists if and only if « < o* (or B < B*, k > k*, r < r¥,
p=pt, o> 0%)

7Indeed, even the ex post first mover suffers from the curse of profitability. The ex post first mover’s
realized continuation value is W (x)1(x ¢ (x*, X)) + F(x)1(x € (x*, X)), which also decreases in x when x €
[x2, x*].
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We can interpret Corollary 2 as follows: the partnership’s ability to sustain coop-
eration benefits from smaller « (free-riding incentive), smaller B8 (the second mover’s
revenue), larger « (the second mover’s cost), smaller r (discount rate), smaller w (drift in
the project’s profitability), and larger o (volatility in the project’s profitability). As a side
note, it does not depend on ¢ (contribution cost).

The comparative statics related to «, 8, and « are intuitive. A cooperative equilib-
rium is easier to sustain if the second mover is less motivated to run the project alone
(i.e., smaller B, larger ), which, in turn, may deter strategic exiting from happening in
the first place. Also, lower free-riding incentives (i.e., smaller «) make cooperation easier.
The comparative statics related to r, i, and o involve the following trade-off. Increasing
u, increasing o, and decreasing r all have two opposite effects. On the one hand, they
increase a player’s continuation value upon cooperation.'® On the other hand, they also
increase a player’s temptation to deviate as they make the second mover more motivated
to run the project alone. It turns out that the second effect dominates for u, whereas the
first effect dominates for o and r. Therefore, a larger u makes cooperation harder, while
alarger o and a smaller r facilitate cooperation.

3.4.3 Comparative statics on players’ welfare To measure the players’ welfare, we use
W (x), their Stage-1 expected continuation value in the unique Pareto-optimal equilib-
rium. One feature of this equilibrium is its discontinuity in the value of \; the equilib-
rium switches from cooperative to preemptive when A crosses the threshold A*. Indeed,
as suggested by Corollary 2, this feature also applies to the other parameters. Because
of such discontinuity, the change of a parameter has two effects on players’ welfare. The
first-order effect is to change the type of equilibrium (i.e., cooperative or preemptive),
which works in a discontinuous manner when the parameter crosses a certain thresh-
old, as suggested by Corollary 2. The second-order effect is that each parameter plays a
role in the players’ value function within a specific type of equilibrium.

As reported in Figure 5, we use numerical examples to elaborate on the above point.
Take « as an example. The first-order effect is that players’ welfare faces a discontinuous
drop at « = a* = 0.697, as the Pareto-optimal equilibrium switches from cooperative to
preemptive. The second-order effect is that, when « > o, players benefit from a larger «;
this does not happen when « < a*, as the parameter « does not enter the value function
of a cooperative equilibrium. Combining these two effects, we can infer that, under
some parametric values, players’ welfare is non-monotonic in the value of «. We also
perform similar analyses for the other five parameters, as shown in the other panels of
Figure 5. Under some parametric values, players’ welfare is non-monotonic in g, x, and
u, strictly increasing in o, and strictly decreasing in r. As a side note, the parameter
¢ (flow cost) does not have a first-order effect, and its second-order impact is always
negative. Hence, increasing c always decreases W (x) in a continuous manner.

18For ¢, in particular, a decision maker in a stopping problem benefits from the high variance of the
stochastic state if his flow payoff is weakly convex and nondecreasing in the stochastic state (Villeneuve,
2007).
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FIGURE 5. Numerical examples of players’ welfare as a function of six parameters.
Welfare is measured by W (x). The parametric values are as follows. Panel (a):
B=1,k=2,u=0,0=1,r=5c=1,and x =2. Panel (b): «=0.5, k=2, u=0,0=1,r=5,
c=1,and x =2. Panel (c): «a=0.5,6=1.5,u=0,0=1,r=5,c=1,and x = 2. Panel (d): « =0.5,
B=15,k=22,0=1,r=5c=1,and x =2. Panel (e): «=0.5, 3=1.5, k=22, u=0.2,r =5,
c=1,and x =2. Panel (f): «a=0.5,8=1.5, k=22, u=0,0=1,c=1,and x =2.

3.5 Non-Pareto-optimal equilibria

Our previous analysis focused on the Pareto-optimal equilibrium. This subsection
serves dual purposes. First, we provide a more complete characterization of equilib-
ria, including those that are not Pareto-optimal. Second, we use the characterization to
demonstrate that the curse of profitability does not depend on the equilibrium selection
of Pareto optimality.

For ease of exposition, we disregard two sources of equilibrium multiplicity in this
subsection.!? First, we regard two equilibria as identical if they are outcome-equivalent
in the sense of generating the same exit process on the equilibrium path. This simplifi-
cation aims to avoid discussing asymmetric equilibria because every asymmetric equi-
librium is outcome-equivalent to a symmetric equilibrium.?® Second, if the Stage-1 exit

9Indeed, the uniqueness of Pareto-optimal equilibrium in Theorem 1 also hinges on disregarding these
two sources of equilibrium multiplicity, as we detailed in footnote 14.

20To see this point, given any asymmetric cooperative equilibrium, the players only exit in the interval
(0, x*],i.e, X! # X2 and X' UX? C (0, x*]. Since (0, x*] is the interval where a de facto joint exit is triggered,
this asymmetric equilibrium must be outcome-equivalent to a symmetric equilibrium where both players’
exit regions in Stage 1 are X! U X2. The same logic applies to any asymmetric preemptive equilibrium
(X1, x2), which must be outcome-equivalent to a symmetric equilibrium where both players’ Stage 1 exit
regions are X1 U X2,
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regions of two symmetric equilibria differ only in a zero-measured set, we also regard
them as being essentially identical.

Non-Pareto-optimal cooperative equilibria. Lemma 4 suggests multiple coopera-
tive equilibria when A > A*. Notice that the Pareto-optimal cooperative equilibrium
X! = x?% = (0, x**] takes a threshold form, i.e., both players intend to exit in Stage 1
if and only if X, is below a certain threshold. The following proposition characterizes
all cooperative equilibria (including the non-Pareto-optimal ones) that take a threshold
form.?!

ProProsITION 1. When A > \*, the set of cooperative equilibria that take a threshold form
is {X1 = X2 = (0, x] | x€ € [x**, k(A) - x**]}, where k()) is determined by y - (k(A))' ™Y +
(1—7)-(k(A\)™Y = (1—a)Y +ayA =Y. Moreover, k(\) strictly increases in A, and k(\) < A.

Proposition 1 identifies a continuum of cooperative equilibria in the threshold form,
with the threshold x¢ ranging from x** to k() - x**. When the threshold x¢ > x**, the cor-
responding equilibrium is Pareto-dominated because the players exit “too early” due to
miscoordination. As the threshold x¢ increases from x** to k(A) - x**, the correspond-
ing Stage-1 value function for each player becomes point-wise lower; intuitively, the
players become worse off if their threshold to terminate the project gets farther away
from the optimal threshold x**. When x¢ = k(A) - x**, the value function generated
by X! = X% = (0, k()) - x**] tangentially intersects with F(x), which explains why the
threshold x¢ cannot go beyond k(A) - x**.

Two features of the set of cooperative equilibria are worth mentioning. First, k(A) <
A indicates that the threshold x¢ is always strictly smaller than x* (which equals Ax**);
hence, both players always exit at de facto the same time, even for the Pareto-dominated
cooperative equilibria. Second, the fact that k(\) is strictly increasing suggests the fol-
lowing: as A increases, the set of cooperative equilibria switches from being empty to
nonempty at A* and then keeps expanding.

Non-Pareto-optimal preemptive equilibria. Lemma 5 suggests multiple preemptive
equilibria when A > A**. The following proposition characterizes all preemptive equi-
libria that take a threshold form in the interval (0, x*], i.e., given that X; € (0, x*], both
players intend to exit in Stage 1 if and only if X, is below a threshold.??

ProprosITION 2. When A > A*, the set of preemptive equilibria that take a threshold
form in the interval (0, x*] is (X' = X% = (0, xP] U (x*, ¥) | xP € [x0, x*]}.

2IThere are cooperative equilibria that do not take the threshold form. One such example is X1 = X? =
(0, x€] U [x¢, x¢] with x¢ > X¢ > x¢ > c¢. The reason why players cooperate in Stage 1 in the interval (x¢, x¢)
is the same as the Pareto-optimal preemptive equilibrium. Although such construction is possible, it does
not provide new insight to this paper. Therefore, we do not attempt to fully characterize the cooperative
equilibria with a non-threshold form.

22There are preemptive equilibria that do not take the threshold form in the interval (0, x*]. One such
example is x1=x2%=(0,xP]U (%P, %) with ¢ < xP < ¥P < x*. For the same reason as stated in footnote 21,
we do not attempt to fully characterize all preemptive equilibria without the aforementioned threshold
form.
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Proposition 2 identifies a continuum of preemptive equilibria in the threshold form
in (0, x*], with the threshold x? ranging from x° to x*. When the threshold x? > x°, the
equilibrium is Pareto-dominated because the players, again, terminate the project too
early due to mis-coordination.

We highlight two features of these equilibria. First, all these equilibria exhibit two
disjoint intervals in both players’ exit regions in Stage 1: when X, is in the interval (0, x?],
players jointly abandon the project as they exit at de facto the same time; when X; is
in the interval (x*, X), players intend to exit out of preemptive motive, so the coin flip
loser, after entering Stage 2, will still run the project until X; falls below x*. Second,
given that A > A**, increasing A also enlarges the set of preemptive equilibria with the
aforementioned threshold form. As A increases, x* increases since it equals Ax**, and,
therefore, x° also decreases because of the larger option value for the players to wait
when X; < c¢. This further indicates that the possible range of the threshold x? (i.e.,
[x0, x*]) is enlarged as A increases.

Curse of profitability for non-Pareto-optimal equilibria. All preemptive equilibria
characterized in Proposition 2, except for the degenerate one with x? = x* (i.e., the one
characterized by X7 = A> = (0, X)), are subject to the curse of profitability: in any of these
equilibria, each player’s Stage 1 continuation value is zero at x = x* but strictly positive
in (xP, x*). Moreover, if @ > @ and A** < A < A*, no cooperative equilibrium exists, so it
suffices to only consider these preemptive equilibria. These arguments give rise to the
following corollary, suggesting that the equilibrium selection of Pareto optimality is not
essential to the paper’s main insight.

CoROLLARY 3. (D) If A > A*, the curse of profitability occurs in a continuum of equilibria.

(ii) If « > o and \** < A < A*, the curse of profitability occurs in all the equilibria
characterized in this subsection, except for the degenerate preemptive equilibrium X1 =
Xo = (0, X).

Comments on Pareto-optimality criterion. Having seen the equilibrium multiplic-
ity, one may wonder about the rationale for the Pareto-optimality criterion, besides its
advantage in selecting a unique equilibrium. Here is another justification. In our set-
ting, Pareto optimality is equivalent to (strong) renegotiation-proofness a la Farrell and
Maskin (1989), where the players can renegotiate the continuation play at any moment
in Stage 1. This argument is backed up by Safronov and Strulovici (2018), who show
that when there exists a unique Pareto-optimal continuation value profile, players can
always renegotiate their continuation play to achieve it. Intuitively, regardless of the
currently prescribed continuation play, one player can propose a switch to the contin-
uation play that achieves the Pareto-optimal continuation value profile, and the other
player will approve this proposal. Therefore, Pareto optimality is a reasonable selection
criterion when players can communicate and renegotiate, which is very common for
real-world partnerships.

3.6 Comments on the equilibrium concept

The following proposition shows that the equilibrium characterized in Theorem 1 is also
the unique Pareto-optimal SPNE (up to outcome equivalence and a zero-measured set).
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Hence, the main results of this paper can be applied more broadly if we use SPNE as the
equilibrium concept.

ProposiTioN 3. The equilibrium characterized in Theorem 1 Pareto-dominates any
other SPNE.

As the proof will show, Proposition 3 is built on two arguments. First, there does not
exist a non-Markovian SPNE that makes players better off compared to the equilibrium
characterized in Theorem 1. Why? In Stage 2, the second mover faces a single-player
time-homogeneous stopping problem, whose optimal decision rule must be Markovian.
In Stage 1, no one has ever exited, and because of that, there is no variance in players’
past actions that we can condition on to use non-Markovian strategies. This stands in
contrast to canonical repeated games, where it is valuable to punish a player for his past
defections. Second, the proof also shows that introducing mixed strategies brings new
MPEs, but cannot improve players’ continuation values in equilibrium.

4. FIXED EXIT ORDER

In some partnerships, certain partners refrain from exiting the partnership unless oth-
ers have already left. Such a no-first-exit commitment could arise from these partners’
reputation concerns, the partnership’s rules about exit priority, or some other factors.
Making such a commitment imposes a direct (negative) effect on this partner, as she for-
goes the option to exit first. However, it may also generate an indirect (positive) effect:
the commitment may mitigate the preemptive tension within the partnership, making
other partners exit less aggressively.

This section studies such a commitment in two steps. First, Theorem 2 delineates
the indirect effect by analyzing how others react to a partner’s no-first-exit commitment.
Second, Theorem 3 identifies the situations where the indirect effect outweighs the di-
rect effect, thereby demonstrating the possibility of a Pareto improvement resulting from
such a commitment.

4.1 Setup

Consider an alternative setting where players’ exit order is fixed: one player is designated
as the second mover and never exits first, while the other is designated as the first mover.
To distinguish from the baseline model, in Section 4, we refer to the players as Frank, the
designated first mover, and Susan, the designated second mover. The game proceeds in
a Stackelberg manner. In Stage 1, Frank chooses an #,-adapted stopping time 7/, where
#; contains information about the public history up to time ¢. After Frank exits, Stage
2 immediately starts, and Susan chooses an #;-adapted stopping time 7* > 7/.23 The
equilibrium concept is SPNE.

Z3Notably, this setting can be cast as the baseline model with the addition that one player commits to
xi=9.
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4.2 Equilibrium

Susan’s decision problem is identical to the second mover’s in the baseline model. She
exits if and only if X; € X¥ = (0, x*]. We then induce backward to Frank’s stopping prob-
lem in Stage 1: He receives a flow payoff of X; — c until he exits, upon which he re-
ceives a lump-sum payoff of F(X;). Since this problem is time-homogeneous, it is op-
timal for Frank to adopt a (stationary) Markovian strategy, which can be represented
by an exit region xfcx. LetU 7(x) and Us(x) denote Frank’s and Susan’s continua-
tion values in Stage 1, respectively, from Frank’s optimal exit region X/. The Hamilton-
Jacobi-Bellman equation

2
Ur(x) =max{F(x),x—c+ (I=r)Us(x) + U}(x),ux—i— %U}/(x)xz}

must hold, where F(x) is his continuation value of exiting and x — ¢ + (1 — r)Uy(x) +
Ujp(x)px + (02U ]’J(x)xz] /2 is his continuation value of staying. The solution to Frank’s
stopping problem is embedded in the following theorem.

THEOREM 2. There is a unique SPNE (up to a zero-measured set), as characterized below.
(i) In Stage 1, Frank’s exit region is

Xf_ (0) x**] lf/\Z/\*,
= (0, x/] U [x//, x///] if)\ < )\*,

where the three thresholds x' < x” < x"" are well defined.
(ii) In Stage 2, Susan’s exit region is X* = (0, x*].

Figure 6 illustrates Frank’s optimal exit strategy. If A > A*, he finds it optimal to im-
plement the socially optimal outcome. On the equilibrium path, both players exit at
de facto the same time when X, falls below x**. Strategic exiting is never profitable for
Frank in this case because V;(x) > F(x) for any x. If A < A*, Frank benefits from strate-
gic exiting because F(x) > V.(x) for some x. Like other stopping problems, his optimal
exit thresholds (x’, x”, and x”’) are determined by value matching and smooth pasting
conditions of Uy(x) and F(x) at the three thresholds, as explained in more detail in Ap-
pendix A.13.

To intuitively understand Frank’s optimal strategy in the case of A < A*, we divide X
into four sections.?* When X, is very low (X, € (0, x']), Frank initiates a de facto joint
exit, as it is no longer worthwhile to run the project. When X; is moderately low (X; €
(x, x”)), Frank finds it worthwhile to let the project operate, and he is also deterred from
strategic exiting because Susan would have found it challenging to run the project alone.
When X, is moderately high (X, € [x”, x"']), Frank finds it optimal to strategically exit,
knowing that Susan will be motivated to run the project alone. Finally, when X, is very

24Recall that we also divided X into four sections in the baseline model when analyzing the Pareto-
optimal preemptive equilibrium in the case of A > A** (see Section 3.3.2). Despite the similarity, the two
division exercises differ in both the interpretations of the four sections and the thresholds to determine the
four sections.
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Uj(e)
Us(z) = Veo(z) V.(z)

Xl:l'

** T ' ata” T

Exit Stay Exit Stay Exit Stay

(@ A > X" (b) A < A"

F1GURE 6. Illustration of Frank’s exit strategy in the unique SPNE. In each panel, Frank’s equilib-
rium exit region is labeled below the horizontal axis.

high (X; € (x”, 00)), Frank stays in the partnership so as to avoid the discount in revenue
due to Assumption 2. Notably, Frank’s optimal exit strategy does not admit a threshold
form, which is uncommon in the literature on optimal stopping. It occurs in our setting
because of the nonstandard exit payoff F(x), which is kinked at x* (see Figure 1).

The key takeaway from the above finding is that strategic exiting occurs only when
the partnership’s profitability exceeds the threshold x”.2° Specifically, Frank strategically
exits when X, is moderately high, but not when it is moderately low. This finding ex-
plains some exit patterns observed in practice, particularly among serial entrepreneurs.
Many startups have “partners” consisting of founders and early-stage investors; typi-
cally, founders do not leave a startup before investors. Some investors, known as serial
entrepreneurs, may strategically exit a startup and switch gears to the next startup in
their pipelines. In a startup’s early development stages, serial entrepreneurs often play a
pivotal role in guiding the startup toward viability. However, as the startup gains traction
and becomes more profitable, serial entrepreneurs may choose to strategically exit to
save resources for new ventures. One prominent example is Peter Thiel, who left PayPal
after its acquisition by eBay and soon transitioned his investment into other ventures,
including Facebook.

Having established Frank’s response to Susan’s no-first-exit commitment, we next
examine whether such a commitment can lead to a Pareto improvement. Compared
to the baseline model, Frank is better off by being the designated first mover. How
about Susan? Intuitively, Susan’s no-first-exit commitment has two opposite effects on
her welfare. The direct (negative) effect is a consequence of her forgoing the option to
exit first. The indirect (positive) effect is that her commitment prevents preemption and
makes Frank exit less aggressively than the baseline model, as formalized by the follow-
ing lemma.

LEMMA 6. If A < \*, Frank’s strategic exit region, [x”, x""], is a strict subset of (x*, X), a
player’s Stage- 1 preemptive exit region in the baseline model. In other words, x" > x* and
X" < x.

25Exceeding the threshold x” is necessary but not sufficient for strategic exiting, as it does not occur if
"

the partnership’s profitability exceeds not only x”, but also an even higher threshold x”’.
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The next theorem identifies the situations where the positive effect outweighs the
negative one, implying that Susan’s no-first-exit commitment can lead to a Pareto im-
provement.?%

THEOREM 3. If A < A* and B < 1, there exist x° such that Ug(x) > W(x) Vx € (x*, 00). In
other words, Susan strictly benefits from the no-first-exit-commitment when X; € (x°, 00).

As suggested by Theorem 3, Susan benefits from the no-first-exit commitment when
A < A%, which makes preemption occur in the baseline model, 8 < 1, which ensures
a substantial benefit from avoiding preemption (because the social welfare loss from
strategic exiting is large), and X; > x®, which makes the negative effect mild since the
partnership’s current profitability is high.

5. ROBUSTNESS OF MAIN RESULT

To succinctly illustrate the insight regarding the curse of profitability, we develop a con-
cise baseline model. However, it is worth emphasizing that the core insight of this paper
remains valid across more general settings and alternative specifications. We compile
the discussion in Online Appendix B of Xu (2025), with the key messages summarized
below.

More than two players. Many real-world partnerships involve more than two part-
ners. In such cases, the ripple effect of an exit becomes more complex: an initial exit
may trigger a second exit, which may further trigger a third, and so on. Hence, when
considering a strategic exit, a player must correctly anticipate the potential ripple effect,
which in turn depends on the strategic exit decisions of others. In the Appendix, we
generalize the model to more than two players. Although the equilibrium characteriza-
tion becomes less tractable in this generalized setting, we introduce an algorithm to find
stage-wise Pareto-optimal equilibria: a modified solution concept tailored to this gener-
alization. We also establish sufficient conditions under which the curse of profitability
arises in any stage-wise Pareto-optimal equilibrium.

Asymmetric payoffs. In reality, it is common for partners to derive different payoffs
from a partnership. This asymmetry can lead to players’ divergent incentives in strate-
gic exits. In the Appendix, we generalize the model to an asymmetric payoff structure
and show that the unique Pareto-optimal equilibrium remains subject to the curse of
profitability.

Reentry. In some situations, partners who have exited a partnership may have the
option to return, typically by incurring an additional cost. The Appendix investigates
a generalized setting where reentry is allowed upon payment of a lump-sum cost. In
equilibrium, reentry occurs when the partnership’s profitability reaches a high level. We
demonstrate that the curse of profitability persists when the reentry cost is sufficiently
large.

26This finding is similar to earlier studies on how sequentiality of moves, compared with simultaneity,
promotes cooperation in games with strategic complementarities (Zhou and Chen, 2015).
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Relaxation of innocuous assumptions. Our baseline model made several innocu-
ous assumptions to facilitate the analysis. In the Appendix, the curse of profitability
is shown to persist under a range of extensions: when the partnership’s profitability fol-
lows a more general diffusion process than the Brownian motion used in the baseline
model, when a free-rider earns higher revenue than a contributor, and when alternative
tie-breaking rules are adopted in Stage 1 of the game.

6. CONCLUSION

In this paper, we study dynamic partnerships where partners can strategically exit to
free-ride on others’ efforts. We highlight a curse of profitability: when players have suf-
ficiently large free-riding incentives and a medium level of mutual reliance, an increase
in the partnership’s profitability may leave all partners strictly worse off. Additionally,
we show that if any player commits not to exit first, it can lead to a Pareto improvement.

Our framework is tractable and can offer insights into other questions concerning
partnerships of this nature. For instance, a companion paper (Xu (2023)) studies a de-
terministic partnership where partners can choose their effort levels over time. We in-
vestigate the optimal way for the partners to monitor each other’s efforts and show that
imperfect monitoring can, counterintuitively, facilitate cooperation.

APPENDIX: PROOFS
A.1 Proofof Claim 1

Since (a) the second mover’s flow payoff, BX; — kc, is weakly convex and nondecreasing
in X, and (b) her lump-sum exit payoff is a constant, her optimal exit strategy must take
a threshold form according to Villeneuve (2007). Let x* denote her exit threshold. The
value function S(x) must take the form

A
B( r _c) +k1x¥ +kox" ifx > x*,
S(x): r—un r

0 if x < x%,

(AD)

where S(x) = B[x/(r—un) — Ac/r]+k1x¥ + kox™ is the general solution to the ODE, S(x) =
B(x — Ac) + (1 — r)S(x) + 8" (x)ux + [02S"(x)x?]/2. In this general solution, n = (¢ —
2u++/(02 —2u)2 +8ra2)/(20%) > 0and y = (0% —2u— /(02 — 2)2 + 8ro2)/(20%) < 0
are the two roots of I'(y) = uy + [0?y(y — 1)]/2 — r. We know that I'(y) has two roots of
different signs because it is a convex parabola with I'(0) = —r < 0.

We need to determine three parameters in (Al): x*, k1, and k. First, the boundary
condition, limy_ o {S(x) — Blx/(r — n) — Ac/r]} =0, pins down k» = 0. This is because
when X; — oo, the option value of exit approaches zero, and, thus, S(X;) should be
arbitrarily close to B[X;/(r — u) — Ac/r], the second mover’s continuation value if she
never exercises the exit option. Second, the values of x* and k; are jointly pinned down
by the value matching condition, S(x*) = 0, and the smooth pasting condition, §’'(x*) =
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0, expanded as

R
1 _
B+ k() =0, (A3)

From (A2) x y— (A3) xx*, we get x* = [(r — u)y]/[r(y—1)]- Ac. Substituting this expression
into (A2) pins down the value of k1 and, thus, the closed-form solution of S(x) in Claim 1.

A.2 Proofof Claim 2

When x < x*, the first mover’s exit immediately triggers the second mover to terminate
the project, and, thus, F(x) = 0. When x > x*, the general solution to the Feynman-Kac
formula is F(x) = ax/(r — u) + k3x? + kax". The boundary condition lim,_, o [F(x) —
ax/(r — u)] = 0 pins down k4 = 0 for the same reason as Appendix A.1. The value of k3
is pinned down by F(x*) =0.

A.3 Proofof Lemma 1

CraM 3. (i) The function F(x) is kinked at x = x* and strictly concave when x € (x*, 00).
(ii) The function S(x) is differentiable at x = x* and strictly convex when x € (x*, 00).

Prookr. The left derivative of F(x) at x* is 0, while the right derivative is

/ * a ay w«\y—1 a(]- _'}’)
F, (x*) = — X =——""">0,
+) r— (r—u)(x*)yfl( ) r—w

so F(x) has a kink at x*. Also, when x > x*, we have

ay(y—1) L2

F//(x) =
(r—w)(x*)""

<0,

justifying the strict concavity argument. Differentiability of S(x) at x* comes directly
from the smooth pasting condition, §’(x*) = 0. Strict convexity of S(x) when x > x*
comes from

BAcy

r(x*)y
Denote A(x) = F(x) — S(x). Itis bounded by the two asymptotic lines

Ac — Ac
X — P x+—B =2 Bx+—B .
r—u r— r r—u r

S (x) = — X772 >0. O

Alx) < (A4)
Therefore, when x is sufficiently large (i.e., x > [BAc(r — w)]/[r(B — @)]), the right-hand
side of (A4) is negative and, thus, A(x) < 0. Meanwhile, Claim 3 indicates that the right
derivative of A(x) is positive at x = x*, which implies that A(x* + €) > 0 with € > 0 arbi-
trarily small. By the continuity of A(x), the function A(x) must admit at least one root
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in the interval (x*, co0). Indeed, A(x) has only one root in the interval (x*, co). This is
because A(x) is strictly concave due to the convexity of S(x) and the concavity of F(x)
as shown in Claim 3. A strictly concave function can admit at most two roots, which are
x* and x in our case. Strict concavity of A(x) also indicates that A(x) > 0 for x € (x*, X)
and A(x) < 0 for x € (%, o0).

A.4 Proof of Lemma 2

First of all, players’ exit regions must be identical in the interval with the first-mover
advantage. Suppose, by contradiction, x € (x*, ¥) while x falls in X’ but not X/. Then
player j will be better off by deviating to exit when X; = x, as [F(x) + S(x)]/2 > S(x).
Hence, if Lemma 2 does not hold, for any € > 0, there must be x* and x~ in the in-
terval (x*, X) such that (a) both players exit when X; = x~ and stay when X, = xt,
and (b) x* and x~ are very close so that |[F(xT) — F(x7)| <€, |[S(xT) — S(x7)| <€,
and [V (xT) — V(x7)| < €, where V' (-) is each player’s value function in the equilibrium.
Notice that }/(-) is continuous since the stochastic state variable X; has a continuous
path and can evolve in both directions. Since V' (x~) = [F(x~) 4+ S(x7)]/2, we infer that
Vixt) <V((x )+e=[F(x)+Sx)]/2+€ < [F(xT)+S(xT)]/2+ 2¢. Together with the
fact that F(x*) is strictly larger than S(x*) due to first-mover advantage, the above in-
equality indicates that I/ (x™) < F(x™) when ¢ is sufficiently small. This contradicts the
presumption that both players choose to stay when X; = x*.

A.5 Proofof Lemma 3

It suffices to show that any cooperative equilibrium (if existing) must be weakly Pareto-
dominated by X! = X2 = (0, x**], which implements the socially optimal outcome.
Since the socially optimal outcome maximizes the total welfare of the two players, if
a cooperative equilibrium violates the above statement, it must satisfy the condition
that there exists some x* such that F(x*) > V.(x*). Suppose by contradiction, such
an x" exists. It cannot be true that x* < x* because such an x* gives F(x*) = 0. By
definition of a cooperative equilibrium, such an x* also cannot fall in the interval of
(x*, X). Finally, x* > ¥ cannot hold as well. If it holds, we have S(x*) > F(x%) > V. (x%),
where the first inequality comes from Lemma 1. An immediate consequence is that
S(x*) + F(x") > 2V,(x"), which cannot be true because V,.(x*) is the highest possible
social welfare.

A.6 Proof of Lemma 4

Step 1. As is stated in the paragraph before Lemma 4, the existence of a cooperative
equilibrium boils down to whether X! = X? = (0, x**] is an equilibrium. Hence, we want
to show that V;(x) > F(x) holds for all x € (x**, co0) if and only if A > A*.

Equation (2) indicates that F(x) is point-wise (weakly) decreasing as A increases.
Meanwhile, F(x) is strictly concave and V.(x) is strictly convex for x > x* accord-
ing to Claim 3. These properties imply the existence of a threshold A* under which
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Ve(x) tangentially intersects with F(x) at some X > x*. Hence, F(X; A\*) = V,(x) and
F'(x; A*) =V/(x), which are equivalent to

1-—
LT A K- (D) =0, (A5)
N T
1-—
Y i4yK-(§) =0, (A6)
r—p
where
c a _ (1 —a’y(/\*)l_y)c

K= + = .
rA=yE™)  r-wE) =)’
We subtract (A6) from (A5)+y and get

1 r— 1
7= TR Y = X, (A7)
l—-a r y-—1 l-«a

Plugging (A7) into (A6), we get 1 — ay()\*)kV = (1 —a)”, whichyields A* = {[1 — (1 —
1

a)¥]/(ay)} 7.

Step 2. To complete the analysis, we need to verify that A* > A, where A is the lower
bound of A’s domain as defined in Section 2. Indeed, showing this inequality is not triv-
ial. We start with the following claim.

CLaMm 4. The value of A* is strictly decreasing in vy.

Proor. We firstreplace 1/(1 — «) by z and let A* = f(y) := (VY —2)/[—(z — l)y]}lflw
We would like to show that f/(y) < 0. Let g(y) = [f(y)]*~” and h(y) =In(g(y)). Since

1 1 9 1 1
/ R T—y / + - | - -
' 58" gy +gy) “@W”u_yy

ngMU[gW) m@w»}
l—y Lgly)  1-v
_ f(y) |:h’(y) .

h(1) — h(y)
=1y — 7,

1—vy

it suffices to show that

h(1) — h(vy)

_— <
I—vy
Noting that [#(1) — A(y)]/(1 — v) is the slope of the secant line between y and 1 on

the curve of /(-), one sufficient condition for (A8) to hold is that /() is convex; i.e., g(y)

is log-convex. To prove the log-convexity of g(y), we only need to show that z*g(y) is
convex for any y € R.2” We adopt Taylor expansion with respect to y on z*Yg(y) as

H(y) - 0. (A8)

2g(y) = (27— 277)

(z—1Dvy

27See page 70 of Niculescu and Persson (2006) for reference.
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n=0 n=0

_ _1\n]. 11
(2_1);1“(2) Y= =D"]y

Since z > 1, and y" — (y — 1)" > 0 for all » > 1 and y € R, we conclude that z"Vg(y) is
convex. O

With the above claim, it suffices to show A < lim,_,oA*. Applying I'Hospital rule
gives limy_,0 A* = [—In(1 — a)]/a. Hence, it remains to show that for any « € (0, 1),
2/(2 —a) < [—In(1 — )]/« or, equivalently, 2a/(2 — @) < —In(1 — «). Letting LHS rep-
resent left-hand side and RHS represent right-hand side, denote LHS(«) := 2¢/(2 — «)
and RHS(«) := —In(1 — @). We can show that (a) LHS(0) = RHS(0) = 0, (b) LHS'(0) =
RHS'(0) = 1, and (c) LHS(-) is strictly concave while RHS(-) is strictly convex. These
three conditions combined conclude the proof of A* > A.

The above two steps prove statement (i) of the lemma. The remaining two state-
ments immediately follow because X! = X? = (0, x**] implements the socially optimal
outcome (Lemma 3) and, thus, generates a value function to each player that is point-
wise higher than any other cooperative equilibrium. Besides, the multiplicity in state-
ment (iii) is explicitly explained in Section 3.5.

A.7 Proofof Lemma 5

Statement (i) holds because X! = X2 = (0, ¥) is always a preemptive equilibrium, as
we explain in the paragraph before the lemma. The proof of statements (ii) and (iii) is
mainly completed in the explanatory paragraphs following the lemma, except for the
two missing pieces below.

First, for the same reason as Appendix A.5, it is dominant for each player to stay
in the partnership when X; > ¥. Intuitively, any player cannot benefit from exiting the
partnership when X, = x* > ¥. By contradiction, if that were true, the second mover
would benefit even more since S(x*) > F(x*); such a situation where both players ben-
efit from one’s exit is impossible because strategic exiting is socially inefficient due to
Assumption 1.

Second, if A > A**, Section 3.5 explicitly explains the multiplicity of preemptive equi-
libria.

A.8 Proofof Theorem 1

The paragraphs preceding Theorem 1 already prove the theorem, except for the follow-
ing discussion on how the value of « affects A* and A**, and their relative magnitude.
Notice that A can be any number in [A, co). In Step 3 of Appendix A.6, we already show
that A < A* always holds. Besides, we have the following claim.



Theoretical Economics 21 (2026) Strategic exits in partnerships 195

CrLaM 5. (i) The value of A* strictly increases in «; also, lim,_,o A* =1 and limy_1 A* =
+00.

(ii) The value of X strictly increases in «; also, limy,_.0 A =1 and lim,_,1 A = 2.

(iii) The value of A** does not depend on «; also, we have A** > 1.

Proor. (i) From the expression of A*, we want to show that [1 — (1 — «)”]/(ay) strictly
1-(1-a)?
increases in «. This is true because +] ={(1-a)" a(l+y)—1]—1}/(ya?) > 0.

By applying 'Hospital rule, we also get lim,_, o A* =1 and lim,—,; A* = +00.

(i) This is straightforward from the expression A =2/(2 — «).

(iii) The value of A** does not depend on « because « does not show up in its ex-
pression. The fact that A** > 1 comes from a classic result in optimal stopping prob-
lems that a decision maker will stop when the myopic return is negative. Specifi-
cally, from Appendix A.1, x* must satisfy the homogenous ODE, B(x* — Ac) = rS(x*) —
S/ (x*)ux* —[02S" (x*)(x*)?]/2. Because of value matching and smooth pasting, we know
that S(x*) = §'(x*) = 0; meanwhile, S”(x*) > 0 because S(-) is strictly convex. Plugging
these terms into the homogenous ODE, we have x* — Ac < 0, which is equivalent to
[(r — w)y]/Ir(y — 1)] < 1 according to the closed form of x*. Since A** is the inverse
of [(r — w)y]/[r(y — 1)], we conclude that A** > 1. O

From Claim 5, we can infer that there exists a unique « € (0, 1) such that the values
of A* and A** are identical. Therefore, we discuss the equilibrium characterization as
follows.

Case 1: o € (0, «]. In this case, it follows that A** > A*. Therefore, the value of A
should fall in either Scenario 1 (i.e., A > A*) or Scenario 3 (i.e., A < A*).

Case 2: a € (a, 1). In this case, it follows that A** < A*. The characterization now
depends on the relative magnitude of A and A**. We further consider two subcases.

Case 2.1: A** > 2. In this subcase, it follows that A < A** always holds. Hence, the
value of A covers all three different scenarios.

Case 2.2: \** < 2. In this subcase, there exists a such that A = A**. When «a € (a, &), it
follows that A < A** < A*, so the value of A still covers all three different scenarios as Case
2.1. When « € [a, 1), it follows that A** < A < A*, so Scenario 3 disappears: the value of A
should fall in either Scenario 1 (i.e., A > A*) or Scenario 2 (i.e., A < A¥).

The characterization in Theorem 1 encompasses all the above cases.

A.9 Proofof Corollary 2

A cooperative equilibrium can be sustained if and only if A > A*. Notice that A is de-
termined by B8 and «; A* is determined by « and vy, while vy is determined by r, u, and
ag.

For a: Claim 5 in Appendix A.8 already proves that A* strictly increases in .

For B and k: Tt is straightforward from the expression A = /.

For r, u, and o: Since Claim 4 in Appendix A.6 already proves that A* strictly de-
creases in v, it suffices to show that v strictly decreases in r and u, and strictly increases
in o. Notice that v is the negative root of I'(y; u, o) = wy + [02y(y — 1)]/2 — r. The above
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results can be shown by the implicit function theorem since %| y=y <0, %|y:y <0,
or or
ml}’:’)’ < 0, and %l}’:'}’ > 0.

For c: Neither A nor A* depends on c.

A.10 Proof of Proposition 1
First, the threshold x¢ cannot be smaller than x**. Otherwise, any player will be better
off by exiting when X; € (x¢, x™*).
Second, we want to derive the function k(A) such that the threshold x¢ cannot be
larger than k(\) - x**. Notice that each cooperative equilibrium X! = X2 = (0, x] gen-
erates a continuation value

e RO

It suffices to jointly solve X and x¢ from the simultaneous equations F(¥) = V,(%; x¢) and
F'(x) =V!(x; x°). Using similar derivation as in Lemma 4, we can get ¥ = x**/(1 — «).
Plugging this into F'(x) = V/(X; x¢), which can be written as

ye [ % V+(1—a)5c_ v " oayx x )\t
roo\x¢ r—um  r—mpm \x° r—p \x* ’

2\ =\ 71
(7—1)(1—a)-<%> +(1—a)=7~(%> —av[)\(l—a)]l_y.

we have

This equation is satisfied if we let x¢ = k(A)x**, while the function k£ (\) satisfies
Y- (k) T+ A=) (kW) = (1= ) +ayA Y (A9)

Since the left-hand side of (A9) strictly decreases in k() and the right-hand side strictly
decreases in A, we further infer that (a) the function k(A) is well defined and (b) by the
implicit function theorem, k(A) strictly increases in A. Also, to see why k(A) < A, notice
that the left-hand side is strictly smaller than the right-hand side if k(1) = A. Finally,
when A = A*, we have k(A*) = 1 by the definition of A* in Lemma 4.

A.11 Proof of Proposition 2

The threshold x? cannot be smaller than x° because otherwise, any player prefers to exit
when X; € (x?, x°). Also, by construction, x? cannot exceed x*. Besides these two re-
quirements, there are no restrictions on the value of x?, because as long as x” [x9, x*],
each player’s value function in the interval [x?, x*] is nonnegative. When x? > ¢, this
argument holds trivially. When x? < c, this argument still holds for the following reason.
Since each player’s flow payoff in the interval [x°, x?) is always negative, we can infer
that the value function V), (x; x?), which is generated by X! = X2 = (0, xP] U (x*, &), will
have a kink at x” with strictly positive right derivative, which implies that I7p(x; xP)>0
for x € [xP, x*].
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A.12 Proof of Proposition 3

The proof includes two parts corresponding to two gaps between pure-strategy MPEs
and SPNEs.

Part 1: Non-Markovian SPNE. The proofis mostly contained in the paragraph follow-
ing Proposition 3. For Stage 1, in particular, we provide a more formal proof. Since the
only relevant history in Stage 1 is the trajectory of the process, a non-Markovian SPNE in-
dicates that players’ continuation play at some time ¢t must depend on (X})se(0,s). How-
ever, conditional on the value of X, the process (X7)c(o,s) is payoff-irrelevant for the
continuation game. Hence, conditional on X/, the set of achievable continuation value
profiles should not depend on (X}),¢/0,1). Therefore, introducing non-Markovian SPNEs
cannot enlarge the set of achievable continuation value profiles at r = 0.

Part 2: Mixed-Strategy MPE. By contradiction, suppose there exists a mixed-strategy
MPE that generates a continuation value profile (W1(x), W2(x)) such that W!(x) >
W (x) for some x.

Case 1: A > \*. Notice that W (x) > F(x) for any x, while S(x) > W (x) is possible for
some high value of x. It must be the case that player 2 exits for some large x*, where
S(x") > W (x*), to make player 1’s continuation value larger than W (x*). However, this
violates player 2’s rationality because it is dominant for player 2 to stay under such a
high x*.

Case 2: A < \*. First, both players find it dominant to stay when X; € [*, co0). Second,
we want to show that both players exit with probability 1 when X, € (x*, X), even when
they are allowed to use mixed strategies. Notice that there must exist an interval (x!, x?)
such that F(x) > V.(x) when x € (x!, x2). These two thresholds are the intersections
of F(x) and V. (x) as shown in Figure 2(b). Suppose, by contradiction, player 2 uses a
mixed strategy for some X, € (x!, x2). It must follow that W2(X,) > F(X,). However, this
further indicates that W1(X,) < F(X,) because W!(X,) + W2(X,) < 2V.(X,) < 2F(X,),
where the last inequality comes from X, € (x!, x?). Therefore, player 1 must exit with
probability 1 instead, which, in turn, disproves player 2 using mixed strategy for X;.
Moreover, players’ incentives to preempt each other still exist even when mixed strate-
gies are allowed. Hence, the logic of Lemma 2 continues to work: triggered by the
fact that both players exit with probability 1 in the interval (x!, x?), they will do the
same for the entire interval (x*, ¥) in any (possibly mixed-strategy) MPE. Finally, when
X: € (0, x*], players always exit at de facto the same time, attaining identical contin-
uation value. For that reason, mixed strategies may introduce new MPEs, but cannot
improve players’ continuation value beyond the Pareto-optimal equilibrium.

A.13 Proofof Theorem 2

We want to show that Uy (x) generated by X/ satisfies the HJB equation. According to
Strulovici and Szydlowski (2015), it suffices to check three conditions: (a) U r(x) = F(x)
Vx; (b) Uy(x) is everywhere continuous and first-order differentiable; (c) Ug(x) > (1 —
NUp(x) +x—c+ U}(x),ux + [O'ZU}/()C)XZ]/Z whenever Uy (x) = F(x). When A > A*, we
have Uy(x) = V;(x), and it is not difficult to check that all three conditions are satis-
fied. When A < A*, we want to construct three thresholds (x/, x”, x”’) that satisfy the
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corresponding smooth pasting and value matching conditions. For x”, its closed form
is exactly pinned down by (A5) and (A6). Hence, x"”" = x**/(1 — @) as in (A7). For x’ and

x”, the construction takes the following two steps.

Step 1: Existence. Let the general solution of Uy (x) for x € [x/, x"] be Up(x) = —c¢/r +
x/(r—u)+ksx¥+kex". Notice that kg is not necessarily zero, as the boundary condition
when x — oo no longer holds. The value matching and smooth pasting conditions for

these two thresholds are

/

_E X . nY . /77:
r+r_M+k5 (x) + kg (x) 0,
r—/u+7k5'(x/)y+”’7k5'(x/)n:0’

_ 1
S8 LY L ks — k) () + ke () =0,
r r—p
(1—a)x”

— — +y(ks k) (x")" + mke - (x)" =0.

CLAIM 6. We have kg > 0 and ks > k3.

ProoF. Let (A13)-(A12)xy and (A13) — (A12)xn, we have

(1—a)x”

C%Hl—y) +ke (n—y(x")"=0,

c (1—a)x”
e
r F—

+ (ks —k3) - (y —m)(x")" =0.

(A10)

(A11)

(Al12)

(A13)

(Al14)

(A15)

By construction, we require that x” < x”" = x**/(1 — «). Plugging it into (A14) yields

ke > 0. Plugging it into (A15), we get

1-a)x" cnm—7y)
>

>0,
r(l—vy)

c
Tra-m
,
which indicates that k5 > k3.

From (A11)-(A10)*y and (A11)-(A10)*n, we have

x/

r—u

x/

r—p

"%+(1—y) +ke-(n—7)(x)" =0,

+ks-(y—n)(x')" =0.

cn
—+(1-n)
;

We can thus express k5 and kg as functions of x’:

/ cy N—T 1_7 n1-n
k = +— )
S i L S B e romen 1)
_ 1-— _
ks(@) = - (@) Vb T (x)

~rn—7v) r—mw(m—7v)

(Al6)

(Al17)
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We then construct the function that takes z as a parameter:

Ulx;z) = —; + ﬁ + ks5(2)x? + ke(2)x". (A18)

It suffices to find a value of z such that U(x; z) tangentially intersects with F(x) in the
interval (x*, 00). After doing so, (A10) to (A13) are satisfied by letting x" = z and x" be the
tangent point. Denote A(x; z) = f](x; z) — F(x).

CrLamm 7. Foranyz >0, &(x; z) is strictly convex in x.

PrOOF. We have A’ (x; z) = y(y — 1) (ks — k3)x? "2 + n(n — 1)kx"2 > 0, as we already
know from Claim 6 that k¢ > 0 and k5 > k3, together with y <0 and n > 1. O

On one hand, A(x; x**) = V.(x). Since A < A*, we infer that infye v+, 00) A(x; x*) <0,
as V.(x) (non-tangentially) intersects with F(x). On the other hand, for € > 0 sufficiently
small, it is not difficult to see that infy ¢+ o) A(x; €) > 0. By continuity of A(x; z) with
respect to z, there must exist x” € (0, x**) such that infyc[+,o0) A(x; x') = 0. According
to the strict convexity of A(; x') (Claim 7), A(x*; x') > 0, and A(oo; x') = 0o, we know
the infimum is uniquely attainable. Let this point of infimum be x”. We can verify that
A(x"; x') =0, A (x"; x') =0, and A(x; x') > 0 for x e [x*, 00)/{x"}. In other words, U(x; x')
smoothly pastes with F(x) at x’ and x”, while satisfying U(x; x') > F(x) for x € (x/, x").

To conclude on the existence, we finally verify that the constructed x” is consistent
with the presumption that x” < x”. Combining (A14) and (A16), we get

C_}’[(x,,)n _ (x/)n] + (1-v [x/(x//)n —(1— a)x”(x’)n] =0,
r r—u
which givesus x” < x'/(1 —a) < x**/(1 —a) =x"".
Step 2: Uniqueness. To prove the uniqueness of z satisfying inf ¢+ o0) A(x; z) =0, it
suffices to show that infy e+, o0) A(x; 2) is single-crossing with respect to z (i.e., crosses
the horizontal axis only once) when infye[+, o0) A(x; z) = 0. By the envelope theorem, we

only need to show that % (x”, x") is either always positive or always negative:

%(x//, x/) cx = k/s(x/)x/(x//)Y + k’G(x/)x’(x”)n

0z
= (L= ks~ (x") + (1= mke- (x")" + 4[7@—”)” - TI(X—//)’}
r(n—vy) / ¥

AN/ "
=Shks-(1— Y)(x") + ;[70—,) - n(x—,> }
r r(m—1vy) X X

ANE} 7ANG
kot glrero() ()

<k (=) 4+ =y y =)

=ks-(1-y)(x")" <0.
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The first equality results from (A18). The second equality is obtained by plugging in the
derivatives of k5(x) and kg(x) according to (A16) and (A17). The third equality makes use
of (A12) and (A13). The fourth equality combines like terms. The first inequality holds
because the function ®(y) = yy? — ny?, when y > 1, strictly decreases in y, while x” > x’.
The last inequality comes from k3 < 0. We eventually conclude that the single-crossing
condition holds, so there exists a unique pair of (x/, x”") satisfying (A10) to (A13).

A.14 Proof of Lemma 6

For x” < X. By the construction of x”’, we have F(x”’) > S(x"); otherwise Frank will not
benefit from strategic exiting at x””. This directly implies x” < ¥ because F(x) > S(x)
Vx> X.

For x" > x*. By the construction of x”, we have F(x"”) > 0 = F(x*). The argument
x” > x* immediately follows.

A.15 Proof of Theorem 3

Step 1: x"" < x. This is because x”” is smaller than the largest intersection of 1(x)
and F(x) according to Theorem 2, while ¥ must be larger than that intersection since
V.(X) > S(x) = F(x) due to the fact that .(x) maximizes social welfare. The intuition
is that Frank exits less aggressively than in the baseline model due to preemption being
avoided.

Step 2: Ug(X) > W (x). When A < A*, the Pareto-optimal equilibrium in the baseline
model is preemptive, so W (x) = V,(x) = F(x) = S(¥). Hence, it suffices to show that
Us(X) > S(x). To compare U, (x) and S(X), notice that (a) S(X) is equivalent to the con-
tinuation value of a player (when X; = ¥) who keeps receiving a flow payoff of B.X; — kc
until exogenously exiting at x”” with a lump-sum payoff of S(x””); (b) Us(X) is equivalent
to the continuation value of a player (when X; = X) who keeps receiving a flow payoff
of X; — ¢ until exogenously exiting at x” with a lump-sum payoff of S(x”’). These two
scenarios have the same lump-sum payoff when exogenous exiting happens at x”, but
the flow payoff in the first scenario is lower than the second one, as we assume 8 < 1.
Hence, we conclude that U(X) > S(X).

Step 3: Ug(x) > W (x) for x > x. For x > X, W(x) equals the continuation value of a
player (when X, = x) who keeps receiving a flow payoff of X; — ¢ until exogenously ex-
iting at ¥ with a lump-sum payoff of W (x). Meanwhile, Us(x) equals the continuation
value of a player (when X; = x) who keeps receiving a flow payoff of X; — ¢ until exoge-
nously exiting at x with a lump-sum payoff of Us(x). These two arguments, together
with Ug(X) > W (X) that we show in Step 2, indicate that Us(x) > W (x) for x > X.

Step 4: Existence of x*. Steps 2 and 3 show that Uy(x) > W (x) when x > X. According
to the continuity of Us(x) and W (x), there must exist x* < X such that Uy(x) > W (x)
when x > x%.
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