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Markovian persuasion
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In the classical Bayesian persuasion model, an informed player and an unin-
formed one engage in a static interaction. This work extends this classical model
to a dynamic setting where the state of nature evolves according to a Markovian
law, allowing for a more realistic representation of real-world situations where the
state of nature evolves over time. In this repeated persuasion model, an optimal
disclosure strategy of the sender must balance between obtaining a high-stage
payoff and disclosing information that may have negative implications on future
payoffs. We discuss optimal strategies under different discount factors and char-
acterize when the asymptotic value achieves the maximal possible value.

Keywords. Markovian persuasion, dynamic Bayesian persuasion, Markov chain,
asymptotic value, absorbing set, homothety.

JEL classification. D72, D82, D83, K40, M31.

1. Introduction

This paper focuses on a dynamic Bayesian persuasion model. This model is used to
describe situations where a principal (sender) repeatedly persuades an agent (receiver)
in a changing stochastic environment. Unlike the one-shot Bayesian persuasion prob-
lem (e.g., Kamenica and Gentzkow (2011)), the dynamic Bayesian persuasion frame-
work incorporates a Markov chain that evolves stochastically in discrete time and is as-
sumed to be ergodic.1 At each period, the sender observes the Markov chain and sends
a (stochastic) signal to the receiver. The sender commits to a signaling mechanism at
the start of the interaction, and the receiver updates his daily posterior beliefs according
to Bayes’ law. The receiver, who acts myopically in his beliefs, determines both his and
the sender’s payoff. The sender’s objective is to maximize his expected discounted daily
payoffs.

In a dynamic setting, the sender’s information provision policy has significant im-
plications not only for the current payoff, but also for the future evolution of receiver’s
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beliefs. This is because the receiver’s posterior belief, updated based on the sender’s in-
formation, is shifted by the Markov transition matrix to establish a new prior belief on
the following day. The sender must therefore strike an optimal balance between short-
term and long-term objectives, balancing immediate payoff against future control of the
receiver’s beliefs, which may be in conflict.

The tension faced by the sender in the theoretical model is not just an abstract con-
cept, it applies to real-life situations. For instance, Ely (2017) describes a scenario in
which a CEO (sender) provides reports to a board of directors (receiver) to assess the
firm’s operational competence. The CEO wishes to send reports at the optimal time
to minimize the number of costly audits ordered by the board. Renault, Solan, and
Vieille (2017) consider the case of an investor (receiver) who relies on an informed ad-
visor (sender) for market information. The advisor seeks to manipulate the investor’s
beliefs to his financial advantage, as he receives a fixed fee each time the investor opts
in. Commercial banks (here, the receiver) receive signals from a central bank (sender),
such as information about interest rates or bank stability. A forward-looking central
bank must take into account the evolving stochastic nature of the markets when sig-
naling to commercial banks to maximize economic stability. These examples illustrate
how the sender’s optimal balance between short-term goals and long-term control of
the receiver’s beliefs applies to a range of real-world scenarios.

Our contribution Our main result identifies a joint condition involving both the
sender’s payoff function and the Markov chain that enables a patient sender to ensure
the concavification of his payoff function at the stationary distribution of the Markov
chain. This condition characterizes situations in which a patient sender is not impacted
by any additional effects of the stochastic environment compared to the case of the
static environment. The finding is consistent with previous research by Kamenica and
Gentzkow (2011)) because the concavification just mentioned is the solution to the one-
shot Bayesian persuasion problem at the stationary distribution.

Our joint condition can be explained as follows: let u be the payoff function, (Cavu)
be its concavification, and M be the Markov matrix, with πM as its stationary distri-
bution. Our condition asserts that the supporting hyperplane to (Cavu) at πM should
contain a set of beliefs C that satisfy two key properties. First, for every p ∈ C, u(p) =
(Cavu)(p). Second, C should include allM shifts of its elements, meaning that the shift
pM of a belief p ∈ C remains within the convex hull of C.

This condition is sufficient due to two basic properties. First, (Cavu) is affine on
the convex hull of C. Second, starting from the prior πM , the posteriors at any subse-
quent day have a mean of πM . To guarantee an expected daily payoff of (Cavu)(πM ),
the sender first splits πM to C. Since the joint condition ensures that the next day’s prior
(i.e., the shift of the first day realized posterior) is contained in C, the sender splits it
back to C. By using these properties, the sender can repeat the same strategy on every
subsequent day and receive an expected daily payoff of (Cavu)(πM ).

If the sender starts from a different prior, the ergodicity of the Markov chain ensures
that, with patience, the sender can wait until the prior approaches πM and then utilize
C in the same way.
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While the necessity of this joint condition may not be immediately intuitive, its im-
plications are significant. Specifically, if the joint condition on the payoff and the Markov
matrix is not satisfied, then at best, a patient sender can obtain a strictly lower expected
payoff than (Cavu)(πM ). In this way, our main result characterizes precisely the cases
in which the stochastic environment has an “additional effect” on a patient sender com-
pared to the static environment. To prove the necessity of this condition, we draw on
tools and techniques from the literature on repeated games with incomplete informa-
tion (see Renault (2020)).

The contribution relative to Ely (2017) and Renault, Solan, and Vieille (2017) Both pa-
pers discovered that the dynamic Bayesian persuasion model can be simplified to a
Markov decision problem over the belief state space. This insight allowed them to de-
rive a Bellman equation for the optimal discounted values of the sender. However, it is
often impossible to provide a more informative description of the value than the Bell-
man equation for a general payoff function, as Abreu, Pearce, and Stacchetti (1990) has
shown.

Despite the difficulties associated with the Bellman equation, Ely (2017) was able
to solve it for his “beeps” example. Renault, Solan, and Vieille (2017) examined a step
function defined by a hyperplane and homothetic Markov chains. They showed that
the optimal strategy for the sender corresponds to the greedy strategy from a certain
(random) stage onward.2 They also demonstrated that the greedy strategy is not always
optimal for the sender.

Our result states that, when the joint condition is satisfied, there exists an optimal
greedy strategy. However, when the condition is not satisfied, a greedy strategy can still
be optimal, but it will guarantee a patient sender less than (Cavu)(πM ).

Our innovation lies in being the first to provide a general result that goes beyond
the Bellman equation. Our criterion reveals one of the crucial aspects of the relations
between the payoff function u and the Markov matrix M , which is at the core of the
dynamic Bayesian persuasion problem. While there may be other aspects in those rela-
tions, our criterion is an important step toward a deeper understanding of the problem.

The dynamic Bayesian persuasion model shares similarities with the model of
Markov chain games described in Renault (2006). Both models explore long-term inter-
actions between two players in a Markovian environment, where one player is informed
of the realizations of the Markov chain. However, there are key differences between the
two. Markov chain games involve a zero-sum game without commitment power, and
both players are long-lived, meaning the uninformed player need not act myopically
and has infinite memory. In Section 4, we provide a detailed comparison of the two
models and clarify that our results are independent of those presented in Renault (2006)
and Pęski and Toikka (2017), which specifically focus on Markov chain games.

Practical implications In dealing with a dynamic Bayesian persuasion problem, the
sender (such as a CEO, central bank, etc.) should first verify whether the primitives of
their dynamic problem satisfy the joint condition. This can be a challenging task, as

2The greedy strategy is the one in which the sender acts myopically and maximizes his stage payoffs.
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even for just three states, there may be infinitely many candidates for such a set C (as
discussed in Section 4). To assist senders in this process, we examine several cases in
Section 5 that can simplify matters for the sender.

There are certain scenarios where verifying the joint condition can be made easier.
For instance, when the Markov chain is a homothety, the joint condition holds for every
payoff function (see Section 5.1). In two-state Markov chains, the joint condition is easy
to verify and is phrased in terms of the dynamics induced by theM-shift around πM (see
Theorem 4 in Section 5.2).

Our paper is organized as follows. In Section 2, we present a formal exposition of the
dynamic Bayesian persuasion model. Then, in Section 3, we provide a detailed glimpse
into our main result by studying a two-state example. This section introduces essential
notions and arguments required for the main theorem, which we state and discuss in
Section 4. In Section 5, we give several applications of the main result. The proofs are
presented in Section 6.

2. The model

Let K = {1, � � � , k} be a finite set of states. Assume that (Xn )n≥1 is an irreducible and
aperiodic Markov chain over K with prior probability p ∈ �(K) and a transition rule
given by the stochastic matrixM . We assume that (Xn )n≥1 are defined on the probability
space (�, ℱ , ℙ).

A sender is an agent who is informed at each period n of the realized value xn of Xn.
Upon obtaining this information, a sender is prescribed to send a signal sn, from a finite
set of signals S with cardinality at least k.3

A receiver is an agent who, at any period n, is instructed to make a decision bn from
a set of possible decisions B, assumed to be a compact metric space. This decision may
take into account the first n signals s1, � � � , sn of the sender.

The payoffs of the sender and the receiver at period n are given by the utilities
v(xn, bn ) and w(xn, bn ), respectively, so that they depend solely on the realized state xn
and the decision bn. The sender is assumed to observe the actions of the receiver and,
therefore, knows his and the receiver’s stage payoffs. However, we assume that the re-
ceiver does not have access to his own or the sender’s stage payoffs. Both the sender
and the receiver discount their payoffs by a factor δ ∈ [0, 1). We denote this game by
�δ(p). As in the models of Renault, Solan, and Vieille (2017), Ely (2017), and Farhadi and
Teneketzis (2022), the receiver obtains information only through the sender.

A signaling strategy σ of the sender in �δ(p) is described by a sequence of stage
strategies (σn ), where each σn is a mapping σn : (K×S)n−1 ×K→ �(S). Thus, the signal
sn sent by the sender at time n is distributed by the lottery σn, which may depend on all
past states x1, � � � , xn−1 and past signals s1, � � � , sn−1 together with the current state xn.
Let 	 be the space of all signaling strategies.4

3This assumption is in place to make sure the sender can disclose (xn )n.
4The model could also be interpreted as follows. As is conventionally assumed in the Bayesian persua-

sion literature, both players are initially symmetrically uninformed about the state. The sender makes a
choice (signaling strategy) at the start of �δ(p) when he has no information about the state yet.
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A standard assumption in many Bayesian persuasion models is that of commitment
by the sender. That is, we assume that the sender commits to a signaling strategy σ at the
start of the game �δ(p), and makes it known to the receiver. The commitment assump-
tion enables the receiver to update her beliefs on the distribution of states (Xn ) based
on the signals (sn ) she receives from the sender. Formally, by Kolmogorov’s extension
theorem, each signaling strategy σ together with (Xn )n≥1 induces a unique probability
measure ℙp,σ on the space 𝒴 = (K × S)ℕ, determined by the laws

ℙp,σ (x1, s1, � � � , xn, sn ) =
(︄
p(x1 )

n−1∏︂
i=1

Mxi,xi+1

)︄

×
(︄
n∏︂
i=1

σi(x1, s1, � � � , xi−1, si−1, xi )(si )

)︄
.

Thus, the posterior probability pℓn the receiver assigns to the event {Xn = ℓ}, given the
signals s1, � � � , sn and the strategy σ , is given by the formula

pℓn = ℙp,σ (Xn = ℓ|s1, � � � , sn ).

Set pn = (pℓn )ℓ∈K .
A second key assumption of our model is that the receiver’s decision at any period n

depends only on her posterior, pn. Such an assumption is realistic in cases where the re-
ceiver maximizes her expected payoff based on her current belief. It is a natural assump-
tion in several scenarios. One is when a sequence of transitory short-lived receivers (e.g.,
Jackson and Kalai (1997)) are involved in a recurring game, where a stage game is played
sequentially by different players having social memory of the information provided (as
is often the case in online markets). Another scenario is when at any stage a particular
receiver is chosen from a large population of anonymous receivers, and the sender is a
political party or a media outlet trying to persuade the general public.

Denote by θ : �(K) → B the decision policy of the receiver, that is, the mapping
that depicts the decision of the receiver as a function of her belief. As in previous
related models, we assume that the decision policy of the receiver is known to the
sender. The last assumption of our model is that the function u : �(K) → ℝ defined
by u(q) =∑︁

ℓ∈K qℓv(ℓ, θ(q)) is upper semicontinuous. Such an assumption is important
for two reasons. First, it is consistent with the assumption that whenever the receiver is
indifferent between two actions he chooses that which benefits the sender. Second, the
fact that upper semicontinuous functions defined on �(K) achieve their maxima will be
useful throughout the paper.

To summarize, our assumptions imply that the signaling strategy σ of the sender
determines his payoff at any period n. Moreover, the total expected payoff to the sender
in �δ(p) under the signaling strategy σ can now be written as

Uδ(p, σ ) := 𝔼p,σ

[︄
(1 − δ)

∞∑︂
n=1

δn−1u(pn )

]︄
,
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where 𝔼p,σ is the expectation with respect to ℙp,σ . The value of the game �δ(p) is
vδ(p) = supσ∈	Uδ(p, σ ).

3. A detailed glimpse at the main result

To facilitate the understanding of our main result, we provide a qualitative overview of
the key ideas and concepts upon which the paper relies. We focus on the case of two
states, denoted as K = {1, 2}, which allows us to simplify our presentation. Specifically,
we can represent the set �(K) as the unit interval [0, 1], where each point p ∈ [0, 1] cor-
responds to the distribution (p, 1 −p).

For the remainder of our discussion, we assume that the payoff function u is defined
on [0, 1]. As an illustration, let us consider a specific example of such a payoff function:

u(p) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2p, for p ∈ [0, 0.3],

1.5 − 3p, for p ∈ [0.3, 0.5],

3p− 1.5, for p ∈ [0.5, 0.75],

3 − 3p, for p ∈ [0.75, 1].

Figure 1 provides a graphical representation of the function u, where we have set
q1 = 0.3, q2 = 0.75, andπM = 0.5. We assume that (0.5, 0.5) is the stationary distribution
of the Markov chainM . This notation will be useful in the subsequent discussion.

The one-shot Bayesian persuasion problem When considering the one-shot game (cor-
responding to λ= 0), the sender faces a classical Bayesian persuasion problem with pay-
off function u, as studied in Kamenica and Gentzkow (2011). The solution concept in
this setting is based on (Cavu), the so-called “concavification” of u. In the given exam-
ple, (Cavu) agrees with u on the intervals [0, 0.3] and [0.75, 1], where u is concave, while
on the interval [0.3, 0.75], (Cavu) is given by the hyperplane 1/3p+ 0.5. (See the blue
dashed line in Figure 1 for a graphical representation of (Cavu).)

Figure 1. A two-state example.
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The sender’s optimal policy for any belief p ∈ [0.3, 0.75] involves “splitting” p into
two points where the hyperplane 1/3p+ 0.5 touches the function u, namely q1 and q2 in
our example (as shown by the green points in Figure 1). For example, when the belief is
πM , this optimal policy yields an expected payoff of (Cavu)(πM ) = 2/3 in the one-shot
game.

The asymptotic approach The law of the irreducible and aperiodic Markov chain
(Xn )n≥1 dictates that it converges with time to the stationary distribution πM of M .
Therefore, if the sender is sufficiently patient, regardless of the receiver’s prior proba-
bility p over K, the sender can wait until the receiver’s beliefs naturally approach πM ,
and then act informatively. Building on this observation, Theorem 1 argues that vλ(p)
converges uniformly (on �(K)), as λ→ 1, to a number v∞ ∈ ℝ, referred to as the asymp-
totic value. Thus, according to Theorem 1, the study of v∞ can be accomplished solely
through the mapping δ ↦→ vλ(πM ).

The mean-consistency property at πM The Markov dynamics dictate that the receiver’s
belief at the end of a stage, q ∈ �(K), is transformed byM into qM , which then becomes
the receiver’s belief at the beginning of the next stage. As a result, the elements of the
sequence of posteriors (pn )n≥1, starting from the prior πM , will have the same mean,
namely πM . This follows from the fact that splits are mean-preserving, coupled with the
observation that if

∑︁
αiqi = πM for some convex weights (αi ) and beliefs (qi ), then the

linearity of theM-shift on �(K) implies that
∑︁
αiqiM = πMM = πM .

This mean-consistency property implies that the sender cannot achieve more than
(Cavu)(πM ) at any stage n ≥ 1 when starting from the prior πM . Hence, vλ(πM ) ≤
(Cavu)(πM ) for any λ, and the asymptotic value v∞ cannot exceed (Cavu)(πM ) either.

The research question The goal of this paper is to investigate the conditions that guar-
antee that v∞ = (Cavu)(πM ). Specifically, we aim to determine when can a patient
sender guarantee a payoff close to that in the one-shot Bayesian persuasion problem
with prior πM .

Keeping the posteriors supported on {q1, q2} The mean consistency property suggests
that if the sender could ensure that the belief is supported on {q1, q2} for every n, then
he would guarantee at every stage an expected payoff of (Cavu)(πM ). Since he cannot
guarantee more, this would show that vλ(πM ) = (Cavu)(πM ) for every λ ∈ [0, 1), proving
that the asymptotic value v∞ also equals (Cavu)(πM ).

Absorption underM-shifts of {q1, q2} The sequence of posteriors (pn ) can only be sup-
ported on the set {q1, q2} if q1 and q2 are shifted byM to the interval [q1, q2] (e.g., see the
red arrow demonstrated for q1 in Figure 1). Indeed, only in that case, the sender could
split the initial belief at any subsequent stage (being q1M or q2M) back to q1 and q2. In
geometric terms, this property implies that the set {q1, q2} is absorbed under M , in the
sense that its shift under M lies within its convex hull, which is the interval [q1, q2]. We
generalize this property naturally to an arbitrary state set K as follows. A set of beliefs
C ⊆ �(K) is said to be M-absorbing if its M-shift lies within its convex boundaries (see
Definition 1).
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The revelation of information policy The information provision policy can be summa-
rized as follows. In the first stage, the sender “splits” the prior belief πM to {q1, q2}. At
the beginning of each subsequent stage, the sender splits the realized shift, either q1M

or q2M , back to {q1, q2}. This policy is illustrated in Figure 1 for q1M using the blue
arrows.

The main result—a characterization The previous arguments provided a sufficient
condition for v∞ to be equal to (Cavu)(πM ). Specifically, the set {q1, q2} needs to be
M-absorbing. The main theorem of the paper, Theorem 2, states that this condition
is also necessary. Moreover, the generality of Theorem 2 extends beyond the two-state
case. In essence, the theorem asserts that a patient sender can only achieve (Cavu)(πM )
if there exists anM-absorbing set of beliefs within the set of beliefs where the supporting
hyperplane to (Cavu) at πM touches the graph of u. In the current example, this set is
{q1, q2}.

4. The main theorem

4.1 The existence of asymptotic value

To present our first result, we must establish some notation. Let us begin by defining πM
to be the unique stationary distribution of M . Additionally, for any function g : �(K) →
ℝ, define the function (Cavg) by

(Cavg)(q) := inf
{︁
h(q) : h : �(K) → ℝ concave, h≥ g}︁, ∀q ∈ �(K).

Our first finding indicates that the effect of p ∈ �(K) on the value vδ(πM ) of a suffi-
ciently patient sender (i.e., with λ close to 1) is insignificant in comparison to the im-
pacts of u and M . Moreover, as the patience level λ approaches 1, the sequence of
functions vλ(·) converges uniformly on �(K). To be precise, we state this outcome as
follows.

Theorem 1. There exists a scalar v∞ ∈ ℝ, v∞ ≤ (Cavu)(πM ), such that for every ε > 0
there exists 0< δ(ε)< 1 such that⃓⃓

vδ(p) − v∞
⃓⃓
< ε, ∀δ > δ(ε), ∀p ∈ �(K).

Interestingly, the upper bound on v∞ presented in Theorem 1 is an exact bound. In
the subsequent section, we will provide a geometric criterion for this upper bound to be
achieved. This will require us to first introduce and examine the concept ofM-absorbing
sets.

4.2 M-Absorbing sets

Definition 1. A nonempty set C ⊆ �(K) is said to beM-absorbing if qM ∈ conv(C ) for
every q ∈ C.5

5conv(C ) denotes the convex hull of the set C.
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The reasoning behind our choice of terminology is as follows. Given that q ↦→ qM is
a linear operator, if a set C is M-absorbing, then so is its convex hull conv(C ). However,
when it comes to conv(C ), M-absorption means that the image of conv(C ) under M
is fully contained within (or absorbed by) conv(C ). Dually, if a closed convex set C ⊆
�(K) isM-absorbing, then by the Krein–Milman theorem we have that ext(C ) is alsoM-
absorbing.6 As a consequence, since �(K) itself is M-absorbing, so is its set of extreme
points (i.e., the set of all mass-point distributions). Finally, we observe that if both C1

and C2 are M-absorbing, then so is their union C1 ∪C2, because conv(C1 ) ∪ conv(C2 ) ⊆
conv(C1 ∪C2 ).

To provide further insight into the concept ofM-absorbing sets, consider a scenario
in which a football is passed in a straight line from any point q ∈ �(K) to the point
qM . The trajectory of the football starting from q is given by the union of line seg-
ments

⋃︁
n≥1[qMn−1, qMn], where [x, y] = αx+ (1 − α)y :, 0 ≤ α≤ 1. When the set C is

M-absorbing, the trajectory of the football starting from any point q ∈ C remains inside
conv(C ) and never leaves it. This can be thought of as a metaphorical “absorption” of
the football’s trajectory by the set C.

Let us provide some basic examples of M-absorbing sets. The simplest ones are
the singleton set {πM }, consisting of the unique stationary distribution πM , and the en-
tire set �(K). To describe additional examples, consider the ℓ1-,ℓ2- and ℓ∞-norms on

�(K), denoted by ∥q∥1 := ∑︁
ℓ∈K |qℓ|, ∥q∥2 :=

√︂∑︁
ℓ∈K(qℓ )2 and ∥q∥∞ := maxℓ∈K |qℓ|, re-

spectively, for q ∈ �(K). Denote by ∥M∥i the operator norm7 of M with respect to the
ℓi-norm, i ∈ {1, 2, ∞}.

For every i ∈ {1, 2, ∞}, we have

∥qM −πM∥i = ∥qM −πMM∥i ≤ ∥M∥i∥q−πM∥i. (1)

It is well known that ∥M∥∞ coincides with the largest ℓ1-norm of a row of M (see,
e.g., Example 5.6.5 on p. 345 in Horn and Johnson (2013)), so ∥M∥∞ = 1. Additionally,
since ∥M∥2 coincides with the maximal singular value of M (see, e.g., Example 5.6.6 on
p. 346 in Horn and Johnson (2013)), ∥M∥2 = ∥M∥∞ = 1. Therefore, according to (1),
any ball (either open or closed) centered at πM with respect to the ℓ2 or ℓ∞-norm is
M-absorbing.

If M is doubly stochastic, it is known that ∥M∥1 = 1 since ∥M∥1 coincides with the
maximal ℓ1-norm of a column of M (see, e.g., Example 5.6.5 on pp. 344–345 in Horn
and Johnson (2013)). Hence, in this case, any ball (either open or closed) centered at
πM with respect to the ℓ1-norm is also M-absorbing. Examples of M-absorbing sets for
these norms are illustrated in Figure 2.

In all of the examples above, the M-absorbing sets contain πM , and this is not a
coincidence. In fact, due to the linearity of the map M , for every M-absorbing set C,
the image of conv(C ), is also contained in conv(C ). Therefore, by Brouwer’s fixed-point
theorem, M possesses a fixed point in the closed convex hull cl conv(C ) of C. As the

6ext(C ) denotes the set of extreme points of C, that is, points in C that cannot be expressed as a convex
combination of two distinct points in C.

7∥M∥i = max∥x∥i=1 ∥xM∥i .
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Figure 2. Absorbing sets.

only fixed point of M is πM , we deduce that πM lies in the closure of conv(C ) for every
M-absorbing set C.

We conclude the discussion onM-absorbing sets with the following relevant propo-
sition.

Proposition 1. LetC be anM-absorbing set. ThenC contains a countableM-absorbing
set.

4.3 The main theorem

To state our main result, we begin with a review of some basic concepts from the
theory of concave functions. First, for each g : �(K) → ℝ let Graph[g] := {(q, g(q)) :
q ∈ �(K)}. Since (Cavu) is a concave function, Graph[(Cavu)] can be supported at
(πM , (Cavu)(πM )) by a hyperplane. We may parametrize each such supporting hy-
perplane by a point in ℝ

k as follows: first, for every z ∈ ℝ
k define fz : ℝk → ℝ by

fz(x) := (Cavu)(πM ) + ⟨z, x−πM⟩. Second, set

� := {︁
z ∈ℝ

k : (Cavu)(q) ≤ fz(q), ∀q ∈ �(K)
}︁

.

As fz(πM ) = (Cavu)(πM ) for every z, the set � corresponds to all supporting hyper-
planes of Graph[(Cavu)] at (πM , (Cavu)(πM )). In convex theory terminology, the set
� is termed the supergradient of (Cavu) at πM . For every z ∈�, let

Az := {︁
q ∈ �(K) : u(q) = fz(q)

}︁
.

The set Az can thus be interpreted as the projection to the first k coordinates of
the intersection of Graph[u] with the supporting hyperplane to Graph[(Cavu)] at
(πM , (Cavu)(πM )) parametrized by z. A visualization of Az when k= 3 is given in Fig-
ure 3.

Proposition 2. We have the following:

(i) IfAz contains anM-absorbing set for some z ∈�, then v∞ = (Cavu)(πM ).

(ii) If v∞ = (Cavu)(πM ), then for every z ∈ �, Az contains a countable M-absorbing
set.
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Figure 3. A visualization ofAz for z ∈�.

The strategy induced by an M-absorbing set M-absorbing sets contained in Az are of
particular importance due to their role in controlling the receiver’s beliefs. Once a belief
is in the convex hull of an M-absorbing subset C ⊆Az , z ∈ �, its shift under M , which
describes the evolution of the posterior in one time period, also lies in conv(C ). At this
point, the sender may send messages that would induce posteriors withinC, and in par-
ticular in Az . As (Cavu) is an affine function on conv(Az ) (see Lemma 6 in Section 6),
starting from πM , the weighted average of the values of (Cavu) evaluated at these pos-
teriors, is equal to the value of (Cavu) at πM (see the mean-consistency property at πM
in Section 3).

The candidates forM-absorbing sets withinAz In Figure 3, we can observe that even in
the 3-dimensional case (i.e., |K| = 3), the set Az can be quite general and may include
an infinite number of subsets. However, as Proposition 2 suggests, it is sufficient for only
one of those subsets to beM-absorbing.

The main theorem summarizes the results of Theorem 1 and Proposition 2 and char-
acterizes when a patient sender can achieve a value close to the maximum possible, as
stated in Theorem 1. In other words, it describes the optimal policy of a patient sender
when there exists z ∈ � such that Az contains an M-absorbing set: the sender should
send messages that induce posteriors within this M-absorbing set of beliefs. The more
technically challenging part of Theorem 2 shows that when condition (ii) is not satisfied,
the static optimal value cannot be achieved. In such cases, the optimal strategy can be
described using a Bellman-type condition, but typically not in terms of the static model.

Theorem 2. The following statements are equivalent:

(i) For every ε > 0, there exists 0< δ(ε)< 1 such that

⃓⃓
vδ(p) − (Cavu)(πM )

⃓⃓
< ε, ∀δ > δ(ε), ∀p ∈ �(K).

(ii) There exists z ∈� such thatAz contains anM-absorbing set.

(iii) For every z ∈�,Az contains a countableM-absorbing set.
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The grand question While the criterion given in Theorem 2 is more general than those
previously addressed in the literature (such as Ely (2017) and Renault, Solan, and Vieille
(2017)), it does not offer a solution for the optimal disclosure of information by a patient
sender when the disclosure has future payoff implications. This question remains open
and it seems challenging to tackle.

The effect of the discount factor The following proposition delineates the behavior ex-
hibited by the mapping δ ↦→ vδ(πM ) when v∞ = (Cavu)(πM ).

Proposition 3. Assume that v∞ = (Cavu)(πM ). Then vδ(πM ) = (Cavu)(πM ) for every
δ ∈ [0, 1).

The proposition states that whenever v∞ = (Cavu)(πM ), or equivalently, whenever
Az contains an M-absorbing set for some z ∈ �, the discount factor has no effect on
the sender’s value. Moreover, regardless of the discount factor, the sender should follow
the strategy induced by the given M-absorbing set. In essence, the significance of the
scenario where v∞ = (Cavu)(πM ) transcends mere asymptotic considerations. It has an
important insight regarding the values vδ(πM ) across the entire spectrum of discount
factors δ.

Example 1. Let us return to the example in Section 3. Since πM = 0.5 andM is assumed
to be irreducible and aperiodic, there must exist 0< a< 1 so that

M =
(︄

a 1 − a
1 − a a

)︄
.

In that case, the set {q1, q2} = {0.3, 0.75} isM absorbing if and only if

0.3 ≤ ⟨︁
(0.3, 0.7), (a, 1 − a)

⟩︁≤ 0.75, (2)

and

0.3 ≤ ⟨︁
(0.75, 0.25), (a, 1 − a)

⟩︁≤ 0.75. (3)

A straightforward check shows that the inequalities (2) and (3) amount to 0.1 ≤ a. Hence,
v∞ = (Cavu)(πM ) if and only if 0.1 ≤ a. ◊

The informational interpretation The core of the model analyzed in this paper lies
in the sender’s optimal balance between disclosing information to achieve short-term
goals (increasing today’s payoff) and considering the potential impact of such informa-
tion on long-term goals (future payoffs). Theorem 2 highlights a scenario where such
a balance is not necessary. Specifically, it states that this occurs whenever there exists
a z ∈ � such that Az contains an M-absorbing set. In other words, the sender can act
myopically when releasing information in this case.

However, even in cases whereAz does not contain anM-absorbing set, it is possible
that the optimal policy for the sender is still myopic. Although no such example has
been identified in the literature, it raises a natural research question.
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Question 1. What are the necessary and sufficient conditions for a greedy strategy to be
optimal?

The interrelationships between u and M It is worth noting that Theorem 2 provides
a characterization of the sender’s optimal policy based solely on the model primitives,
namely u andM . The interplay between these primitives is crucial, as the setsAz , z ∈�,
depend solely on u, while the M-absorbing sets are determined by M . This raises an
intriguing question: how sensitive is the sender’s optimal policy to the interplay between
u andM?

Question 2. Assume that Az does not contain an M-absorbing set for some z ∈ �. Can
one quantify the difference between (Cavu)(πM ) and v∞ in terms of u andM?

Comparison with Markov chain games The Markovian persuasion model analyzed in
this paper shares similarities with the Markov chain game model introduced by Renault
(2006). Both models can be represented as a stochastic game over the state space �(K),
which in the case of the Markovian persuasion model reduces to an MDP (as discussed
in Section 6). Renault (2006) proved that the limit of values of finite-duration Markov
chain games with Cesàro valuation exists and is also the uniform value of the games.
This result, coupled with Zillioto’s Tauberian theorem for stochastic games (see Sec-
tion 3.3 of Ziliotto (2016)) establishes that the asymptotic value of Markov chain games
exists when the discount factor approaches 1. This is similar to Theorem 1, which also
shows that the Markovian persuasion model admits an asymptotic value.

Despite these similarities, there are significant differences between the two models.
As mentioned in the Introduction, Markov chain games are zero-sum, and the sender
does not need to commit to a strategy.8 Furthermore, the receiver need not act my-
opically.9 Along with these significant conceptual differences, there are also important
technical distinctions between both models.

In the Markovian persuasion model, we consider a general upper semicontinuous
payoff function u, unlike in Markov chain games, where payoffs are restricted to a spe-
cific family of functions. Secondly, the evolution of the state variable in Markov chain
games is based on the posterior distribution on K at stage n, which is induced by the
first n−1 actions of the informed player. In contrast, in the Markovian persuasion game,
the state variable pn is the distribution on K induced by the first n (compared to n− 1)
signals sent by the sender. This subtle difference has important technical implications
and is central to the main result of this paper, Theorem 2.

Theorem 2 provides a unique insight into the interplay between the stage payoffs
and the Markov transition rule. Specifically, we demonstrate howM-absorbing sets and
stage payoffs jointly impact the asymptotic value and the optimal strategy of the sender.
This result stands out from previous works such as Renault (2006) and Pęski and Toikka

8The sender in Markov chain games is called Player 1. Similar to the sender studied in this paper, he
also observes the Markov chain and may reveal information to his opponent regarding the evolution of the
chain.

9The receiver in Markov chain games is called Player 2.
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(2017), which focus on the values of Markov chain games without considering the spe-
cific relation between the payoff function and the Markov transition rule. Accordingly,
the techniques used in our paper differ from those employed in the existing literature.

5. Applications of the main result

5.1 When the main theorem holds for every u: Homothety

The results obtained previously have provided insight into the relationship between M
and u. In particular, the main theorem establishes the conditions under which v∞ =
(Cavu)(πM ), based on M and u. This leads to a natural question: can we determine if,
for a fixed value of M , this result holds for all possible u? To address this question, we
must first introduce the concept of homothety.

Definition 2. A linear map ψ : �(K) → �(K) is said to be a homothety with respect to
the pair (v, β) ∈ �(K) × [0, 1) ifψmaps each point x ∈ �(K) into the point βx+ (1 −β)v.
The point v is called the center and β is called the ratio.

A homothety with respect to (v, β) fixes the point v and reduces the distance from
any point x to v by a factor of β. Thus, an irreducible aperiodic stochastic matrix M is
referred to as a homothety if the mapping ψ : x ↦→ xM is a homothety with center πM
and ratio β for some β ∈ [0, 1). WhenM is a homothety, the transition from one state to
another follows the following rule: each state remains unchanged with probability 1 −β
and moves to other states based on the distribution v with probability β.

We can describe an interesting class of M-absorbing sets of a homothety M by con-
sidering sets that are star-shaped around a point p ∈ �(K). A set E ⊆ �(K) is said to be
star-shaped around p if [p, q] ⊆ E for every q ∈ E. In simpler terms, if an observer is
located at point p, then E is star-shaped around p if the line of sight, [p, q], to any point
q ∈E lies entirely in E.

Suppose now that E is star-shaped around πM , and M is a homothety. Then for any
q ∈E, we have qM ∈ [πM , q) ⊆E ⊆ conv(E). This means that every point inE transitions
under the homothety M to a point within E. Therefore, when M is a homothety, every
star-shaped set around any πM isM-absorbing.

We present a result that characterizes when an irreducible and aperiodic matrixM is
a homothety, in terms of v∞. To make this result clear, note that v∞ is constant on �(K)
by Theorem 1, and is a function of both u and M . In our characterization, we allow u to
vary over the space of all functions defined on �(K), and thus v∞ varies accordingly.

Theorem 3. M is a homothety if and only if v∞ = (Cavu)(πM ) for every upper semi-
continuous function u : �(K) →ℝ.

The practical implications LetC ⊆Az be a set10 for whichπM ∈ conv(C ). Since conv(C )
is star-shaped around πM , we can conclude that when M is a homothety, both conv(C )
and C areM-absorbing. Therefore, from a complexity standpoint, under the homothety
assumption, the sender need not search for an M-absorbing set within Az . Any set C ⊆
Az containing πM in its convex hull isM-absorbing.

10Such a set is assured to exist by Carathéodory’s theorem (e.g., Corollary 17.1.5 in Rockafellar (1970)).
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5.2 A characterization of the two-state case

We return to the binary case K = {1, 2}. The irreducible and aperiodic stochastic matrix
M is of the form

M =
(︄
a 1 − a
b 1 − b

)︄
,

where a, b ∈ (0, 1). For simplicity, we identify a distribution (p, 1 − p) ∈ �(K) with the
mass p it assigns to state 1. With this identification in mind, one can easily verify that
πM = b/(b− a+ 1). In the following theorem, we give an explicit characterization of the
case when v∞ = (Cavu)(πM ).

Theorem 4. v∞ = (Cavu)(πM ) if and only if one of the two following conditions holds:
[A] a≥ b;
[B] b > a and for some z ∈� there exists y ∈Az ∩ [πM , 1] such that[︃

b− y
b− a , b− (b− a)y

]︃
∩Az ≠ ∅.

The next discussion is dedicated to the intuition behind Theorem 4.

The geometry of the M-shift in two states Consider the M-shift map p ↦→ pM . The ge-
ometric behavior of the M-shift can be of two types: (i) pM lies in the line segment
[p, πM ] or (ii) pM ∈ [πM , 1] when p≤ πM (or [0, πM ]) if p ≥ πM ). In words, the M-shift
either keeps the belief’s orientation around πM (case (i)) or flips the belief around πM
(case (ii)). An illustration of case (ii) is given in Figure 1.

The proof of Theorem 4 shows that in the two-state case, keeping the orientation
around πM is equivalent to a ≥ b, which in turn is equivalent to M being a homothety
with center πM and ration a − b. Therefore, by Theorem 3, Case [A] in Theorem 4 is
clearly sufficient to guarantee that v∞ = (Cavu)(πM ). The remaining task is to identify
when v∞ = (Cavu)(πM ) in the case whereM is flipping around πM (i.e., b > a).

Suppose that M is flipping around πM . Assume, for simplicity, that u has the prop-
erty that there exists a unique pair q1, q2 such that q1 < πM < q2 and (Cavu)(πM ) is
achieved by splittingπM to {q1, q2}. In this case, Theorem 2 states that v∞ = (Cavu)(πM )
if and only if the set {q1, q2} is M-absorbing. For this to happen, two inequalities must
be satisfied: q1M ≤ q2 and q2M ≥ q1 (see Figure 1). However, these two inequalities are
equivalent to q1 ∈ [(b− q2 )/(b− a), b− (b− a)q2], as indicated in condition [B].

6. Proofs

We start this section by reviewing the notion of a split, a cornerstone in the field of
Bayesian persuasion. This can be described informally as follows: Given a lottery X
over K with law p ∈ �(K), to which extent can the sender manipulate (split) p using his
signals? The answer, given by Blackwell (1951) and Aumann and Maschler (1995), is that

for every choice of distributions q1, � � � , q|S| ∈ �(K) and convex weights (αi )
|S|
i=1 ∈ �(S)

such that
∑︁|S|
i=1 αiqi = p, the sender can correlate his lottery over signals, Y , with the
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lottery X , so that on the event that si ∈ S is chosen (having marginal probability αi) the
posterior belief over states becomes qi. This lottery Y will obey the rule

ℙ
(︁
Y = si|X = ℓ)︁= αiq

ℓ
i

pℓ
, ∀i= 1, � � � , |S|, ∀ℓ ∈K.

Let us denote by 𝒮p the set of splits at p. Formally,

𝒮p =
{︄{︁

(qi, αi )
}︁|S|
i=1 : qi ∈ �(K) ∀i, (αi )

|S|
i=1 ∈ �(S), such that

|S|∑︂
i=1

αiqi = p
}︄

.

As in Renault, Solan, and Vieille (2017) and Ely (2017), the dynamic decision problem
faced by the sender can be reformulated as a Markov decision problem (MDP). For the
sake of completeness, we briefly describe the structure of this MDP. The state space is
�(K), and the action set at a state q ∈ �(K) consists of all possible splits at q, that is, 𝒮q.

The payoff associated with the state q and the action {(qi, αi )}
|S|
i=1 ∈ 𝒮q is

∑︁|S|
i=1 αiu(qi ).

To describe the transition rule, denote by yn the state at time n, while the initial state
is y1 = p. Recall that the posterior belief after observing n− 1 messages, namely at the
end of the (n− 1)-th stage of the game �δ(p), is pn−1. Due to the underlying Markovian
dynamics, the receiver’s belief at the start of stage n (before obtaining the n-th signal
from the sender) is pn−1M . We set yn = pn−1M . Now assume that at this stage (i.e.,

n) of the game the sender uses the split {(qi, αi )}
|S|
i=1 ∈ 𝒮yn : yn = ∑︁

αiqi. This implies
that the posterior pn (after observing also the n-th message) is equal to the result of this
split: qi with probability αi. The belief at the start of stage n + 1 is therefore qiM with
probability αi. We set yn+1 = qiM with probability αi. Stated differently, the state yn and

the action {(qi, αi )}
|S|
i=1 ∈ 𝒮yn determine the stochastic transition to yn+1: yn+1 = qiM with

probability αi, namely yn+1 = pnM .

The transition rule, together with the fact that any split {(qi, αi )}
|S|
i=1 of a given q ∈

�(K) has a mean q (i.e.,
∑︁|S|
i=1 αiqi = q) implies that the sequence of posteriors (pn ) of

the receiver satisfies the following important distributional law:11

𝔼p,σ (pn+1|pn ) = pnM , ∀n≥ 1. (4)

Consequently, 𝔼p,σpn+1 = (𝔼p,σp1 )Mn = pMn for every n≥ 1. In particular, by tak-
ing p = πM we obtain the mean-consistency property at πM : 𝔼πM ,σpn = πM for every
n≥ 1.

By reducing the problem to MDP and applying the dynamic program principle (e.g.,
Theorem 1.22 in Solan (2022)) we obtain the following recursive formula for vδ(p):

vδ(p) = max
{(qi ,αi )}i∈𝒮p

{︄
(1 − δ)

|S|∑︂
i=1

αiu(qi ) + δ
|S|∑︂
i=1

αivδ(qiM )

}︄

11In the literature when T is a mapping from a space to itself, this law is referred to as a T -martingale
(see, e.g., Neyman and Kohlberg (1999)). An integrable sequence of random variables (ξn )n≥1 is called a T -
martingale if 𝔼(ξn+1|ξn ) = T (ξn ). Neyman and Kohlberg (1999) provide sufficient conditions for different
forms of convergence of the sequence (ξn/n), whenever (ξn ) is a T -martingale. In the current context,
T (q) = qM .
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= max
{(qi ,αi )}i∈𝒮p

|S|∑︂
i=1

αi ·
{︁

(1 − δ)u(qi ) + δvδ(qiM )
}︁

(5)

where we note that the max in the right-hand side is attained by upper semicontinuity
arguments. Moreover, Carathéodory’s theorem (see, e.g., Corollary 17.1.5 in Rockafellar
(1970)) implies that the expression on right-hand side of Equation (5) is the same for all
signal sets |S| ≥ k. Therefore, vδ is the same for all signal sets S of cardinality at least k.

Moreover, vδ may be described in terms of a functional recursive equation. Indeed,
consider the operator φ : �(K) → �(K) defined by φ(q) = qM . Then Carathéodory’s
theorem (see, e.g., Corollary 17.1.5 in Rockafellar (1970)) implies that the expression on
right-hand side of Equation (5) equals (Cav{(1 − δ)u+ δvδ ◦φ})(p). Thus the following
key relation holds:

vδ(p) = (︁
Cav

{︁
(1 − δ)u+ δ(vδ ◦φ)

}︁)︁
(p). (6)

In particular, this shows that the function vδ : �(K) → ℝ is concave for every δ. As φ is
linear, vδ ◦φ is also concave. Then, by the definition of Cav, we infer from Equation (6)
the inequality

vδ(p) ≤ (1 − δ)(Cavu)(p) + δ(vδ ◦φ)(p). (7)

Since the sender can always decide to reveal no information at p, that is, to choose the
split {(qi, αi )}i ∈ 𝒮p, where qi = p for all i= 1, � � � , |S|, and thereafter play optimally in the
game �δ(pM ), we also have that vδ(p) ≥ (1−δ)u(p)+δ(vδ ◦φ)(p). The latter combined
with Equation (7) gives the following result.

Lemma 5. Assume that p ∈ �(K) satisfies u(p) = (Cavu)(p). Then, for any δ ∈ [0, 1), the
optimal signaling strategy σδ in �δ(p) would instruct the sender to reveal no information
at p.

We move on with the goal of proving Theorem 1. As it turns out, this requires classi-
cal tools and techniques from the field of repeated games with incomplete information
(e.g., Renault (2020)). We begin by introducing, for every N ∈ ℕ and p ∈ �(K), the N-
stage game �N (p) over the strategy space 	 with payoff given by the formula

UN (p, σ ) := 𝔼p,σ

(︄
1
N

N∑︂
n=1

u(pn )

)︄
, ∀σ ∈ 	.

The value of �N (p) will be denoted by vN (p). Standard continuity and compactness-
based arguments (see, e.g., Theorem 1.15 in Solan (2022)) show that vN (p) =
maxσ∈	UN (p, σ ).

The following proposition establishes several fundamental properties of vN (p),
which will play an important role in our future proofs.
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Proposition 4. We have the following:

(i) For everyN ≥ 1, the function vN : �(K) → ℝ is concave and satisfies

vN (p) =
(︃

Cav
{︃

1
N

· u+ N − 1
N

· (vN−1 ◦φ)

}︃)︃
(p), ∀p ∈ �(K), (8)

where v0 : �(K) →ℝ is defined by v0(p) = 0 for every p ∈ �(K).

(ii) There exists ε0 > 0 such that for every positive ε < ε0 it holds that

∥p−πM∥1 < ε =⇒ ⃓⃓
vN (p) − vN (πM )

⃓⃓≤ 2∥u∥∞
ε0

· ε, ∀N ≥ 1.

(iii) The sequence {NvN (πM )}N is subadditive.

(iv) The sequence {vN (πM )}N converges.

(v) The sequence {vbN (πM )}N is nonincreasing for every b ∈ℕ.

(vi) For everyN ≥ 2 and p ∈ �(K), it holds that

⃓⃓
vN (p) − vN−1(pM )

⃓⃓≤ 2∥u∥∞
N − 1

.

Proof of Proposition 3. (i). Applying the dynamical programming principle for
Markov decision problems (e.g., Theorem 1.17 in Solan (2022)), we obtain that for every
N ≥ 1 and any p ∈ �(K) it holds

vN (p) = sup
{(qi ,αi )}i∈𝒮p

{︄
1
N

|S|∑︂
i=1

αiu(qi ) + N − 1
N

|S|∑︂
i=1

αivN−1(qiM )

}︄

= sup
{(qi ,αi )}i∈𝒮p

|S|∑︂
i=1

αi ·
{︃

1
N

· u(qi ) + N − 1
N

· vN−1(qiM )

}︃
. (9)

As |S| ≥ k, Carathéodory’s theorem (see, e.g., Corollary 17.1.5 in Rockafellar (1970)) im-
plies that the expression on the right-hand side of Equation (9) equals(︃

Cav
{︃

1
N

· u+ N − 1
N

· (vN−1 ◦φ)

}︃)︃
(p),

which in turn with Equation (9) shows that the relation described in (8) holds. In partic-
ular, we obtain that vN is concave for every N ≥ 1, as by (8) it is the concavification of
some function on �(K).

(ii). To show (ii), it will be sufficient to show that

∀p, q ∈ Bℓ1 (πM , ε) :
⃓⃓
vN (p) − vN (q)

⃓⃓≤ 2∥u∥∞
ε0

· ε, ∀N ≥ 1, (10)

where Bℓ1 (πM , ε) ⊂ �(K) denotes the open ℓ1-ball of radius ε centered at πM .
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To show relation (10), set ε0 := (1/2) · minℓ∈K πℓM , and note that ε0 > 0 due to the
ergodicity of M . Fix a positive ε < ε0 and p, q ∈ Bℓ1 (πM , ε). Let ∂�(K) denote the topo-
logical boundary of �(K). Define w ∈ ∂�(K) to be the point in the intersection of ∂�(K)
with the ray starting from q and going through p. By the concavity of vN proved in (i), it
holds that

vN (p) ≥ ∥w−p∥1

∥w− q∥1
· vN (q) + ∥p− q∥1

∥w− q∥1
· vN (w). (11)

Since ∥πM − z∥1 ≥ minℓ∈K πℓM = 2ε0 for every z ∈ ∂�(K), and q ∈ Bℓ1 (πM , ε0 ), we
have that ∥w − q∥1 ≥ ε0. Indeed, otherwise, by the triangle inequality we would have
∥w − πM∥1 ≤ ∥w − q∥1 + ∥q − πM∥1 < 2ε0, in contradiction to the fact that w ∈ ∂�(K).
Subtracting vN (q) from both sides of (11), and using ∥w− q∥1 = ∥w−p∥1 +∥p− q∥1, we
obtain

vN (p) − vN (q) ≥ ∥p− q∥1

∥w− q∥1
· [︁vN (w) − vN (q)

]︁≥ −2∥u∥∞
ε0

· ε.

As the reverse inequality follows by symmetry, relation (10) follows, and thus item (ii) as
well.

(iii). For every σ ∈ 	 and every N , L ∈ ℕ, the (N + L)’th stage game payoff
UN+L(πM , σ ) equals

N

N +L𝔼πM ,σ

[︄
1
N

N∑︂
n=1

u(pn )

]︄
+ L

N +L𝔼πM ,σ

[︄
1
L

N+L∑︂
n=N+1

u(pn )

]︄
.

As the belief of the receiver at the start of the (N + 1)’st time period, prior to obtaining
the signal sN+1, equals pNM , we may bound the latter from above by

N

N +LvN (πM ) + L

N +L𝔼πM ,σ
[︁
vL(pNM )

]︁
.

Applying Jensen’s inequality to the concave function vL, and utilizing the mean-
consistency property at πM , we obtain that the above expression is at most

NvN (πM ) +LvL
(︁
𝔼πM ,σ (pNM )

)︁
N +L = NvN (πM ) +LvL(πM )

N +L .

Therefore, we have shown that for every σ ∈ 	,

UN+L(πM , σ ) ≤ (︁
NvN (πM ) +LvL(πM )

)︁
/(N +L).

Maximizing over σ ∈ 	, and multiplying both sides by (N + L) shows that (N +
L)vN+L(πM ) ≤ NvN (πM ) + LvL(πM ), proving that the sequence {NvN (πM ) : N ≥ 1} is
subadditive.

(iv). The proof of (iv) can be deduced directly from (iii) based on a basic result from
analysis, which states that if {an} is a subadditive sequence; then {an/n} converges.



90 Lehrer and Shaiderman Theoretical Economics 21 (2026)

(v). By a repeated use of (iii), we see that if L dividesN , then

NvN (πM ) ≤
(︃
N

L
− 1

)︃
Lv( NL−1)L(πM ) +LvL(πM ) ≤ · · · ≤ N

L

(︁
LvL(πM )

)︁
.

Therefore, vN (πM ) ≤ vL(πM ), which is sufficient to prove (v).
(vi). First, as the sender can reveal no information in the first stage of �N (p), and

then follow the optimal strategy in �N−1(pM ) from the second stage on, we have that

vN (p) ≥ u(p)
N

+ (N − 1)vN−1(pM )
N

≥ vN−1(pM ) − 2∥u∥∞
N − 1

,

where we used the fact that vN−1(·) ≤ ∥u∥∞. The reverse inequality requires some addi-
tional preparations. Equation (9) together with Carathéodory’s theorem implies that for
any N , vN : �(K) → ℝ is the same for all signal sets S satisfying |S| ≥ k. Let σ∗ ∈ 	 be an
optimal strategy in �N (p). Assume without loss of generality that it uses k signals only.
Let μ∗

2 ∈ �(�(K)) denote the distribution of p2 under σ∗, starting from the prior p. We
have that μ∗

2 has mean pM , and is supported on at most k2 points in �(K).
Consider now the game �N−1(pM ), and define σ̂ ∈ 	 as follows: at the first stage of

�N−1(pM ), split pM to μ∗
2 (where we allow σ̂ to use arbitrary many signals). Then, at

any stage n = 2, � � � ,N − 1, given pn−1 = ξ, split the belief at the start of stage n, being
ξM , to the conditional distribution of pn under σ in �N (p), given the event pn−1 = ξ.
The definition of σ̂ implies that12

𝔼pM ,σ̂u(pn ) = 𝔼p,σ∗u(pn+1 ), ∀n= 1, � � � ,N − 1.

Using the above property, we obtain that

vN−1(pM ) ≥UN−1(pM , σ̂ )

= N

N − 1

[︃
UN (p, σ∗ ) − 𝔼p,σ∗

(︁
u(p1 )

)︁
N

]︃

= N

N − 1
· vN (p) − 𝔼p,σ∗

(︁
u(p1 )

)︁
N − 1

≥ vN (p) − 2∥u∥∞
N − 1

,

where the second equality follows from the optimality of σ∗, and the last inequality uses
the fact that vN (·) ≤ ∥u∥∞.

With the help of Proposition 4, we can proceed to prove Theorem 1.

Proof of Theorem 1. By item (i) of Proposition 4 and the definition of the Cav opera-
tor, for anyN ≥ 1 and p ∈ �(K) we have that

1
N

min
�(K)

u+ 1
N

(vN−1 ◦φ)(p) ≤ vN (p) ≤ 1
N

max
�(K)

u+ N − 1
N

(vN−1 ◦φ)(p). (12)

12Indeed, by construction, for each n= 1, � � � ,N−1 the marginal distribution ofpn under σ̂ in �N−1(pM )
is the same as the marginal distribution of pn+1 under σ∗ in �N (p).
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Set v(p) := lim infn→∞ vN (p) and v̄(p) := lim supn→∞ vN (p). Equation (12) implies that
v(p) = v(pM ) and v̄(p) = v̄(pM ) for every p ∈ �(K). In particular, we obtain that

v(p) = v(pM ) = · · · = v(︁pMn
)︁
, ∀n≥ 1. (13)

As by item (ii) of Proposition 4, v is continuous at πM , and as pMn → πM by the conver-
gence theorem for Markov chains (e.g., Theorem 4.9 in Levin and Peres (2017)), Equa-
tion (13) implies that v(p) = v(pMn ) → v(πM ) as n→ ∞. Hence, v is a constant func-
tion. Similarly, as v̄ is also continuous at πM by item (ii) of Proposition 4, one may show
using similar arguments that v̄(p) = v̄(πM ) for every p ∈ �(K). Since by item (iv) of
Proposition 4 we must have that v(πM ) = v̄(πM ), we obtain that v̄(p) = v(p) = v(πM )
for every p ∈ �(K). We conclude that for every p ∈ �(K), vN (p) → v∞ asN → ∞, where
v∞ = v(πM ).

Let us now show that vN converges uniformly on �(K) to v∞. Fix ε > 0 and assume
without loss of generality that ε < ε0, where ε0 was described in item (ii) of Proposition 4.
By the convergence theorem for Markov chains (e.g., Theorem 4.9 in Levin and Peres
(2017)), there exists n∗ ∈ ℕ such that⃦⃦

pMn∗ −πM
⃦⃦

1 < ε, ∀p ∈ �(K).

Next, letN∗ ∈ℕ be sufficiently large such that it satisfies (a) |vN (πM ) − v∞|< ε for every
N ≥N∗, and (b) n∗/N∗ < ε. DefineN(ε) =N∗ +n∗. We have that for everyN >N(ε) and
p ∈ �(K) it holds ⃓⃓

vN (p) − v∞
⃓⃓≤ ⃓⃓

vN (p) − vN−n∗
(︁
pMn∗)︁⃓⃓

+ ⃓⃓
vN−n∗

(︁
pMn∗)︁− vN−n∗(πM )

⃓⃓
+ ⃓⃓
vN−n∗(πM ) − v∞

⃓⃓
≤

n∗∑︂
j=1

⃓⃓
vN−(j−1)

(︁
pMj−1)︁− vN−j

(︁
pMj

)︁⃓⃓

+ 2∥u∥∞
ε0

· ε+ ε

≤
n∗∑︂
j=1

2∥u∥∞
N − j + 2∥u∥∞

ε0
· ε+ ε

≤ 2∥u∥∞
N∗

· n∗ + 2∥u∥∞
ε0

· ε+ ε

≤ 2∥u∥∞ · ε+ 2∥u∥∞
ε0

· ε+ ε,

proving that vN converges uniformly to v∞, where the second inequality follows from
the choice of N(ε), N∗, and n∗, and from a use of item (ii) of Proposition 4, the third
inequality uses item (vi) of Proposition 4, and the last inequality follows from the choice
ofN∗ and the fact thatN − n∗ >N∗ − n∗.
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By a uniform Tauberian theorem for Markov decision problems over Borel state
spaces (e.g., Theorem 1 and discussion in Section 6 in Lehrer and Sorin (1992)), we get
that vδ(·) must also converge to v∞ uniformly as δ→ 1−.

Finally, we show that v∞ ≤ (Cavu)(πM ). Indeed, for any σ ∈ 	, Jensen’s inequality
shows that the expected payoff at any time period n satisfies

𝔼πM ,σu(pn ) ≤ 𝔼πM ,σ (Cavu)(pn ) ≤ (Cavu)(𝔼πM ,σpn ) = (Cavu)(πM ), (14)

implying that vδ(πM ) ≤ (Cavu)(πM ) for every δ ∈ [0, 1). Hence, v∞ ≤ (Cavu)(πM ), as
desired.

As the first step towards the proof of Proposition 2, we show the following basic
lemma.

Lemma 6. For every z ∈�, we have:

(i) (Cavu)(q) = fz(q) for every q ∈ conv(Az ).

(ii) Let (αi )mi=1, αi > 0 for every i,
∑︁
i αi = 1 and (qi )mi=1 ∈ �(K) such that

∑︁
i αiqi = πM .

If
∑︁
i αiu(qi ) = (Cavu)(πM ), then qi ∈Az for every i.

Proof of Lemma 6. Let q ∈ conv(Az ). Take (qi ) ∈Az and convex weights (αi ) such that
q=∑︁

i αiqi. Since (Cavu) is concave and qi ∈Az , we have

(Cavu)(q) ≥
∑︂
i

αi(Cavu)(qi ) ≥
∑︂
i

αiu(qi ) =
∑︂
i

αifz(qi ) = fz(q),

where the last equality follows from the fact that fz is affine. Since by the definition of �
we have (Cavu)(q) ≤ fz(q) for every q ∈ �(K), we have shown (i). For (ii), assume that
there exists qi0 /∈Az . Then u(qi0 )< fz(qi0 ), and since αi0 > 0 and z ∈�, we have

(Cavu)(πM ) =
∑︂
i

αiu(qi )<
∑︂
i

αifz(qi ) = fz(πM ) = (Cavu)(πM ).

We reached a contradiction.

Next, we prove the following proposition, which demonstrates the special advan-
tages ofM-absorbing subsets ofAz for z ∈�.

Proposition 5. Assume that for some z ∈ �, the set Az admits an M-absorbing subset
C. Then

vδ(πM ) = (Cavu)(πM ), ∀δ ∈ [0, 1). (15)

Proof of Proposition 5. We show that Equation (15) holds via a two-sided inequal-
ity. For the first side, by applying Jensen’s inequality and using the mean-consistency
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property at πM , we get that, for every σ ∈ 	 and every δ ∈ [0, 1),

Uδ(πM , σ ) ≤ (1 − δ)
∞∑︂
n=1

δn−1(Cavu)(𝔼πM ,σpn )

= (1 − δ)
∞∑︂
n=1

δn−1(Cavu)(πM ) = (Cavu)(πM ). (16)

We therefore obtain that vδ(πM ) ≤ (Cavu)(πM ) for every δ ∈ [0, 1). Let us now show that
the opposite inequality holds as well. Fix ε > 0. Since (Cavu) and vδ are continuous at
πM , there exists ρ(ε)> 0 such that

∥p−πM∥2 < ρ(ε) =⇒ ⃓⃓
(Cavu)(p) − (Cavu)(πM )

⃓⃓
< ε and⃓⃓

vδ(p) − vδ(πM )
⃓⃓
< ε. (17)

Since C is M-absorbing, Brouwer’s fixed-point theorem ensures that there exists p∗ ∈
conv(C ) such that ∥p∗−πM∥2 < ρ(ε). Next, consider for each q ∈ conv(C ) the set 𝒮Cq ⊆ 𝒮q
defined by

𝒮Cq := {︁{︁
(qi, αi )

}︁|S|
i=1 : qi ∈ C ∀i= 1, � � � , |S|}︁.

Since |S| ≥ k, Carathéodory’s theorem shows that 𝒮Cq ≠ ∅. Consider now the strategy

σC defined as follows: at each n ≥ 1, if pn−1 = q ∈ conv(C ), σC will choose an element
in 𝒮CqM ; otherwise, if pn−1 = q ∈ �(K) \ conv(C ), then σC will chose some element in

𝒮qM .; As p∗ ∈ conv(C ), and conv(C ) isM-absorbing, we have that under the strategy σC ,
supp(pn ) ⊆ C for every n ≥ 1. Indeed, we show this by induction on n. For n = 1, since
p∗ ∈ conv(C ), supp(p1 ) ⊆ C by the definition of σC . Assume now that supp(pn ) ⊆ C for
some n ≥ 2. Since C is M-absorbing, supp(pnM ) ⊆ conv(C ), and thus by the definition
of σC we see that supp(pn+1 ) ⊆ C as well. The latter, coupled with C ⊆Az implies that
the discounted payoff under σC can be computed as follows:

Uδ
(︁
p∗, σC

)︁= (1 − δ)
∞∑︂
n=1

δn−1
𝔼p∗,σC

[︁
u(pn )

]︁

= (1 − δ)
∞∑︂
n=1

δn−1
𝔼p∗,σC

[︁
fz(pn )

]︁

= (1 − δ)
∞∑︂
n=1

δn−1fz(𝔼p∗,σCpn )

= (1 − δ)
∞∑︂
n=1

δn−1fz
(︁
p∗Mn−1)︁

= (1 − δ)
∞∑︂
n=1

δn−1(Cavu)
(︁
p∗Mn−1)︁ (18)
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where we note that the third equality holds because fz is affine, and the last equality is a
consequence of item (i) of Lemma 6. As

⃦⃦
p∗Mn−1 −πM

⃦⃦
2 = ⃦⃦

p∗Mn−1 −πMMn−1
⃦⃦

2 ≤ ⃦⃦
Mn−1

⃦⃦
2∥p∗ −πM∥2 = ∥p∗ −πM∥2,

we obtain from Equations (17) and (18) that vδ(πM ) ≥ Uδ(p∗, σC ) − ε ≥ (Cavu)(πM ) −
2ε. As ε > 0 is arbitrary, we deduce that vδ(πM ) ≥ (Cavu)(πM ), thus proving the oppo-
site inequality.

We proceed with the proof of Proposition 2.

Proof of Proposition 2. Assume that C is anM-absorbing subset ofAz where z ∈�.
Then, by Proposition 5, vδ(πM ) → (Cavu)(πM ) as δ→ 1−. Therefore, Theorem 1 ensures
that v∞ = (Cavu)(πM ), as desired.

Let us continue with item (ii). Assume that v∞ = (Cavu)(πM ). We have (a)
limN→∞ vN (πM ) = (Cavu)(πM ), (b) vN (πM ) ≤ (Cavu)(πM ) for every N (by Equation
(14)) and (c) {vbN (πM )}N is nonincreasing for every b ∈ℕ (by item (v) of Proposition 4). A
combination of (a), (b), and (c) shows that vN (πM ) = (Cavu)(πM ) for everyN . Let σN be
an optimal strategy in �N (πM ). Denote by (pNn )n the sequence of posteriors induced by
σN and the prior probability πM . By Jensen’s inequality, 𝔼πM ,σN [u(pNn )] ≤ (Cavu)(πM )
for every n. Hence, as UN (πM , σN ) = (Cavu)(πM ), we obtain that 𝔼πM ,σN [u(pNn )] =
(Cavu)(πM ) for every n= 1, � � � ,N . Fix δ ∈ (0, 1). We see that

Uδ
(︁
πM , σN

)︁≥ (1 − δ)
N∑︂
n=1

δn−1(Cavu)(πM ) − δN∥u∥∞

for every N ≥ 1. Letting N → ∞, we get that vδ(πM ) ≥ (Cavu)(πM ). Since, by Equation
(14), the opposite inequality holds as well, and we deduce that vδ(πM ) = (Cavu)(πM ).
Therefore, there exists a strategy σδ such that Uδ(πM , σδ ) = (Cavu)(πM ). Denote the
sequence of posteriors induced by σδ and the prior probability πM by (pδn )n. By Jensen’s
inequality, 𝔼πM ,σδ[u(pδn )] ≤ (Cavu)(πM ), and we therefore obtain that 𝔼πM ,σδ[u(pδn )] =
(Cavu)(πM ) for every n. Moreover, as supp(pδn ) is finite and 𝔼πM ,σδp

δ
n = πM for every

n, item (ii) of Lemma 6 implies that supp(pδn ) ⊆ Az for every z ∈ � and every n. Set
C := ⋃︁

n≥1 supp(pδn ). Then C ⊆Az for every z ∈ �. Moreover, as the set of signals S of
the receiver is finite, C is a countable union of finite sets, and thus is countable.

We claim that C is M-absorbing. Indeed, if q ∈ C, then there exists an n such that
pδn = q with positive probability. Since 𝔼πM ,σδ(pδn+1|pδn = q) = qM , we obtain that qM ∈
conv(supp(pδn+1 )) ⊆ conv(C ). To summarize, C is a countableM-absorbing subset ofAz
for every z ∈�, as desired.

Proof of Proposition 3. Proposition 3 follows immediately from Propositions 2 and
5.

The proof of Proposition 1 may enhance the understanding of absorbing sets.
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Proof of Proposition 1. By Carathéodory’s theorem (see, e.g., Corollary 17.1.5 in
Rockafellar (1970)), to each q ∈ C we can assign k distributions w1(q), � � � , wk(q) ∈ C
such that qM ∈ conv({w1(q), � � � , wk(q)}). Define a correspondence ξ : C → 2C by
ξ(q) = {w1(q), � � � , wk(q)}. In particular, qM ∈ conv(ξ(q)). The countable set 𝒜(q) :=⋃︁∞
n=1 ξ

n−1(q) isM-absorbing for every q ∈ C, where ξn−1 is the (n− 1)-fold composition
of ξ with itself. Indeed, let w ∈ 𝒜(q), and let n≥ 1 be such that w ∈ ξn−1(q). By the defi-
nition of ξ, we have that wM ∈ conv(ξ(w)) ⊆ conv(ξn(q)) ⊆ conv(𝒜(q)), as desired.

Proof of Theorem 3. Suppose that M is a homothety and fix a function u. Carathéo-
dory’s Theorem (see, e.g., Corollary 17.1.5 in Rockafellar (1970)) implies that there exist
points q1, � � � , qm ∈ �(K), m ≤ k, and positive convex weights (αi )mi=1 such that πM =∑︁m
i=1 αiqi and (Cavu)(πM ) = ∑︁m

i=1 αiu(qi ). Hence, by item (ii) of Lemma 6, qi ∈Az for
every i and every z ∈�. Therefore, πM ∈ conv(Az ) for every z ∈�, and since conv(Az ) is
convex, we see that conv(Az ) is star-shaped around πM . Hence, sinceM is a homothety,
we get that conv(Az ) is M-absorbing for any z ∈�. By the definition of an M-absorbing
set, Az must also be M-absorbing for any z ∈ �. By Proposition 2, we deduce that v∞ =
(Cavu)(πM ), proving the first direction of Theorem 3.

Suppose now that v∞ = (Cavu)(πM ) for every u : �(K) → ℝ. For each i ∈K, let ei ∈
�(K) be the Dirac measure concentrated on the i-th coordinate of ℝk. Fix i ∈ K and
consider for each n≥ 1 the vector eni = πM + (πM − ei )/n. Clearly, πM ∈ [ei, eni ] for all n.
Next, as πM ∈ int(�(K)), there exists Ni such that eni ∈ �(K) for every n ≥ Ni. For each
n≥Ni we define ui,n : �(K) →ℝ by

ui,n(q) := 1 − max
{︁∥q− ei∥2,

⃦⃦
q− eni

⃦⃦
2

}︁
.

By its definition, ui,n(q) = 1 for q ∈ {ei, eni } and ui,n(q)< 1 for q ∈ �(K) \ {ei, eni }. Next, we
have that (Cavu)(πM ) = 1 and that 0 ∈ � (for � corresponding to u= ui,n), because the
hyperplane f0(x) = (Cavu)(πM ) = 1, x ∈ ℝ

k, supports (Cavu) at πM . As A0 = {ei, eni },
Proposition 2 shows that {ei, eni } contains an M-absorbing subset. However, as M has
a unique stationary distribution πM /∈ {ei, eni }, we see that neither {ei} nor {eni } is M-
absorbing. Therefore, {ei, eni } must be M-absorbing for every n ≥ Ni. In particular,
eiM ∈ (ei, eni ] for every n≥Ni. Since eni → πM as n→ ∞, we obtain that eiM ∈ (ei, πM ].
Thus, as i was arbitrary, we have shown that for each i ∈ K there exists βi ∈ [0, 1) such
that eiM = βiei + (1 − βi )πM . Since q →Mq is a linear operator, to prove that M is a
homothety is suffices to show that βi = βj for all i ≠ j ∈K.

The proof now bifurcates according to the dimension of �(K). First, let us assume
that k= 2. Since M is irreducible, there exists a unique α ∈ (0, 1) such that πM = αe1 +
(1 − α)e2. We have

πMM = (︁
αe1 + (1 − α)e2

)︁
M

= α(e1M ) + (1 − α)(e2M )

= α(︁β1e1 + (1 −β1 )πM
)︁+ (1 − α)

(︁
β2e2 + (1 −β2 )πM

)︁
. (19)
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By plugging πM = αeq + (1 − α)e2 into the last expression in Equation (19) and using
simple algebraic manipulations, we get that the convex weight ρ of e1 in the convex
decomposition of πMM with respect to e1 and e2 equals

αβ1 + α2(1 −β1 ) + (1 − α)(1 −β2 )α.

However, as πM = πMM , we must have that ρ= α. After some further simple algebraic
manipulations, we get that the equality ρ= α is equivalent to β1 − β2 = α(β1 − β2 ). As
α ∈ (0, 1), we obtain that β1 = β2, thus proving thatM is a homothety whenever k= 2.

Next, let k≥ 3. Assume that βi < βj for some i ≠ j ∈K. Define v= (ei + ej )/2. Since
| supp(v)| = 2, whereas | supp(πM )| = k≥ 3, we have that πM ≠ v. Consider for each n ∈ℕ

the vector vn = πM + (πM − v)/n. Then πM ∈ [v, vn] for every n. Moreover, since πM ∈
int(�(K)), there existsN0 such that vn ∈ �(K) for every n≥N0. As at the beginning of the
proof, we take for each n≥N0 a function un : �(K) → ℝ satisfying un(q) = 1 for q ∈ {v, vn}
and un(q) < 1 for q ∈ �(K) \ {v, vn}. Hence, by arguing as before for ei, eni and uni , only
this time for v, vn, and un, we obtain that vM ∈ (v, vn] for every n ≥N0. As vn → πM as
n→ ∞, we see that vM ∈ (v, πM ]. Also, we have

vM = 1
2

(eiM + ejM )

= 1
2

(︁
βiei + (1 −βi )πM

)︁+ 1
2

(︁
βjej + (1 −βj )πM

)︁
=
(︃

1 − βi
2

− βj

2

)︃
πM +βiv+ 1

2
(βj −βi )ej . (20)

As 0 ≤ βi < βj < 1, this implies that vM lies in the relative interior of the triangle with
the vertices πM , v, and ej . This contradicts the fact that vM ∈ (v, πM ]. Hence, βi = βj for
every i ≠ j ∈K, thus proving thatM is a homothety.

Proof of Theorem 4. We begin by proving sufficiency. We argue first that condition
[A] implies that M is homothety. Denote φ(p) := pa+ (1 − p)b. This is the probability
mass assigned by pM to state 1. It turns out that

φ(p) = b+ (a− b)p= (︁
1 − (a− b)

)︁
πM + (a− b)p,

proving thatM is a homothety with center πM and ratio a− b. Therefore, by Theorem 3,
if condition [A] is satisfied, then v∞ = (Cavu)(πM ).

Consider now condition [B]. Let y ∈Az ∩ [πM , 1] for which [(b− y )/(b− a), b− (b−
a)y] ∩Az ≠ ∅ and take x ∈ [(b− y )/(b− a), b− (b− a)y] ∩Az . Since y ≥ πM ,

x≤ b− (b− a)y ≤ b− (b− a)πM = (︁
1 + (b− a)

)︁
πM − (b− a)πM = πM ≤ y.

Therefore, to show that {x, y} is M-absorbing we need to verify that (i) φ(y ) ≥ x and
(ii) φ(x) ≤ y. Elementary computation shows that (i) and (ii) are equivalent to x ≤ b−
(b− a)y and (b− y )/(b− a) ≤ x, respectively. Since the last two conditions are satisfied,
we obtain that {x, y} is an M-absorbing subset of Az , and thus, by Theorem 2, v∞ =
(Cavu)(πM ).



Theoretical Economics 21 (2026) Markovian persuasion 97

To show necessity, assume that neither condition [A] nor [B] hold. This implies that
M is not a homothety. Moreover, by the sufficiency part, there are no x ≤ πM ≤ y ∈
Az such that {x, y} is M-absorbing. We claim that in this case, no subset of Az is M-
absorbing, which stands in contradiction with Theorem 2. Indeed, if some set C ⊂Az is
M-absorbing, then so is {xC , yC }, where xC = infC p and yC = supC p. Then xC ≤ πM ≤
yC , and sinceAz is closed,13 we have {xC , yC } ⊂Az , a contradiction.
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