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Naive calibration
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We develop a model of non-Bayesian decision-making in which an agent obtains a
signal about a relevant economic fundamental and subsequently takes an action.
To interpret the signal, the agent calibrates a simple prediction rule based on a
data set that consists of previous signals and state realizations. Her subsequent
action affects the probability with which the current signal and the corresponding
state realization will be observed and recorded in the data set that will be used
in future decisions. We show that this procedure converges to a steady state and
that it results in a seemingly pessimistic behavior that is exacerbated by feedback
loops. We apply our model to project selection problems and second-price inter-
net protocol version auctions.
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1. INTRODUCTION

Imagine that you are a manager of a company that has to make an important decision
whose outcome depends on an economic variable, and that you have a noisy estimate of
the variable’s value. You look in the company’s records and find that in similar decision
problems faced by your predecessors, on average, the estimates at their disposal were
10% higher than the actual outcomes. How would you interpret the current estimate in
light of this finding?

A natural way to account for the apparent bias in the company’s records is to adjust
the estimate and discount it by 10%. This type of adjustment is called reference class
forecasting and its use is advocated by researchers, government agencies, and profes-
sional associations as a way to account for optimism bias and to prevent cost overruns
in construction projects (Kahneman and Lovallo (1993), HM Treasury (2003a,b), AACE
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International (2012), Flyvbjerg (2008)).! In particular, the UK Department for Transport
has employed it in the appraisal process of the cost and the construction duration of
large transportation projects (Flyvbjerg, Glenting, and Rennest (2004), UK Department
for Transport and Oxford Global Projects (2020)). Similar procedures are used in the oil
and gas extraction industries (Nesvold and Bratvold (2022)).?

One problem with this approach is that systematic differences between estimates
and ex post outcomes in the data set may emerge due to selection bias, and not biased
estimates. For example, the company’s records may depend on one’s predecessors’ de-
cisions or the organizational memory. It is well known that when failing to properly
account for selection bias, one may end up reaching an erroneous conclusion. But what
happens when the person who reaches the erroneous conclusion is not an outside ob-
server, but rather a decision-maker whose actions affect the selection bias in the data
she is using, as in the examples in the previous paragraph?

In this paper, we address this question by developing a model where decision-
makers attempt to naively correct for a selection bias they themselves have unknowingly
contributed to. Our framework extends existing research on decision-making under un-
certainty and selection bias by highlighting the recursive nature of selection bias in var-
ious decision problems. To illustrate our conceptual framework and some of our find-
ings, consider the next example, which is inspired by Jehiel’s (2018) model of investment
decisions.

ExaMPLE 1. A risk-neutral entrepreneur decides whether to implement risky projects
based on their estimated returns. Implementing a project costs ¢ < 0.5 and yields a rev-
enue of 6 ~ U[0, 1]. The estimated return, s, equals 6 with probability p < 1. Otherwise,
s is independently drawn from U0, 1].

Our entrepreneur does not know the joint distribution of revenues and estimates,
and so she cannot use the standard Bayesian methodology. Instead, she has access to
a large data set D that consists of estimates and realized returns of similar projects im-
plemented in the past. She uses this data set to calibrate a prediction rule that she later
uses to (point) predict the project’s revenue. Specifically, we assume that her prediction
rule takes the simple form 0(s) = s — b, where b is a de-biasing factor that reflects the
possibility that the estimates might be biased.® She calibrates her rule by choosing a
de-biasing factor that minimizes the quadratic loss function over the data set, and so it
is equal to the average difference between the estimated and actual returns in the data
set, i.e., bp = E[s — 6|(s, 0) € D]. The entrepreneur implements the project if and only if
6(s) >c.

I Typically, projects are sorted into classes according to their type (e.g., tunnel project, bridge project,
railway project). Within each class, estimates are adjusted based on the differences between estimates and
realizations in all of the projects in the class that were implemented in the past.

20il extraction projects are often selected based on their estimated reserves and, in ex post audits, these
reserves are typically lower than initially estimated (Brashear, Becker, and Faulder (2001), Chen and Dyer
(2009)).

3In the example (and in the model), the de-biasing is additive for the sake of tractability. In Section 6, we
discuss other forms of de-biasing and show that the main insights of the model hold when the de-biasing
factor is multiplicative.
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The entrepreneur’s data set is endogenous as it includes only data from imple-
mented projects. Specifically, if the entrepreneur believes that there is a bias b and
chooses the optimal implementation cutoff given this belief, that is, b + ¢, then in the
long run she will obtain the data set Dy, := {(s, 6)|s > b + c}. Note that

E[s|s=b+c¢]=0.5(c+b+1)

and
E[6|s=b+c]=0.5p(c+b+1)+0.5(1— p),
which implies that
E[ls—0|s>b+c]=0.5(1—- p)(c+b).

Since bp and D, depend on each other, we take a steady-state approach, which we
shall refer to as an equilibrium. An equilibrium is a perceived bias b* and a data set D*
such that the entrepreneur implements projects if and only if s > ¢ + b*, the data set D*
consists of these projects, i.e., D* = {(s, 0)|s > ¢ + b*}, and

b* =E[s — 0|(s, 6) € D*].

Hence, b* must satisfy
b*=0.5(1— p)(c+b*). o))

The solution to (1) is b* = ¢ x (1 — p)/(1 + p) and an induced implementation cutoff
of s* = ¢ x 2/(1 + p). Figure 1 illustrates the predictions and implementation cutoff
of our entrepreneur in equilibrium relative to the cutoff she would have were she to
calibrate her prediction rule using an uncensored data set (in which case, her perceived
bias would be null as E[s] = E[6]) and the cutoff of a Bayesian entrepreneur. O

The entrepreneur’s behavior in Example 1 reveals two main insights. First, in a
steady state, the entrepreneur holds an incorrect belief that estimates are upwardly bi-
ased.* The flawed belief is a result of selection bias and model misspecification. Selec-
tion bias arises since she calibrates her prediction rule using a censored data set that in-
cludes only implemented projects, i.e., projects for which s is relatively high. In these in-
stances, the estimated returns are, on average, higher than the actual returns as E[s — 6|s]
is increasing in s. Were the entrepreneur to use an uncensored data set that includes all
projects, she would reach a conclusion that the estimates are unbiased as E[6] = E[s].
The misspecification contributes to this flawed belief since the entrepreneur uses a
(point) prediction rule 6(s) = s — b* when in reality E[6|s] = ps + 0.5(1 — p). Without
the restriction to this family of prediction rules, the entrepreneur could calculate E[6)|s]

4Despite the fact that this belief is incorrect, the selected data the entrepreneur observes are, on average,
consistent with this belief given her misspecified model of the world. The idea that agents maintain confi-
dence in their world view as long as it is not contradicted by the data they gather has its roots in models of
conjectural equilibria (Battigalli and Guaitoli, 1997) and self-confirming equilibria (Fudenberg and Levine,
1993), and is by now common in the bounded rationality literature (e.g., Spiegler (2016)).
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Ficure 1. The implementation cutoffs of our entrepreneur (s*), a naive entrepreneur who uses
an uncensored data set (¢), and a Bayesian entrepreneur (s**) in Example 1. The dashed lines
represent the observations that are censored from our entrepreneur’s data set.

for every signal and reach optimal decisions despite the selection in the data. The com-
bination of these two assumptions yields a perceived bias of

b*=E[s— 0|s > c+ b*] > Es[E[s — 6]s]] =0.

Second, the entrepreneur’s decisions are too conservative, in the sense that she sets
a higher implementation cutoff relative to a Bayesian entrepreneur.’ A Bayesian en-
trepreneur with an estimate s would form a correct belief s — (s — E[6|s]). The marginal
Bayesian entrepreneur, who is indifferent whether to implement or not, holds an es-
timate s** such that s** — (s** — E[60|s**]) = c. Hence, his perceived bias is b** = s** —
E[6]s**]. To gain intuition on why our entrepreneur sets a higher implementation cutoff,
suppose that she uses the same implementation cutoff s**. This would resultin a data set
{(s, 8)|s = s**} in the long run. Due to her misspecified prediction rule, she would reach
the conclusion that the estimates are biased by E[s — 0|s > s**]. Since E[s — 0|s] is in-
creasing, E[s — 6|s > s**] > E[s — 0|s = s**] = b**. In other words, our entrepreneur pools
together all the observations in which s > s**, which leads to a perceived bias higher
than the bias of the marginal Bayesian entrepreneur, who considers only observations
in which s = s**.

The entrepreneur in Example 1 attempts, but ultimately fails, to properly correct the
estimate at her disposal by drawing on past experience. Despite having access to an
infinitely large data set, her ability to properly calibrate her prediction rule is hampered
by a feedback loop created by her own decisions, leading to persistent errors in future
judgments.

We now introduce a more general decision-making framework that captures these
dynamics. In this generalized model, a decision-maker (DM) faces a sequence of simi-
lar decision problems. In each problem, the DM observes an independent signal s € R

5To calculate the Bayesian entrepreneur’s implementation cutoff, note that E[0]s = (2c+ p — 1)/2p] =c.
Hence, the Bayesian implementation cutoff is max{(2c + p — 1)/2p, 0} < 2¢/(1 + p).
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about the state of a relevant variable 6 € R and then takes an action. One interpretation
of the signal is a noisy estimate of the state’s value. We assume that the higher is the
value of the signal, the higher is the expected value of the state, and that the higher is the
expected value of the state, the higher is the DM’s optimal action.

The DM does not know the joint distribution of signals and states. Instead, she uses a
restricted data set that consists of past signals and state realizations to calibrate a simple
prediction rule. Specifically, according to the DM’s prediction rule, the signal s reflects
the true state 6 up to a constant bias b, and so she considers prediction rules of the
form 0(s) = s — b. The DM’s model is misspecified as, in reality, £[0|s] may take a differ-
ent form (e.g., in Example 1, ps + 0.5(1 — p)). The DM calculates b by minimizing the
quadratic loss function over her data set, which implies that b is the average difference
between signals and state realizations in the data set, as in Example 1. When facing a
new decision, the DM uses the current signal s and the prediction rule to form a point
estimate 0(s), and chooses an action as if the state were 0(s).

The DM’s data are endogenous. After taking an action, the DM observes the state’s
realization with a probability that is increasing in her action. This monotonicity as-
sumption is naturally satisfied in the investment decision setting. Another example is
a second-price internet protocol version (IPV) auction in which the DM relies on a sig-
nal about the object’s value. The higher is the signal she observes, the higher is the ex-
pected value of the object and the optimal bid, and, therefore, the more likely the DM
is to win the object and learn its actual value. The DM records all the state’s realizations
she observes and their respective signals in the data set.

Since the DM’s actions affect the data she observes and vice versa, we take an equi-
librium approach to characterizing the steady state of this system. An equilibrium con-
sists of a strategy (a mapping from signals to actions) and a perceived bias b, such that
the strategy is a best response given the point prediction 6(s) = s — b, and the perceived
bias b minimizes the quadratic loss function over the data set generated by the DM’s
strategy. We show that the DM’s behavior converges to an equilibrium under mild con-
ditions. Moreover, in equilibrium, the perceived bias is always greater than E[s] — E[6],
which we refer to as the inherent bias. This leads to a conservative interpretation of the
signals as illustrated in Example 1.

We refer to the mapping from the DM’s actions to the probability that she observes
the actual realizations ex post as a feedback function. In Example 1, the feedback func-
tion assigns a probability of 1 to observing the returns of implemented projects and a
probability of 0 to observing unimplemented ones. More generally, this function reflects
basic properties of the environment in which the DM operates; for instance, different
feedback functions may represent different types of organizational memory. We derive
a tight condition that enables us to rank different feedback functions in terms of the per-
ceived bias that they induce in equilibrium. Essentially, a feedback function ¢ induces
a higher perceived bias than the feedback function ¢’ for every objective distribution of
states and signals if and only if ¢ dominates ¢’ in the likelihood ratio sense. In Section 5,
we apply this condition to the setting of a second-price IPV auction in which bidders
rely on a signal to bid and observe the actual value of the object only if they win. We use
the fact that the feedback function depends on the number of bidders to show that the
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feedback-ranking condition implies that the bidders’ perceived bias is increasing in the
number of bidders for any information structure.

We then analyze the externalities that DMs impose on one another. In this anal-
ysis, we interpret the DM as a sequence of DMs facing similar problems and assume
that a fraction of the DMs use our misspecified calibration heuristic while the others
are Bayesian in the sense that they know the joint distribution of states and signals, and
apply the Bayesian methodology. Since they know the joint distribution, Bayesian DMs
ignore the data set when taking an action. Nonetheless, their actions select state re-
alizations into the data set, thereby affecting the information naive DMs rely on. We
find that the presence of Bayesian DMs mitigates the externalities naive DMs impose on
their successors through the data. Interestingly, the naive DMs’ perceived bias does not
vanish even when the share of Bayesian DMs approaches 1.

Overall, our results indicate that calibrating a prediction rule in an attempt to ac-
count for the discrepancy in the data can lead to a seemingly pessimistic behavior. This
may explain well documented phenomena such as the hurdle rate premium puzzle,
which is the tendency of firms to set investment hurdle rates that are substantially higher
than the cost of capital (Poterba and Summers (1995), Meier and Tarhan (2007)). This
microfoundation for irrational pessimism in equilibrium is a contribution to the liter-
ature on misspecified beliefs. While the literature provides much evidence and many
models of overoptimism, scholars have devoted little attention to irrational pessimism,
which is an equally important topic: just like optimism, pessimism may lead individuals
to erroneous conclusions and suboptimal choices.

Related literature The apparent pessimism in our model is related to Compte’s (2002)
and Compte and Postlewaite’s (2018) cautious behavior. While the apparent pessimism
in our model follows from constraints on the DM’s prediction rules (i.e., on her beliefs),
the cautious behavior in Compte and Postlewaite (2018) follows from constraints on the
agents’ strategy space (e.g., restricting bidders to using a fixed shading factor across dif-
ferent signals). Essentially, our DM has misspecified beliefs whereas their agents are
restricted to using coarse strategies. Moreover, under both modeling approaches, the
agents optimize an objective function given a certain data set, while biases in the data
set can have an effect on their decision-making. However, a key difference between the
two approaches in this respect is that our DM chooses the prediction rule (from a con-
strained set of rules) that has the best fit with the data, whereas their agents choose the
strategy that maximizes their payoff (from a constrained set of strategies). Importantly,
the data in our model are endogenous and affected by the DM’s actions, which plays a
key role in magnifying the DM’s biased predictions. By contrast, in Compte and Postle-
waite (2018) the data set is exogenous.

The effects we find are also reminiscent of choice-driven optimism (Van den Steen
(2004)) and the optimizer’s curse (Smith and Winkler (2006)). These authors consider
the perspective of an outside observer. By contrast, we consider the perspective of a
DM who tries to account for selection bias while her actions affect the selection of state
realizations into the data set, which requires an equilibrium approach that is absent
from the aforementioned papers.
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This paper contributes to the literature on naive learning from endogenously se-
lected data. Esponda and Vespa (2018) and Barron, Huck, and Jehiel (2024) provide
empirical evidence that DMs tend to neglect selection and extrapolate naively from en-
dogenous data. Esponda (2008) shows that selection neglect can exacerbate adverse-
selection problems and Jehiel (2018) lays the equilibrium microfoundations of overop-
timism when there is selection in an investment decision setting similar to that of Ex-
ample 1. In Section 5, we explain why Jehiel’s procedure leads to opposite results from
ours.

This paper belongs to a growing literature on decision-making and strategic inter-
action when agents hold misspecified models of the world (Piccione and Rubinstein
(2003), Eyster and Rabin (2005), Jehiel (2005), Esponda (2008), Esponda and Demian
Pouzo (2016), Spiegler (2016), Heidhues, Készegi, and Strack (2018), Heidhues, KGoszegi,
and Strack (2023)).6 For excellent reviews on this topic, see Jehiel (2020) and Spiegler
(2020).

The calibration approach in this paper is related to Esponda and Pouzo’s (2016)
approach to learning with misspecified models. They propose a solution concept,
called the Berk—Nash equilibrium, in which the DM”s subjective beliefs minimize the
Kullback-Leibler divergence from the true distribution. The main difference between
the solution concepts in the two models is that, in our model, the DM’s equilibrium be-
liefs minimize a quadratic loss function over the data set rather than minimizing the
Kullback-Leibler divergence as in Esponda and Pouzo (2016). In general, the two meth-
ods yield different results. Furthermore, the convergence to an equilibrium differs in the
two models. In Esponda and Pouzo (2016), the DM has (potentially misspecified) prior
beliefs that are updated each period using the Bayesian methodology. By contrast, in
our model the DM has no prior beliefs; her periodic beliefs minimize a quadratic loss
function over the data gathered up to that period.

The paper proceeds as follows. We present the model in Section 2 and analyze it in
Section 3. In Section 4, we show that the DM’s behavior converges to an equilibrium. In
Section 5, we use our results to study second-price IPV auctions and investment deci-
sion problems. Section 6 discusses alternative families of prediction rules, and Section 7
concludes. All proofs are relegated to the Appendix.

2. THE MODEL

The environment is composed of two random variables, namely, the state of nature 6
and a signal s, which are distributed according to a bivariate probability distribution
function F (6, s) defined over R2. We assume that the (marginal) distribution over signals
has a log-concave density and denote it by f(s). Denote by k := E[s] — E[6] the inherent
bias of the signal. We assume that E[6|s] and s — E[6|s] are nondecreasing in s. When the
support of the distribution of signals is unbounded, we require that limy_, o, E[6]|s > 5]

6There is ample evidence that economic agents depart from the Bayesian methodology (for a compre-
hensive review, see Benjamin, 2019).
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be unbounded as well. These assumptions are satisfied by many prevalent information
structures. In particular, the signal can be the sum of the state and a noise term.”

A DM receives a signal s and chooses an action. A strategy is a mapping a: R — A
from signals to actions, where 4 = [a, a] C R. The DM’s payoff 7 (0, a) is a function of
the state and her action. Let a*(6) be an action that maximizes the DM’s payoff given a
state 6. We assume that a*(0) is weakly increasing in 6.

The DM has access to an infinitely large data set D that consists of signals and state
realizations from past decisions. She uses this data set to calibrate a (point) prediction
rule 6(s), which she then uses to interpret the signal at her disposal when facing a new
decision problem. She restricts attention to a family of simple prediction rules from
which she chooses the one that best fits the data. Specifically, the DM considers rules
of the form 9(s) = s — b, where b € R, and chooses the rule that minimizes the quadratic
loss function over the data set

E[(6 - 6())*|(s, 0) € D] 2)
Minimizing (2) yields

bp :=argmin E[(6 — (s - b))’|(s, 6) € D] = E[s — 6](s, 6) € D). 3)

We refer to bp as the DM’s perceived bias.

The data set D is formed endogenously. The probability that each pair (s, 6) is
recorded in D depends on the action the DM chooses given s. Formally, a pair (s, 6)
is recorded with probability ¢(a(s)), where ¢ : A — [0, 1] is a feedback function and
a(s) is the action the DM chooses given s. We assume that ¢(-) is nondecreasing. If the
DM’s strategy is constant over time and the data set is not empty (i.e., when ¢ (a(s)) > 0
for a strictly positive measure of signals), then the proportion of each signal s in D in the
long run is

oof () (a(s)) . @
f f®)p(as))ds
Thus, we can write (3) as a function of the strategy a(-):
f f(s)p(a(s))(s — E[8]s]) ds

bp=""2 . (5)

f f)p(a(s))ds

In order to treat also cases in which the data set is empty, we rewrite (5) as

/ f()p(a(s))(s — E[6]s] — bp)ds=0. (6)

“For example, let s = 0 + €, where € and 6 are independently drawn from log-concave density functions
and E[e] = 0. As per Efron (1965), s — E[6]|s] and E[6|s] are nondecreasing in s.
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Note that when the data set is empty, any perceived bias is consistent with the data set.

We now present our equilibrium notion. The first requirement in Definition 1 is that
the data set be generated by the DM’s strategy and that the prediction rule minimize the
quadratic loss function. The second requirement is that the DM’s strategy be optimal
given her prediction rule.

DEerFINITION 1. A strategy a(-) and a bias b constitute an equilibrium if the conditions
(i) band a(-) satisty (6)
(i) a(s) =a*(s — b) for every signal s

are met.

Note that the definition does not preclude the possibility that D = ¢ in equilibrium.
This may occur when ¢ (a) = 0 and there exists a large enough bias b such that a*(s—b) =
a for every signal s in the support of f. In such a case, every b’ > b is consistent with (6)
and is part of an equilibrium. We refer to equilibria in which D = @ as corner equilibria
and to equilibria in which D # @ as interior equilibria.

3. ANALYSIS

In this section, we show that in an interior equilibrium, the perceived bias is always
greater than the inherent bias. We then study how the naive DM’s behavior changes
with the feedback function, and compare the equilibrium behavior of our naive DM to
the behavior of a Bayesian DM. Finally, we investigate the externalities imposed by the
naive DM’s behavior. We start by showing that an equilibrium exists.

ProrosITION 1. An equilibrium exists.

To gain intuition for this result, note that a perceived bias b pins down the DM’s
strategy a* (s — b), which pins down a data set D,,. If there exists a bias b such that D, = ¢,
then the data are consistent with any “perception” of the bias and, in particular, with b.
In this case, b is clearly an equilibrium. The proof shows that if there is no such bias,
then there exists a bias b* such that

b* = E[s — 0|(s, 0) € Dy ].

If there exists more than one interior equilibrium, then we often focus on the two
interior equilibria with the minimal and maximal biases. Denote the minimal and max-
imal (interior) equilibrium biases by b and b, respectively.

Having established that an equilibrium exists, we now turn to study its properties.
We start with the perceived bias.

PROPOSITION 2. In every interior equilibrium, the perceived bias is greater than the in-
herent bias, i.e., b > k.
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To understand this result, note that if the DM were to observe all signals and their re-
spective state realizations, the perceived bias would be equal to the inherent bias. How-
ever, the DM’s data set includes only a selected sample of such pairs. In particular, since
¢(-) and a*(-) are nondecreasing, the data set contains disproportionately more cases
in which the signal is high. The assumption that s — E[6|s] is nondecreasing in s implies
that the data set also contains disproportionately more cases in which the difference
s — 0 is high, which in turn leads to a perceived bias greater than the inherent bias.

We now provide a definition that allows us to rank different feedback functions ac-
cording to the degree of selection they induce in the data. We then use this definition to
show how the degree of selection affects the perceived bias in equilibrium.

DEFINITION 2. The feedback function ¢ dominates the feedback function ¢ in the like-
lihood ratio sense if ¢(a)/ d;(a) is nondecreasing in a.

To illustrate this definition, note that the feedback function ¢(a) = ¢" dominates
the feedback function cf)(a) = a" for m < n and a > 0. The next result establishes that if
a feedback function dominates another feedback function in the likelihood ratio sense,
then in an interior equilibrium it induces a higher perceived bias. Let us denote by b,
and by the minimal and maximal bias in an interior equilibrium given the feedback
function ¢, when such an equilibrium exists.

ProrosiTION 3. If ¢ dominates ¢ in the likelihood ratio sense, and by and QJ> exist, then
Qd’ EQ(Z) andgd, ZB(Z)

The dominant feedback function ¢ assigns relatively more weight to high actions.
Thus, intuitively, it assigns more weight to high signals and, as a result, more weight to
instances in which the signal is high relative to the actual state realization. The more
weight a feedback function assigns to these instances relative to instances in which sig-
nals are low, the higher the DM’s perceived bias.

Likelihood ratio dominance is a tight condition in the sense that if ¢ does not dom-
inate ¢ and both functions are continuous, then there exist a distribution F(-, -) and a
payoff function 7 (-, -) such that ¢ induces a higher perceived bias than ¢ in equilib-
rium. The intuition for this tightness is that if ¢ does not dominate ¢ in the likelihood
ratio sense, then there is some interval [a;, aj,] on which ¢|,,4,) is dominated by ‘M[m,ah]
in the likelihood ratio sense. It is possible to find a distribution F(., -) that is concen-
trated on that interval and a payoff function 7 (-, -) such that the result of Proposition 3
is reversed. The following corollary summarizes this discussion.

COROLLARY 1. If ¢ does not dominate ¢ in the likelihood ratio sense and both functions
are continuous, then there exist a distribution F(-, -) and a payoff function (-, -) such
thatb, < Qq; and by < bd3'

At this point, it is worth comparing the prediction of our naive DM, 6(s) = s — b,
to the prediction of a Bayesian DM, E[6|s]. Our DM’s prediction is higher if and only
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if s — b > E[6|s]. Recall that, by assumption, s — E[6|s] is nondecreasing in s. In an
interior equilibrium, b is a weighted average of s — E[6]|s] in the data set and, therefore,
b € (inf(s — E[0|s]), sup(s — E[6]s])). Thus, in an interior equilibrium, there is a signal §
such that our DM’s prediction is higher than the Bayesian DM’s prediction if and only if
s> 8.

While our DM’s predictions are higher than a Bayesian DM’s predictions for high sig-
nals, they are, on average, lower than the Bayesian DM’s predictions. This follows from
the equilibrium bias being greater than the inherent bias (Proposition 2). Our DM’s aver-
age prediction is ffooo f(s)(s—b)ds = E(s)— b= E[0] + k — b, whereas the Bayesian DM’s
average prediction is ffooo f(s)E[0|s]ds = E(0). Corollary 2 summarizes this discussion.

CoROLLARY 2. In an interior equilibrium, there exists a signal s such that the naive DM’s
prediction s — b is higher than a Bayesian DM’s prediction E|[0|s] ifand only if s > 5. More-
over, on average, the naive DM’s prediction is weakly lower than the Bayesian DM’s pre-
diction.

So far, we have assumed that the data set on which the DM bases her decisions is
generated by her own actions or by the actions of other DMs who use the same heuristic.
However, in some situations, DMs are more sophisticated and know the joint distribu-
tion of states and signals. Such DMs can apply the Bayesian methodology to make use of
the signals at their disposal. Since their actions select different signals into the data set,
they affect the discrepancy in the data and the perceived bias. In turn, this bias affects
the naive DMs’ behavior and the signals they select into the data set. We now introduce
Bayesian DMs into their model and vary their share to examine the externalities they
impose on our naive DM.

We incorporate this idea into our model by assuming that a share « > 0 of the DMs
are Bayesian. Since Bayesian DMs are unaffected by the data set (as they know the joint
distribution of signals and states), varying their share enables us to study the external-
ities they impose on naive DMs without worrying that their own behavior is being af-
fected by the presence of the naive DMs. In particular, it allows us to explore the impli-
cations for the naive DMs’ equilibrium bias.

We assume that a Bayesian DM plays the strategy® a*(E[6)|s]). By similar arguments
to those used in the proofs of Propositions 1 and 2, an equilibrium exists and the per-
ceived bias is greater than the inherent bias for any « € [0, 1]. When an interior equi-
librium exists, we denote the maximal and minimal equilibrium biases by b, and b,
respectively. Next, we show that the presence of Bayesian DMs mitigates the discrep-
ancy in the data and lowers the perceived bias: the more Bayesian DMs there are, the
lower is the perceived bias in an interior equilibrium.

PROPOSITION 4. Suppose that an interior equilibrium exists for both a and o/ > «. Then
by >by andb,>b,.

8This assumption holds in various settings and, in particular, in both of our applications, namely, invest-
ment decisions and second-price IPV auctions.
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Relative to our naive DMs, Bayesian DMs assign a lower weight to the value of the
signal as they take their prior beliefs into account. Therefore, as established in Corollary
2, Bayesian DMs play lower (resp., higher) actions when the signal is high (resp., low).
Since ¢(-) and a*(-) are nondecreasing, it follows that actions taken by a Bayesian DM
generate less (resp., more) feedback in situations in which the signal is high (resp., low).
As aresult, the average bias in the data set is lower when there are more Bayesian DMs.
Thus, the presence of Bayesian DMs imposes an externality on naive DMs that leads
them to choose higher actions. In turn, this further decreases the bias in the data they
rely on.

When the share of naive DMs vanishes, the additional bias in the data, b — k, does not
disappear. This is because Bayesian DMs also take higher actions given higher signals,
which implies that higher signals are more likely to be recorded in the data set. Thus,
decision-making based on data generated by Bayesian DMs results in an additional bias,
albeit lower than when DMs use the naive calibration procedure.

4. CONVERGENCE

Our analysis so far has focused on the steady state of the DM’s learning process. We
now describe the learning process in more detail and show that indeed it converges to a
steady state.

We assume that, in each period 7 € Nt, the DM receives a signal s; and forms a point
prediction épt(s,) based on the signal and the data obtained up to period ¢, D;. She
then chooses the optimal action given the predicted state, a*(6p, (s;)). At the end of the
period, with probability d)(a*(épl (s))), the signal s; and the realization 6, are recorded
in the data set that will be available in the future. Let 1; be an indicator that equals 1 if
(sj, 6;) are recorded in the data set and 0 otherwise. For every period ¢, let

t
Z ]lj(sj — 9]')
by ==
2
if D; £ @, and let b; = 0 otherwise. As in the baseline model, épt (s) =s — b;. Throughout
this section, we assume that the support of F(, -) is bounded.
Let

/ f&)p(a*(s—by)[s — E[6]s]] ds

T(bs):=— ()

f f)d(a*(s—by))ds

when ffooof(s)cb(a*(s — b))ds > 0 and let T'(b;) = b; otherwise. When the right-hand
side of (7) is well defined, T'(b;) is the expected difference between s;,; and 6,1, condi-
tional on (s¢4+1, 6:+1) being recorded in the data set. Note that b, is part of an equilibrium
of our model if and only if b, = T'(b;).

ProrosITION 5. The sequence b; converges almost surely to a bias b such that T (b) = b.
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The proof shows that b, : # > 0 is essentially a stochastic approximation process. As
such, with probability 1 it visits any segment [a, b] in which T'(b) — b is bounded away
from zero only a finite number of times (Pemantle (2007, Lemma 2.6)). Since each of
these segments is almost surely excluded from the limit set of b;, the process almost
surely converges to points in which 7'(b) = b (Pemantle (2007, Corollary 2.7)), namely,
to an equilibrium of our model.

The proposition guarantees that the process converges to an equilibrium. However,
itdoes not guarantee that it converges to every possible equilibrium with strictly positive
probability. Due to the stochasticity of the process, there are unstable equilibria from
which the process almost surely deviates. This happens when there exists an interval
(b* — €, b* + €) in the neighborhood of an equilibrium bias b* such that 7'(b) < b for any
be (b*—e¢,b*)and T(b) > b forany b € (b*, b*+€). This observation follows immediately
from Theorem 2.9 in Pemantle (2007). The proof of the next result is omitted as it is easy
to verify that the conditions for Theorem 2.9 in Pemantle (2007) are met.

PRrRoOPOSITION 6. Suppose that for some b* and e > 0, sign(T'(b) — b) = sign(b — b*) for all
b e (b* — ¢, b* +€). Then P(b; — b*) =0.

5. APPLICATIONS

We now apply our results to two settings: investment decisions and second-price IPV
auctions. In both applications, our naive calibration procedure leads to conservative
behavior relative to the behavior of a Bayesian DM: rejection of marginally good projects
in investment decisions and underbidding in auctions.

5.1 Investment decisions

An entrepreneur selects which projects to implement based on their predicted revenue.
Denote the revenue by 6 and its estimate by s. Implementing a project entails a cost of
¢. Denote a decision to implement a project by a = 1 and a decision to forgo it by a = 0.
The entrepreneur wishes to implement a project if and only if 8 > ¢, and so a*(0) =1 if
0 > c and a*(0) = 0 otherwise.

The entrepreneur bases her decisions on a data set that includes signals and actual
revenues of implemented projects, i.e., ¢(a) = a. These projects were implemented by a
set of entrepreneurs of which a share « are Bayesian and a share 1 — « use our heuristic,
where 0 < a < 1. Denote the entrepreneur’s perceived bias in an interior equilibrium
by b, when it exists (we show below that the interior equilibrium is unique). The naive
entrepreneur predicts a revenue of s — b, and, therefore, implements projects whose
signals are higher than c + b,. Hence, in equilibrium, she uses an implementation cutoff
of

Sq=C+ bg. 8)

As abenchmark, note that a Bayesian entrepreneur implements a project if and only
if E[0|s] > c. Since E[0|s] is nondecreasing in s, there is a cutoff s such that a Bayesian
entrepreneur implements a project if and only if s > sp, where E[0|s = sp] = c.
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The next result characterizes the interior equilibrium bias as a function of? a.

CLAIM 1. There exists at most one interior equilibrium. In such an equilibrium, (i) sq >
c+k, (ii) s > sp, and (iii) s, is decreasing in «.

Parts (i) and (iii) follow from Propositions 2 and 4, respectively. Part (ii) shows that
the naive entrepreneur’s cutoff is higher than the Bayesian entrepreneur’s cutoff. To ob-
tain intuition for this effect, note that since E[6|s = sp] = ¢, the Bayesian entrepreneur’s
correction at the cutoff is E[s — 6|s = sg]. Were the naive entrepreneur to use the
Bayesian cutoff sp (or, equivalently, use a data set that Bayesian entrepreneurs generate),
then her perceived bias would be E[s — 6|s > sp], which is greater than E[s — 6|s = sp] as
E[s — 6]s] is nondecreasing. Proposition 4 implies that the entrepreneur’s bias in equi-
librium is even higher, which results in a more conservative implementation cutoff.

The result of Claim 1 makes clear that our entrepreneur’s perceived bias in equilib-
rium, E[s — 0|s > s4], is higher than the optimal bias, E[s — 6|sp]. A related question is
whether the entrepreneur’s perceived bias is payoff-enhancing relative to taking signals
at face value. Clearly, naive calibration can be better than taking signals at face value
when E[s] # E[0]. However, it can also be payoff-enhancing when E[s] = E[0], as we
now illustrate. Suppose that c =1, a =0, and s = 6 + €, where 6 and € are drawn inde-
pendently from the standard normal distribution. A DM who takes signals at face value
would set a cutoff of 1 while our DM would set a cutoff slightly lower than 2.34 in equi-
librium. On average, projects whose estimated returns are between 1 and 2.34 yield less
than 1, and so the entrepreneur’s perceived bias is payoff-enhancing in this case.!’

The results in this section run counter to the results obtained in Jehiel’s (2018) model
of investment decisions even though the setting is similar. In particular, in the equi-
librium of his model, the entrepreneur uses an implementation cutoff that is too low
relative to the cutoff of a Bayesian entrepreneur.

In Jehiel’'s model, the cutoff s* generates a data set Dy« of implemented projects. The
data set consists of the same projects as the data set in our model given a cutoff s*; how-
ever, the data set in Jehiel (2018) does not include the signals that were used to select
the projects. Rather, it includes only revenues. Therefore, Jehiel’s entrepreneur sam-
ples a new signal s'(6) for every project 6 € Ds+. To use the signal s* at her disposal, the
marginal entrepreneur considers a subset of projects {6 € Dy |s'(0) = s*} (i.e., projects
that are similar to the current project in the sense that their new signal is equal to s*).
She then expects that the new project will result in a revenue of Ep, [0|s'(6) = s*]. Since
every project in D was selected based on a signal s > s* and E[6|s] is increasing in
s, it holds that Ep, [0|s'(0) = s*] > E[6]s*]. Thus, the marginal entrepreneur in Jehiel’s
model is overoptimistic about the project’s expected revenue relative to a conventional
Bayesian entrepreneur. Therefore, she sets a lower implementation cutoff than such an
entrepreneur would.

9Clearly, in every corner equilibrium, all projects are forgone.
10A Bayesian DM would set a cutoff of 2 under these parameters.
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Other applications of our model: Medical referrals, recommendation systems, and credit
provision While we have been using investment decision terminology, the analysis in
this section is relevant in other contexts as well. For example, the DM might be a physi-
cian who refers patients for a diagnostic test based on the result of a screening test (e.g.,
an antigen test followed by a polymerase chain reaction (PCR) test for Covid 19).!! To
evaluate the screening test score, she uses data that include results (of both tests) of
past patients. Alternatively, the DM might be an individual who uses a recommenda-
tion system to decide which products and services to consume and naively calibrates
the recommendation she receives based on her actual enjoyment in previous situations
in which she consumed these products and services. Finally, the DM might be a credit
officer who approves credit applications based on a credit score that is calibrated based
on the return rate of previous successful applications but not of unsuccessful ones. In
all of these situations our results imply a seemingly pessimistic behavior: setting the bar
too high for medical referrals and credit provision, and downgrading positive recom-
mendations from an algorithm or a friend.

5.2 Second-price IPV auctions

While our baseline model considers the decision of a single DM (or a sequence of such
DMs), its framework can be extended to strategic situations. In general, this requires
extending the payoff and feedback functions, and making assumptions on how agents
reason about other agents’ behavior. However, when a game is dominance-solvable, as
in a second-price IPV auction, such assumptions become moot.

We assume that there are n > 2 bidders who bid for an object, each of whom receives
a signal s; about the value she will derive from the object, 6;. The value and its signal
for each bidder are independently drawn from F(6, s). Recall that in a second-price
IPV auction, bidding one’s value is a dominant strategy, i.e., a*(0;) = 0;. To bypass the
problem of potentially negative bids, we assume that supp(F) = [1, 2]?. Denote bidder
i’s perceived bias by b;. Bidder i’s predicted value is 6(s;) = s; — b;. We assume that
each bidder i uses the bidding function a(s;) = a*(@(s,-)) = a*(s; — b;). Finally, a bidder
learns her true valuation of the object if and only if she wins the object. Thus, b; = E[s; —
0i|(si, 6;) € Dwinl, where Dy, is the data collected when she wins. Thus, essentially, each
bidder i is assumed to use the bidding rule a(s;) = s; — E[s; — 0;|(si, 6;) € Dwin]-

Following is the formal definition of an equilibrium in this game, which extends Def-
inition 1.

DEFINITION 3. An equilibrium in a second-price IPV auction is a profile of bidding
functions such that (i) the entire profile constitutes a Nash equilibrium in undominated
strategies and (ii) each bidder’s bidding function is part of an equilibrium at the individ-
ual level according to Definition 1.

1A screening test provides information about the risk of a certain disorder or condition. It is typically
less costly and so it is used by a larger group of patients. A diagnostic test establishes the existence of a
condition or a disease.



Theoretical Economics 21 (2026) Naive calibration 59

Next, we establish that the equilibrium is unique and that its induced bias is strictly
positive. Moreover, it provides comparative statics with respect to the number of bid-
ders.

CraiM 2. There exists a unique symmetric interior equilibrium. In such an equilibrium
it holds that b > k. Moreover, b is increasing in n.

In a symmetric (interior) equilibrium, a bidder obtains feedback (wins the object) if
and only if her signal is the highest; i.e., she receives feedback with probability F(s;)"!.
This feedback function is independent of the bidders’ perceived bias, and so there is a
unique perceived bias that is consistent with our calibration procedure. Furthermore,
the perceived bias in equilibrium is strictly greater than the inherent bias. This follows
from the strict monotonicity of the bidding function. As a result, different signals lead to
different frequencies of observing the actual realization, which precludes the possibility
of a solution in which the additional bias, b — &, is null. Finally, the comparative statics
with respect to the number of bidders follow directly from Proposition 3. To see this,
recall that the feedback probability when there are n bidders is F(s)"~!. This function is
dominated in the likelihood ratio sense by F (s)™~! for m > n bidders.

As in a second-price IPV auction with Bayesian bidders, the bidder with the highest
signal wins the object. Thus, the equilibrium outcome is efficient. However, the naive
calibration procedure affects the bidding strategy and, therefore, the division of surplus.
We now turn to the auctioneer’s perspective and compare her expected revenue in the
case in which bidders are Bayesian to the case in which they use our heuristic.

CraiM 3. The auctioneer’s revenue when bidders use the naive calibration procedure is
lower than her revenue when bidders are Bayesian.

This comparison is not obvious ex ante as our bidders’ bids can be higher or lower
than the ones submitted in a second-price IPV auction with Bayesian bidders (Corol-
lary 2). To see why, denote the highest and second-highest signals by s(,; and s¢,—1),
respectively. When bidders are naive, the winner pays s(,—1) — b, where the perceived
bias b is the average difference between the highest signal and the expected value
conditional on receiving the highest signal. Thus, a naive winner pays, on average,
Els(—1)] — (E[s(m)] — E[60|s(n)]). When bidders are Bayesian, the winner pays the ex-
pected value of the object given the second-highest signal, E[6|s(,—1)]. Since s — E[6]s]
is increasing in s and the distribution of s, first-order stochastically dominates the dis-
tribution of s(,_1), it holds that E[s(,—1) — E[0]|s(n—1)]] < E[S(n) — E[0]s(m)]]. Therefore, on
average, the naive winner bids less than the Bayesian one.

A corollary of Claim 3 is that, in expectation, if all bidders are naive, they obtain a
higher payoff than they would obtain if they were all Bayesian. However, at an individual
level (where the strategies of the other bidders are held fixed), the equilibrium prediction
rule need not be optimal, even within the class of prediction rules of the form 6(s) =
s —b. Note also that the restriction to additive prediction rules entails a loss. The optimal
bid given complete knowledge of the joint distribution of signals and states is E[6]s].
However, a constant bias b that satisfies s — b = E[6)|s] for every s does not exist.
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Our analysis of second-price IPV auctions is related to the winner’s curse in IPV auc-
tions identified by Compte (2002). In his model, bidders in a procurement auction rely
on a noisy estimate of the cost. Due to selection bias, the estimate is likely to be lower
than the actual cost conditional on winning. Compte analyzes the model under an as-
sumption that bidders are constrained to use a coarse bidding function: they choose
a fixed markup and add it to their estimated cost to correct for the selection bias. The
bidders maximize their net payoff subject to the above constraint. In equilibrium, the
markup is positive (to correct for selection) and increasing in the number of bidders. The
intuition for the latter effect is that, as in our model, competition exacerbates the selec-
tion bias (i.e., the expected value of the noise term associated with the highest signal
increases in the number of bidders).

There are two main differences between our model and the model in Compte (2002).
First, bidders in the two models maximize different objective functions. While our bid-
ders maximize the fit of their (constrained) prediction rule to the data, the bidders in
Compte (2002) maximize their payoff subject to a fixed markup constraint. Second, in
our model, the data set over which this objective is maximized is endogenous and (in
equilibrium) biased toward high realizations of s. By contrast, in Compte (2002), bid-
ders’ markup is a standard (constrained) best response to the other bidders’ behavior.

It is possible to apply our model to procurement auctions and compare the the op-
timal markup in Compte (2002) to the markup in our model, which equals —b (since the
bid in our model is s — b, the markup is —b). Proposition 4 in Compte (2002) establishes
that the equilibrium markup in his model is —E[(s; — 0;)|s; = s_;], where s, is the smallest
estimate among all bidders but i. In our model, the markup is —E[s; — 0;]s; <s_;]. Since
s; — E(6;]s;) is nondecreasing, the markup is our model is weakly greater than the one in
Compte (2002).12

6. ALTERNATIVE PREDICTION PROCEDURES

Throughout the analysis we examined the behavior of a DM who calibrates an additive
prediction rule of the form 6(s) = s — b, such that b is the average difference between
signals and state realizations in her data set. We now examine two alternative prediction
procedures. The first is motivated by reference class forecasting, which we discussed in
the Introduction. In this procedure, the DM calibrates a multiplicative prediction rule
6(s) = s, such that 7 is the ratio between the expected state and the expected signal in
her data set. In the second procedure, the DM estimates a linear model o(s) = Bo + B1s
using a standard ordinary least squares (OLS) regression. Both procedures are relatively
simple and are widely used by academic researchers and practitioners in various areas.

12This observation is not general. For instance, consider the feedback function é =€+ (1—¢€), where ¢
is the feedback function used throughout this section. When ¢ is close to zero, our bidders obtain feedback
almost every time they participate in the auction, and so the perceived bias in equilibrium is close to the
inherent bias (zero, in this case). In this case, the equilibrium markup in our model is smaller than in
Compte (2002), as his model is unaffected by the feedback function.
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Multiplicative prediction rule In this procedure, when the DM receives a signal s, she
makes a point prediction §(s) = ns. She calibrates 7 to fit the ratio between the average
realization and the average signal in her data set, namely,

__E[6](s, 6) e D]
= Es|s, ) e D]’

In order to show that the paper’s main insight, namely, that in an interior equi-
librium, on average, the naive DM’s prediction is lower than the prediction of a
Bayesian DM, we slightly modify one of the baseline modeling assumptions. Specifi-
cally, we replace the assumption that s — E[6|s] is nondecreasing by an assumption that
sE[6]/E[s] — E[0|s] is nondecreasing. This assumption is satisfied, for instance, when
s =0+ € and E[e] = 0. Due to the multiplicative structure of this procedure, it might be
tempting to assume instead that the ratio s/E[6|s] is nondecreasing. However, the fact
that s/E[6|s] is nondecreasing implies that sE[6]/E[s] — E[0|s] is nondecreasing as well.

Let m := E[6]/E[s]. Note that n < m is analogous to b > k in the baseline model. We
can interpret 1/m as the inherent bias and 1/7 as the perceived bias in this case. The
next result establishes that, in interior equilibria, the perceived bias is greater than the
inherent bias. Furthermore, it suggests that the reference class forecasting procedure
yields equilibrium beliefs that are pessimistic on average relative to Bayesian beliefs, as
in our baseline model.

CLaM 4. In every interior equilibrium, n < m and E[0] < E[6).

Linear prediction rule  'We now modify the baseline model by assuming that 0(s) = Bo+
B1s. We recall the baseline model’s assumptions; that is, in order to estimate B¢ and S,
the DM minimizes the quadratic errors over her endogenous data set. Thus, given a data
set D, the parameters that minimize the quadratic loss function (i.e., the OLS estimators)
satisfy

cov(s, 6](s, 8) € D)
var(s|(s, 6) € D)

Bo = E[6|(s, 0) € D] — B1E[s](s, 0) e D] and B =

The model studied in this section allows the DM to believe that some signals are up-
wardly biased while others are downwardly biased, unlike the previous two models that,
by construction, impose that the DM either believes that all signals are upwardly biased
or that all signals are downwardly biased. Therefore, we examine the average perceived
bias by comparing the naive DM’s average prediction E[] to a Bayesian DM’s average
prediction, E[0]. We show that whether the naive DM’s average prediction is lower or
higher than the Bayesian DM’s average prediction depends on the particular shape of
E[0|s]. To do so, we use the investment decisions setting of Section 5 and establish that
if E[6|s] is convex (resp., concave), then the naive DM’s prediction is lower (resp., higher)
than the Bayesian DM’s prediction on average. Furthermore, we show that when E[6)|s]
is convex (resp., concave), she sets an implementation cutoff that is too high (resp., low).
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CraiM 5. Consider the investment decisions application of Section 5. If E[6|s] is convex
(resp., concave), then E (0] < E[6] (resp., E (6] > E[6]) and the DM chooses an excessively
high (resp., low) implementation cutoff.

7. CONCLUDING REMARKS

We studied a model in which an agent has a misspecified model of the world that she
calibrates based on a data set that suffers from selection bias. The agent inadvertently
contributes to this selection bias by taking actions that affect the data collection pro-
cedure. We show that the naive calibration procedure can generate substantial biases
and exacerbate the misspecification errors. Our findings indicate that these errors are
consistently in the same direction and result in a seemingly conservative behavior.

The naive calibration procedure may result in a lower payoff relative to no calibra-
tion at all. For instance, in the investment decision setting of Example 1, a DM who takes
the estimates at face value implements more projects than our naive calibrator (i.e., sets
a lower cutoff), and all these additional projects are profitable in expectation. If one
interprets the attempt to calibrate the signal rather than taking it at face value as an
indication of sophistication, then this example illustrates that a higher degree of sophis-
tication may actually lead to a worse outcome. In recent years, it has been shown that
in strategic interactions, players who are more sophisticated may obtain lower payoffs
(e.g., Ettinger and Jehiel, 2010; Eyster and Piccione, 2013). We contribute to this litera-
ture by showing that a higher degree of sophistication may worsen outcomes in decision
problems.

On the other hand, the naive calibration procedure can improve the DM’s welfare
even relative to a Bayesian DM in situations where the signals are provided by a strategic
agent. As an illustration, consider a buyer who receives noisy information about the
suitability or quality of various products advertised by a strategic seller. The latter might
have an incentive to send biased signals and add noise to the transmitted information.
However, a buyer who uses the naive calibration procedure not only corrects for the
bias, but also interprets the noise as an additional systematic upward bias and corrects
for that as well, which lowers her willingness to pay. Thus, a strategic seller who takes
the DM’s calibration procedure into account may have an incentive to provide the DM
with the most precise information possible.

Our analysis has implications for real-world procedures that correct for optimism
bias, such as reference class forecasting. These procedures typically consider the cost
overruns in similar past projects and raise new cost forecasts accordingly. However,
these procedures ignore the selection bias problem that is at the heart of our analysis.
Aslong as the cost of such projects affects the decision to carry them out, our results im-
ply that these adjustments may yield excessively high cost forecasts. Thus, the attempt
to fully correct for cost overruns based on past projects may lead decision makers who
rely on such forecasts to make suboptimal choices such as forgoing socially beneficial
projects.
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APPENDIX: PROOFS

Proor oF ProrosITION 1. Suppose that the DM plays the strategy a*(s — b). If there
exists a bias b such that ¢(a*(s — b)) = 0 for every signal s, then there exists an equilib-
rium in which the bias is b and D = @. Otherwise, the DM’s data set is nonempty and the
DM'’s strategy induces a perceived bias of

f f(s)p(a*(s—b))[s — E[6]s]] ds
T(h) === . 9)

/_OO f()p(a*(s—b))ds

To establish the existence of an equilibrium, we show that there exists a bias b for which
T(b) =b. Note that limy,_, o, ¢p(a*(s — b)) = ¢(a) € (0, 1] for every s, and so

/ f($)[s — EL6|s]] ds
[oo f(s)ds

Since s — E[0|s] is nondecreasing, T'(b) is no higher than

blirn Tb)—b= —b=E[s]—-E[0] —b=o00.

/ f)p(a*(s—b))[s— E[6]s]]ds
T*(b) := 22£b . (10)

/ f)p(a*(s—b))ds
x+b

Moreover, T*(b) is nondecreasing in x. Fix a small € > 0. There exists a sufficiently large
x such that for every pair s, s’ > x, it holds that | (a*(s)) — d(a*(s"))| < e. Hence, for such
x it holds that T*(b) is arbitrarily close to E[s — 6|s > x + b] for every b.

Log-concavity of the signals’ distribution implies that E[s|s > x + b] — x — b is de-
creasing in b (Bagnoli and Bergstrom, 2005). Hence, for a sufficiently large b we have
that E[s|s > x + b] — b — E[6]s > x + b] < 0. Thus, E[s — 6|s > x + b] < b and, there-
fore, T(b) < T*(b) < b. By the intermediate value theorem there exists b for which
T(b) =b. O

ProoOF oF ProprosiTION 2. Consider an interior equilibrium and recall that the equi-

librium bias b satisfies b = T'(b) (see (9)). Let s* denote an arbitrary signal that satisfies
s* — E[6]s*] = k. It follows that

/ f(s)<;'>(a*(s—b))[s—E(6|s)—k]dsz/ f(&)p(a*(s* —b))[s— E(8]s) — k] ds
and

/* f(s)¢(a*(s—b))[s—E(0|s)—k]dsz/* f()p(a*(s* —b))[s — E(6]s) — k] ds.
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The sum of the right-hand side of the two inequalities is 0 as E(s) — E(0) = k. Thus,

/ f)¢p(a*(s—b)[s—E(8ls)]d k/ f)¢(a*(s—b))ds
=k.

/ f&)¢(a*(s—b))ds / f)¢(a*(s—b))ds

To conclude the proof, note that the left-hand side is equal to 7'(b) in an interior equi-
librium. O

PrROOF oF ProPOSITION 3. To prove this result, we show that T (b) > Tq;(b) for every b,

where T, (resp., T, 3) denotes the operator T when the feedback function is ¢ (resp., ¢).
Observe that Ty (b) > Td;(b) if and only if

f f(s)p(a*(s—b))[s — El6]s]]d / f()d(a*(s — b))[s — El6]s]] ds

= (11)
/ f()¢p(a*(s—b))ds / f(s)(a*(s — b)) ds
—o0 —0oQ0
Without loss of generality, we can assume that the feedback functions satisfy
00 o0 ~
/ f(s)p(a*(s— b)) ds:/ f(s)p(a*(s — b)) ds. (12)
Since % isnondecreasing in s, (12) implies that there exists s* such that ¢ (a*(s* —

b)) > $(a*(s* — b)) for s > s* and the inequality is reversed for s < s*. Using the normal-
ization in (12), we can write (11) as

/S f()(d(a*(s— b)) — d(a*(s — b)))[s — El6]s] — k] ds

(13)
+ / F($)(p(a*(s— b)) — d(a*(s — b)))[s — E6]s] — k] ds > 0.
Since s — E[0|s] is nondecreasing in s, the left-hand side of (13) is higher than
/ F) (@ (a* (s — b)) — d(a*(s — b)) [s* — E[0]s*] — k] ds
o (14)
+ / ) ((a (s~ b)) — da* s — b))[5* — E[o]s*] ~ k] ds,
which, by (12), is equal to zero. O

PRrOOF OF PrROPOSITION 4. In an interior equilibrium, 7, (b) = b, where

/ FO[A—a)p(a*(s— b)) + ap(a*(EL6]s])](s — E[6]s]) ds
To(b) :=

/ FO[A—a)¢(a*(s — b)) + ad(a*(E[6]s]) ] ds
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Note that 7, (b) = b if and only if

/ f(8)gals)(s —b— E[6]s])ds =0, (15)

where

8a(8) = (1 —a)p(a*(s — b)) + ad(a*(E[6]s])).

Assume that 7, (b*) = b*, i.e., b* is part of an interior equilibrium. Consider a signal
s* such that s* — b* = E[6|s*]. Note that g,(s*) is independent of «. Moreover, by the
monotonicity of ¢(a(-)), it follows that g,(s) is increasing (resp., decreasing) in « for
every s < s* (resp., s > s*). Since s — b* — E[6|s] < 0 if and only if s < s*, the left-hand side
of (15) is nonpositive for o’ > a. Thatis, T, (b*) < b* for &' > «. Similarly, T,/ (b*) > b* for
o <a.

Fix a and consider b,. Let &’ > a. Since Ty (b,) <b,, Ty (k) > k,and T, (b,) =b,
by continuity, it holds that k < b, < b,. Next, consider by. By previous arguments,
Ty (by) > by. Note that T,(b) < b for b > b, since lim,_, o, To(b) is finite. Therefore,
by < byg. U

PRrOOF OF PrRoPOSITION 5. We start by assuming that ¢(a*(s)) > 0 for every a. Under
this assumption, (7) is well defined. For ease of notation, we shall assume that time
advances if and only if new data are recorded in the data set. Under that assumption,
|Ds| =t.

Let 7(b;) = T(b;) — b; and &1 = S¢41 — 0141 — T(by). Thus,

biy1—by= H%(f(bt) + &),
where E(&,4+1]|b;) = 0. Thus, b, is a stochastic approximation process according to the
definition in (2.6) in Pemantle (2007). Moreover, E [ftz 1 |b;] < K for some finite K, since
F is bounded. Furthermore, F is bounded. Hence, by Lemma 2.6 in Pemantle (2007),
with probability 1, the process b; visits any closed segment on which F is bounded sway
from 0 only a finite number of times. Since 7'(b,) is continuous in b;, by Corollary 2.7
in Pemantle (2007), the sequence of biases converges almost surely to the zero set of F,
namely, to a point b where 7'(b) = b, which is an interior equilibrium of our model.
Now assume that ¢(a*(s)) = 0 for some s. Let S,H = 8501 — 001 — T(by) if
[22, f()p(a*(s—by))ds > 0and £,+1 = 0 otherwise.!3 Thus,

1 -
biy1—b= H_—l(]:(bt) + &i41)-
Note that T'(b,) is continuous everywhere except for b; = b’, where
o
b = argrrzin/ f(s)p(a*(s—b))ds=0.
—00

13We assume that if the process reaches some b; such that ffooo f(s)¢(a*(s — bs))ds = 0, then time pro-
gresses even though no new data are recorded. This allows us to apply the exact same argument as in the
first part of the proof.
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Furthermore, T'(b;) is bounded since F has a bounded support and 7'(b;) is a weighted
average of s — E[6|s]. Moreover, E[7§IZ+1 |b¢] < K for some finite K, since F is bounded. The
process b, satisfies the requirements for Lemma 2.6 in Pemantle (2007), and converges

almost surely to the zero set of F. O

Proor ofF CraiMm 1. Note that when « = 1 it holds that D = {(s, 0)|s > sp}. Moreover,
there exists a unique b, that solves by = E[s — 6|s > sp]. Since E[s — 6|s] is nondecreasing
and E[s] — E[0] = k, it follows that b; > k. Since ¢ = sp — E[s — 0|s = sp], it follows that

sp=c+E[s—0|s=sp]l <c+E[s—0|s>spl=c+b1=s51.

By Proposition 4, b; < b, for any « < 1. Hence, ¢ + b, > ¢+ k and ¢+ b, > sp for any a.

We now assume that b, is part of an interior equilibrium and show that there cannot
exist another interior equilibrium with a perceived bias b/, > b,. Let y be the share of
observations in the data that were induced by Bayesian DMs in the equilibrium in which
the bias is b,. That is,

B a(l —F(sp))
e T a(U=F(sp) + (1 —a)(1— Flc+ba))’

Note that y, > v, for b, > b,. In an interior equilibrium,
T(ba) = ba =Y, (Els — 6]s = sp] — ba)) + (1 — p,) (E[s — 0|s = ¢ + bal — ba) =0.
Moreover, E[s — 0|s > ¢+ by] > E[s — 6]s > sp], and so
Yoy, (Els — 0]s = sB] — ba)) + (1 = yp, ) (Els — 8]s > ¢ + ba] — ba) < 0.

Due to the log-concavity of the signals’ distribution, E[s — 0|s > ¢+ b,] — b, is decreasing
in b,. Clearly, E[s — 6|s > sp] — b, is strictly decreasing in b,. We conclude that T'(b},) —
b, <0, in contradiction to the assumption that b/, is part of an interior equilibrium. O

Proor oF CLaiMm 2. Since agents’ strategies are symmetric, we can write the bias as

2
/ FOF ()" [s — E(6]5)] ds
b=t : (16)

2
/ f($)F(s)" 1ds
1

As the right-hand side of (16) is independent of b, it has a unique solution. Hence, there
exists a unique interior equilibrium. Since (i) E[s] = E[6] + k, (ii) s — E[6|s] is nonde-
creasing and nondegenerate, and (iii) F(s) is strictly increasing, it follows that b > k,
and, therefore, a(s) = a*(s —b) =s — b < s — k. Since ¢, (a*(s — b,)) = F(s)""1, it follows
that d’(g:%_()') = F(s) is increasing in s and, by Proposition 3, the proofis complete. O

Proor oF CLaIM 3. Letsy, 5o, ..., s, be arandom sample of signals of size n. Denote the
kth order statistic by s(x) and its distribution by fi (-). Conditional on the bidder winning
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the auction, the expected values of the object and the signal are fle [0|s]1f(s)ds and
/; 12 sfu(s) ds, respectively. Thus, the equilibrium bias when bidders are naive is

2 2
b=[ sfn(s)ds—f E[6]|s]fn(s) ds. (17)
1 1

Since the bidding function is s — b, the auctioneer’s expected revenue is E[s(,—1)] net of
the bias, that is,

2
/ Sfu—1(s)ds —b. (18)
1

A Bayesian bidder bids the expected value of the object given her signal. If all bidders
were Bayesian, then the winner would pay the the expected value of 6 given s, _1):

2
/ E[0|s]fn—1(s)ds. (19)
1

By (17), (18), and (19), the auctioneer’s revenue is higher when agents are Bayesian if and
only if

2 2
/ (E[6]s] = 5) fa—1(s) ds > / (E[6]s] — ) fn(s) ds. (20)
1 1
Condition (20) holds since s, first-order stochastically dominates s(,_1), and E[6|s] — s
is nonincreasing in s. O

Proor oF CraIM 4. Consider an interior equilibrium. Note that n < m if

f f(s)d(a*(ms))E[6]s] ds

<m.

/ f)p(a*(ns))sds
Rearranging yields
/ f()p(a*(ns))[sm — E[6]s]]ds > 0.

Observe that ffooof(s)[sm — E[8]s]]ds = 0. Since, by assumption, ¢(-), a*(-), and s% —
E[6]s] are weakly increasing, the above inequality holds. Thus,

/ f(s)é(s)dsgm/ f(s)sds =mE[s] = E[0]. O

PROOF OF CLAIM 5. The DM uses a prediction rule 8jipear(s) = Bo + B1s, and launches a
project if and only if 6(s) > c. In equilibrium, there is a cutoff signal s* such that the DM
launches a project if and only if s > s* and, therefore, her data set includes only signals
higher than s*.

Suppose that E[6|s] is convex in s. The calibrated function 0(s) = Bo + B1s intersects
with E[6|s] at exactly two points, both of which are weakly higher than s*. To see this,
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note that if the two functions intersect at a single point, then rotating the calibrated
function around the intersection point would decrease the squared errors (pointwise). If
the functions do not intersect at all, bringing them closer together by changing 8o would
clearly decrease the squared errors. Denote these intersection points by s; and s».

Since the calibrated function 6(s) = Bo + B1s intersects with E[6|s] twice above the
cutoff s* and E[6|s] is convex, we have that E[6]s*] > Bo+ B1s*. This means that while the
DM expects a revenue of ¢ at the cutoff, the actual revenue is higher. Thus, a Bayesian
DM would choose a lower implementation cutoff. Moreover, E[6|s] > Bo + B1s for every
s < s*. Hence, Bo + B1E[s|s < s*] < E[0|s < s*]. By definition, the DM’s prediction is
correct in the selected sample, and so By + B1E[s|s > s*] = E[6]s > s*]. Combining this
with the out-of-sample prediction, we conclude that overall £ (6] = Bo + B1E[s] < E[6],
as in our baseline model.

In an analogous manner, if E[6|s] is concave, the same argument implies that £[0] =
Bo + B1E[s] > E[0] and that the DM’s implementation cutoff is lower than the Bayesian
cutoff. O
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