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Nonrecursive dynamic incentives: A rate of
convergence approach
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In repeated principal-agent problems and games, more outcomes are imple-
mentable when performance signals are privately observed by a principal or me-
diator with commitment power than when the same signals are publicly observed
and form the basis of a recursive equilibrium. We investigate the gains from non-
recursive equilibria (e.g., “review strategies”) based on privately observed signals.
Under a pairwise identification condition, we find that the gains from nonrecur-
sive equilibria are “small”: their inefficiency is of the same 1 — 6 power order as
that of recursive equilibria. Thus, while private strategies or monitoring can out-
perform public ones for a fixed discount factor, they cannot accelerate the power
rate of convergence to the efficient payoff frontier when the folk theorem holds.
An implication is that the gains from withholding performance feedback from
agents are small when the parties are patient.

Keyworps. Repeated games, repeated agency, imperfect monitoring, perfor-
mance feedback, review strategies, rate of convergence, folk theorem, martin-
gales.
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1. INTRODUCTION

Most analysis of repeated moral hazard problems and games focuses on contracts and
equilibria that are recursive in the players’ continuation values. This approach is with-
out loss in single-agent problems with public performance signals (Spear and Srivastava
(1987)). It is also without loss in repeated games with imperfect public monitoring, if at-
tention is restricted to equilibria in pure strategies or in strategies that depend only on
the public signals (Abreu, Pearce, and Stacchetti (1990), Fudenberg, Levine, and Maskin
(1994)). In contrast, in single-agent problems where the principal privately observes
performance, or in repeated games where signals are privately observed by a mediator,
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more payoffs are implementable as compared to the case where the same signals are
publicly observed, as concealing signals reduces the players’ available deviations. Sim-
ilarly, focusing on pure or public equilibria in repeated games with public monitoring
is not without loss (Kandori and Obara (2006)). Yet, characterizing the equilibrium pay-
off set with private signals or strategies is intractable, precisely because this set lacks
a tractable recursive structure (Kandori (2002)). The extent of the possible gains from
nonrecursive equilibria based on private signals or strategies over recursive equilibria
based on public signals is thus an open question, which forms the subject of the current
paper.

We consider discounted repeated games where in each period players take actions a
and a signal y is drawn from a distribution p(y|a) with full support. We compare the
equilibrium payoff sets in a version of the game with public monitoring, where the sig-
nal y is publicly observed and attention is restricted to equilibria in public strategies,
and a version with private monitoring, where the signal y is observed only by a principal
(or mediator) with commitment power, who privately recommends actions to the play-
ers. We call these two versions of the game the public game and the blind game. By the
revelation principle, for any discount factor §, the equilibrium payoff set is weakly larger
in the blind game than the public game. Our question is, how much larger?

For any fixed discount factor é < 1, this question is difficult to answer in any gen-
erality, because characterizing equilibrium payoffs in the blind game is intractable. We
instead adopt a rate of convergence approach: under standard identification conditions
that ensure that efficiency is attainable in the § — 1 limit, how quickly does inefficiency
vanish as § — 1 in the most efficient equilibrium in the public game as compared to the
blind game?

Our main result is that inefficiency is of the same power order of 1 — é in both games.
Thus, while private strategies or monitoring can outperform public ones for a fixed dis-
count factor, they cannot accelerate the rate of convergence to the efficient payoff fron-
tier when the folk theorem holds, except possibly for log terms in 1 — &. In this sense, the
gains from nonrecursive equilibria are small when players are patient.

Our results have implications for the design of principal-agent relationships. An im-
portant design variable in such relationships is the amount of performance feedback
provided to the agent. While providing feedback can have practical benefits that are not
captured by our model, a benefit of withholding feedback is that this facilitates nonre-
cursive contracting by making the game blind rather than public. However, our results
show that this benefit of withholding feedback is small when the parties are patient.

The high-level intuition for our results is that, as compared to a recursive contract
where the agents’ continuation values are revealed in every period, pooling information
across periods improves monitoring precision but also necessitates larger rewards and
punishments, which reduces the scope for providing incentives by transferring future
surplus between the agents than destroying it through mutual punishments. Our anal-
ysis shows that these two effects essentially cancel out, so that little is gained by pooling
information.

A subtlety in our results is that, while inefficiency is always of the same power or-
der in the public game and the blind game, this order depends on the curvature of the
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boundary of the feasible payoff set. If the boundary is smooth with positive curvature (as
in Green and Porter (1984), Spear and Srivastava (1987), Sannikov (2007, 2008), or Sadzik
and Stacchetti (2015)), inefficiency is of order 1 — 8.! In this case, the first-order ineffi-
ciency associated with small continuation payoff movements along the payoff boundary
is zero. We show that this implies that inefficiency in the public and blind games differs
only by a constant factor: i.e., the rates of convergence are identical. Moreover, for a
class of smooth principal-agent models (similar to Spear and Srivastava (1987), or San-
nikov (2008)), inefficiency in the public and blind games is identical up to a first-order
approximation.

In contrast, if the boundary of the feasible payoff set is kinked (e.g., if there are
finitely many actions), inefficiency is of power order (1 — 8)!/2.2 In this case, the first-
order inefficiency associated with small continuation payoff movements is positive. We
show that this greater inefficiency leads to a greater value of withholding feedback: now,
inefficiency in the public and blind games can differ by a log factor in 1 — 8. Thus, while
the value of withholding feedback is always “small” (no improvement in the power rate
of convergence), it is somewhat less small in the kinked case (where there can be a log-
factor improvement) than in the smooth case (where there is at most a constant-factor
improvement, with no first-order improvement whatsoever in standard principal-agent
models).

Methodologically, we develop a new technique for bounding equilibrium payoffs in
repeated games with private monitoring. The starting point is that continuation payoff
rewards or punishments incur an efficiency loss related to the curvature of the bound-
ary of the feasible payoff set, while providing incentives that are proportional to a likeli-
hood ratio difference (p(y|a) — p(y|a’))/p(y|a). Since the likelihood ratio difference is a
martingale increment (as the expected likelihood ratio difference under p(-|a) equals 0),
large deviations theory can be used to bound the cumulative likelihood ratio differ-
ence over any number of periods. This bound connects the inefficiency and “incentive
strength”of any strategy profile, so that any equilibrium where players do not take my-
opic best responses must incur a certain amount of inefficiency, regardless of whether
signals are public or private.

Relation to the literature Our finding that the gains from nonrecursive equilibria are
small contrasts with two strands of prior literature that find large gains. These strands
share the feature that continuation value transfers are impossible with public strategies.
This feature reduces the efficiency of public strategies and thereby generates large gains
from nonrecursive private strategies.

First, Holmstrém and Milgrom (1987) study a dynamic principal-agent model where
the agent exerts effort over T periods and consumption occurs at the end of the game.
The value of withholding feedback is large: without feedback, first-best profit can be

IFor a class of continuous-time principal-agent problems with public monitoring, this was already ob-
served by Sannikov (2008).

2For public games, this was already observed by Hérner and Takahashi (2016). Horner and Takahashi
noted that “Itis certainly possible that regarding imperfect monitoring, allowing equilibria in private strate-
gies could accelerate the rate of convergence beyond the results that we have derived. .. This is left for future
research.” The current paper resolves this question.
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approximated as T — oo using a “review strategy” that aggregates signals over T periods
and harshly penalizes the agent if a count of signal realizations falls below a threshold;?
with feedback, optimal contracts are linear in the count of signal realizations, and profits
are bounded away from the first best for all 7. The key difference from our setup is that
Holmstrém and Milgrom’s model is not a repeated game (as consumption only occurs
once), so efficiency cannot be improved by transferring continuation payoffs over time.*

Second, several papers study principal-agent problems or games that, while re-
peated, do not permit continuation value transfers. Abreu, Milgrom, and Pearce (1991)
and Sannikov and Skrzypacz (2007) consider settings without pairwise identifiability,
while Matsushima (2004) and Fuchs (2007) restrict attention to block belief-free equi-
libria. These settings preclude continuation value transfers, and consequently these pa-
pers all find that efficiency is attained as § — 1 only when feedback is withheld.®

In past work (Sugaya and Wolitzky, 2017, 2018), we showed that the value of with-
holding feedback (“maintaining privacy”) is large in some specific repeated and dy-
namic games when § is bounded away from 1. For example, our 2018 paper examined
how maintaining privacy can help sustain multimarket collusion. In contrast, the cur-
rent paper shows that the value of privacy in repeated games is small when § is close
to 1.

We also relate to the broader literature on feedback in dynamic agency and games.
We consider complete information repeated games without payoff-relevant state vari-
ables, so feedback concerns only past performance, which is payoff-irrelevant in the
continuation game. In contrast, most of the literature on feedback in dynamic agency
considers dynamic games with additional state variables, such as an agent’s ability (Ed-
erer (2010), Smolin (2021)), other agents’ progress in a tournament (Gershkov and Perry
(2009), Aoyagi (2010), Ely, Georgiadis, and Rayo (2025)), whether a project has been com-
pleted (Halac, Kartik, and Liu (2017), Ely, Georgiadis, Khorasani, and Rayo (2023)), or the
evolution of an exogenous state (Ely and Szydlowski (2020), Orlov, Skrzypacz, and Zryu-
mov (2020), Ball (2023)). An exception is Lizzeri, Meyer, and Persico (2002), who examine
optimal two-period agency contracts with and without a “midterm review.”

We also contribute to the literature on review strategies, introduced by Rubinstein
(1979), Rubinstein and Yaari (1983), and Radner (1985), and developed by Abreu, Mil-
grom, and Pearce (1991) and Matsushima (2001, 2004). These papers show that review
strategies can support efficient outcomes when 6 — 1 (or when there is no discounting
at all). In contrast, we show that review strategies cannot greatly outperform recursive
contracts when § is close to 1.

3This scheme resembles the “penalty contract” of Mirrlees (1975). We describe review strategies in more
detail in Section 3.1.

4Relatedly, Frick, Iijima, and Ishii (2024) consider a one-shot principal-agent model and study the rate at
which profit converges to the first best as the number of signal observations grows. They find that this rate
is much faster for review strategies than for linear contracts.

5Matsushima considers two-player games where signals are conditionally independent, so each player
does not learn about the status of her review. This form of lack of feedback is essential for efficiency in
belief-free equilibria. Sugaya (2022) shows how mixed strategies can be used to prevent learning with con-
ditionally dependent signals, yielding a general folk theorem under imperfect private monitoring. Rahman
(2014) shows that witholding feedback restores efficiency in Sannikov and Skrzypacz’s model.
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Methodologically, the closest papers are Horner and Takahashi (2016), who build on
Fudenberg, Levine, and Maskin’s recursive methods to show that inefficiency is of or-
der (1 — 8)/? in repeated finite-action games with public monitoring; and Sugaya and
Wolitzky (2023), who bound the strength of players’ equilibrium incentives in repeated
finite-action games with private monitoring.® Rather than bounding incentives, the cur-
rent paper derives a tradeoff between efficiency and incentives (expressed though La-
grange multipliers, e.g., program (4) below) and uses it to characterize the rate of con-
vergence. In addition, the arguments in our 2023 paper are based on variance decom-
position, while the current paper requires more precise estimates from martingale large
deviations theory.

Finally, our exact characterization of first-order inefficiency in repeated principal-
agent models relates to Sannikov (2008) and Sadzik and Stacchetti (2015), who derive
similar results under public monitoring in continuous time or “frequent action” mod-
els. Here, our main contribution is showing that withholding feedback leaves first-order
inefficiency unchanged.

Outline The paper is organized as follows. Section 2 describes the model. Section 3
gives an informal overview of our results. Section 4 establishes general upper bounds
on equilibrium efficiency. Section 5 establishes that these bounds are attainable in pub-
lic equilibria (excepting a log factor in the finite-action case). Combining these results
implies that the gains from nonrecursive equilibria are small. Section 6 gives a stronger
result for principal-agent problems. Section 7 discusses extensions.

2. PRELIMINARIES

This section introduces our model of repeated games with public monitoring and blind
repeated games.

A stage game G = (I, A, u) consists of a finite set of players I = {1, ..., N}, a product
set of actions A = x <y A4;, and a payoff function u; : 4 — R for each i € I. We assume
that each A; is a nonempty, compact metric space and each u; is continuous.” By the
Debreu-Fan-Glicksberg theorem, the stage game admits a Nash equilibrium in mixed
actions.

We fix some basic notation: the sets of stage-game Nash and correlated equilibria
are SNE C x;;A(A4;) and 3CF C A(A); the feasible payoff set is F = co({u(a)}ge4) € RN
with boundary bnd(F); the sets of stage-game Nash and correlated equilibrium payoffs
are VNE = (v : v = u(a) for some @ € SNE} and VCE = {v: v = u(«) for some a € 3CE}; the
Euclidean metric and norm on R are d(-,-) and | - |; and the set of unit vectors (or
directions) inRN is A= {A e RN : |A| = 1}.

6Hoérner and Takahashi also consider the rate of convergence toward weakly individually rational payoff
vectors, which they show can be strictly slower. We focus on strictly individually rational payoffs. Meng
(2021) also derives rates of convergence of O((1 — 5)Y/2) and O(1 — 8) in the kinked and smooth cases in a
class of repeated communication games with public monitoring.

7As is standard, we linearly extend the payoff functions u; to distributions a € A(A). Here and through-
out, for any compact metric space X, A(X) denotes the set of Borel probability measures on X, endowed
with the topology of weak convergence.
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Recall that a payoff vector v € F is an exposed point of F if there exists A € A such
that v uniquely maximizes A - w over w € F: that is, if the set of exposing directions
Ay ={A e A:v=argmax, A - w}is nonempty. If | 4] is finite, the sets of exposed and
extreme points of F coincide; if | A| is infinite, the exposed points are a dense subset of
the extreme points.® An example at the end of Section 4.1 motivates focusing on exposed
points.

A monitoring structure (Y, p) consists of a set of possible signal realizations Y and a
family of conditional probability distributions p(y|a). We assume that either Y is finite
and y is drawn according to a probability mass function p(y|a), or Y is measurable and
yis drawn according to a density p(y|a): we use the same notation p(y|a) for both cases.
We assume p(y|a) > 0forall y € Y, a € A. This full support assumption is crucial and, in
particular, excludes perfect monitoring.

We also require that the monitoring structure satisfies the following key assumption.

AssUMPTION 1. There exists a number K > 0 such that, foranya e A, i€, and a; € A;,
we have

_ ! : 2
Ey~p(la) [exp<0p(yla) p(l;l(j)law “—’))} < exp(%) forall 6 e R. (1)

Assumption 1 says that the likelihood ratio difference between p(-|a) and p(-|a;}, a_;)
has a sub-Gaussian distribution, where the number K is called a variance proxy.® For ex-
ample, Assumption 1 holds if Y is finite, orif Y CR” and y = g(a) + ¢, whereg: 4 > Y
is a deterministic function and ¢ has a multivariate normal distribution with covariance
matrix independent of a.'° As we will see, Assumption 1 lets us apply results from large
deviations theory to bound the power of tail tests that aggregate signals over many peri-
ods.

In a repeated game with public monitoring, in each period ¢ € N, each player i takes
an action a;, and then a signal y is drawn according to p(y|(a;);) and is publicly ob-
served. A history for player i at the beginning of period ¢ takes the form 4! = (a; », y,/)i,_:ll .
A strategy o; for player i maps histories 4! to distributions over actions a; ;. A strategy
for player i is public if it depends on 4! only through its public component y’ = ( y,/)i,_:ll.
Players choose strategies to maximize discounted expected payoffs, with common dis-
count factor 6 € [0, 1). A perfect public equilibrium (PPE) is a profile of public strategies
that, beginning at any period ¢ and any public history y*, forms a Nash equilibrium from
that period on. We denote the repeated game with public monitoring with stage game G,
monitoring structure (Y, p), and discount factor é by I'?(8), and we denote the corre-
sponding set of PPE payoff vectors by EP(8) C RN. Thus, EF(8) is the set of attainable
payoffs in a PPE where signals are publicly observed.

8Since F is convex and compact, its exposed points are a dense subset of its extreme points, by
Straszewicz’s theorem (Aliprantis and Border (2006, Theorem 7.89)).

9See, e.g., Buldygin and Kozachenko (2000).

10Tn these cases, (1) holds with K equal to the variance of the likelihood ratio difference (p(yla) —
p(yla;, a_;))/p(yla) (i.e., the x> -divergence of p(|a;, a_;) from p(y|a)).
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In a blind repeated game, the players do not observe signals directly but are as-
sisted by a mediator with commitment power.!! In each period ¢ € N, (i) the media-
tor privately recommends an action r; € A; to each player i, (ii) each player i takes an
action a;, and (iii) a signal y is drawn according to p(y|(a;);) and is observed only by
the mediator. A history for the mediator at the beginning of period ¢ takes the form
hf) = ((ri, )i y,/)j;ll, while a history for player i just before she takes an action in period
t takes the form hﬁ = ((ri,¢, ai, ,/)i,_: 11, ri (). A strategy oy for the mediator maps histories
hf) to distributions over recommendation profiles (r; ;);, while a strategy o; for player i
maps histories 4! to distributions over actions a; ;. We denote the blind repeated game
with stage game G, monitoring structure (Y, p), and discount factor & by I'3(8), and
we denote the corresponding set of Nash equilibrium payoff vectors (taking the union
over all possible mediator strategies) by EB(8) € RY. Thus, EB(8) is the set of attainable
payoffs in a Nash equilibrium where signals are privately observed by a mediator.'?

By standard arguments (similar to Forges (1986)), any Nash equilibrium outcome
weA((Ax Y)®)inT'?(8) (i.e., any equilibrium distribution over infinite paths of action
profiles and signals) can also be implemented by a Nash equilibrium in I'?(8) where the
players follow the mediator’s recommendations on path. Since PPE is a refinement of
Nash equilibrium, it follows that E”(8) € EB(8). Our goal is to evaluate the advantage
of arbitrary equilibria based on private signals over recursive equilibria based on public
signals: that is, to assess the size of the set EB(8)\E” (5).

REMARK 1. The model is easily adapted to allow a player with commitment power (such
as a principal with full commitment power in a principal-agent model) or one or more
players with perfectly observed actions (such as a principal who offers contracts each
period in a relational contracting model). A player with commitment power is treated
like any other player, except that no incentive constraints are imposed on her strategy.
For example, in a principal-agent model, SNE is the set of mixed action profiles where the
agent does not have a profitable deviation. Moreover, it suffices to impose full support
(and sub-Gaussianity) only for the agent, so that supp p(-|a) = supp p(-|a’) forall a, a’ that
agree on the principal’s action. Similarly, to extend our results to the case where some
players’ actions are perfectly observed, let I* C I be the set of players with observable
actions, and assume that deviations by players i € I\I* do not affect the support of p,
so that supp p(-|a) = supp p(-|a}, a_;) foralla € 4, i € I\I*, and a} € A;. Then Theorem 1
below applies for any v € exp(F) that cannot be attained by an action profile distribution
a such that g;(s;, @) = 0 for each player i € /\/* and each manipulation s; (where these
objects are defined in Section 4.2), while Theorem 2 applies verbatim.

3. OVERVIEW OF RESULTS

We first provide an informal overview of our results. We focus on two leading cases:
finite stage games and games where the boundary of the feasible payoff set has positive
curvature.

1'The notion of a blind repeated game was introduced in Sugaya and Wolitzky (2017, 2023).

12Note that a player’s payoff in the blind game is not measurable with respect to her own informa-
tion. The blind game may thus withhold feedback from the players to an unrealistic extent—but this only
strengthens our result that withholding feedback has limited value.
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3.1 Finite games

With a finite stage game, Horner and Takahashi (2016) showed that the minimum dis-
tance between any PPE payoff vector and any extreme, nonstatic Nash payoff vector is of
order (1 — 8§)!/2. This result relies on Fudenberg, Levine, and Maskin’s (1994) recursive
characterization of PPE and is generalized by our Theorem 2.

In contrast, our main result concerns arbitrary Nash equilibrium payoffs in the blind
game. There is a wide range of nonrecursive equilibria in the blind game. A leading ex-
ample of these equilibria is given by review strategies (Radner (1985), Abreu, Milgrom,
and Pearce (1991), Matsushima (2004)), which aggregate signals over T periods—during
which the players take constant actions—before adjusting the players’ actions. Heuris-
tically, an optimal review strategy pools information for 7' = O((1 — §)~!) periods and
then applies a penalty if the number of “good signals” over these periods falls short of a
cutoff. Call the number of standard deviations by which the number of good signals falls
short of its mean the score. Since the number of good signals, normalized by 7-1/2, is ap-
proximately normally distributed, for any cutoff score z the probability that a single sig-
nal is pivotal is O(T~1/2¢(z)) = O((1 — 8)/?¢p(2)).'3 As stage game payoffs are O(1 — ),
incentive compatibility requires that the pivot probability is at least O(1), so that z is at
most O((—log(1 — 8))'/2), which in turn implies that the review strategy’s “false positive
rate” (and hence its minimum inefficiency) is ®(—z) = O(((1 — 8)/(—log(1 — §)))!/?).14
Thus, review strategies improve on PPE by at most a factor of (—log(1 — 8))1/2. Our
Theorem 1 implies that this factor is unimprovable. Thus, combining Theorems 1 and
2 shows that withholding feedback accelerates convergence to efficiency by at most a
factor of (—log(1 — 8))'/2. Moreover, our Proposition 1 constructs an equilibrium that
attains this factor in a one-sided prisoner’s dilemma, which shows that this result is tight.

3.2 Positive curvature

Now consider an infinite stage game where the boundary of the feasible payoff set has
positive curvature. In this case, Theorem 2 shows that PPE in the public game can at-
tain inefficiency of order 1 — 8. As we explain following the statement of Theorem 2, this
improved efficiency relative to finite games is obtained because a smooth set of equi-
librium payoffs can approximate a smooth set of feasible payoffs more closely than a
kinked set of feasible payoffs. Conversely, Theorem 1 shows that arbitrary Nash equi-
libria in the blind game cannot attain inefficiency of order less than 1 — 6. Thus, in
the positive curvature case, withholding feedback does not accelerate convergence to
efficiency. Moreover, Theorem 3 shows that, in principal-agent problems, withholding
feedback does not reduce first-order inefficiency.

4. MAXIMUM EFFICIENCY WITH ARBITRARY STRATEGIES
4.1 Main result

Our main result gives an upper bound for the rate of convergence of EZ(8) toward an
exposed point v € exp(F) that is not attainable as a static correlated equilibrium. As

13Here and throughout the paper, ¢ and @ denote the standard normal pdf and cdf, respectively.
14This follows from the standard normal Mills ratio approximation: ®(—z) ~ ¢(z)/z for z>> 0.
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discussed above, the bound depends on the order of curvature of the boundary of F
atv.

DeriNITION 1. Fix an exposed point v € exp(F). For any 8 > 1, the boundary of F has
max-curvature of order at least B at v if, for all A € A,, there exists > 0 such that

A (v—w)>ndw, w)P forall webnd(F).
The boundary of F has max-curvature of order B at v if

B = inf{3 : bnd(F) has max-curvature of order at least 3 at v}.

This definition says that moving away from an exposed point v in the convex set F
entails an efficiency loss of order at least B, relative to Pareto weights A: heuristically,
bnd(F) is approximated by a power function of degree B at v. Note that 8 > 1 because
F is convex, and 8 < oo by the definition of an exposed point. To understand the defini-
tion, the key cases to consider are 8 = 1, 8 = 2, and the limit case 8 = co.!®

e The B =1 case arises when the stage game G is finite. This implies a first-order
efficiency loss from moving away from any extreme point. This case is studied by
Abreu, Pearce, and Stacchetti (1990), Fudenberg, Levine, and Maskin (1994), Hérner
and Takahashi (2016), and Sugaya and Wolitzky (2023).

e The B =2 case arises when the boundary of F has positive curvature. This case is
studied by Green and Porter (1984), Spear and Srivastava (1987), Sannikov (2007,
2008), and Sadzik and Stacchetti (2015). More generally, if 8 < 2 then the boundary
of F has nonzero curvature: its curvature is positive but finite if 8 = 2 and is infinite
if B <2.

e The B = oo case arises in the limit where the boundary of F is linear at v. This
limit case occurs in repeated games with transferable utility, as in Athey and Bagwell
(2001), Levin (2003), and Goldliicke and Kranz (2012).

The following is our main result.

THEOREM 1. Fix an exposed point v € exp(F)\VCE where bnd(F) has max-curvature of
order B, and fix a direction A € A,. Then there exists ¢ > 0 such that

A-(v—w)>cl(8) foralld<1andwe EB(8), where

1-5 1z
FB—1,
[(8) = (max{—log(l —9), 1}) L
(1— 5)maX{B/2vB—1} ifB>1.

The key implications of Theorem 1 are as follows:

151n addition, to appreciate the role of the “max” in the definition, suppose that N = 2, (0, 0) € exp(F),
and the local boundary of F at (0, 0) is given by f(x) = —x if x < 0 and f(x) = x? if x > 0. Then the max-
curvature of bnd(F) at (0, 0) is 2.
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e For Pareto weights where welfare is maximized at a kink in bnd(F), equilibrium
inefficiency in the blind game is at least O(((1 — 8)/(—log(1 — 8)))/?).

e For Pareto weights where welfare is maximized at a point where bnd (F) has positive
curvature, equilibrium inefficiency in the blind game is at least O(1 — §).

We will see that both of these bounds—as well as the (1 — 8)#/2 bound for B ¢
(1, 2]—are tight in the blind game. Moreover, the bound in the kinked case remains tight
up to log-factor slack in the public game, while the bound in the 8 € (1, 2] case remains
tight up to constant-factor slack in the public game. These results imply that the gains
from non-recursive equilibria are small at any point of nonzero curvature when players
are patient.'6

We outline the proof of Theorem 1 in the next subsection. The basic logic is that if a
repeated game Nash equilibrium gives payoffs close to v € exp(F), then the stage game
payoff must be close to v almost all the time along the equilibrium path of play. Since
signals have full support, this implies that continuation payoffs usually remain close to v
even after low-probability signal realizations, and hence that equilibrium continuation
play does not vary much with the signal realizations. But then, if v ¢ "CE, we can con-
clude that 6 must be so high that even small variations in continuation play can provide
strong incentives.!”

We mention a couple technical aspects of the statement of Theorem 1. First, generi-
cally, the condition v € exp(F )N\VCE is equivalent to v € exp(F )\V'NE: since v is extremal,
the distinction only matters in the nongeneric case where v is attained at two different
pure action profiles. Second, we focus on exposed points because the condition A € A,
(i.e., v=argmax, . A-w) cannot be weakened to v € argmax,,.r A -w. To see this, consider
the stage game

L R
C 1,1 0,1
D1 2,0 -2,0
D2 -2,0 2,0

Here, the point v = (1, 1) is exposed and is not attainable as a static CE; bnd(F) has
curvature of order 1 (i.e., akink) at v; and v € argmax, . A - w for A = (0, 1). But the point
w = (0.5, 1) is attained by the static NE (C, 1L + 4 R) (so w € EB(8) forall § € [0, 1)) and
satisfies A - w = A - v, so the conclusion of Theorem 1 fails.

161 contrast, if welfare is maximized at a point with max-curvature of order 8 > 2, Theorem 1 allows in-
efficiency much smaller than 1 — 6. This bound is tight in the 8 — oo limit, since in some games with linear
Pareto frontiers efficiency is exactly achieved at some 6 < 1 (e.g., Athey and Bagwell (2001)). We conjecture
that the (1 — 8)#~! bound given by Theorem 1 is in fact tight for any 8 > 2—in that there exists some game
and v € exp(F)\V °E with max-curvature of order 8 that can be approached at rate (1 — §)*~1—but we have
not proved this.

17This logic is the same as that of Theorem 6.5 of Fudenberg, Levine, and Maskin (1994) (who credit
Madrigale (1986)), which says that an extremal nonstatic Nash payoff vector v cannot be exactly attained
for any 8 < 1 under full-support monitoring. Fudenberg, Levine, and Maskin state this result for PPE, but
the same argument works for Nash. Theorem 1 is a quantitative version of this result.
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4.2 Proof sketch for Theorem 1

We sketch the proof of Theorem 1, deferring the details to the Appendix. Fix any v €
exp(F)\VCE and A € A,. We wish to derive a lower bound for A - (v — w)—the inefficiency
of w in direction A—which holds for any w € EB(8).

We introduce some notation. Note that any outcome u € A((A x Y)*) defines a
marginal distribution over period-¢ action profiles, af € A(A), as well as an occupation
measure over action profiles, a* € A(A), defined as

o0
at = (1-29) Z 8 lak.
=1

The players’ ex ante payoffs under n are determined by «*, as by linearity of u,

(1-8)) 8 lu(ef) = u((l =) Za’la;‘) = u(at).

t=1 t=1

Thus, letting M5B (8) be the set of Nash equilibrium outcomes w in the blind game 38,
we wish to derive a lower bound for

inf  A-(v—u(at)).
I P Ca Co))

Now, for each player i, let S; denote the set of functions s; : 4; — A;, which we call
manipulations. Forany i€ I, « € A(A), and s; € S;, define the deviation gain

gilsi, ) =Y a(a)(ui(si(a;), a_;) — ui(a)).

acA

The interpretation is: if a recommended action profile a is drawn according to « and
player i takes s;(a;) when recommended a; rather than obeying the recommenda-
tion, her expected payoff gain is g;(s;, ). Finally, for any complete history of play
h = (ay, y1);2, and any player i and manipulation s;, let

pyilad) — p(yelsiCai ), a—i)

wi(h)=u;(a;)—v; and ¢£;(s;, h)=
p(yelas)

That is, ii;(h) is the difference between player i’s realized period ¢ payoff at history 4
and v;—which we will call player i’s period ¢ reward at history h—and ¢;(#) is the real-
ized likelihood ratio difference of the period ¢ signal y; at the period ¢ action profile a;,
as compared to the action profile (s;(a; (), a—; ;) that results when player i manipulates
according to s;.

A simple necessary condition for an outcome u to be consistent with equilibrium
play (Lemma 6 in the Appendix) is that, for each player i/, manipulation s;, and period ¢,
we have

8i(si, ) <E* [zi,,(si, hy > sf"a,-,tf(h)}. @)

r=t+1
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This inequality holds because, if it were violated, player i could gain by obeying her rec-
ommendation in every period other than ¢, while manipulating according to s; in pe-
riod ¢. Given this inequality, since bnd(F) has max-curvature of order g at v, we have

inf A (v—u(at))

neMB(8)
o
> inf sup inf B4 (1-8) Y 8 Iga,(m)|? |, ©)
REA((AXY)®) jey sies, (g, () pel—it7, 1] p
such that (2) -

where #; is the range of u;. Intuitively, the program (3) minimizes the maximum over
players i and manipulations s; of the 8 moment of the deviation of player i’s stage
game payoff from v;, subject to the incentive constraint (2).

To prove the theorem, it remains to bound (3) as a function of § and 8. To do so,
consider the inner problem where u is fixed and (i, 5;) € argmax; 5 8i(si, ). Let (1 —
8)8'~1¢, denote the Lagrange multiplier on the period ¢ incentive constraint, and form
the Lagrangian

sup inf (1—6)Za’—lw[n|at(h)|ﬁ+§t(gﬁ‘—ez(h) > af"faﬂ(h))}, (4)

(ft)tZO(&f(h))”he[_ﬁ’m t=1 t'=t+1

where we have simplified notation by letting &, (h) = i;,;(h), g = gi(s;, &), and ¢,(h) =
2; ¢(si, h). The Lagrangian expresses a tradeoff between efficiency and incentives: to
maximize efficiency, the reward i, (4) must minimize the sum of the inefficiency result-
ing from the curvature of bnd(F) (i.e., nl|i;(h) |#) and an incentive cost in each earlier
period 7 < ¢ (i.e., —&it;(h) i, (h)). Moreover, if we take ¢; to be constant across periods
(i.e., & = & Vt)—which suffices to bound the Lagrangian, by weak duality—we can re-
verse the order of summation between ¢ and ¢’ (and also note that 7 (4) = 0 for all 4 at
the optimum) to rewrite the Lagrangian as

sup inf (1-8) Y 8 E*[m]an()|f — eL 1 (Wi (m)] + £g*,

&>0 (t(h) g2, nel—1, 1] i

where £,(h) =Y L _; £y(h) and g* = g;(s;, @) = (1 - 8) Y2, 8/~ 1g!*. Thus, to bound the
Lagrangian, it suffices to bound the probability that |£,(4)| is large. Since £; is a mar-
tingale with sub-Gaussian increments (by Assumption 1), the required bound follows
from the large deviations theory (Lemma 9). Intuitively, the bound say that sequences
of signals with large cumulative likelihood ratio differences—which are highly informa-
tive when they occur—also occur with low equilibrium probability, and hence do not
provide a large amount of information on average. This bound can be used to show
that if we take ¢ = {(6) then the value of the Lagrangian—and hence inefficiency under
outcome pu—is not much smaller than /(8)g*. Finally, since v € exp(F)\VCE, if u(a*) is
close to v then g* = max; i, g;(s;, a*) isbounded away from zero (Lemma 4), which yields
the desired bound.
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4.3 Tightness of the efficiency bound in the kinked case

We will see in the next section that inefficiency of order (1 — §)#/? is attainable when 8 €
[1, 2] under public monitoring. This implies that the lower bound on inefficiency in The-
orem 1 cannot be improved when B € (1, 2] (the smooth, nonzero curvature case). Here,
we show that in the kinked case (8 = 1) inefficiency of order ((1 — 8)/ — log(1 — 8))!/?
is sometimes attainable in the blind game. This shows that the lower bound on ineffi-
ciency in Theorem 1 also cannot be improved when g8 = 1. Consequently, withholding
feedback can accelerate the rate of convergence by at most a factor of (—log(1 — 8))~1/?
in the kinked case.
We consider a one-sided prisoner’s dilemma, where the payoff matrix is

L R
c 2,2 00
D 3,0 1,1

and the monitoring structure is given by Y = {0, 1}2 and p(1, y2)|(a1, a2)) = p1(n|
a1) p2(y2laz), with p1(1|C) = p2(1|L) = 1/2 and p1(1|D) = p2(1|R) = 1/4. The follow-
ing result shows that the rate of convergence toward the efficient payoff vector (2, 2) is
atleast ((1 — &)/ — log(1 — §))1/2.

ProrosITION 1. In the one-sided prisoner’s dilemma, there exists ¢ > 0 such that, for any
sufficiently large 8 < 1, there exists v € EB(8) satisfying

1-§ 1/2
= 2—c¢| ————= .
U1 V2 > c(—log(l—S))

The proof constructs a review strategy with inefficiency of order ((1 — 8)/(—log(1 —
5)))1/2, as sketched in Section 3.1.

5. ATTAINABLE EFFICIENCY WITH PUBLIC STRATEGIES

We now show that the maximum efficiency levels identified in Theorem 1 are attainable
under public monitoring in the smooth, nonzero curvature case, and are attainable up
to a log factor in the kinked case. To this end, denote the set of feasible and strictly
individually rational payoffs by F* ={ve F:v; > v, := mina_iexj#iA(Aj) maxg,c 4, ui(a;,
a_;) Vi}. For v e bnd(F*), define A} = {A € A: v € argmax, g+ A - w}.

The following definition is a counterpart of Definition 1, adjusted to apply to all
boundary points rather than only exposed points. It says that moving away from v
along the boundary of F* entails an efficiency loss of order at most 3, relative to Pareto
weights A.18

18For example, if N =2, (0, 0) € bnd(F*), and the local boundary of F* at (0, 0) is given by f(x) = —x if
x <0and f(x) = x? if x > 0, then the min-curvature of bnd(F*) at (0, 0) is 1.
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DEeFINITION 2. Fix a boundary point v € bnd(F*). For any 8 > 1, the boundary of F* has
min-curvature of order at most $ at v if, for all A € A}, there exists k > 0 such that

A-(v—w) <kdw,w)? forallwe bnd(F*).
The boundary of F* has min-curvature of order B8 at v if

3 = sup{B : bnd(F*) has min -curvature of order at most 3 at v}.

Note that, at any exposed point v € bnd(F*), the min-curvature of bnd(F*) is atleast 1
and at most the max-curvature.

The following assumption generalizes standard identification conditions for the
public-monitoring folk theorem to the case where action sets can be infinite.

AssuMPTION 2. There exists X > 0 such that the following conditions hold:

i. Foreachi, there exists a minmax profile against i, al e Xj#iA(Aj) x Aj, and xj: Y —
[—X, X] for each j # i, such that

ajeargr/naxuj(a;, a_j) +E[xj(y)|a}, a—;] forallj#i and a;esupp(a;). (5)
a.

J

ii. Foreachae A, ce{—1,+1}, and (i, j) withi+# j, thereexists x; : Y — [—X, X] such
that

aj € argmaxu;(aj, a_;) + E[x;(y)|a}, a_;] and (6)

a;

aj € argr/naxIEl[cxi(y) |a, a_jl. (7)
j
Intuitively, Assumption 2 says that, when payoff transfers of magnitude at most x are
available, players —i can be incentivized to minmax player i, and player i can be incen-
tivized to take a given action a; via transfers from player j without affecting player j’s
incentive to take a given action a;.!9
We consider the rate of convergence of E”(8) toward a strictly individually rational
payoff vector v € bnd(F*). For finite stage games, Hérner and Takahashi (2016) show
that this rate equals (1 — 8)!/2. Thus, withholding feedback can accelerate the rate of
convergence by at most a factor of (—log(1 — 8))~!/2 in finite-action games. We now
show that whenever the boundary of F* has nonzero curvature (8 < 2), the rate equals
(1 — 8)P/2. (We discuss the zero curvature case below.) Thus, withholding feedback
cannot accelerate the rate of convergence in smooth games with nonzero curvature.

19Assumption 2 is similar to assumptions (A1)-(A3) of Kandori and Matsushima (1998). The difference
is that we allow | 4| = co and state Assumption 1 directly in terms of the existence of transfers x that satisfy
(5)-(7), while Kandori and Matsushima assume that | 4| < oo, and hence can state conditions in terms of
the convex hull of the set of vectors of signal probabilities generated by different actions, which imply the
existence of transfers x satisfying (5)-(7) by the separating hyperplane theorem.
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f—@ —0
w(y) Ew) [ "

FiGuRE 1. Self-generating a ball. To maximize efficiency, » and d must be chosen to minimize d
subject to the constraints that B C F and x is at least O(1 — §).

We require the standard assumption that dim F* = N and further exclude payoff vec-
tors where some player obtains her maximum feasible payoff.?°

THEOREM 2. Assume that Assumption 2 holds and dim F* = N, and fix any v € bnd(F*),
satisfying v; < max, u;(a) for all i, wherebnd(F*) has min-curvature of order 8 > 1. Then
there exists ¢ > 0 such that d(v, E¥ (8)) < c¢(1 — §)™™B.2/2 for any sufficiently large 8 < 1.

Theorem 2 builds on Fudenberg, Levine, and Maskin (1994), Horner and Takahashi
(2016), and Sugaya and Wolitzky (2023). As these authors showed, a given level of inef-
ficiency relative to an exposed point v and a direction A € A, is attainable under pub-
lic monitoring if it equals the distance in direction A between v and a self-generating
ball B € F. We thus seek a self-generating ball B C F at distance O((1 — 8)™in(8:2}/2)
to v in direction A € A,. To this end, let d = d (B, v) be the desired distance, and (with-
out loss) let u = v — dA be the closest point to v in B (see Figure 1). Consider decom-
posing u into an instantaneous payoff v and continuation payoffs (w(y)), that lie on
the translated tangent hyperplane H with normal vector A passing through the point
Efw(y)] =v— ((1—8)/8) dX. Under Assumption 2, the continuation payoffs (w(y)), can
be chosen to enforce v on H N B if the diameter of H N B, which we denote by x, is of or-
der 1 — 6. At the same time, denoting the radius of B by r, the Pythagorean theorem gives
(x/2)2 + (r — ((1 — 8)/8)d)?> = r?, and hence x = O(+/(1 — 8)rd). It follows that the prod-
uct rd is of order 1 — §, and hence r = O((1 — §)!~™in{A:2/2) Finally, for a point v where

20T attain the same rate of convergence toward “max points,” one must show that, for v € argmax, s A -
v/, as A approaches a coordinate direction e;, v must be implemented by action profiles where player i’s
deviation gain vanishes. In finite-action games, Horner and Takahashi (2016) show that this is possible
under a genericity condition on payoffs. For a class of infinite-action games (the linear-concave games
considered below), this is possible under a bounded cross-partial derivative condition.
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the (max-)curvature of bnd(F) equals 8, a ball B with radius r = O((1 — &)1 ~™in{#,2}/2) and
center v — (r + d)A, where d = O((1 — 8)™in{A:2}/2) lies entirely within F. For example,
if B =1 then r and d are both O((1 — 8)!/2), and thus shrink at the same rate as § — 1;
while if 8 > 2 then r = O(1) and d = O(1 — 8), so B simply shifts toward v as § — 1.%!

In light of Theorem 1, when B > 2 one might hope to find conditions under which
d(v, EY(8)) = O((1 — 8)B~1). While this may be possible, we do not pursue such a result
here. The difficulty is that the corresponding ball B would have radius r of atleast O((1 —
8)2~P) (as rd must be at least O(1 — 8)). While such a ball can satisfy the self-generation
condition B C F in a neighborhood of v, its radius explodes as § — 1 (when B > 2), so
it must violate self-generation at some point far from v. Therefore, any conditions that
ensure that d(v, E(8)) is less than O(1 — §) must involve the global geometry of the
feasible payoff set. Investigating such conditions is left for future work.

We finally mention a class of infinite games where Assumption 2(ii) holds.?? Say that
the game is linear-concave if (i) for each i, A4; is a compact interval [4;, /_1,-] C R, and
ui(a;, a_;) is differentiable and concave in a; for every a_; with a bounded derivative:
there exists « > 0 such that |du;(a;, a_;)/da;| < k for all i, a; and (ii) the public signal is a
D-dimensional real variable, Y = xgzl Y4 CcRP, and pu4(a) = E[yd |a] is a linear function
of a for each dimension d. In a linear-concave game, let Mi(a) = (diai,ud(&) laza)a be @
D-dimensional vector representing the sensitivity of the mean public signal to player i’s
action. Say that a linear-concave game satisfies pairwise identifiability if for any a and
i# j, Mi(a) # 0, and the spans of M’(a) and M/(a) intersect only at the origin.?3

ProprosITION 2. In any linear-concave game satisfying pairwise identifiability, Assump-
tion 2(ii) holds.

5.1 Proofof Theorem 2

We recall a key definition and lemma from Abreu, Pearce, and Stacchetti (1990).

DEFINITION 3. A bounded set W C RY is self-generating if for all o € W, there exist a €
xiA(A;) and w: Y — RN satisfying

Promise keeping (PK) v = (1 — 8)u(a) + 6fyw(y)p(y|a)dy.

Incentive compatibility (IC) supp(a;) € argmax, (1—8)u;(a;, a_;)+ Sfy w;(y) p(y|ai,
a_;)dy for all i.

Self-generation (SG) w(y) € W for all y.
When (PK), (IC), and (SG) hold, we say that the pair («, w) decomposes v on W.

LEMMA 1. Any bounded, self-generating set W is contained in E* (5).

21For the detailed argument for any 8, see Lemma 15 in the Appendix.

221f Assumption 2(ii) holds, then even if Assumption 2(i) fails a Nash-threat folk theorem still holds, i.e.,
Theorem 2 holds with F* replaced by the set of feasible payoffs that Pareto dominate a convex combination
of static Nash payoffs.

23This condition is the same as Assumption 1 of Sannikov (2007).
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It thus suffices to find a bounded, self-generating set W such that d(v, W) =0O((1 —
8)P"/2), where B* = min{B, 2}. To do so, we first establish a sufficient condition for a
ball B to be self-generating. This condition builds on Fudenberg and Levine (1994) and
Sugaya and Wolitzky (2023).24

DEFINITION 4. The maximum score in direction A € A with reward bound x > 0 is

k(A X):= sup A- (u(a)+/x(y)p(y|a)dy>, subject to:
aex;A(A4;),x:Y—=RN y

1. C): supp(a;) < argmax, ui(a;, a—;) + fy xi(Y)p(y|ai, a_;) dy for all i.

2. Half-space decomposability with reward bound x (HSx): A-x(y) <0and ||x(y)|| <X
forall y.

LEmMA 2. Foranyx > max,, ycr |u—u'| and e > 0, if a ball B of radius r satisfies
k(A, )'c)zmag)\-v’+s forallxe A, and 8)
ve

6 er

-2 L9 & 9

=1-536 9)
then B is self-generating.

We then show that there exists B with d(v, B) = O((1 — 8)#"/2) that satisfies the suf-
ficient condition for self-generation just given.

LEmMA 3. There exist X > max, yecf |lu — |, ¢ >0 and & < 1 such that, for any 6 > 5,
there exist & > 0 and a ball B of radius r satisfying (8), (9), and d(v, B) < c(1 — 8)F"/2.

The proof of Lemma 3 uses Assumption 2 and the assumptions that dim F* = N,
v; € (v;, max, u;(a)) for all i, and bnd(F#*) has min-curvature of order 8 > 1 at v. The logic
is similar to that accompanying Figure 1.

The proofs of Lemmas 2 and 3 are deferred to the Appendix. Given these lemmas,
taking ¥, ¢, and & as in Lemma 3 establishes Theorem 2.

6. A STRONGER RESULT FOR THE PRINCIPAL-AGENT PROBLEM

In this section, we establish that withholding feedback in a standard repeated principal-
agent problem leaves unchanged not only the rate of convergence to efficiency (the or-
der of inefficiency in 1 — §), but also the exact level of first-order inefficiency (the con-
stant multiplying 1 — 8). This stronger result also has the virtue of identifying the pre-
cise features of the stage game and the monitoring structure that determine the level of
first-order inefficiency.

24Lemma 2 is similar to Lemma 6 of Sugaya and Wolitzky (2023), but is simpler because the monitoring
structure varies together with 8 in our 2023 paper while it is fixed in the current paper, so here we do not
need as much control over the relationship between 8 and the reward bound x.
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Consider a standard repeated principal-agent problem in discrete time. In each pe-
riod ¢, an agent chooses an effort level a from a compact interval A4 = [0, 4], and a
signal y is then drawn according to a pmf or pdf p(y|a). Assume that p(y|a) is twice
continuously differentiable in a, with first and second derivatives p,(y|a) and p,,(y|a)-
A contract specifies, for each period ¢, a recommended effort level r; € A as a function

of the history of past recommendations and signals (ry, y,/)i,_: 11, as well as the agent’s

current consumption ¢; > 0 as a function of (r, y),_,. In the public game, the agent
chooses her period ¢ action a; as a function of ((ry, a, y,/)ﬁ;%, r¢); in the blind game,
she chooses a; as a function of ((r,, a,/);;}, r;) only. The agent’s payoff in period ¢ is
u(c;) — ¥(a;), where the consumption utility u is twice continuously differentiable on

R, with u(0) =0, u’ > 0, u” <0, lim,_, o t/'(¢) =0, and

u//(c)

p O (10)
ce[0,00) (l,l/(C))3

and the effort cost ¢ is twice continuously differentiable on 4 with ¢(0) = ¢/(0) = 0 and
" > 0. (We discuss the role of condition (10) below.) The principal’s payoff in period ¢
is a, — ¢;.?° The parties have the same discount factor & € [0, 1).

We remark that our public game is nearly identical to the model of Spear and Srivas-
tava (1987) (although unlike them we do not require a monotone likelihood ratio) or a
discrete-time version of the baseline model of Sannikov (2008) (although we allow much
more general monitoring structures, as discussed below).26 However, those papers do
not consider the possibility of withholding feedback from the agent.

For any effort level a € A, the score of the signal y is

Pa()’|a)

forallyeV,
p(yla)

v(yla) =

and the Fisher information—the variance of the score—is

2
y P(y|a)

We require the following technical assumption, which implies that the Fisher informa-
tion is finite, strictly positive, and Lipschitz continuous in a; the distribution of the score
is sub-Gaussian; and a second-order condition holds.

AssumpTION 3. The following hold:

i. Foralla € A, there exists A > 0 such that

max  pa(y|a)?

f&e[a,a+A]
dy < oo.
y p(yla)

25As indicated above, a; is not contractible. The interpretation is that a; — ¢, is the principal’s expected
payoft, where her realized payoff is determined by y; and ;.

26Sannikov also extends his model to consider additional contractual possibilities such as the agent quit-
ting or being promoted. We do not consider such extensions here.
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ii. Z(a) is strictly positive and Lipschitz continuous on A.

iii. The scorev(y|a) is sub-Gaussian with variance proxyZ(a):

6°Z(a)
2

/exp(ev(y|a))p(y|a) dy < exp( ) forall 6 e R.
y

iv. There exists K such that, for all a, & € A, we have

fv(yla)paa(ylft)dyfo and 11)
y
AN2
/paa(Y|a) dyf[%. 12)
y plyla)

For example, Assumption 3 is satisfied if Y is finite, orif Y CR"” and y = g(a) + ¢
for a deterministic function g : A — Y with a bounded gradient and multivariate nor-
mal noise ¢ with covariance independent of a. Note that Assumption 3(iii) strengthens
Assumption 1.

For any w € [—(A), it), where il = lim,_, o, u(c) € Ry U{oo}, let F(w) be the first-best
payoff for the principal when the agent’s payoff equals w, which is given by

Sy o
F(w)_rglgl(a u" (w+ y(a)).

Let a(w) be the maximizer (which is unique, as the maximand is strictly concave), and
let ¢(w) = u~'(w+ ¥ (a(w))) be the corresponding consumption for the agent. Note that
F is twice continuously differentiable, and @ and ¢ are continuously differentiable. In
addition, since '(0) =0 and v’ > 0, we have a(w) > 0 forall w € [—gb(/_l), i).

Finally, let FZ(w) (resp., FL (w)) denote the maximum payoff for the principal over
allv e EB(8) (resp., v e EF(8)) where the agent’s payoff is w. That is, F2 (w) is the princi-
pal’s second-best payoff in the blind game, while F' g (w) is her second-best payoff in the
public game. Recall that EB(8) 2 EP(5), so FB(w) > Ff'(w). Nonetheless, we show that
F g (w) and F' g (w) agree up to a first-order approximation as 6 — 1.

THEOREM 3. Foranyé <1 andw € (0, i), we have

FB(w) _ Fw) + > +0(1-98) and

_ 1
Ff(w) =F(w)+ +o(1-9), (13)

where in each equation o(1 — 8) stands for a (different) function satisfying lims_,; o(1 —
8)/(1—8)=0.
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Theorem 3 shows that, whether or not the agent receives feedback, the first-order
inefficiency of an optimal contract is precisely
1- 64/ (aw)” F" (w)
8§ ZI(aw) 2 °

(14)

In the public monitoring case, this result is similar to Theorem 5 of Sannikov (2008) and
Corollary 1 of Sadzik and Stacchetti (2015), but we consider a discrete-time game with
a general monitoring structure, while Sannikov considers a continuous-time game with
Brownian noise, and Sadzik and Stacchetti consider the “frequent action limit” of a class
of monitoring structures that converge to Brownian noise. However, the key point of
Theorem 3 is that the first-order inefficiency is exactly the same under private monitor-
ing. Thus, even if the principal can conceal the agent’s past performance in a standard
repeated principal-agent problem, she can do little better than to fully reveal it and uti-
lize a public contract.

A rough intuition for Theorem 3 is that, with high probability, the agent’s continua-
tion payoff is approximately constant for a long time under an optimal contract, so there
is little information about the continuation payoff to conceal, and thus little to gain from
concealing it.

The proof of Theorem 3 is facilitated by the principal’s ability to commit to delivering
any feasible promised continuation value for the agent. It may be possible to generalize
Theorem 3 to smooth games with 1-dimensional actions and product structure moni-
toring (as considered by Sannikov (2007)), but this would require constructing equilib-
ria that attain specific continuation payoff vectors far from the initial target vector. This
possibility is left for future research.

We finally comment on the role of condition (10). This condition implies that the
second-order efficiency loss from varying the agent’s utility is uniformly bounded away
from zero. With CRRA utility u(c) = c'=7/(1 — v), it holds if and only if y > 1/2. Without
this condition, review strategies with infrequent, large rewards may yield a first-order
improvement over (14) if u’(¢) converges to 0 sufficiently slowly as ¢ — oc.

6.1 Proof sketch for Theorem 3

We first bound F g(w) from above. Fix a period ¢ and a small constant A > 0, and con-
sider the manipulation where, whenever the agent is recommended effort a in period ¢,
she instead takes effort a — (¢'(a)/Z(a))A. (The agent thus shades her effort more after
recommendations where effort is more costly or less detectable.) For this manipulation
to be unprofitable for all # and A > 0, we must have

u| Y@ W @vlylan i 8'~'iy | <0 foralls (15)
Z(ay) Z(ay) el - '

where p is the equilibrium occupation measure and &y = u(cy) — (ay) — w is the de-
viation of the agent’s period ¢ utility from w (see Lemma 22 in the Appendix). Letting
(1—-8)8'"1¢, denote the Lagrange multiplier on this relaxed period ¢ incentive constraint
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(as in the proof Theorem 1) and letting &; = 1-8 p7(w) for all ¢, the inner problem in the

5
Lagrangian (4) becomes
F(w+ d;(h)) = F(w)

. _ o i1 |l 1-6- "(a;)? ' N oftn
(T:ltgll)f)t,h(l 5);6 E T FN(M(@EZZ; _tﬂ(a;)(r;(t})'zlat) Z St_tl/lﬂ(h))

t'=t+1

Taking the Taylor approximation F(w + ii;(h)) — F(w) ~ %ﬁ,(k)z and rearranging,
this equals

iy — 2122V Onad S~ sy

1_6F//(w) . f ad EI‘L 6 I(at) =t+1
19 2 (I:lt%]I’ll))t,h 1 21— 8) is,,l ' (ar)?
I(ay)
t=1
The FOC for #; is

— =y ’ 7 7
i;(h) = 1-9 Z vlanvlyrlar) forall > 2 and h.%”
) =1 I(ay)

Substituting the FOC into the Lagrangian (together with #; (k) = 0 for all #) and simpli-
fying (see equation (40) in the Appendix) gives
1= 8 o[ ¥/(@)2 ] F'(w)
) Z(a) 2

Finally, to attain inefficiency of order 1 — 8, we must have |a* — a(w)| < O(1 — 8). Ineffi-
ciency is thus no less than

18 y/(@w)” F'w) 18 (Ea" [ w’(a)z} - df’(c'z(w))z) F'(w)
6 I(aw)) 2 5 @ | Z(aw) ) 2
_1-8¢/(@aw)’ F"(w)
T8 I(a(w) 2

+o0(1-96).

We next bound F g (w) from below. Given a continuation payoff w; for the agent, sup-
pose the principal implements first-best effort a(w;) by offering the corresponding first-
best consumption ¢(w;) and providing incentives entirely by varying the continuation
payoff w,1 while making it a martingale: E[w,41|w;] = w;. The Taylor approximation of
inefficiency is then equal to

F//(wt)

ZIE“[(w;H—w,)Z] 5
=1

27A subtlety is that the Taylor approximation for F(w + #,) — F(w) is slack if &, is large, which occurs if
some score v(yy |ay) is large. However, large scores occur with low probability by Assumption 3, and the
efficiency gain from relying on large scores is limited by condition (10). These complications are addressed
in the proof of Lemma 16 in the Appendix.
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To bound the variance E#[(w;,; — w;)?], note that the agent’s incentive constraint is
a(wy) € argmax(1 — 8) (u(c(wy)) — ¥ (a)) + Sfp(yla)(wm(y) —wy) dy,
a

with FOC
(1—8)y'(a(w:)) + 6fpa(y|é(wt))(wz+1(y) —w;)dy=0.

To minimize variance subject to the agent’s FOC, the principal takes w;+1(y) — w; pro-
portional to »(y|a(w;)), which gives variance

]. — 8)2 ll’/(a(wt))z 28

EX[(wig1 — wt)z] = ( 5 (@)
t

The resulting ex ante inefficiency thus equals

EH [Z 8"1<1 - 5>2 ¥ (@w)’ F”(wt)]
8 I(@w)) 2

t

189/ (@)’ B (w)
8 I(aw) 2

e L e gy
- B I(a(wy)) 2 Z(a(w)) 2

-8y (aw)” B (w)
8 Z(aw) 2

+ 0(1 - 6),

where the last line follows as E*[(w;4+1 — wy)?] = O((1 — 6)?), and hence |w; — w| <
O(+/t(1 — §)) with high probability, so in the second line both the sum from ¢ =1 to
(1 —8)~! and the sum from ¢ = (1 — 8) ! to oo are o(1 — ) (see the proof of Lemma 18).

7. DiscussioN
7.1 The low-discounting/low-monitoring double limit

This paper focuses on the rate at which inefficiency vanishes as § — 1 for a fixed moni-
toring structure. In contrast, in Sugaya and Wolitzky (2023) we showed that in the dou-
ble limit where simultaneously § — 1 and monitoring precision degrades, efficiency de-
pends on a ratio of discounting and monitoring precision. This double limit arises, for
example, in the “frequent action limit”considered by Abreu, Milgrom, and Pearce (1991),
Fudenberg and Levine (2007), Sannikov and Skrzypacz (2010), and Sadzik and Stacchetti

28]t is infeasible to take w11 (y) — w; exactly proportional to »(y|a(w,)) when »(y|a(w;)) is large, but this
is a rare event by Assumption 3. See Lemma 25 in the Appendix for the formal construction of the agent’s
continuation payoff.
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(2015), where signals are parameterized by an underlying continuous-time process, ac-
tions and signal observations occur simultaneously every A units of time, and the anal-
ysis concerns the A — 0 limit.

The results of the current paper extend to the low-discounting/low-monitoring dou-
ble limit. To see this, maintain the assumption that the monitoring structure is sub-
Gaussian with variance proxy K, but now view K as a variable that varies simultaneously
with the discount factor. Since K proxies the variance of the likelihood ratio difference,
alower value for K corresponds to less precise monitoring, so the low-discounting/low-
monitoring double limit arises when K — 0 and 6 — 1 simultaneously. For example, in
the standard frequent action limit, discounting and monitoring vanish at the same rate,
so (1 — 8)/K remains constant as K — 0 and § — 1.

From this more general perspective, it can be shown (by nearly the same proof) that
Theorem 1 holds verbatim with (1 — §)/K in place of 1 — §. Conversely, Theorem 2 also
holds with (1 — 8)/K in place of 1 — §, under the condition that X in Assumption 2 can
be taken to be of order K ~!/2. For example, this condition holds with finite signals with
p(y|a) bounded away from zero, or with Gaussian signals.??

7.2 Summary and directions for future research

This paper has used a rate-of-convergence approach to analyze the gains from nonre-
cursive equilibria in repeated agency problems and games with patient players. The
main result is that these gains are “small”: (i) in finite-action games, nonrecursive equi-
libria reduce inefficiency by at most a log factor; (ii) in smooth games, nonrecursive
equilibria reduce inefficiency by at most a constant factor; and (iii) in smooth principal-
agent problems, non-recursive equilibria do not reduce first-order inefficiency at all.
The key force underlying these results is that, while pooling information across periods
improves monitoring precision, it also entails larger rewards and punishments, which
reduce the scope for providing incentives by transferring future surplus between the
players rather than destroying it.

A basic lesson of our analysis is that the value of withholding feedback in dynamic
agency is very different in a one-off production process that unfolds gradually over time
(as in Holmstréom and Milgrom (1987)) as compared to a repeated interaction. Since
continuation payoff transfers are impossible in one-shot interactions, the monitoring
benefit of withholding feedback dominates, so withholding feedback can be very valu-
able. Butin repeated interactions, this benefit is offset by the cost of using larger rewards
and punishments, which limit continuation payoff transfers.

We mention some possible extensions of our results. First, as discussed in Section 5,
characterizing rates of convergence toward extreme points with curvature of order 8 > 2
is a challenging open question involving nonlocal properties of the feasible payoff set.
Second, as discussed in Section 6, it may be possible to generalize Theorem 3 from
smooth agency problems to smooth games. Third, it would be interesting to relax the
assumption that the likelihood ratio difference is sub-Gaussian. This could result in a
faster rate of convergence, because rare but highly informative signals would become

29We do not know whether Theorem 3 extends to the low-discounting/low-monitoring double limit.
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more common, and such signals become more useful as é increases. Fourth, it would be
interesting to extend our results to irreducible stochastic games with observable states,
where one can investigate the rate of convergence to extreme points of the limit feasible
payoff set. Fifth, one could consider stochastic games where the state is only observed
by the principal. In this setting, withholding information has costs as well as benefits,
which are interesting to compare. Finally, the rate of convergence to efficiency as dis-
counting vanishes may be a useful lens for analyzing a range of other questions about
long-run economic relationships, beyond the value of withholding performance feed-
back.

APPENDIX A: PROOF OF THEOREM 1

We first bound a player’s deviation gain at any « € A(A) that attains payoffs close to v.

Lemma 4. Thereexiste > 0 andy > 0 such that, for all « € A(A) satisfyingA- (v—u(a)) <
&, there exist a player i and a manipulation s; such that g;(«, s;) > vy.

PrRoOF. Since v € exp(F)\VCE, for all « € A(A) such that v = u(«), there exist i and s;
such that g;(s;, @) > 0. Let
1 .
- E aeA(AlElfzu(a) SZIYISI[) gi(Si, a).

Note that y > 0. To see this, note that g;(Id, «) = 0 for all i, «, so y > 0, and sup-
pose toward a contradiction that there exists a sequence «" such that v = u(a™) for
all n and sup; s, 8i(Si, a") — 0. Since A(A) is weak*-compact by Alaoglu’s theorem, tak-
ing a subsequence if necessary, o — o € A(A). Moreover, since each u; is continu-
ous, u(a) = v; and since each A; is compact, by the maximum theorem, supy, gi(si, &) =
lim,, sup,. g;(s;, ") = 0 for all i, contradicting v ¢ V.

Now suppose that for all £ > 0 there exists a® € A(A) satisfying A - (v — u(a®)) < ¢
and g;(s;, @°) < vy for all i, s;. Taking a subsequence if necessary, a® — « € A(A). More-
over, we have u(a) =lim, u(a®) = v (since u(a®) € F and v € exp(F)), and supy, 8i(si, a) =
lim, supy, &i(si, a®) <y for all i (by the maximum theorem), so sup; , 8i(si, ) <y, contra-
dicting the definition of vy. O

Fix such ¢ and y. Next, for any outcome p and period T, define the occupation
measure over the first T periods by a*7 = ((1 — 8)/(1 — 87)) Zthl 81al', and define
T(8) = [(log2)/(—1logéd)]. We first bound A - (v — u(a*)) for any w where all players’
deviation gains over the first 7'(8) periods are small.

LEMMA 5. For any outcome u where g;(s;, a®T®) < v for all players i and manipula-
tionss;, we have A - (v — u(at)) > /2.

Proor. Since 67 < 1/2 by construction, we have

A (v—u(at)=(1- S)iét_lx\ (v —u(af))

t=1
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T
> (1-8)) 8 'A- (v—u(ef))

=1

=(1-8")r-(v—u(a’)) >

(v —u(al)).

By construction of (s, ), if A - (v — u(a’)) < & then sup; ; gi(a’,s;) > y. Hence,
sup; gi(aT, s;) < yimplies A - (v — u(al)) > &, as desired. O

N>

We next establish the incentive constraint, (2).

LEMMA 6. For any equilibrium outcome u € MB(8), player i, manipulation s;, and pe-
riod t, we have g;(s;, o) < EM[€; ((si, 1) Y 0% 11 8" iy (M)].

Proor. For any sequence of action profiles (a,){°, and any period ¢, let w,(h) =
Yo, 5=t ui(ay). Since u is an equilibrium outcome, for every ¢ € N we have

gi(af, si) < /ht (pOilas) — p(yielsiCai,e), a—i ) SE[wep1 (M)A, ar, yi | du(h', a;) dy.
yan Yt

This holds because, if she follows her recommendation in every period ¢’ # ¢ while ma-
nipulating according to s; in period ¢, player i obtains an expected continuation payoff
Offht,a,,y, pOelsiCai), a—i ) Elwer1(h)|A', ar, yi)d(h', a;) dy; in period 7+ 1, and this de-
viation must be unprofitable. The lemma follows as

fh (pWelar) — p(yelsiCai ), aif))SE[wer (M) |1, ar, yi ) d (R, ar) dy,
Lagy

= /h pOyilant(si, h)SE[wir1(M)|h', as, yi | du(h', ar) dy;
Lag,y

= [ enitsim) Y 8 it dath
h

t'=t+1

where the last line follows by iterated expectation. O

We now come to our key lemma, which bounds (4)—and hence A - (v — u(a*))—for
any p where some player’s deviation gain over the first 7(8) periods is large.

LEMMA 7. There exists ¢ > 0 such that, for any outcome p., player i, and manipulation s;,
and discount factor 8 < 1 satisfying gi(s;, a*7®) > v, we have

up inf (1—8)26“11@“[n|ﬁt(m|3+ft<g¢*—et(h) > 8”“%4}:))]

S
(£1)¢>0 (W) pel—it, ] 1 f—t11

> c{(6).
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Together, Lemmas 5, 6, and 7 imply that A - (v — u(a*)) > max{e/2,c{(8)} >
max{e/2, c}{(8) for all 6 <1 and u € MB(8). Theorem 1 therefore holds with ¢ =
min{e/2, c}.

It thus remains to prove Lemma 7. To thisend, let £, =¢>0ifr < T(8), and & =0
otherwise. Letting T' = T'(8) to ease notation, we then have

) ) T o)
(L=8)y 8" &tuh) Y 8"y (h) = (1= 8)EY ti(h) Y 8" ap(h)
t=1

=t+1 t=1 t'=t+1

o
=(1—8)¢&) 8" Luing—1,1yie(h), and

t=2
00 T f’)’
(1=8)) 3 gl =¢(1-8)) 0" g =£(1 - 8")gi(si 7)) = =7,
=1 t=1
In total, we see that (4) is no less than
o
sup &y + inf  (1- 5)28’—1E“[n|ﬁt(h)|3 — ELming—1, Tyt (M)] ). (16)
g0\ 2 (@) pel-a0) p—

The following lemma thus establishes Lemma 7.

LEMMA 8. Foreach B > 1, there exists ¢ > 0 such that, for any u and 8, the value of (16) is
no less than ¢ (5).

In turn, Lemma 8 relies on the following large deviations bound for martingales.

LeEmMA 9. Let (X;);>1 be a sequence of martingale increments adapted to a filtration
(H{)>0, so that E[X,|H;—1] =0, and let (w;)>1 be a stochastic process adapted to the
same filtration satisfying Elexp(6X,)|H,_1] < exp(0?w,/2) for allt > 1 and 6 € R. Let
Sr=Y"" X, andWr =Y._| w,. Forall T > 1, we have E[exp(6St)] < exp(6*Wr/2), and
hence (i) Pr(|S7| > x) < 2exp(—x2/(2Wr)) for all x > 0, and (ii) E[|ST|?] < 2(eWr/e)?/?
forall ¢ > 0.

Prookr. By iterated expectation,
E[exp(6S7)] = E[exp(6S7_1)E[exp(6X7)|H7_1]] < E[exp(8S7—_1)] exp(6°w7/2).

Recursively applying the same argument gives E[exp(0ST)] < exp(6°Wr/2). Applying the
Chernoff bound then gives (i) and (ii); see, e.g., Lemmas 1.3 and 1.4 of Buldygin and
Kozachenko (2000). |

Proor orF LEMMA 8. We consider separately the cases where 8 =1 and 8 > 1.
Case 1: When B8 = 1, the minimand in (16) is linear in &, (k). Minimizing over i, (h) €
[—u, u], we see that (16) equals

sup(% +(1— 6)28’_1/

. (1 = €lLming—1,myl)@dp(h) |. A7)
£>0 —2 LD N M E
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Note that E[¢|(ay, y»)',_}, a:] = 0 and E[exp(6¢,)|(ar, yr)'_, a:] < exp(6°K/2) for all 1,
h, and 6, by (1). Hence, by Lemma 9, Lyin—1,7} is sub-Gaussian with variance proxy
K min{z — 1, T}, and thus satisfies

2
X
Pr(¢|Lming—1,77 = x) < 2(exp<— >)

282K min{r — 1, T}

We thus have
/ (1 — €lLming—1,731) d(h)
h:fﬁmin{tfl,T}ZTI
=Pr* (&1 Lming—1, 731 = )0 — E¥[H{&| Lming—1, 73| = n}ELrminge—1,71]

2
X
== Pr# (&1 Lmingi— zx dxz—z/ ex (— )dx,
fxzn (éVminis-1,17] 2 %) on P\ 2Kk Zmingt— 1, T)

where the second equality is by integration by parts. Now note that

2
b
/ exp(— 5 >dx
x>n 2K& min{r — 1, T}

= /28K /min{r — 1, T}/
-
yZ‘/2§2K~/min{t—1,T}

exp(—yz) dy

28K | n?
< min{t — 1, T}exp| — 5 -
n 26°Kmin{t — 1, T}
28°KT 2
<% exp(— U ) (18)
Y| 28°KT

where the first inequality uses the Mills ratio inequality ¢(—x)/®(—x) > x for x > 0.
Hence, (17) is no less than

&y  4ug’K o ot n*
sup<7— . (I—B)Zét 1T€Xp<—2§2KT))

t=2
4atKT 2
zsum‘*(z— ue eXP<— Z ))
g0 \2 n 26°KT

£ = (KT max{log(2°K T2y ~2), 1}) 7,

4a¢KT 2
sup§<z — ug exp(— Z ))
=0 \2 n 28°KT

> g*(% - 4[;«/KT(maX{log(ZSKTL_tZV_Z)r 1})_1/2

Finally, letting

we have
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1
X €Xp <— > max{log(28K Tu*y~2), 1 }))

(3 oikTen( )

= §4y = %(KTmax{log(ZsKTﬁzyfz), 1})_1/2
> ﬂ((4Klog2)max{log(zg(logZ)Kﬁzy_z), 1})_1/2§(8),

4

where the last inequality follows because T < [(log2)/(1 — 8)] < 2(log2)/(1 — 6) and
max{—logxy, 1} < 2max{—logx, 1} max{—logy, 1} for all x, y € R. This is a constant mul-
tiple of £(6), as desired.

Case 2: When 8 > 1, the minimand in (16) is convex in i, (/). Relaxing the constraint
i (h) € [—u, u] and minimizing over i, (h) € R gives

1
R B-T | 1
i (h) = (%) sign(Lming—1,7}) | Lmingr—1,73| BT forall £ > 2.

Hence, substituting for &;(4), (16) is no less than

_ 1 %)
&y B(IBB 1—1)51 -1 £
sup| - —&F 1| ———5— (1-9)) o ]E[Iﬁmin{z_LT}l ‘H] . (19)
520( 2 m  gP ZZ:

By Lemma 9, Lyini—1,7; is sub-Gaussian with variance proxy K min{t — 1, T} < K (¢t — 1),
and thus satisfies

B

B B 261 B
E*[|Lomingr—1,731 BT ] <2 ——— K(f—1))26B-1D
i1l 71] = (dB—D) (K@=1)

B

Z(Ly(ﬁ_thu%(t — e,
e(B—1)

Next, for any 9 > 1, we let k() > 1 satisfy

IA

o0
28’#9 < uk(% for all 5. (20)
=1 -

(The existence of such k() follows from the standard fact that ), 6’ P =TWO+1)(1-
8)~ D L 0((1 - 8)?); see, e.g., Wood (1992, equation (6.4)).) With this definition, we
have

ad B
(1—8)) 8" "E[|Lming—1,71P]
t=2

B
Sz(iy(ﬁ”Kz(ﬁﬁ—llk(max{i,1})(1—5)_%{{%’1}
e(B—1) 2(B-1)
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_B_
5 2( B )z(ﬁn KZ(BB—U k(max{ B 1}) (1— 8)—max{_2(ﬁﬁ_l)-,l}.

e(B—1) 2(B-1)
Thus, (19) is no less than

B 1
y B 21 (BPL — 1)_13—1
DAY g -
Z‘i‘é'5<2 (e(/s— 1)) ( nB?

xKﬂB’il)k<maX{ B 1})( 3 >ﬁ>
2(B-1)’ (1 — §)max(B/2,p-1} )

1
Since the coefficient of (£/(1 — §)™&{B/2, (=D} BT js independent of §, there exists ¢ > 0
such that if ¢ = 4¢(1 — 8)™&{B/2.8-1} then the resulting value is no less than £vy/4, which
is again a constant multiple of £(§). O

APPENDIX B: PROOF OF PROPOSITION 1

Consider a review strategy where the game is divided into blocks of T' consecutive pe-
riods. Let T = |p/(1 — 8)], where p > 0 is a small number to be determined: note that
p~1— 8T when 6 ~ 1. In the first block, the players are prescribed (C, L) in every
period. At the end of the first block—as well any subsequent block where (C, L) is
prescribed—the mediator records the summary statistic

T
1
E=1{—=>Y 2y,—1)<—y/—log(1-5).
VT =

(Here, periods are numbered from the start of the block and y; ; € {0, 1} is the signal of
player 1’s action in the ™" period of the block.3?) If E = 0, the players “pass the review”
and (C, L) is prescribed in the next block. If E = 1, then with some probability g € [0, 1]
(which also remains to be determined), the players fail the review and (D, R) is pre-
scribed forever. With the complementary probability 1 — ¢, the players pass the review
anyway and (C, L) is prescribed in the next block.

We show that there exists ¢ > 0 and § < 1 such that, for any 6 > S, the parameters
p and g can be chosen so that this strategy profile is an equilibrium that yields payoff
v>2—c((1—38)/(—log(1 —8)))!/? for each player.3!

Let p be the probability that £ = 1 when player 1 takes C throughout a block; let py
be the probability that £ = 1 when player 1 takes D once and takes C T — 1 times; and
let pr be the probability that £ = 1 when player 1 takes D throughout. Observe that v is
given by

8quv
1-87"

v=(1-8")2+8"T(1-pgv = v=2- (PK)

30The event E does not depend on the signals (y»,)L; of player 2’s action. Indeed, monitoring player 2
is unnecessary, as player 2 takes a static best response at action profile (C, L).
3lwe write v instead of v; here, since the players’ payoffs are the same.
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At the same time, the incentive conditions that player 1 prefers to take C throughout a
block where (C, L) is prescribed, rather than taking D in period 1 only, or always tak-
ing D, are

1-6<8"(p1—p)qv and (IC1)
1-6" <8"(pr — p)qu. (IC7)

Conditions (IC;) and (IC7) are obviously necessary for the review strategy to be an equi-
librium; moreover, as shown by Matsushima (2004, p. 846), they are also sufficient.3? It
thus suffices to find ¢ > 0, § < 1, p, and ¢ such that, for any & > §, (PK), (IC;), and (IC7)
hold, and v > 2 — ¢((1 — 8)/(—log(1 — 8)))/2.

Define
1-6 287 8T -1
v =2— and = (p1—p)— ——= ) . 2D
1-8"p1—p 1 (1—5p1 Pt
With these definitions, (PK) and (IC;) hold with equality, with v = v*. We show that
1-6 p
_sT — 5 p
lim A=8 PL=P _ Ve forall p > 0, (22)
5—1 1—-8 el —1
—log(1 — 6)
26T (p1 — 8T
lim lim (p1=p) — p >1, and (23)
p—06—1 1-6 1-— 6T
8T -
lim lim 2 4PT—P) (24)

p—06—>1 1—¢oT

Given these inequalities, the proof is completed by first taking p > 0 and &1 > 0 such that
the inequalities in (23) and (24) hold for p and all 8 > 8, then taking &, > 0 such that the
inequality in (22) holds for p for all § > 82, and finally taking ¢ = 5,/pe”/(e” — 1) and
5= max{Sl, 52}.

We now establish (22)-(24). Let k = | (~/T/2)(v/T — /—1log(1 — 8))]. Note that

T T T
1
p:Pr(E y1,t<k>+§Pr<E yl,tzk)<Pr<E yl,tfk), and

=2 t=2 t=2

T
1
n-r=y Pf(Zth = k) (25)

t=2

B (T—l)' <1>T+1> (T)' <1>T+2
T kR(T-1-k)1\2 ~kNT —k)N\2 ’

where the last inequality holds because k£ < T/2.

32Matsushima considered repeated games with two players and conditionally independent signals. Con-
ditional independence implies that a player does not learn about her opponents signals during a review
block, just as players do not learn about the mediator’s signals in T'2. The same argument thus applies here.



Theoretical Economics 20 (2025) Nonrecursive dynamic incentives 1491

We first establish (22). Recall that the y; ; are independent Bernoulli random vari-
ables. As shown by Zhu, Li, and Hayashi (2022, Theorem 2.1),

T

Pr(ZYl,tSk) 5
=2 <kr1-ty k-1 L) pok
T - 2 2 ’

Pr(Z)’l,t=k>
t=2

Since

1-6 T 2
—<k+1——+ <k—1—z) +2k>
i 187 2 2 _ Jpef

6—1 1—6 eP —1

—log(1 —6)

where the second line follows by I'Hopital’s rule, we have

T
Pr(Zyl,t < k)
=2

1-6
1-8" T
1=% _p Pr(Zyl,Fk)
. — T p1— . — 4./pe?  5./pef
hmlsplpghm (=2 :\/ﬁe<\/ﬁe,
6—1 1—6 6—1 1—6 e —1 e —1

—log(1—6) —log(1 —8)

which establishes (22).
We next establish (23). Applying Stirling’s formula to (25), we have

o Vem(T-1) (T—l)k( T-1 )T—l—k 26)
n p_462\/k(T—1—k) 2k 2(T-1-k) '
Therefore,
. Tpi—p) . . &7 em(T-1) [(T-1\F T-1 T-1-k
lim lim ————~ > lim lim
p—085-1 1—6 p—06->11—=8 42 /k(T—1—k)\ 2k 2(T-1-k)
= 0Q.

T
On the other hand, lim,_, ¢ lims_,1 d 5pT

. T ) - .
. T = limg_,1 ﬁT =lim,_,¢ % = 0o, which estab-
lishes (23).
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Finally, we establish (24). We will show that lims_,; p =0 and lims_,; pr = 1. Hence,
for sufficiently large 6, pr — p > 1/2. This implies (24), as we have

8T —
lim lim >-4PT —P) . p)
p—056—>1 1—-6
8T 1 pr—7p
— lim li — by (21
p0011— 57 57 ,PL=P __P y (@l
1-6 1-6"T
1
> lim lim ———2
p—>06>11—8 2P1—P
1-6
oo -5 Ve(T —1) T-1\F T-1 T=1=ky —1
> lim lim =09,
p—~08->11—-8"\2m /(T —1—k)\ 2k 2(T-1-k)

where the second inequality follows by applying Stirling’s formula to (25).

It remains to show that lims_,; p = 0 and lims_.; pr = 1. Note that the random vari-
able 2y; ; — 1 has zero mean and unit variance when player 1 takes C. Thus, by the
Berry-Esseen theorem, there exists an absolute constant Cy such that

T

1

p = prPlayer 1takes € <ﬁ2(2yl,t — 1)< —/—log(1 — 5))
t=1

< ®(—y/—log(1-98))+ Co(

Eplayerl‘[akesC[|2y1 - 1|3] 51
: ) —0
VT

On the other hand, (4y;,;, — 1) /+/3 has zero mean and unit variance when player 1
takes D. Thus, again by Berry-Esseen,

T

1

pr= PrplayerltakesD<ﬁZ(2th -1)<—y/—log(1l—- 8))
=1

T =
— pyPlayer 1 takes D 1 Z4yl,t -1 < T —2y—log(l-29)
VT V3 T V3

_ _ . player 1 takes D _ 3
>¢<ﬁ 2/m> +CO<IE [|(4y,c — 1)/V3] ]> =1
V3 JT

completing the proof.

APPENDIX C: PROOF OF PROPOSITION 2
To define X, we first observe that for each pair of players i # j and each action profile a,
we can take (xf (d; a))4 such that (i) ), xf (d; a) yd has mean 0 and bounded Euclidean
norm; (ii) rewards ) ", x{ (d; a)y? induce player i to take a; when her opponents take a_;;
and (iii) E[)_, x{ (d; a)y*|a] is independent of player j’s action.
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LeEmMMA 10. There exists X such that, for each pair of players i # j and action profile
a € A, there exist (x!(d; a)) 4 such thatE[Y_; x!(d; a)y?|a] =0, d%]E[Zd x}(d; a)yllal =1,
dial_IE[Zd xf(d; a)yd|a] =0,and|) , x{(d; a)yd| <X forally.

ProOF. Foreach a and (i, j), let f(a) be the value of the program
inf |b| subjectto
beRD

d
Zbdd_“(ai' a_;) =1, or equivalently bM;(a) =1,
a;
d
d .
Zbd%mai, a_;) =0, or equivalently bM;(a) = 0.
d J

(Here, b is a row vector while M;(a) and M;(a) are column vectors.)

Since A > a is compact and N is finite, it suffices to prove that, for each (i, j), (i)
fi(a) < oo for all a, and (ii) f7(a) is upper semicontinuous.

We first prove (i). As in Lemma 1 of Sannikov (2007), pairwise identifiability implies
that the columns of [M’(a); M/(a)] are linearly independent, so there exists L(a) such
that [M(a); M/ (a); L(a)] is a D-dimensional invertible matrix. For

Q(a) = [M;(a); 0; 0] [M'(a); M/ (a); L(@)] ",

we have Q(a)Mi(a) = Mi(a) and Q(a)M/(a) = 0. Moreover, since M(a) is non-
degenerate, there exists b such that bM’(a) = 1. Since b = bQ(a) satisfies the constraints,
we have f7(a) < .

We next prove (ii). Fix any a and 7. There exists b such that |b| < f U(a) + % and b
satisfies bM;(a) = 1 and bM;(a) = 0. Take L(a) as in the proof of (i). Taking n; > 0 suffi-
ciently small, we can guarantee that [M(a’); M/(a’); L(a)] is a D-dimensional invertible
matrix for each a’ with |a — a’| < 7). Define a D-dimensional vector A, by

Ay = [b(Mi(d') — Mi(@)), b(M;(a') — Mj(a)), O][M'(d); M (d'); L(@)] .
By definition,
(b+Ay)M;(a') =bM;(a’) — b(M;(a’) — Mi(a)) = bM;(a) =1,
(b+Ay)Mj(d)=bM;(a") — b(M;(a’) — Mj(a)) =bM;(a) = 0.

Thus, b — A, satisfies the constraint for «’, and hence f¥(a’) < |b| + |Ay|. Since
limsup, o SUPy.ia_a|<n, 1A'l =0, for sufficiently small 7, > 0, we have f9(a’) < |b| +
|Aw| < bl + 3m0 < fY(a) + o for all &’ with |a — a'| < 1, establishing upper semiconti-
nuity. O
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Given Lemma 10, Assumption 2(ii) holds With X = ux. To see why, for any i and q, let
Ju; = %ui(a;, a_,-)|a;_:ai and x;(y) = —du; y_, x(d; a*)y. Then

1%

— =0 and
da;

/
ai=ai

(ui(aj, a—i) + E[M(}’)la;’, a—i])

Jd ..
J]E[cxi(yﬂa}, a_j] =0 forallj#i.

! — .
J a;=aj

Since u; is concave in a;, E[x;(y)|a}, a_;] islinear in a}, and E[cx;(y) |a;., a_j]islinearin a}.,
we have (6) and (7). Moreover, since |Ju;| < it, we have |x;(y)| < ux for all i, y.

APPENDIX D: PROOF OF LEMMA 2

The proof is similar to (but simpler than) the proof of Lemma 6 of Sugaya and Wolitzky
(2023). To show that B is self-generating, it suffices to show that the extreme points of
any ball B’ C B of radius r/2 are decomposable on B’.

LEMMA 11 (Sugaya and Wolitzky (2023, Lemma 10)). Suppose that for any ball B C B
with radius r/2 and any direction A € A, the point b = argmax, g A - V' is decomposable
on B'. Then B is self-generating.

We thus fix a ball B € B of radius /2 and a direction A € A, and let v = argmax,,.p A -
v'. We construct («, w) that decompose v on B'.

Since k(A, ¥) > max,cp A-v' + & by hypothesis, there exist « and x : Y — R satisfying
(IC), (HSx), and

A (u(a) +/x(y)p(y|a) dy) >maxA-v +&/2 > maxA-v + g/2. (27)
y veB veB

To construct w, for each y, let

~ 1=0/,
w(y)=v+ 5 (v—u(a)—i—x(y)—/

y p(y'l)x(y) dy/) -

We show that («, w) decomposes 0 on B’ by verifying (PK), (IC), and (SG).

(PK): This holds by construction: we have fy w(y)p(yla)dy = (1/8)(0— (1 — du(a)),
and hence (1 — 8)u(a) + Sfy w(y) p(y|a) dy = 1.

(IC): Setting aside the constant terms in w(y), we see that an action 4; maximizes
(1 = dui(a;, a—;) + (Sfy w;(y)p(yla;, @—;) dy if and only if it maximizes u;(a;, a—;) +
fy xi(y) p(ylai, a—;) dy, which follows from (IC).

(SG): We start with a simple geometric observation.

Lemma 12 (Sugaya and Wolitzky (2023, Lemma 11)). Foreachw € RN, we havew € B’ if
A-(v—w)>0and

d(v, w) </ (r/2)A- (0 — w). (28)
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We thus show that, for each y, w(y) satisfies A - (0 — w(y)) > 0 and (28). Note that

(u(a) + / x(Y)p(y'le)dy =0 — x(y)).
y/

By (HSx) and (27), we have A - (0 — w(y)) > (8/(1 — 8))e/2 and, therefore,

V—w(y) =

1-0
Jor2ne (- wi) = —=\/7== (29)

Similarly, we have

A 1-9 ~ / / !
d(d, w) < T<d(v, u(a)) +d</ x(Y)p(y'|e) dy', x(y)>>
y/

1-6
0

5?(max u—u| +2)'c>§

u,u'eF

3x. (30)

Comparing (29) and (30), we see that w(y) satisfies (28) whenever 3x < ,/(6/(1 — 8))er/4,
which holds by (9).

APPENDIX E: PROOF OF LEMMA 3

Since dim F* = N and v; < max, u;(a) for all i, there exist 7 > 0 and F C F* such that
fwe F*:d(v,w) <%} CF,dimF =N, and v; < w; <max, u;(a) forall i and w e F. Fix
any such (7, F).

The following lemma is similar to Lemma 5 of Horner and Takahashi (2016) or
Lemma 7 and pp. 1750-1751 of Sugaya and Wolitzky (2023).

LEMMA 13. There exists X > u such that k(A, X) > max,, g A - v forall A € A.

ProOOF. Let & > 0 satisfy the conditions of Assumption 2. For each i, since v; < w; <
max, u;(a) for all w € F, there exist A; > —1and Ai < 1 such that (i) for all A € A with A; <
A;, we have A - u(a) — Zn# [An|% > max,, 7 A - w for all « satisfying u;(a) = v;; and (i) for
all A € A with A; > A;, we have A - u(a) — Zn# [An|% > max, 7 A - w for all « satisfying
ui(a) = max, ui(a). Given such (A;, A;);, we define

max{|\:], A;
)E:«/N<2N+max KAl ) )fc
1

(1 = max{|Al, Ai}5)/(N = 1)

For each A, we now construct (e, x(y)) such that A - (u(a) + E[x(y)|a]) > max, A - w
and (IC) and (HSX) hold. To do so, fix any i € argmax |A;|, and consider three cases.

(i) A; < A;. In this case, take a minmax profile o' and (% (¥))j»i that satisfy Assump-
tion 2(i). Define x;(y) = Zn# [An|X/A; and x;(y) = X;(y) for all y. (IC) holds for j # i
given Assumption 2(i), and (IC) holds for i since player i takes a best response in «' and
x;(y) is independent of y. (HSX) holds with ¥ > 2N X given Assumption 2(i). Finally,
Au@) +EN-x(0)] = A ula’) = 3, [ Aalk = max, q A - w.
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(i) A; = A;. Inthis case, take a' € maxu;(a) and (fcj(y))j#,- that satisfies (6) for player j.
Define x;(y) = Zn# |AnlX/A; and x;(y) = %;(y) for all y. The argument is now the same
as case (ii).

(i) Otherwise, there exists n # i such that [\;]/[A,] < max{|A;], A;}/
\/(1 — max{|A;l, Ai}2)/(N —1). Fix such n. Next, fix a € 4 such that A - u(a) > max, ;A -
w. For player i, take x/(y) such that Assumption 2(ii) holds for a, (i,n), and ¢ =
sign(—A,/A;). For player j # i, take x/(y) such that Assumption 2(ii) holds for a,

(j,i), and ¢ = sign(—A;/A;). We then define x;(y) = x'(y) — Z#ii—jxf(y), xn(y) =

x(y) — /(‘—’ixi(y), and x;(y) = x/(y) for j # i,n. Then (IC) holds for player i since
aj € argmax, u(aj, a_;) + Elx'(y)|a}, a_;] and a; € argmaxa;]E[—()\j/)\,-)xf(y)|a;., a_;] for
all j # i by Assumption 2(ii). (IC) holds for player n since a, € argmax,, u(a,, a—n) +
E[x"(y)|a),a-n] and a, € argmax, E[—()\i//\n)xi(y)|a;1, a_»] by Assumption 2(ii). In
addition, (IC) holds for player j # i, n since a; € argmaxa} u(a}, a_j) + E[xj(y)|a;., a_jl
by Assumption 2(ii). Finally, (HSX) holds since A - x(y) = 0 for all y and ||x(y)| <
VN 1% < VNN + X/ A% < % O

By Lemma 13, it suffices to find ¢ > 0 and & < 1 such that, for all § > 5, there exist
&> 0 and a ball B with radius r > 0 such that

max A - v >maxA v +¢e forall A €A, (31
veF veB

re>36x%(1—96), and (32)

d(v, B) <c(1 —8)F/2, (33)

If B* =1 then, as in Lemma 3 of Hérner and Takahashi (2016), it suffices to take any
o € int(F) and any ¢ > 0 sufficiently large compared to 36x?. Let r = (1 — §)!/2, and
take B to have radius r and center (1 — ¢r)v + £ro.

For the rest of the proof, we assume that 8* > 1. We first derive a geometric condition
for w € F*, similar to Lemma 12.

LEmMMA 14. Thereexist A € A%, p > 0, and k > 0 such that, ifd(v, w) < p and kd(v, w)P <
A (v—w), then w € int(F*).

Proor. Since F* is full-dimensional and has min-curvature of order at most 3 at v, there
exist £ > 0 and « > 0 such that, for all w € bnd(F*) satisfying d(v, w) < &, we have A - (v —
w) < kd(v, w)B < kd(v, w)?" forall X € A%. Let By (v) = {w e RN : d(v, w) = ¢'}. Since F*
is full-dimensional, there exists A € A%, &' > 0, and ¢ > 0 such that C := B (v) — tA C F*.
Fix such A, ¢, and ¢, and let € = min{g, &/, ¢}.

Now fix any p < min{e, (¢/2«)"/#"} and d < p, and let G = {w € By(v) : A - (v — w) >
2kdP"}. We wish to show that G € F* (and in particular G C int(F*), since G Nbnd(F*) =
7).

To see this, let W = By(v)Nbnd(F*), H ={w: A-(v—w) =«kdP'}, H = {w: A-(v—w) =
t}, and D = C N H'. Since d < p < min{g, (¢/«)!/F"}, G lies in between H and H'. In
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addition, the projection of G onto H is a subset of the projection of W onto H, and the
projection of G onto H’ is a subset of D. Hence, we have G C co(W U D). Finally, since
W C F*and D C C C F*, and F* is convex, we have co(W UD) C F*,so G C F*. O

LeMMA 15. There existc > 0, n > 0, and § < 1 such that, forall 6 > S, there exists a ball
B C F of radiusr = n(1 — 8)1F"/2 satisfying d(v, B) = ¢(1 — 8§)F"/2,

Proor. Fix A € A}, p > 0, and « > 0 as in Lemma 14. Given ¢ and 7 to be determined,
let B be the ball with radius » = n(1 — §)1~#"/2 and center 0 = v — (r + d)A, where d =
¢(1—6)P"/2, and take any o € 9B. Let x = A - ( — 0), so that xA is the projection of 1 — o
on A. Then

lv—w2P=lv—0o—xAIP+|W—0—xA|?=(+d—x)>+r>*—x*> and

A(v—w)=r+d—x.
Recall that, by construction, {w € F* : d(v, w) < 11} € F. Since d(v, w) < d(v, 0) +
d(o, w) <2r+dforallw e B, it suffices to show that 2r+d < 7 and B C F*. By Lemma 14,

if d(v, w) < p and kd(v, w)#" < A-(v—w), then w € F*. Since x € [—r, r], it suffices to find
¢, n, and § such that, for all § > §, we have

2r+d <7, (34)
((r+d)— x)2 +r2—x?<p? forallxe[-r,r], and (35)
max f(x, 8, B*) <0, (36)

xe[—r,r]
where
f(x, 8, B%):= K((r+d—x)2-i-r2 —xz)B*/2 —(r+d-—1x).

We consider separately the cases where B* = 2 and B* € (1,2). First, consider
B* =2. Let 11 > 0 be such that (35) holds whenever max{r, d} < 7, and let any ¢ = 1
and n = min{7, 11/4, k/4}, so that r = np and d = 1 — §. For sufficiently large §, we have
2r+d < n and d < 7, and hence (34) and (35) hold. In addition, since f(x, §, 2) is linear
in x when B* = 2, (36) holds whenever f(r, §,2) <0and f(—r, §,2) < 0. In turn, these in-
equalities hold for sufficiently large 8, since f(r, §, 2) =d(kd — 1) and lims_,; kd — 1 < 0,
and f(—r, 68, B*)=2r+d)(k(2r+d)—1)and lims_,; k(2r +d) —1=2km —1 < 0.

Next, consider 8* € (1,2). Let ¢ = 22/(2=B")2/2=B") g*B*/(2=B") and n = 1, so that
r=01-8"1F72and d=¢(1 — §)P"/2. Since max{r, d} — 0 as 6 — 1, (34) and (35) hold
for sufficiently large 6. In addition, f(x, 8, 8*) is concave in x and is maximized over
x €[—r,r]at

2
2r® +2dr + d* — (k(r + d) B*) =7
B 2(r+4d) '
It thus suffices to show that f(x*, §, 8*) < 0 for sufficiently large 8. By algebra,

2r+dd *25* 1 .2\ _2_ B
_ hd —BF _ Z B 2 | 2P d)z-F* .
T d 2 + (B 2,8 >K (r+d)

x*

f(x*’ o, ﬁ*) =
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Finally, since r = (1 — 8)!7#"/2 > ¢(1 — 8)F"/2 = d for sufficiently large 6, we have

* 2 *

B B*
f(x,8,B%) = —g + 22-F K 2-FF B¥ 2B p2-BF

_ B*
-8 B* B* B*y_B*
__C(l 28) 2 +22—B*K2—2ﬁ* '8*2_3* (1 _8)(1—T)m
B* C B* 2 B*
:(1—5)2<—%+225*K25*B*25*)=0. O

We now complete the proof of Lemma 3. Take ¢, n, &, B, and r as in Lemma 15.
Let B’ be the radial contraction of B by a factor of 1 — 72x2(1 — 8)#"/2/(yr), and define
e="72%%(1-68)F"/2/ymand c = c+72x% /7. Since d(v, B) = &(1 — §)#"/2, we have d(v, B') =
(¢4 72%2/m)(1 — 86)P"/2 = ¢(1 — 8)F"/2, 50 (33) holds. Moreover, denoting the radius of B’
by r/, we have

72%2(1 — §)F/2

, <1 2P -§F?
n

re= —_———
n°(1-8)' k2

252(1 — §)F 1
_ (1 _ 7“—2))7232(1 —5).
n

)n(l—a)l—ﬁ*/z x

For sufficiently large §, this is greater than 36x2(1—8), so (32) holds. Finally, since B C F,
forall A’ € A we have max, s A’ - v/ > maxyep A’ - v/ = maxyep A - v + 7232(1 — 8)F" /2 /n =
maxycp A -V + &, so (31) holds.

APPENDIX F: PROOF OF THEOREM 3

We first show that first-order inefficiency in the blind game is no less than (14). Fix § < 1,
w € (0, i), and a Nash equilibrium in the blind game where the agent’s payoff is w. Let
rneA((AxY)?)and a € A(A) be the corresponding outcome and occupation measure.
Let ity = u(ct) — (a;) — w.

By feasibility, the principal’s payoff is at most

(1-8)) 8" "EF[F(w+ )]
t=1

At the same time, incentive compatibility implies inequality (15) (see Lemma 22 below),
and promise keeping implies

(1-8)> & 'E*[a]=0. (37)
t=1

The following is the key lemma.
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LEMMA 16. There exist c, € > 0 such that, for any sufficiently large 6 < 1, we have

o0
max  (1—8)) & 'EH[F(w+ i (h)
(A (M), =—(w+h(A)) ; [ ( )]
such that (15) and (37)
- 1-8_.[¢'(a)?]F (w) .
<F E* 1—8)te. 38
<F(w)+ 5 [ (@) > —+c( ) (38)

We sketch the proof of Lemma 16, providing the details in the next section. Subtract-
ing F(w) from both sides of (38), dividing both sides by ~5° 1=8 M , and taking a second-
order Taylor approximation of the LHS (where the first- order term is zero by (37)) give

inf ZSI]E“ [4:(h) ]
(e(h),n=— (w+i(A)) such that (15) 7

To establish Lemma 16, it suffices to show that the value of this program exceeds
E*[y(a)?/Z(a)]. To see this, take a common Lagrange multiplier of 2(1 — 8)8’~! on (15)
for each ¢. Then, by weak duality, the value of the program is no less than

oo ) / 1-8 o0 . / 2
,nf . 3 B [5%(}1)2 oY (“})(Z(ty)tla’) . 3o uﬂ(h)} n ZE“[d/IEZ)) } 39)
L =1 =t+1

Taking the first-order condition for &, (/) and substituting into (39) as in the text gives

2
1-8\2 & [ (6 v @nvrlar) ¥'(a) ¥'(a)
(=% w RS O et
< 5 ) 20 [(Z Z(ar) o [I(a) } [I(a) }
=2 r=1
where the equality follows because, since (,(a;)v;(y:|a;)/Z;(a;)); is a sequence of mar-
tingale increments, we have

-1, 2 -1 / 2
2 (T W' arwlyrlan)\ ] _ E“[(dj (a;/)v(ytr|aﬂ)> }
= ZLla) e L(ar)

t—1 ’ - / 2
S pe[(Y@ W[V @
SLE [(I(a)) Ol ] Z [I(a) ]
and hence

( )ZB:EMKZw(a;)&(ﬂyﬂlaﬂ ﬂ( )Ziﬁtz [de((Z;Z]

= t'=1

_(1_5)261 1Ea[|:‘»[lz((‘;; :|

Y (a)®
=% ] o
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At the same time, since F is strictly concave, there exists &1 > 0 such that the prin-
cipal’s payoff is at most F(w) — 1E¥[(a — a(w))?] (see Lemma 19 below). So, together
with Lemma 16, the following lemma establishes that first-order inefficiency in the blind
game is no less than (14).

LemwMmA 17. There exist ¢, € > 0 such that, for any sufficiently large 6 < 1, we have

1- éEa[w’(a)z]F”(w)

o

maxmin
{ 8 Z(a) 2

+c(1=8)'", —eE*[(a - Ez(w))z]}

1- 8¢ (aw)’ F'(w) . s
1-8)l+e,
=75 Z(aw) 2 +cll=9)

We now show that first-order inefficiency in the public game is no more than (14).
The proof is constructive. As a first step, it is helpful to first construct a static contract
thatinduces a target effortlevel a € A. In particular, if the agent is rewarded with a utility
of (y/(a)/Z(a))v(y|a) following any signal realization y, she chooses a to maximize

/ l;((‘_la))v(ylc'z)p(yla) dy — (a).
y

The solution is a = a, because a = a satisfies the first-order condition

y'(a)
, Z(a)

v(yla)pa(yla) dy = ¢/'(a),

and the second-order condition holds by (11). Moreover, the expected reward equals
ZEero.

Heuristically, the repeated game equilibrium is constructed by using the above re-
ward to adjust the agent’s continuation payoff w;, after each period ¢ (so the agent’s con-
tinuation payoff is a martingale), while targeting effort level a(w;) in each period ¢. This
heuristic requires two adjustments, however. First, if the score v(y|a) is unbounded, we
must truncate the reward for extreme scores, and then further adjust the reward so the
agent’s first-order condition is exactly satisfied. Second, it is convenient to target zero
effort once the agent’s continuation payoff w;, strays too far from its initial value w.

Formally, fix any ¢ > 0. Recursively, given the agent’s promised continuation payoff
wy(h") at history h' = (ry, yt/)i; 11, we define the recommended period ¢ action r,(4') and
consumption level ¢,(h") (which is independent of the period ¢ signal y;), as well as the
next period continuation payoff w,; (A4, y;), as follows. First, say that a history A’ is
regular if jw,(h') —w| < (1 — 8)/27¢, and irregular otherwise. At a regular history, define
re(h') = a(w;(h")), ¢/(h') = ¢(w,(h")), and

1—6
w1 (A, ye) = we(h') + ——Fnun ),

where, for each a € A4, x;(y) is an adjusted version of (¢'(a)/Z(a))v(y|a) (constructed in
Lemma 25 below) that satisfies

ae argmaX/Xzz(y)p(yIa)dy — y(a),
y

a



Theoretical Economics 20 (2025) Nonrecursive dynamic incentives 1501

/Xa(Y)P(J’W)dy:O, (41)
y

¥ (@)
T(a)

/Xa(y)zp(ylé) dy = +0(1-96), and (42)
y

|xa(y)] < (1—8)~ 14

At an irregular history, define r,(h') = 0, ¢;(h') = u=(w,(h")), and w11 (A, y) = w,(h')
for all y;. Note that the initial history 4! is regular, and that if a history A4’ is irregular, then
so is every subsequent history. Note also that, by construction, |w;41(h’, yr) — w;(h")| =
O(1 — 8)3/4 for every regular history 4’ and signal y,. Since |w, (k") — w| < (1 — 8)'/?~¢ for
every regular history /’, this implies that, for sufficiently large § < 1, we have w,(h') €
[0, 2w] for every history A'.

The proof is completed by the following lemma, which shows that the first-order
inefficiency of this equilibrium is no more than (14).

LEMMA 18. There exist ¢, & > 0 such that, for any sufficiently large 6 < 1, the principal’s
payoff in the above equilibrium is no less than

1-5 ¢/ (@w)’ F'(w)
5 Z(a(w)) 2

F(w) + &1 —o)t+e,

Intuitively, since w;(h') is a martingale with volatility of order (1 — 5)? (by (41) and
(42)), it is very unlikely that w,(h*) moves more than a O((1 — §)'/?) distance away from
w within a timeframe that has more than an O(1 — 8) payoff impact. Consequently, the

principal’s payoff is almost entirely determined by her payoff at regular histories, and
thus equals

E”“|:(1 =) ZS’lﬁ(w,(ht)):| +0(1-8),

t=1

where w is the equilibrium outcome. Taking a second-order Taylor expansion around
wy(h") = w and ignoring the remainder, this equals

F(w) +E* [(1 -8y 51—1¥(wt(m) —~ w)2:|.
t=1

Since

1_5iL
w(h') =w+ — Z Xa,(yr) for all regular histories /'

t'=1

and (42) holds, the same calculation as for (40) gives

o1 F(w) 2| 1=8 [¥'(@]F (w)
w _ t—1 A _ a _
E [(1 8) ;:18 5 (wi(h") —w) }_ 5 & [I(a)] 5 tol-9),
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where « is the equilibrium occupation measure. Finally, since w, (/') is close to w with
high probability under «, we have E*[¢'(a)/Z(a)] = ¢'(a(w))/Z(a(w)) + o(1), complet-
ing the proof.

APPENDIX G: OMITTED DETAILS FOR THE PROOF OF THEOREM 3

We require some preliminary lemmas. The first two derive properties of the feasible
payoff set.

LEMMA 19. There exists &1 > 0 such that, for any a € A(A), we have
E%la] — u™ (w+E[y(a)]) < F(w) — 1| (a — a(w))’].
PROOF. Since ¢y € C? and " > 0, there exists &1 > 0 such that, for all a € 4, we have
(@) — p(aw)) = ¢ (@w)) (a — a(w)) + 1(a — a(w))’.
Thus, for any « € A(A), we have
F(w) —E*[a) + u ' (w+E*[p(a)])
=a(w) —u ' (w+ ¢ (a(w))) —E*al +u~ (w+E*[¢(a)])
E*[y(a)] - (a(w))
u (e(w))
)(E*la) — a(w)) + e1E%[(a — a(w)"] _ e1E*[(a — a(w)’]
E) =T W ew)

where the first inequality is by Taylor expansion of u N w+E Y (a)]) —u Y (w+y(a(w)))
around w+E*[(a)] = w+ ¢ (a(w)) = c(w), the second inequality is by Taylor expansion
of ¢(a) — y(a(w)) around a = a(w), and the last equality is by u'(¢(w)) = ¢/(a(w)) (by
definition of a(w)). O

>a(w) —E%a] +

Y (a(w)

_aw»—E%m+

)y

LEMMA 20. There exists o > 0 such that F" (w) < —e for allw > —(A).

Proor. Differentiating the equality u/(¢(w)) = ¢'(a(w)) with respect to w yields
u”’(¢(w))

W (@a(w)) (y" (@a(w)) — u’(é(w)))

Since F(w) = max,eqa — u (w + ¢ (a)), by the envelope theorem we have F'(w) =
—1/u/(&(w)), or equivalently F'(w) = —1/u'(w + ¢(a(w))). Differentiating this equality
respect to w and substituting (43) yield

a(w) =

(43)

u’(E(w))y" (a(w)) .
u' (@) (v (@(w)) — u"(&(w))

The lemma follows since ¢” > 0, u” < 0, and u”(c)/u/(c)® is bounded away from zero
by (10). O

F//(w) —
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The next lemma gives a key probability bound.

LEMMA 21. For anyc > 0 and 9 > 0, there exists 6 < 1 such that, for any 6 > & and any
sequence of nonnegative random variables (X,);>1, where X, is distributed according to
acdf G, satisfying1 — G,(x) < 2exp(—cx?/((1 — 8)?t)) for all t, we have

(1-5)25“%[ . xVdG(x)<(1-8)%
t=1 x

>(1-8)27°

ProoF. Let T = (1 — 6)%_8. It suffices to show that

T
éi_t}ll(l—S)_IZBI_lt/ . xYdG(x)

—1 x>(1-8)2"°

o0

=lim(1—8)"! St_lt/ x?dG,(x)=0.
6—1 t;—l xz(l—a)%‘g t

For each ¢, we have

f L % dG,(x)
x>(1-8)2"°

2/ (a 5J%*EaXﬁ_l(l_G’("))d"+(1—5)'9(%_‘9)(1—Gz((l—a)%—s))

2 1-2¢
1-6
fwf \ xﬂ—lexp<‘Lz>dx+2U—8)1’(%—8)@@(—%)
x>(1-8)2"° (1 —-06)"t (1—-268)“t

where the equality is by integration by parts and limy— oo x¥ (1 — G;(x)) = 0, and the
inequality is by 1 — G,(x) < 2exp(—cx2/((1 — 8)%t)). Note that Y7, #6"1 < (1 — )2
and, ift < T, then (1 — 8)172¢/((1 — 8)?t) > (1 — ). Therefore,

C(l _ 6)1_2£>

T
lim(1—8)"1Y 611 = 6)?(2-9) ex (—
5%( ) Z ( ) P (1—8)%¢

=1
. . -1 sTHla+T(1-5 —2—&sT
At the same time, since ZtoiTH 61 = W < (1 -8“°%" <1 -
8) 2 ¢exp(—(1 — &)%), we have

S 1 _ 6 1-2¢
lim(1-8)~" > 8" 1(1- §)P(2=2) exp<—%> =0.
=1 t=T+1 (1 - 8) t

It thus suffices to show that

T 2
lim (1 —8)"! taf—lf X lex (—L> dx=0, and (44)
fmd =072, x=(1-8)2 A

=1

o0

lim (1 — &)1 zsf—lf
lim (1 - 5) >

2
X x9-1 exp(—%) dx=0. (45)
(=T+1 x>(1-8)27° (1 - 8) t
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We first establish (44). Since 37,61 < (1 —8) 2 and (1 — 8)2T = (1 — &8)' ¢, it
suffices to show that

. 3 9-1 cx?
lim (1 —68)~ / . x0T exp(——l_) dx=0.
6—1 x=(1-8)27° (1-06)"°

If § <1, then

2
CcX
(1_5)—3/ 2T ex (_7) dx
(s PUa—sr

2
<(1- 8)(%—8”‘”‘3f , exp(—%) dx
x>(1-8)2"° (1-96)"°

l—s)(ﬂ—l)—SE(
C

6—1

<(1-98 1—8)2exp(—c(1—8)"¢) =0,

where the second inequality follows by the same calculation as (18). If instead ¥ > 1
then, for sufficiently large 8, we have

2
CcX
(1- 6)_3/ x¥Tex (—7) dx
x=(1-8)27° P (1-8)1—

1 B -1 c(y+1-98"'2)
=-(1-9 3/ 1)t 2 (— )d
2( ) yzo(y—k ( ) 7)) exp T y

v-1 c
1=5 —34+9(1-2¢) —c(1=26 —& / (( _ ) )d
(1=9) (=877 | ({52~ a5 ) ¥

1 v -1 c s
= —(1— &) 301-29) exp(—c(1 - §)~° (— + ) o0,
2( ) p( ( ) ) (1_3)1—28 (1_8)1—8

N —

=

where the second follows by integration by substitution (setting y = x? — (1 — §)172¢),
the third line follows because

2e) (- 9 —1)y
< (1 =821 ey (4( ),
=( ) p (1—8)2°

9-—1 _ c
(1_5)1—25 (1_5)1—5
We next establish (45). For any ¢, we have

2 N
9—1 cx 1<(1—8) t)z/ 9
xrexpl —— |dx = ——— 27 exp(—y)d
/M p( (1-5)%) 5 . yzoy p(—y)dy

2.\ 3
(e (D),
2 c 2

and the fourth line follows because

< 0 for sufficiently large 6.
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where the first line follows by setting y = cx?/((1 — 8)?t), and the second line follows by
the definition of the gamma function, I". Hence, there exist constants cj, ¢ such that

cx?
f x¥-1 exp( 7> dx <c1(1—8)%2t2 forall ¢.
x>0

T 1-6)%
We thus have
[ee) cx2
(1—8)"1 t8’_1/ x¥ 1 ex <—7> dx
1221 x=(1-8)2 ¢ P (1-8)%t
1 i -1 9-1 cx?
<(1-68)" t6'~ / xV exp<—7>dx

2T x>0 (1—8)%t

o
< Cl(l _ 6)26‘271 Z atfltC2+1
t=T+1

X

< Cl(l _ 8)262—16T—1(T + 1)62+1 Zattcz
=1

< a1 82 26" (T + ) Hk(e) T 0,

where k is defined in (20) and the limit follows recalling that 8T < exp(—(1-6)"%). O
We now establish inequality (15).

LEMMA 22. We have

/ 2 / 00
Ear[—"” (@) }SE“ ylaviyar) S 8"y | forallr.
1(a) Lla) 1,

Proor. Fix any ¢ and ¢ > 0. Since ¢/(a)/Z(a) is bounded (uniformly in @) given As-
sumption 3(ii), there exists A > 0 such that, for all A < A, we have (¢'(a)/Z(a))A < & for
all a € A. Fix A < A such that, for all a € 4, fy(maxée[a’ﬁm pa(¥|@)?/p(y|a)) dy < oo.
(Such A exists by Assumption 3(i).) Now, for any A < A, consider the manipulation
where, whenever the agent is recommended action @ > ¢ in period ¢, she instead takes
a — (¢'(a)/Z(a))A. This manipulation is unprofitable for the agent if and only if

[+ 505))

V' (a)

Al
Z(a,) ) 3 81,%]

t'=t+1

pyilar) — p(nlat -

sEM[l{a, > ¢} »Olan
t
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Since this holds for all A < A, we have

W(a) — df(a = ‘é((;)) A)
lim E* [l{a > g} ]
A—0 A

yb/(at)A

e ) 3 5”-%4.

t'=t+1

p(yilar) — P()’t|ar —

< lim E“|:1{at > g}
A—0

Ap(yrlar)
In this inequality, the LHS is bounded because ¢/’(a)?/Z(a) is bounded given Assump-
tion 3(ii), and hence is equal to E*[1{a > &}/ (a)?/Z(a)], by dominated convergence. As
for the RHS, for each ¢’ > ¢ + 1, by Cauchy-Schwarz the corresponding term in the sum
is bounded by

l,l/(a,)

p(yelas) —P()’t|at— mA) 291/2 s
E“[l{a,z:;}( YR d ) } x EF[a2]"2.

This is finite because fy(maxae[a'mr&] pa(y|@)?/p(y|a)) dy < oo (by Assumption 3(i)) and
E“[ﬁf,] < oo for all ¥ (as otherwise the principal’s expected payoff would equal —oco
by Lemma 20). Hence, the entire RHS is bounded, and hence is equal to E#[1{a; >

el (ar)v(yilas) /Z(a) Yot i1 8'~'i1,], by dominated convergence. In total, we have

o W'(@?] W @a)vyla) = i
E I:l{azs} ey }fE [1{@28}71%) ﬂ;la iy |.

Since this holds for all & > 0, and ’(a)?/Z(a) and ' (a,)v(y:|a;)/Z(a,) are continuous,
taking £ — 0 completes the proof. O

Now we prove our key lemmas, Lemmas 16 and 17. These complete the proof that
inefficiency is at least (14) in the blind game.

G.1 Proofof Lemma 16

Multiplying both sides of (38) by 256/((1 — 8)F"(w)) and using (37), it suffices to find
¢, € > 0 such that

e’ _IE(4 / 2
min 5 5t ZEA[F (@ ()] zEa[wa)

1 = :|—c(1—6)8,
(i (), p=—(w+(A)) such that (15) F'(w) Z(a)

=1
where

F(it) = F(w+ 1) — F(w) — F'(w).
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By weak duality, taking a Lagrange multiplier of 2(1 — §)8’~! on (15) for each ¢, the LHS
is no less than

; ie| F(@() (18 ' (ar)vyilar) .
min . ZZSE |: 7 w) ( Z T(ap) i (h)

(@ () n=—(w+p(A) 1

=00 (h)

/ 2
W' (a) } 46)

+2| 2

It remains to bound (46). Since F is concave, the first-order necessary and sufficient
condition for @, (k) is

B = FYF' w)Q2 () if F~Y(F"(w)Q2(h)) = —(w+ ¢ (A)),
t —(w+ () if F=Y(F"(w) Q2 (h)) < —(w+ p(A)).

Now fix any ¢ € (0, 1/8) and let
H ={he(AxY)®:=(1-8)2"*<Q%(h)<(1-8)2~¢} foralls. 47)
We establish two further lemmas.

LeMMA 23. There exists ¢ > 0 such that, for any sufficiently large 6 < 1, we have

F(ii:(h) . . 5
2(% - Qf(h)u[(h)> > -2 (h)?—¢(1—-8)'"® foralltandhe H,.  (48)
PRroOF. For sufficiently large 8, we have i, (h) = F'~1(F"(w)Q¢ (h)) for all t and h € H'.

Since F € C? and Q¢ (h) is bounded (uniformly in 8) for # € H', by Taylor expansion of
F'~!and F o F/~! around 0, there exists ¢ > 0 such that, for anyd<landhe H', we have

iy (h) — (F’—I(O)—% t(h)) Qa(h) and
F" o F'71(0)
2Fo F'71(0) zﬁ/oﬁ’*l(mm(h)
2F (i (h)) i F'(w) FI’/OF’—{(O) E X - g‘m(m’s
“Fw) F"(w) <1 _FoF7N0) x F" o F'~ (0)>Qg(h)2 =gl
F'oF1(0) (F" o P (0))° ’

Since F'~1(0) = F o F'~1(0) = 0 and F" o F'~1(0) = F”(w) by definition of F, these in-
equalities simplify to
it (h) — Q2 ()| < %Qf(h)z and

2F (0, (h))

0812 é 5 3
) 07 (h) §3|Qt(h)|.
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Multiplying the first inequality by Q2 (k) and applying the triangle inequality give

|02 ()it (h) — Q2 (h)?| < %Q?(h)?’ and

‘% — Q3 (hyiu(h)| < 2§|Q;“(h)|3.
We thus have
2<—F1(;,‘,‘(Z‘))) - Qf(h)ﬁ;(h)) > —QP (h)ii (h) — 2gélﬂf‘(h)l?’
> -2 ()2 — ¢l ()|’
> —Q0(h)2 —é(1—5)2 7%
> -0 (h)?* —¢(1-8)'*,
where the third line follows by (47), and the fourth line follows because ¢ < 1/8. O

Lemwma 24. For any sufficiently large 6 < 1, we have

22/

ut(h) F) A~ e
= Q) ()i (h) ) du(h) > —(1 - 8)°. (49)
h¢H’

F//( )

Proor. We first show that, for sufficiently large 3,
Zaf L, W% du(h) < (1= 8)%. (50)
=1

To see this, note that (¢'(a;)v(yi|as)/Z(as)); is a sequence of martingale increments
where, forall 6 > 0,

1—8 ¢ (an)v(yelar) 1-6¢/'(a)v(yla)
M y~p(yla)
E [eXp<6 5 T(a,) >)h } = maxkt [eXp< 5 I(a) )}

02 1 _ 8 2 / 2
<exp| —| —— ) max Y (@) ,
2 1) acA 1I(a)
where the second line follows from Assumption 3(iii), noting that ¢’ (a)?/Z(a) is
bounded. Hence, by Lemma 9, there exists ¢ > 0 such that, for all r and x > 0, we have

Pr“(|Q?(h)} > x) :PﬂL( Z Y (al/)V(Yt/laﬂ

We can thus apply Lemma 21 to the sequence (|Q° |:)i>1 to conclude that (50) holds for
sufficiently large 6.
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Thus, for sufficiently large 6, we have

22&/

=1 “h

zziaff )

£ N2
o (—825”—”” - n?(h)ﬁt(h)) du(h)
t=1

2F" (w)
22N [ odmduin = 0 - 0= —1- 0,
€ he¢H! €2

Fah) s )
—= —Q%(h h) )du(h
W( Ty~ DA ) duh)

where the first inequality follows by Lemma 20 (as taking a second-order Taylor expan-
sion gives F(x) < —(&2/ 2)x2 forall x > —w), the second follows by minimizing over x; (%),
the third follows by (50), and the fourth follows by F” < 0. O

By (48), (49), and Q2 (h)? > 0, we see that (46) is no less than

' (a)?

_ tmul o 2 a
ZS]E [Q2(h)?] +2E [I(a)

:| — max{c, 1}(1 — 8)°.
t=2

Since (¢'(a;)v(yila:)/Z(a;)); is a sequence of martingale increments, we have

21-1 ’ 2 21-1 ’¢ a2
5 wf (¥ @)v(yrlar) 7] _ (1 - 8) o[ V(@)
mulr ] ( ) ZE [( I(ar) I t;E I(a) |

Therefore, (46) is no less than
2 00 / 2 / 2
¢ ' (a) o V(@] N se
( ) Za Z, [I(a) }”E [I(a) } maxie, 111 =)

= (a)?
1(a)

i| — max{c, 1}(1 — 8)°.
Taking ¢ = max{¢, 1} completes the proof.

G.2 ProofofLemma 17
If « assigns probability 1 to a = a(w), then

[1=8_ [¥(@)?*F (w) . « SN2
mm{ 5 E[I(a)} > +ce(l =82, —gE [(a —a(w)) ]}

_1-5 W' (a(w))? F" (w)
=8 I(aw) 2

Hence, the optimal « satisfies

(7 2 e
Be(a — )’ < — L2 L) ),

51
e 6 Zaw) 2 G
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Since ¢/ (a)?/Z(a) is Lipschitz continuous, there exists « > 0 such that

1-6_ [¢(@)?F" (w) e
5 E[I(a)] 2 el =9
< 1 —6(11[/(&(71)))2 +(KE“[|a—Zz(w)|])> F,/(w) +C(1 _ 6)1+€
- 8\ Z(a(w) '

Note that
1-6—F"(w)

u _ 1-8—F'(w) [ 5
— kE Ha—a(w)‘]fT 5K E*[(a — a(w))”]

- 3 )= 2
<1 -5 —F”(w))f ' (a(w))

< K ,

-\ 2 a1Z(a(w))

where the first inequality follows by Cauchy-Schwarz, and the second follows by (51).
Since this expression is of order (1 — 5)3/2, there exists ¢é > 0 such that, for sufficiently
large 8§, we have

1—ﬁw[WwF]F%w)

(= 2 =y
e 18 (aw)” F(w)
5 (@) +c(l-98)"°<

~r1 _ syl+e
5 5 I(Zz(w)) 5 +c¢(1—-6)"7%,

completing the proof.

G.3 Construction of x,(y)

LEMMA 25. There exists I < oo such that, for any sufficiently large 6 < 1 and any a € A,
there exists x; : Y — [—(1 — 8)71/4, (1 — §)~V/4] satisfying

ae argmax/x;,(y)p(y|a)dy — (a), (52)
acA y
/xﬂwpwﬁﬂw=0, (53)
y
- 1¢/(@)
/yxa(y) p(yla)dy < 5 T@) and (54)
/eXp(Ox(ylé))p(ylﬁ)dyfeXP(HZD- (55)
y
Proor. Define, in turn,
70
s = - (a) : —, (56)
E[1{[v(ya)] = (1 —8)"5}v(y|a)?]
g2 = -ME[1{|V(y|El)| <(1-8 5p(y[@)], and (57)

" T@)
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Y@

aEGHIHMywns(l—ar%}WyW)+e@

xa(y)=¢
Note that ¢; > 1, since Z(a) = E[v(y|a)?]. We will prove that x;(y) € [-(1 — 8)1/4, (1 —
8)~ /4] for all y, and that (52)-(55) hold. We first establish that, for any sufficiently large
d<landanya € [0, A, we have

gz — 1] <exp(—(1—8)3) and (58)
¥'(a) _1

leal < exp(—(1—6)75). (59)
oG] ( )

Note that (58) and (59) immediately imply that x;(y) € [—(1 — §)~1/4, (1 — §)~1/4].
For (58), note that

Z(a)
0<¢z= ~ N 1 )
Z(a) - E[H{|r(|@)| > Q1 — 8) 75 }r(y|a)?]
- I(a)

 T(a) - \/Pr(|v(y|c'z)| > (1—8)75)E[v(y|a)*]

where the second line follows by Cauchy-Schwarz. By Assumption 3(iii), we have
/exp(@v(y|ﬁ))p(y|[z) dy < eXp(OZI(Zz)/Z) forallae Aand § e R. (60)
y

Since Z(a) is uniformly bounded in a given Assumption 3(ii), there exists ¢ > 0 such that,
forall a € A, ¢; is bounded by

Z(a) 1
(1—6r%>
C

)

£ 16I'(2)

_2
I(a) — exp(—%) 16I'(2)Z(a) 1-— exp(—

which implies (58).
For (59), note that

y'(a)
1(a)

<¢%m( ER {0 > -85 )| )
~ L@@ \+(ea - DIE[1{[r0]@)| = (1 - 8) 5 r(y]a@)]|

E[eal{[r(vla)| < (1 - 8)~ 5 p(yla)]|

leal =

where the inequality is by E[v(y|a)] = 0 and the triangle inequality. As above, applying
Cauchy-Schwarz and Assumption 3(ii) and (iii), we have

y'(a)
1(a)

(1—6r%>¢%m
¢ V(@)

E[1{|[v(yla)| > (1 —8) 3 Jpy[@)]| < exp<—
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Again applying Cauchy-Schwarz, together with (58), we have

y'@) _ PN - Y@
@) (ea — D|E[1{[r(y|a)| < (1-8) s}v(yla)]|smexp( (1—5)1).

Taking & < 1 sufficiently large so that exp(—(1 —8)~2/%/c) +exp(—(1—8)1/*) < exp(—(1—
8)1/5), we have (59).

We now establish (52)-(55). Note that (53) follows directly from (57). For (52), for any
a # a, we have

E'[xa(»)] — ¢(@) — (E*[xa(»)] — ¥(a))
(@)

() — 0(E) — o, 2 - s -tvuila [ PO
= (@) =Y (@) ~ paz yl{\v(yla)|s(1 8) 5}”(y'“)<_p(y|a)> dy. (61

We bound the second line as follows. For any vy € (0, inf,_; 4" (a)) and any a € 4, we
have
¥(a) — 9(a) = y'(a)(a —a) + %(a —a),

Taking a second-order Taylor expansion of p(y|a) around a = a, there exists a € 4 such
that

et [ Wuyla)| < (1 - ) oyl (p0la) - pyla) dy
I(a) y
= (a —é)¢a—¢ (-a) Hvla)| < - 6)_%}V(y|[l)2p(y|a)dy
Z(a) Jy
(a—a) v/ ] o )
2 Y1) yl{lv(yla)|§(1—8) 5}v(y]@) paa(y]a) dy.

Substituting (56), (61) is no less than (a — a)?/2 multiplied by

y— soa% s H[v(y|a)| < (1= 8)75 }v(y]a) paaly|d) dy.

It remains to show that, for any sufficiently large § < 1 and any a, 4, this expression is
nonnegative. Since ¢’(a)/Z(a) is bounded, by (11) it suffices to show that

timsup [ (a1 {bO1D)] £ (1= 8)F} = 1r(31a) paa 41)dy =0.
—~Ytaaly

In turn, it suffices to show that both

[ o] > - il pailads and
y

(@a—l)f1{|V(Y|ﬁ)’ s(1—6)‘%}v(ylé)paa(y|&)dy
y

converge to 0 as 6 — 1, uniformly in (a, a).
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By Cauchy-Schwarz, the first line is bounded by

1 % o)\ 2 %
Pr(|v(y|c‘z)}>(1—6)%)4</v(y|&)4p(yla)dy) (f(p“”(yla)) p(ylﬁ)dy) .
y y

p(yla)

By (60), the first term of this product converges to 0 uniformly in a as 6 — 1, and the
second term is bounded uniformly in a given Assumptions 2(i) and (ii). Moreover, (12)
ensures the last term is bounded uniformly in (a, a). So, the entire product converges
to 0 uniformly in (a, a).

Similarly, again by Cauchy-Schwarz, the second line is bounded by

: D\’ !
(qoa—n(/v(ylc‘z)zp(yla)dy) (/(pp(;fa";)) p(ylc‘z)dy) :
y y

By (58), the first term of this product converges to 0 uniformly in @ as 6 — 1; and, as
above, the other terms are bounded uniformly in (&, a). The product thus converges
to 0 uniformly in (a, a). This establishes (52).

We next establish (54). By construction, we have

1 Jr=~2 e 2
Elxa(y)?] - + D =¢§<w (a)> E[1{[p(yla)] < (1 - 8) 5 }u(y[a)?]

8 I(a) I(a)
V(@) _ bl Ly@*
+23L—l¢éﬁE[l{|V(}’|0)|5(1_8) S}V(yla)]-i-é“%—g Z(a) :
By (56),
v@\: . Appfar] = L@
(I@> eiE[{[r(y@)| = (1 - &) 75 jr(yla) ]—ﬁ-
Thus, the above expression equals
(@) _ e
905(905—1)(1(21)) E[1{[v(y@)] < (1 - 8) 75 }v(y|a)®]
_ _lp/(a) B _ 1 _ 2_ 1—8¢/(&)2
+ 200007 ({010 = A=) S p0l)] + of - —=Z =
Together with
V@) : ] < H@
(I(El)) E[l{‘V(Y'a)‘f(l_a) S}V(y|(l) ]E 7(a) ’
y'(@) sy @) 2= V@
Tiay PP O@] = =972 r01a)] < ZER R0l = T

(58), and (59), this in turn is bounded by ¢/’ (a)? /Z(a) multiplied by

oaexp(—(1 — 8)7) + 2¢zexp(—(1 — 8)75) + exp(—2(1 — ) 75) — %5,

which is nonpositive uniformly in a for sufficiently large 6 < 1.
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We finally establish (55). It suffices to show that, for any 7 > sup,_ 4 ¢’ (a)? /Z(a), we
have
Pr(|xa(y)] = A) < 2exp(—A%/(4D)).

This is immediate if A < ,/(log2)(47). Next, for any sufficiently large 6, a € 4, and A >
J(log2)(4l), we have A — ¢; > 0 and —A — &; < 0 by (59). Hence, we have

ﬁ((_”)) eal{lviy|@)| <1 - 6)*%}v(y|&) <—A— 8&)

Pr(|xa(y)| = A) =Pr<

+Pr (ﬁ(( ))goal{\V(yla)\ <(1-8) % u(yla) zA—g,—l)

' (a) . —Ate; Y'(a) _._A—egg
< Pr( 7@ v(yla) < o ) +Pr< @) v(yla) > p >

Since v(y|a) is sub-Gaussian with variance-proxy Z(a) by Assumption 3(iii), we have

<A 8[1)
P] 1/ P ZCX

I(a)

Finally, note that

[\

(/\—sa)z
2 ) _
(’:7‘_’_2 /(/\_)22<1_2ﬂ)i%22<1_2i>%,
LY@ 41 A ) es g (a) V(log2)(4I)/ ¢5
- — /I
Z(a) I(a)

which is greater than one uniformly in a for sufficiently large 8, by (58) and (59). We thus

have
Y@ - —A—eg Y@ . A—eg A2
Pr< @ v(yla) < o ) + Pr( @ v(yla) > p > < Zexp<—ﬂ>

as desired. O

G.4 Equilibrium verification

We verify that the contract defined in the main Appendix, with x,(y) defined as in
Lemma 25, satisfies incentive compatibility and promise keeping, and hence is an equi-
librium.

LEMMA 26. For each h', we have
ay(h") € argmax(1 — 8) (u(c (")) — ¥(a)) + SE[we1 (W) A, ], (62)
a

wy(h') = (1 — &) (u(ci (k') — w(ar (1)) + OE[wesr (A1) A1, a ()], (63)
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Proor. The conclusion is immediate if 4’ is irregular. If 4’ is regular, then (62) follows
from (52) since

argmax(1 — 8) (u(c;(h")) — (@) + SE[th(htH) |h', a]
= argmax E[ Xy, (1)) ) |1, a] — ¢ (a).

Moreover, (63) holds as u(c(w;(h'))) — ¢(a(w;(h'))) = w;(h") by definition of ¢ and a,
and E{w41 (A" |h!, a(w,(h"))] = w; (k') by (53). O

G.5 Proofof Lemma 18
Let H' = {h': |lw;(h") — w| < (1 — 8)1/27¢} be the set of regular period ¢ histories. Let
. A -1
h[ xat())t) lfhtEHtr t ]._8 ht/
= . d X(h)=—23"x" (),
o) {0 itht g e, () = —5= 2 %a, )

t'=1

where in the latter definition 4’ is the period ¢ truncation of 4!. Note that w,(h!) =
w4+ X (h') forall t and 4!, and that 4’ € H' if and only if | X (h")| < (1 — 8)1/2—2,
We first bound the weight on irregular histories under the equilibrium outcome .

LEMMA 27. For any sufficiently large 8 < 1, we have (1 —8) Y 22, 81 Pr(h' ¢ H) < (1-
8)2.

ProoF. Note that fo (y¢) is a sequence of martingale increments. Moreover, by (55),

1-6 4 . o(1—8\
E*| exp OTxat(yt) |h', a; | <expl 6 5 I) forallé,t,a;.

Therefore, by Lemma 9,

X2

2 1-9 zit
)

We can now apply Lemma 21 with ¢ = 0 to conclude that, for any sufficiently large 3,

Pr*(X (h') > x) < Zexp<— > forall x > 0.

(1-8)) &8 'Pr(h ¢ H)=(1-8)) &' Pr#(|X(n')] > (1 - 8)**) < (1-8).
t=1 t=1 D

Recall that & < 1/8. By Taylor expansion, since 3(1/2 — &) > 1 + e and |w;(h') —w| <
(1—8)Y/2-¢ for all h* € H', for any sufficiently large 6 < 1 and any A’ € H, we have

ar(h') = ei(h') = awi (")) - &(wi(h'))
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F//(w)
2
F//(w)
2

> F(w) + F'(w) (w, (k") — w) + (w, (k') —w)® — (1 — 8)'**

=F(w) + F'(w) (w, (1) — w) +

X (h)? = (1 -8+

At the same time, since w, (k') € [0, 2w], a;(h') — ¢;(h') and F(w) + F'(w) (w; (h') — w)
are bounded, and F”(w) < 0, there exists c¢; > 0 such that, for any 6 and h’ ¢ H', we have

F//(w)

a;(h') — ¢/(h') = F(w) + F'(w) (w (h") — w) + 5

X(h')? =c1.

Combining these bounds, we have

(1= ) o 15 [au(i) - ()]

t=1

> Fw)+ ;w) 1-8)) 8" / X () dp(h)
=2 h

— (1= —c1(1-8)) 8" ' Pr(h, ¢ H'). (64)
t=1

Moreover, since (x4, (y;)); is a sequence of martingale increments with variance bounded
by (54), we have

2
oo 1—6 t—1
(1-8)Y 61> u(h) (T D xa, (W))
t=2 h =1

—1;5 _ .- t—lmpa~ao;[py~p(yla) 2 1-6 @ ‘l’/(a)z
=— ((1 8);6 E“~[E [xa(»?]]] < 7 & T |

Together with Lemma 27, (64) now implies that the principal’s payoff is no less than

F(w) +

F”éw) 1— aEa[W(aF

_ _ 1+e Y/
5z I(a)i| (1-29) (1—96)-.

It remains to bound E®[y’(a)?/Z(a)]. Since ¢’(a)?/Z(a) is Lipschitz continuous,
there exists k > 0 such that

Ea[w’(aﬂ} _ (@)’
Z(a)

—kE%[|a —a .

Since a(w) is continuously differentiable and w € [0, 2w], there exists c; such that, for
any r and h' € H',

lai(h') — a(w)| = |a(w:(h")) — a(w)| < c2|wi(h') —w| < c2(1 — §)1/2=e,
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Since |a,(h') — a(w)| < A for all ¢ and k!, we have
E“[’a—&(w)”5(1—6)28’_1</ A cz|wt(ht)—w|du(ht)+Pr“(hl¢FIt)21>
; hicH!
<c(l—8)Y27 +24(1-68)) &' Prt(h ¢ H')
t

<c(l—=8)Y?72 42401 - 8)?,

where the third inequality follows from Lemma 27. We thus have

/ 2 (7 2
Ea[wzig } S —kea(1—8)27° — 2k A(1 — 8)>.

Z(a(w)) ~

Therefore, by (64) (and using (1 — 8)/6% = (1 — 8)/6 + O((1 — 8)?)), there exists c3 such
that, for any sufficiently large 6 < 1, the principal’s payoff is no less than
1- 8¢/ (@w))” F"(w)

5 ZI(a(w)) 2

F(w) + c3(1—8)tFe,

completing the proof.

REFERENCES

Abreu, Dilip, Paul Milgrom, and David Pearce (1991), “Information and timing in re-
peated partnerships.” Econometrica, 59 (6), 1713-1733. [1464, 1468, 1482]

Abreu, Dilip, David Pearce, and Ennio Stacchetti (1990), “Toward a theory of dis-
counted repeated games with imperfect monitoring.” Econometrica, 58 (5), 1041-1063.
(1461, 1469, 1476]

Aliprantis, Charalambos and Kim Border (2006), Infinite Dimensional Analysis: A Hitch-
hiker’s Guide. Springer Science & Business Media. [1466]

Aoyagi, Masaki (2010), “Information feedback in a dynamic tournament.” Games and
Economic Behavior, 70 (2), 242-260. [1464]

Athey, Susan and Kyle Bagwell (2001), “Optimal collusion with private information.”
RAND Journal of Economics, 32 (3), 428-465. [1469, 1470]

Ball, Ian (2023), “Dynamic information provision: Rewarding the past and guiding the
future.” Econometrica, 91 (4), 1363-1391. [1464]

Buldygin, Valerii and Yu Kozachenko (2000), Metric Characterization of Random Vari-
ables and Random Processes, Vol. 188. American Mathematical Society. [1466, 1486]

Ederer, Florian (2010), “Feedback and motivation in dynamic tournaments.” Journal of
Economics & Management Strategy, 19 (3), 733-769. [1464]

Ely, Jeffrey, George Georgiadis, Sina Khorasani, and Luis Rayo (2023), “Optimal feedback
in contests.” Review of Economic Studies, 90 (5), 2370-2394. [1464]


https://www.e-publications.org/srv/te/linkserver/setprefs?rfe_id=urn:sici%2F1933-6837%282025%2920%3A4%3C1461%3ANDIARO%3E2.0.CO%3B2-G
https://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:1/Abretal1991&rfe_id=urn:sici%2F1933-6837%282025%2920%3A4%3C1461%3ANDIARO%3E2.0.CO%3B2-G
https://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:1/Abretal1991&rfe_id=urn:sici%2F1933-6837%282025%2920%3A4%3C1461%3ANDIARO%3E2.0.CO%3B2-G
https://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:2/Abretal1990&rfe_id=urn:sici%2F1933-6837%282025%2920%3A4%3C1461%3ANDIARO%3E2.0.CO%3B2-G
https://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:2/Abretal1990&rfe_id=urn:sici%2F1933-6837%282025%2920%3A4%3C1461%3ANDIARO%3E2.0.CO%3B2-G
https://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:4/Aoy2010&rfe_id=urn:sici%2F1933-6837%282025%2920%3A4%3C1461%3ANDIARO%3E2.0.CO%3B2-G
https://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:4/Aoy2010&rfe_id=urn:sici%2F1933-6837%282025%2920%3A4%3C1461%3ANDIARO%3E2.0.CO%3B2-G
https://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:5/AthBag2001&rfe_id=urn:sici%2F1933-6837%282025%2920%3A4%3C1461%3ANDIARO%3E2.0.CO%3B2-G
https://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:5/AthBag2001&rfe_id=urn:sici%2F1933-6837%282025%2920%3A4%3C1461%3ANDIARO%3E2.0.CO%3B2-G
https://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:6/Bal2023&rfe_id=urn:sici%2F1933-6837%282025%2920%3A4%3C1461%3ANDIARO%3E2.0.CO%3B2-G
https://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:6/Bal2023&rfe_id=urn:sici%2F1933-6837%282025%2920%3A4%3C1461%3ANDIARO%3E2.0.CO%3B2-G
https://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:8/Ede2010&rfe_id=urn:sici%2F1933-6837%282025%2920%3A4%3C1461%3ANDIARO%3E2.0.CO%3B2-G
https://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:8/Ede2010&rfe_id=urn:sici%2F1933-6837%282025%2920%3A4%3C1461%3ANDIARO%3E2.0.CO%3B2-G
https://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:9/Elyetal2023&rfe_id=urn:sici%2F1933-6837%282025%2920%3A4%3C1461%3ANDIARO%3E2.0.CO%3B2-G
https://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:9/Elyetal2023&rfe_id=urn:sici%2F1933-6837%282025%2920%3A4%3C1461%3ANDIARO%3E2.0.CO%3B2-G

1518 Sugaya and Wolitzky Theoretical Economics 20 (2025)

Ely, Jeffrey, George Georgiadis, and Luis Rayo (2025), “Feedback design in dynamic
moral hazard.” Econometrica, 93 (2), 597—621. [1464]

Ely, Jeffrey C. and Martin Szydlowski (2020), “Moving the goalposts.” Journal of Political
Economy, 128 (2), 468-506. [1464]

Forges, Francoise (1986), “An approach to communication equilibria.” Econometrica, 54
(6), 1375-1385. [1467]

Frick, Mira, Ryota Iijima, and Yuhta Ishii (2024), “Monitoring with rich data.” Working
Paper. [1464]

Fuchs, William (2007), “Contracting with repeated moral hazard and private evalua-
tions.” American Economic Review, 97 (4), 1432-1448. [1464]

Fudenberg, Drew, David Levine, and Eric Maskin (1994), “The folk theorem with imper-
fect public information.” Econometrica, 62 (5), 997-1039. [1461, 1468, 1469, 1470, 1475]

Fudenberg, Drew and David Levine (1994), “Efficiency and observability with long-run
and short-run players.” Journal of Economic Theory, 62 (1), 103-135. [1477]

Fudenberg, Drew and David Levine (2007), “Continuous time limits of repeated games
with imperfect public monitoring.” Review of Economic Dynamics, 10 (2), 173-192.
[1482]

Gershkov, Alex and Motty Perry (2009), “Tournaments with midterm reviews.” Games
and Economic Behavior, 66 (1), 162—190. [1464]

Goldliicke, Susanne and Sebastian Kranz (2012), “Infinitely repeated games with public
monitoring and monetary transfers.” Journal of Economic Theory, 147 (3), 1191-1221.
[1469]

Green, Edward J. and Robert H. Porter (1984), “Noncooperative collusion under imper-
fect price information.” Econometrica, 52 (1), 87-100. [1463, 1469]

Halac, Marina, Navin Kartik, and Qingmin Liu (2017), “Contests for experimentation.”
Journal of Political Economy, 125 (5), 1523-1569. [1464]

Holmstrém, Bengt and Paul Milgrom (1987), “Aggregation and linearity in the provision
of intertemporal incentives.” Econometrica, 55 (2), 303—-328. [1463, 1483]

Horner, Johannes and Satoru Takahashi (2016), “How fast do equilibrium payoff sets
converge in repeated games?” Journal of Economic Theory, 165, 332-359. [1463, 1465,
1468, 1469, 1474, 1475, 1495, 1496]

Kandori, Michihiro (2002), “Introduction to repeated games with private monitoring.”
Journal of Economic Theory, 102 (1), 1-15. [1462]

Kandori, Michihiro and Hitoshi Matsushima (1998), “Private observation, communica-
tion and collusion.” Econometrica, 66 (3), 627-652. [1474]

Kandori, Michihiro and Ichiro Obara (2006), “Efficiency in repeated games revisited: The
role of private strategies.” Econometrica, 74 (2), 499-519. [1462]


https://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:11/ElySzy2020&rfe_id=urn:sici%2F1933-6837%282025%2920%3A4%3C1461%3ANDIARO%3E2.0.CO%3B2-G
https://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:11/ElySzy2020&rfe_id=urn:sici%2F1933-6837%282025%2920%3A4%3C1461%3ANDIARO%3E2.0.CO%3B2-G
https://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:12/For1986&rfe_id=urn:sici%2F1933-6837%282025%2920%3A4%3C1461%3ANDIARO%3E2.0.CO%3B2-G
https://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:12/For1986&rfe_id=urn:sici%2F1933-6837%282025%2920%3A4%3C1461%3ANDIARO%3E2.0.CO%3B2-G
https://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:14/Fuc2007&rfe_id=urn:sici%2F1933-6837%282025%2920%3A4%3C1461%3ANDIARO%3E2.0.CO%3B2-G
https://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:14/Fuc2007&rfe_id=urn:sici%2F1933-6837%282025%2920%3A4%3C1461%3ANDIARO%3E2.0.CO%3B2-G
https://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:15/Fudetal1994&rfe_id=urn:sici%2F1933-6837%282025%2920%3A4%3C1461%3ANDIARO%3E2.0.CO%3B2-G
https://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:15/Fudetal1994&rfe_id=urn:sici%2F1933-6837%282025%2920%3A4%3C1461%3ANDIARO%3E2.0.CO%3B2-G
https://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:16/FudLev1994&rfe_id=urn:sici%2F1933-6837%282025%2920%3A4%3C1461%3ANDIARO%3E2.0.CO%3B2-G
https://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:16/FudLev1994&rfe_id=urn:sici%2F1933-6837%282025%2920%3A4%3C1461%3ANDIARO%3E2.0.CO%3B2-G
https://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:17/FudLev2007&rfe_id=urn:sici%2F1933-6837%282025%2920%3A4%3C1461%3ANDIARO%3E2.0.CO%3B2-G
https://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:17/FudLev2007&rfe_id=urn:sici%2F1933-6837%282025%2920%3A4%3C1461%3ANDIARO%3E2.0.CO%3B2-G
https://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:18/GerPer2009&rfe_id=urn:sici%2F1933-6837%282025%2920%3A4%3C1461%3ANDIARO%3E2.0.CO%3B2-G
https://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:18/GerPer2009&rfe_id=urn:sici%2F1933-6837%282025%2920%3A4%3C1461%3ANDIARO%3E2.0.CO%3B2-G
https://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:19/GolKra2012&rfe_id=urn:sici%2F1933-6837%282025%2920%3A4%3C1461%3ANDIARO%3E2.0.CO%3B2-G
https://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:19/GolKra2012&rfe_id=urn:sici%2F1933-6837%282025%2920%3A4%3C1461%3ANDIARO%3E2.0.CO%3B2-G
https://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:20/GrePor1984&rfe_id=urn:sici%2F1933-6837%282025%2920%3A4%3C1461%3ANDIARO%3E2.0.CO%3B2-G
https://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:20/GrePor1984&rfe_id=urn:sici%2F1933-6837%282025%2920%3A4%3C1461%3ANDIARO%3E2.0.CO%3B2-G
https://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:21/Haletal2017&rfe_id=urn:sici%2F1933-6837%282025%2920%3A4%3C1461%3ANDIARO%3E2.0.CO%3B2-G
https://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:21/Haletal2017&rfe_id=urn:sici%2F1933-6837%282025%2920%3A4%3C1461%3ANDIARO%3E2.0.CO%3B2-G
https://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:22/HolMil1987&rfe_id=urn:sici%2F1933-6837%282025%2920%3A4%3C1461%3ANDIARO%3E2.0.CO%3B2-G
https://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:22/HolMil1987&rfe_id=urn:sici%2F1933-6837%282025%2920%3A4%3C1461%3ANDIARO%3E2.0.CO%3B2-G
https://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:23/HorTak2016&rfe_id=urn:sici%2F1933-6837%282025%2920%3A4%3C1461%3ANDIARO%3E2.0.CO%3B2-G
https://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:23/HorTak2016&rfe_id=urn:sici%2F1933-6837%282025%2920%3A4%3C1461%3ANDIARO%3E2.0.CO%3B2-G
https://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:24/Kan2002&rfe_id=urn:sici%2F1933-6837%282025%2920%3A4%3C1461%3ANDIARO%3E2.0.CO%3B2-G
https://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:24/Kan2002&rfe_id=urn:sici%2F1933-6837%282025%2920%3A4%3C1461%3ANDIARO%3E2.0.CO%3B2-G
https://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:25/KanMat1998&rfe_id=urn:sici%2F1933-6837%282025%2920%3A4%3C1461%3ANDIARO%3E2.0.CO%3B2-G
https://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:25/KanMat1998&rfe_id=urn:sici%2F1933-6837%282025%2920%3A4%3C1461%3ANDIARO%3E2.0.CO%3B2-G
https://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:26/KanOba2006&rfe_id=urn:sici%2F1933-6837%282025%2920%3A4%3C1461%3ANDIARO%3E2.0.CO%3B2-G
https://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:26/KanOba2006&rfe_id=urn:sici%2F1933-6837%282025%2920%3A4%3C1461%3ANDIARO%3E2.0.CO%3B2-G

Theoretical Economics 20 (2025) Nonrecursive dynamic incentives 1519

Levin, Jonathan (2003), “Relational incentive contracts.” American Economic Review, 93
(3), 835-857. [1469]

Lizzeri, Alessandro, Margaret Meyer, and Nicola Persico (2002), “The incentive effects of
interim performance evaluations.” Working Paper. [1464]

Madrigale, Vicente (1986), “On the non-existence of efficient equilibria of repeated prin-
cipal agent games with discounting.” Working Paper. [1470]

Matsushima, Hitoshi (2001), “Multimarket contact, imperfect monitoring, and implicit
collusion.” Journal of Economic Theory, 98 (1), 158-178. [1464]

Matsushima, Hitoshi (2004), “Repeated games with private monitoring: Two players.”
Econometrica, 72 (3), 823-852. [1464, 1468, 1490]

Meng, Delong (2021), “On the value of repetition for communication games.” Games
and Economic Behavior, 127, 227-246. [1465]

Mirrlees, James A. (1975), “The theory of moral hazard and unobservable behaviour:
Part I.” Working Paper. Published in Review of Economic Studies, 66 (1) (1999), 3-21.
[1464]

Orlov, Dmitry, Andrzej Skrzypacz, and Pavel Zryumov (2020), “Persuading the principal
to wait.” Journal of Political Economy, 128 (7), 2542-2578. [1464]

Radner, Roy (1985), “Repeated principal-agent games with discounting.” Econometrica,
53 (5), 1173-1198. [1464, 1468]

Rahman, David (2014), “The power of communication.” American Economic Review, 104
(11), 3737-3751. [1464]

Rubinstein, Ariel (1979), “An optimal conviction policy for offenses that may have been
committed by accident.” In Applied Game Theory (Schotter Brams and Schwodiauer,
eds.), 406-413, Physical-Verlag, Heidleberg. [1464]

Rubinstein, Ariel and Menahem E. Yaari (1983), “Repeated insurance contracts and
moral jazard.” Journal of Economic Theory, 30 (1), 74-97. [1464]

Sadzik, Tomasz and Ennio Stacchetti (2015), “Agency models with frequent actions.”
Econometrica, 83 (1), 193-237. [1463, 1465, 1469, 1480, 1482, 1483]

Sannikov, Yuliy (2007), “Games with imperfectly observable actions in continuous time.”
Econometrica, 75 (5), 1285-1329. [1463, 1469, 1476, 1480, 1493]

Sannikov, Yuliy (2008), “A continuous-time version of the principal-agent problem.” Re-
view of Economic Studies, 75 (3), 957-984. [1463, 1465, 1469, 1478, 1480]

Sannikov, Yuliy and Andrzej Skrzypacz (2007), “Impossibility of collusion under im-
perfect monitoring with flexible production.” American Economic Review, 97 (5),
1794-1823. [1464]

Sannikov, Yuliy and Andrzej Skrzypacz (2010), “The role of information in repeated
games with frequent actions.” Econometrica, 78 (3), 847-882. [1482]


https://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:27/Lev2003&rfe_id=urn:sici%2F1933-6837%282025%2920%3A4%3C1461%3ANDIARO%3E2.0.CO%3B2-G
https://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:27/Lev2003&rfe_id=urn:sici%2F1933-6837%282025%2920%3A4%3C1461%3ANDIARO%3E2.0.CO%3B2-G
https://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:30/Mat2001&rfe_id=urn:sici%2F1933-6837%282025%2920%3A4%3C1461%3ANDIARO%3E2.0.CO%3B2-G
https://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:30/Mat2001&rfe_id=urn:sici%2F1933-6837%282025%2920%3A4%3C1461%3ANDIARO%3E2.0.CO%3B2-G
https://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:31/Mat2004&rfe_id=urn:sici%2F1933-6837%282025%2920%3A4%3C1461%3ANDIARO%3E2.0.CO%3B2-G
https://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:31/Mat2004&rfe_id=urn:sici%2F1933-6837%282025%2920%3A4%3C1461%3ANDIARO%3E2.0.CO%3B2-G
https://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:32/Men2021&rfe_id=urn:sici%2F1933-6837%282025%2920%3A4%3C1461%3ANDIARO%3E2.0.CO%3B2-G
https://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:32/Men2021&rfe_id=urn:sici%2F1933-6837%282025%2920%3A4%3C1461%3ANDIARO%3E2.0.CO%3B2-G
https://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:34/Orletal2020&rfe_id=urn:sici%2F1933-6837%282025%2920%3A4%3C1461%3ANDIARO%3E2.0.CO%3B2-G
https://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:34/Orletal2020&rfe_id=urn:sici%2F1933-6837%282025%2920%3A4%3C1461%3ANDIARO%3E2.0.CO%3B2-G
https://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:35/Rad1985&rfe_id=urn:sici%2F1933-6837%282025%2920%3A4%3C1461%3ANDIARO%3E2.0.CO%3B2-G
https://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:35/Rad1985&rfe_id=urn:sici%2F1933-6837%282025%2920%3A4%3C1461%3ANDIARO%3E2.0.CO%3B2-G
https://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:36/Rah2014&rfe_id=urn:sici%2F1933-6837%282025%2920%3A4%3C1461%3ANDIARO%3E2.0.CO%3B2-G
https://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:36/Rah2014&rfe_id=urn:sici%2F1933-6837%282025%2920%3A4%3C1461%3ANDIARO%3E2.0.CO%3B2-G
https://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:38/RubYaa1983&rfe_id=urn:sici%2F1933-6837%282025%2920%3A4%3C1461%3ANDIARO%3E2.0.CO%3B2-G
https://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:38/RubYaa1983&rfe_id=urn:sici%2F1933-6837%282025%2920%3A4%3C1461%3ANDIARO%3E2.0.CO%3B2-G
https://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:39/SadSta2015&rfe_id=urn:sici%2F1933-6837%282025%2920%3A4%3C1461%3ANDIARO%3E2.0.CO%3B2-G
https://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:39/SadSta2015&rfe_id=urn:sici%2F1933-6837%282025%2920%3A4%3C1461%3ANDIARO%3E2.0.CO%3B2-G
https://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:40/San2007&rfe_id=urn:sici%2F1933-6837%282025%2920%3A4%3C1461%3ANDIARO%3E2.0.CO%3B2-G
https://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:40/San2007&rfe_id=urn:sici%2F1933-6837%282025%2920%3A4%3C1461%3ANDIARO%3E2.0.CO%3B2-G
https://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:41/San2008&rfe_id=urn:sici%2F1933-6837%282025%2920%3A4%3C1461%3ANDIARO%3E2.0.CO%3B2-G
https://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:41/San2008&rfe_id=urn:sici%2F1933-6837%282025%2920%3A4%3C1461%3ANDIARO%3E2.0.CO%3B2-G
https://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:42/SanSkr2007&rfe_id=urn:sici%2F1933-6837%282025%2920%3A4%3C1461%3ANDIARO%3E2.0.CO%3B2-G
https://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:42/SanSkr2007&rfe_id=urn:sici%2F1933-6837%282025%2920%3A4%3C1461%3ANDIARO%3E2.0.CO%3B2-G
https://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:42/SanSkr2007&rfe_id=urn:sici%2F1933-6837%282025%2920%3A4%3C1461%3ANDIARO%3E2.0.CO%3B2-G
https://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:43/SanSkr2010&rfe_id=urn:sici%2F1933-6837%282025%2920%3A4%3C1461%3ANDIARO%3E2.0.CO%3B2-G
https://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:43/SanSkr2010&rfe_id=urn:sici%2F1933-6837%282025%2920%3A4%3C1461%3ANDIARO%3E2.0.CO%3B2-G

1520 Sugaya and Wolitzky Theoretical Economics 20 (2025)
Smolin, Alex (2021), “Dynamic evaluation design.” American Economic Journal: Microe-
conomics, 13 (4), 300-331. [1464]

Spear, Stephen E. and Sanjay Srivastava (1987), “On repeated moral hazard with dis-
counting.” Review of Economic Studies, 54 (4), 599-617. [1461, 1463, 1469, 1478]

Sugaya, Takuo (2022), “Folk theorem in repeated games with private monitoring.” Re-
view of Economic Studies, 89 (4), 2201-2256. [1464]

Sugaya, Takuo and Alexander Wolitzky (2017), “Bounding equilibrium payoffs in re-
peated games with private monitoring.” Theoretical Economics, 12,691-729. (1464, 1467]

Sugaya, Takuo and Alexander Wolitzky (2018), “Maintaining privacy in cartels.” Journal
of Political Economy, 126 (6), 2569-2607. [1464]

Sugaya, Takuo and Alexander Wolitzky (2023), “Monitoring vs. Discounting in repeated
games.” Econometrica, 91 (5), 1727-1761. [1465, 1467, 1469, 1475, 1477, 1482, 1494, 1495]

Wood, David C. (1992), “The computation of polylogarithms.” Working Paper. [1488]

Zhu, Huangjun, Zihao Li, and Masahito Hayashi (2022), “Nearly tight universal bounds
for the binomial tail probabilities.” Working Paper. [1491]

Co-editor Simon Board handled this manuscript.

Manuscript received 11 September, 2024; final version accepted 7 March, 2025; available on-
line 11 March, 2025.


https://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:44/Smo2021&rfe_id=urn:sici%2F1933-6837%282025%2920%3A4%3C1461%3ANDIARO%3E2.0.CO%3B2-G
https://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:44/Smo2021&rfe_id=urn:sici%2F1933-6837%282025%2920%3A4%3C1461%3ANDIARO%3E2.0.CO%3B2-G
https://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:45/SpeSri1987&rfe_id=urn:sici%2F1933-6837%282025%2920%3A4%3C1461%3ANDIARO%3E2.0.CO%3B2-G
https://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:45/SpeSri1987&rfe_id=urn:sici%2F1933-6837%282025%2920%3A4%3C1461%3ANDIARO%3E2.0.CO%3B2-G
https://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:46/Sug2022&rfe_id=urn:sici%2F1933-6837%282025%2920%3A4%3C1461%3ANDIARO%3E2.0.CO%3B2-G
https://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:46/Sug2022&rfe_id=urn:sici%2F1933-6837%282025%2920%3A4%3C1461%3ANDIARO%3E2.0.CO%3B2-G
https://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:47/SugWol2017&rfe_id=urn:sici%2F1933-6837%282025%2920%3A4%3C1461%3ANDIARO%3E2.0.CO%3B2-G
https://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:47/SugWol2017&rfe_id=urn:sici%2F1933-6837%282025%2920%3A4%3C1461%3ANDIARO%3E2.0.CO%3B2-G
https://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:48/SugWol2018&rfe_id=urn:sici%2F1933-6837%282025%2920%3A4%3C1461%3ANDIARO%3E2.0.CO%3B2-G
https://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:48/SugWol2018&rfe_id=urn:sici%2F1933-6837%282025%2920%3A4%3C1461%3ANDIARO%3E2.0.CO%3B2-G
https://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:49/SugWol2023&rfe_id=urn:sici%2F1933-6837%282025%2920%3A4%3C1461%3ANDIARO%3E2.0.CO%3B2-G
https://www.e-publications.org/srv/te/linkserver/openurl?rft_dat=bib:49/SugWol2023&rfe_id=urn:sici%2F1933-6837%282025%2920%3A4%3C1461%3ANDIARO%3E2.0.CO%3B2-G

	Introduction
	Preliminaries
	Overview of results
	Finite games
	Positive curvature

	Maximum efficiency with arbitrary strategies
	Main result
	Proof sketch for Theorem 1
	Tightness of the efficiency bound in the kinked case

	Attainable efficiency with public strategies
	Proof of Theorem 2

	A stronger result for the principal-agent problem
	Proof sketch for Theorem 3

	Discussion
	The low-discounting/low-monitoring double limit
	Summary and directions for future research

	Appendix A: Proof of Theorem 1
	Appendix B: Proof of Proposition 1
	Appendix C: Proof of Proposition 2
	Appendix D: Proof of Lemma 2
	Appendix E: Proof of Lemma 3
	Appendix F: Proof of Theorem 3
	Appendix G: Omitted details for the proof of Theorem 3
	Proof of Lemma 16
	Proof of Lemma 17
	Construction of xa(y)
	Equilibrium verification
	Proof of Lemma 18

	References

