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Existence of a non-stationary equilibrium in
search-and-matching models: TU and NTU
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This paper proves the existence of a non-stationary equilibrium in the canoni-
cal search-and-matching model with heterogeneous agents. Non-stationarity en-
tails that the number and characteristics of unmatched agents evolve endoge-
nously over time. An equilibrium exists under minimal regularity conditions and
for both paradigms considered in the literature: transferable and nontransferable
utility. To address potential discontinuities in match opportunities across types,
our analysis introduces a generalized Schauder fixed-point theorem suitable for
models with discontinuous value functions.
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1. INTRODUCTION

This paper builds tools for proving the existence of a non-stationary equilibrium in dy-
namic heterogeneous agent models, where the aggregate state evolves deterministically
over time. Our focus is the canonical search-and-matching model. This model has been
widely used to study productive and social interactions.! As in the pioneering work
by Shimer and Smith (2000), a continuum of heterogeneous agents engage in a time-
consuming and haphazard search for one another and exit the search pool upon forming
a match. Following the two dominant paradigms in the literature, match payoffs can be
transferable (TU), i.e., there is Nash bargaining over match surplus, or nontransferable
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(NTU), i.e., match payoffs are exogenously given. In this model, fluctuations arise natu-
rally, e.g., due to a seasonal thick market externality, gradual market clearing or the busi-
ness cycle. Known equilibrium existence results, with the exception of Manea (2017a),
apply however only in the stylized stationary environment where entry and exit into the
search pool are balanced at all moments in time (Burdett and Coles (1997), Shimer and
Smith (2000), Smith (2006), Lauermann, Néldeke, and Troger (2020)).%

A non-stationary equilibrium resolves a complex feedback loop between a time-
moving aggregate state and individual decisions. In the search-and-matching economy,
the endogenous variables are: the distribution of agents’ characteristics in the search
pool, agents’ value-of-search, and thereby determined matching decisions and trans-
fers. Aggregate population dynamics and the individual decision problem are coupled;
when the search pool evolves and, therefore, future match prospects evolve, so do opti-
mal matching decisions, and hence the rate at which agents exit the search pool. The in-
terplay between aggregate dynamics and the individual decision problem is shared with
virtually all dynamic general equilibrium models under rational expectations. Lasry and
Lions (2007) refer to this class of models as mean field games.

We prove equilibrium existence in three steps. As in general equilibrium theory, exis-
tence will depend on the application of a topological fixed-point theorem. In Section 2,
we establish a nontrivial adaptation of the Schauder (1930) fixed-point theorem, which
imposes few constraints on the model. This theorem translates abstract concepts, no-
tably compactness in function spaces, into premises that can be interpreted economi-
cally. In Section 5.1, we construct a value-of-search operator whose fixed points corre-
spond to a non-stationary equilibrium. In Sections 5.2 and 5.3, we prove that the opera-
tor satisfies the premises of our fixed-point theorem. To that end, we construct bounds
on the value-of-search across individuals that are derived from two revealed preferences
arguments.

We first establish a fixed-point theorem (Theorem 1). Due to its potential appeal
to other models, we present it in a self-contained section. The domain of this fixed-
point theorem is the space of tuples (F1, ..., FN) e FV of measurable mappings F" :
[0, 1] x Ry — [0, 1] endowed with a semimetric. In search-and-matching models, N =
2 is the number of populations, e.g., workers and firms, and F"(x, t) is the value-of-
search of agent type x from population 7 at time ¢. We prove that an operator H : FN —
FN admits a fixed point if it is (i) continuous with respect to the semimetric, and (ii)
maps into a function space whose (two-dimensional) total variation norm is uniformly
bounded. Premise (i) is the familiar continuity premise from Schauder. Both premises
are sufficiently general to allow the value function to fluctuate endogenously over time
and to be discontinuous with respect to time and type.*

2Relatedly, Lauermann and Néldeke (2015) and Manea (2017b) prove the existence of a stationary equi-
librium when there are finitely many types.

3Manea (2017a) proves existence in the non-stationary TU (but not NTU) search-and-matching model
when there are finitely many types and time is discrete. The present paper deals with a continuum of types
and continuous time (in both the TU and NTU paradigm).

4In NTU search-and-matching models, it is known that block segregation (see McNamara and Collins
(1990), Smith (2006) and references therein) prohibits continuity of the value-of-search: agents can clus-
ter according to classes so that any two agents match upon meeting if and only if they belong to the same
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The key step in proving our fixed-point theorem is the construction of a sequence
of approximating fixed-point operators. By mapping any given value function profile
into a smaller function space, the space of k-Lipschitz functions, the approximating
fixed-point operator is guaranteed to be compact-valued. Since the operator is also
continuous due to premise (i), Schauder’s theorem guarantees the existence of a fixed
point. This fixed point corresponds to an approximate equilibrium with vanishing ap-
proximating error as we increase the constant k. We then prove that the sequence of
approximating equilibria converges. This is the consequence of a generalized multidi-
mensional (time and type) Helly selection theorem, which establishes that premise (ii)
implies sequential compactness of H(FN).?

Second, we construct a value-of-search operator whose fixed points correspond to
a non-stationary equilibrium. Under this operator, agents take others’ value-of-search,
hence matching decisions, as given to compute their own discounted expected future
match payoff. The operator can be interpreted as the out-of-equilibrium value-of-
search in that the value-of-search ascribed to other agents of equal type need not co-
incide with their own.

Third, we prove that the operator satisfies the premises of our fixed-point theorem:
continuity and uniformly bounded variation. This holds true for general primitives of
the economy. The central assumptions are Lipschitz continuity and linear boundedness
of entry and meeting rates. In particular, we allow both rates to depend generally on time
and the current size and composition of the search pool, which relaxes assumptions
considered in the literature.

We circumvent the tractability issues that come with non-stationary dynamics by
constructing tight bounds on the difference in the value-of-search between two agents.
Those bounds follow from two revealed preference arguments (NTU and TU) coined
mimicking arguments whose underlying idea is to let one agent replicate someone else’s
matching decisions. In the TU paradigm, we establish bounds in terms of time-invariant
output rather than time-varying payoffs by employing an inductive reasoning over the
mimicking argument. These bounds are also key to studying sorting in non-stationary
equilibrium (see Bonneton and Sandmann (2023) (NTU), and Bonneton and Sandmann
(2021) (TUY).

Related work

This paper contributes to the theoretical literature on search and matching; see Chade,
Eeckhout, and Smith (2017) for an excellent review.

With the exception of Manea (2017a), all equilibrium existence results derive con-
ditions on the primitives of the model for which a stationary equilibrium exists (Bur-
dett and Coles (1997), Shimer and Smith (2000), Smith (2006), Lauermann and Noldeke

class. Similarly, discontinuities in the value function across types arise naturally, absent prices, under infor-
mational asymmetries. For example, Bardhi, Guo, and Strulovici (2023) show that, when employers learn
about workers’ skills by observing “bad news,” workers who are almost equal ex ante have very different
expected career paths.

5Relatedly, Smith (2006) makes use of the Helly selection theorem in dimension one (type) to establish
sequential compactness of the value function space.
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(2015), Manea (2017b), and Lauermann, Noldeke, and Troéger (2020)). Many economic
phenomena, however, are inherently non-stationary,® including time-variant entry as in
a seasonal housing market (see Ngai and Tenreyro (2014)), and a gradually clearing job
market (by which, e.g., academic economists have organized the junior job market for
Ph.D. hires).

Manea (2017a) proves equilibrium existence in the TU non-stationary search-and-
matching model when there are finitely many types and time is discrete. In line with
the literature on assortative matching, we consider continuous time and a continuum of
types. Continuum-type models ease the analysis of sorting (Chade, Eeckhout, and Smith
(2017)) and continuous-time models avoid pathological coordination failures across pe-
riods with instantaneous first-round exit by all agents (as reported in Damiano, Li, and
Suen (2005)). One reason to focus on finite-type models is technical simplicity; Ty-
chonoff guarantees the compactness of the (countably finite) equilibrium domain. Our
proof, notably the herein developed mimicking argument, reveals that the TU paradigm
with a continuum of types poses no additional conceptual difficulties (cf. Remark 3). In
the NTU paradigm, by contrast, continuous model primitives alone do not guarantee
that the equilibrium value-of-search is continuous in types. Herein introduced proof
techniques allow us to establish equilibrium existence regardless and encompass dis-
continuous model primitives.

Questioning what happens outside the steady state is at the heart of burgeoning lit-
erature at the intersection of continuous-time macroeconomics and mean field games.
Yet for many models of interest no one even knows whether an equilibrium exists when
the economy is not assumed to be in the steady state (see ABLL+ (2014)). Difficulties in-
clude the fact that it is usually impossible to characterize the value-of-search in closed
form. Smith (2011) quipped that “the simplest non-stationary models can be notori-
ously intractable.”

Our fixed-point theorem relates to Jovanovic and Rosenthal (1988) who also pro-
pose a topological approach’ to prove the existence of non-stationary (and station-
ary) equilibria in a general class of models coined anonymous games. These can be
viewed as mean field games in discrete time.? Observe however that their critical as-
sumption on the continuity of individual expected utilities do not hold in search-and-
matching models; in two-sided search-and-matching models pooling of match accep-

60ne critical insight is that aggregate fluctuations can amplify idiosyncratic risk. In a non-stationary
Aiyagari (1994) model (see AHLL+ (2022)), a looming rise in interest rates makes consecutive negative in-
come shocks more costly, contributing to greater precautionary savings. In a growth model, the anticipa-
tion of future industry consolidation can dampen investment in long-run quality in favor of greater short-
term intangible investment (see De Ridder (2024)). In a companion paper (see Bonneton and Sandmann
(2023)), we show how the downside risk of future acceptance of an undesirable match in a depleted search
pool can impede contemporaneous positive assortative matching.

"We say that an equilibrium existence proof is topological if it uses a fixed-point theorem that endows
its domain with a topology, such as Brouwer’s fixed-point theorem or its generalizations. An example of a
nontopological fixed-point theorem is Tarski.

8Bergin and Bernhardt (1995) investigate the complementary case where there is aggregate uncertainty.
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tance decisions in one population can give rise to discontinuities in the other popula-
tion’s match prospects.” 1% Discontinuities have been extensively explored in the context
of NTU block segregation where the unique steady-state equilibrium exhibits a discon-
tinuous value-of-search profile (refer to McNamara and Collins (1990), Smith (2006) and
references therein). More generally, discontinuities arise when a nonnegligible set of
agents adopts identical match acceptance decisions, leading to a sharp drop in match
prospects for the marginally rejected agents. A scenario of agents endowed with identi-
cal preferences and match opportunities provides the simplest example thereof.

Recent work by Balbus, Dwiezulski, Reffett, and Wozny (2022) (on supermodular
anonymous games) and Prohl (2023) (on the non-stationary Aiyagari (1994) model with
aggregate uncertainty) has established nontopological existence results that rely on
monotonicity conditions. Where such monotonicity exists, equilibria can be ranked or
are unique. The interactive nature of search-and-matching models rule out their struc-
tural assumptions.!'!12

The mean field game literature has made strides as of late by allowing for aggregate
uncertainty under the probabilistic approach (see Carmona and Delarue (2018) and Bi-
lal (2023)). Mathematically, aggregate noise is a convenient tool, for it smoothes the
value function across states, allowing the researcher to leverage PDE techniques. Con-
ceptually, our approach is different since, like in the steady state, the aggregate dynamics
we consider are, by construction, deterministic.

2. A FIXED-POINT THEOREM FOR NON-STATIONARY MODELS

We first develop a fixed-point theorem that will help us prove the existence of a non-
stationary equilibrium of the search-and-matching economy. It is a nontrivial adapta-
tion of the well-known Schauder-Tychonoff fixed-point theorem (Schauder (1930), Ty-
chonoff (1935)). Due to its potential appeal for proving existence in other models, this
section is self-contained.

Our theorem applies to continuous-time, infinite-horizon models in which a group
of heterogeneous agents, as described by a type x € [0, 1], take actions that affect others

91dentify unmatched agents’ utilities (labeled reward function in Jovanovic and Rosenthal (1988)) with
the expected flow payoff of mutually acceptable matches weighted by the meeting rate, and equate action
profiles with either match indicators or value-of-search profiles. Then utilities can impossibly be continu-
ous at action profiles where a nonnegligible mass of agents is indifferent between accepting and rejecting
the same type.

10Continuous value function profiles naturally arise in Bewley-style economies where individual agents
face uninsurable income risk. In particular, Miao (2006) Lemma 1 (cf. Cheridito and Sagredo (2016) and
further qualifying assumptions in Cao (2020)) prove that individual saving and consumption decisions are
continuous in asset holdings. The prevalence of prices aggregating agent heterogeneity is central for this
result.

Supermodularity posits incremental and monotone effect of others’ actions on expected utility. Super-
modularity is not satisfied in our context where there are threshold acceptance strategies in the same way
that Bertrand competition cannot be modeled as a supermodular game.

12The Bewley-style Aiyagari (1994) model builds on a sufficient statistic approach whereby individual
decisions aggregate into a single variable such as the interest rate. Match acceptance decisions of hetero-
geneous agents do not admit such aggregation.
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through the aggregate only. This class of models is sometimes referred to as anonymous
or mean field games. Within this class of models, our fixed-point theorem is sufficiently
general to allow the value function to fluctuate endogenously over time and to be dis-
continuous with respect to time and type. It is therefore relevant in models that dispense
with the steady-state assumption or admit pooling behavior. Note that existing applica-
tions of fixed-point theorems in economic models (see, for instance, Stokey and Lucas
(1989)) often rely on the Arzela-Ascoli theorem, which explicitly rules out discontinu-
ities in the value function.

2.1 Preliminaries and statement of the theorem

We would like to establish the existence of a fixed point of the operator H = (H Lo
HV): FN — FN where F and FV are the spaces of measurable mappings [0, 1] x R, —
[0,1] and [0, 1] x R, — [0, 1]V, respectively. In more detail, a fixed point is a mapping
F=(F,...,F") e FN such that H[F] = F.

To state the theorem, we introduce two notions of distance. First, the continuity
premise of our fixed-point theorem requires the following operator to measure the “dis-
tance” between functions.

DEFINITION 1 (seminorm). Define, for all functions F = (F1, ..., FN) e FVN,

oo prl
iFI= max [ [ e n]dxd.
ne{l,..,N} Jo 0

The mapping (F, F) — |F — F|| is called a semimetric because it is induced by a
seminorm. Following this terminology, we call || - || a seminorm.

Second, we introduce the total variation norm for mappings in F. As we shall see,
if a set of functions is uniformly bounded in the total variation norm, then it is sequen-
tially compact. Our focus on two-dimensional functions is a special case of the general
definition provided by Idczak and Walczak (1994) and Leonov (1996).13

DEFINITION 2 (total variation norm). The total variation norm for functions F” € F and
arbitrary bounded time interval [z, 7] is given by

TV(F",[0,1] x [, 11) = V§ (F" (-, 1)) + VE(F™(0, ) + V2 (F", [0, 1] x [1, T])
with
m
Vo (F™ (-, t0)) = sup Y _|F™(x;, to) — F"(x;_1, fo)|
P i1
where P is a partition of [0, 1],i.e.,,0=xg <x1 <--- <X, =1,
m
VI(F"(0, ) = st;)pZ!F"(o, 1) — F™(0, t;_1)|
i=1

13Subsequent work by Chistyakov and Tretyachenko (2010) extends the total variation norm to more
abstract spaces.
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where P is a partition of [¢, 7], i.e., t=f <t <--- <ty =1,

m
Vo (F", [0,1] x [t,7]) = SUPZ|F"(xi, 1)) — F"(xj, tiz1) — F"(xi—1, ;) + F" (xi-1, ti-1)|
P izl

where P is a discrete path in [0, 1] x [¢, £],
ie,t=fg<ti<---<tp=1

and O=xp<x1<--<xp=1.

The total variation norm in dimension two is the sum of the variations, i.e., “up and
down” movements, of a function F” along three paths within the square [0, 1] x [¢, 7].
These paths start from the origin point (0, ) and move towards the three remaining ex-
tremal points of the square, capturing variations along the boundary and the interior.'*

We can now state our fixed-point theorem.

TueoreMm 1. Suppose that H : F¥ — FN satisfies:

(i) for all F = (Fl, ...,FN) e FN and € > 0, there exists 5 > 0 such that |H[F] —
H[F]| <eforallF = (F',...,FN) e FN such that |F — F| < §;

(ii) VT > 03C > 0 such thatVne{1,..., N}: TV(H"[F],[0,1] x [0, T]) < C forall F
FN.

Then H admits a fixed point.

We will refer to condition (i) as continuity and (ii) as uniformly bounded variation. 15

2.2 Proof of the fixed-point theorem

Outline of the proof We construct a sequence of operators that approximate the fixed-
point operator H (Step 1). Each approximate fixed-point operator will satisfy all the
assumptions of the Schauder fixed-point theorem (Step 0, Step 2), and hence admits a
fixed point (Step 2). We then show that the sequence of approximate fixed point admits
a convergent subsequence (Step 3). To conclude, we prove that H maps the convergent
subsequence’s limit point into a fixed point of H (Step 4).

To begin with, endow F and F» with the discounted supremum metric. Discounting
is what helps us deal with an infinite horizon.

14To establish a Helly-type selection theorem whereby a sequence of functions (F(k))ken defined on
[0, 1] x [, 7] of uniformly bounded variation admits a pointwise convergent subsequence, the inclusion of
sin(kx) ift=t
0 otherwise.
(F(k))ken does not admit a pointwise convergent subsequence, despite V2(F), [0, 1] x [z, 7]) = 1. This
shows that uniform bounded variation on the interior only does not guarantee the existence of a pointwise
convergent subsequence.

15A]s0, note that the domain FV is convex.

boundary variations is crucial. To see this, consider F,(x, t) = Thus defined sequence



1418 Sandmann and Bonneton Theoretical Economics 20 (2025)

DEerINITION 3 (Discounted sup metric). The discounted sup metric for functions F =
(F',...,FNye FN and F = (F, ...,FN) e FN is given by
dV(F,F)= max d(F",fn) = max_supe '|F"(x,1) ~F'(x, .
ne{l,...,N} nef{l,..,N} x,t
Step 0 (preliminary): A compact set of functions To apply Schauder’s fixed-point the-
orem, we require that the fixed-point operator maps into a compact set of functions.
As a preliminary step, we show that the set of k-Lipschitz functions is compact. (Note

however that functions in the image of H need not be k-Lipschitz, let alone continuous.)
A function F™ : [0, 1] x Ry — [0, 1] is k-Lipschitz if for any (x, ¢), (y, r) € [0, 1] x Ry,

|Fm(x) t) _Fm(y) r)‘ =< k ~1'I13X{|x _yl) |t—l"|}.
Denote F ;) C F the (convex) subset of k-Lipschitz functions.
PrROPOSITION 1. (Fk), d) is compact.

The proof of this Proposition mirrors that of the Arzela-Ascoli theorem and is de-
ferred to Appendix A.1.16

Step 1: Construction of the approximate fixed-point operator We construct an approxi-
mate fixed-point operator that is continuous and maps into the set of k-Lipschitz func-
tions. We achieve this via convolution with approximate identity functions. To handle
the integration at the boundary points x € {0, 1} and ¢ = 0, where the convolution op-
eration naturally extends beyond the domain [0, 1] x [0, co0), we extend the support of
functions in F to [—1, 2] x [—1, oco). This extension ensures that the convolution is well-
defined across the entire original domain.

Denote the approximate operator H(’Z) : FN — F, and define, for any (x, fy) €
[0, 1] xRy,

2 poo
H{}, [F1(xo, f0)=/1/1 H™[F](x, 1)8k)(x0 — X, fo — t) dt dx

where, first, ﬁm[F] is the extension of H™[F] € F to a mapping [—1, 2] x [—1, c0) —
[0, 1],
H’"[F](|x|,|t|) if —1<x<0
H™F)(x,0) = { H"[F](x, |t)  ifo<x<1
H™[F1(2—x,[t]) ifl<x<2,

and, second, for b(x) =4/k and k > 4, we define

8k (X, 1) = ——
1 (b(k))2

16The classical version of the Arzela-Ascoli theorem (see Munkres (2000), Theorem 45.4) does not apply
here directly because the domain of the functions in F(;, is unbounded.
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if (x, 1) € Bk (0) = {(x/, t') € R? : max( I} < %}, zero otherwise.
Intuitively, convolution with a sufficiently dispersed approximate identity function
smooths out a bounded function by averaging its values over a larger neighborhood. Our
approximate identity function assigns equal weights to every point within its support.
Consequently, the difference in the operator’s value between two points is bounded by
the size of the difference in the integration regions. Lipschitz continuity follows because
this difference is at most proportional to the distance between the two points, as illus-
trated in Figure 2. At this point, it is immaterial whether the original function H”[F] € F
is of uniformly bounded variation or not.

Step 2: Properties of the approximate fixed-point operator 'We now show that the ap-
proximate fixed-point operator satisfies all the necessary properties that allow us to ap-
ply the Schauder fixed-point theorem: compactness of its image and continuity.

LEMMA 1. H(’g‘{)[]-"N] C Fuy

LEmMA 2. Hf}, (FN,dN) = (F, d) is continuous.
The proof of both lemmata is deferred to Appendix A.2.

PROPOSITION 2. H(y) = (H(lk), . (k)) FN — FN has a fixed point Fj;,
This proposition is an application of the Schauder fixed-point theorem.

Proor. First, observe that (]-'N d"V) is a complete metric space (see Theorem 43.5. in
Munkres (2000)) and that (F, k), dV) is a subset of this space. Moreover, observe that
the metric dV satisfies the three axioms posited by Schauder (1930).17 Second, since
(7 k), d"V) is the finite-dimensional product of compact sets (Proposition 1), it is com-
pact. It is also closed (since FN ) is compact) and convex. Finally, continuity of the
component operator H”, o (Lemma 2) on the larger space FV establishes continuity of
Hyy = (H(k), (k)) (F 1 N dV) — (]:k)’ dV). Then the Schauder fixed-point theo-
rem (see Schauder (1930), Satz I) asserts that if the continuous operator H )y maps the
convex, closed, and compact set ]-'(Nk) into itself, then there exists a fixed point Fly e
H(k)[F(*k)]zF(*k). O

Step 3: Existence of a convergent subsequence of approximate fixed points By consider-
ing all k € N, Proposition 2 establishes that there exists a sequence of approximate fixed
points (F(j,)ken. We now show that this sequence admits a convergent subsequence.

7Those axioms are 1° dV (F, F) = dV (F — F, 0), 2° lim,—, oo dV (F(;), F) = lim,—. 00 4 (G ), G) = 0 im-
plies lim,,_, o, dV (Finy +Gw» F+G)=0and3° for {A,} a sequence of real numbers and {F ()} a sequence in
FN iy 00 Ay = A, limy, oo Y (F(ny, F) = 0 implies lim,,_. o AV (1, F (), AF) = 0. Those axioms are naturally
satisfied if the metric is induced by a norm (which is prohibited by discounting in our case).
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ProposITION 3. The fixed points (F,)ken admit an accumulation point F* in (FN,
dv).

This follows from a higher-dimensional Helly-type selection theorem. It is here that
we utilize our assumption—immaterial to the preceding results—that the total variation
of functions F” € F admits a uniform bound.

Prookr. Fix arbitrary n € {1, ... N}. Idczak and Walczak (1994) and Leonov (1996) (The-
orem 4) prove that if all the elements (indexed by k € N) of a sequence of functions
(F(”k))keN: F(”k) € F satisfy TV(F(”k), [0, 1] x [0, T]) < C for some constant C, then the se-
quence admits a subsequence of functions that converges pointwise on [0, 1] x [0, T] fo
a function with the same property. Assumption (ii) of the theorem asserts the existence
of such a uniform bound C for all H"[F] € F where n € {1,..., N} and F € FV. Since
the uniform bound on the total variation will be preserved under convolution, such
bound also obtains for all Hj;,[F] € 7 where k € N. In particular, this applies for the
sequence (H{j, [F{y Dken = (F(*,;’;)keN. Then, for all T > 0 and n = 1, the Helly-type se-
lection theorem ensures the existence of a pointwise convergent subsequence (F (*,;Z) VkeN

on [0, 1] x [0, T] where each F (*,;2) € F. Then, iterating over n ensures the existence of a
pointwise convergent subsequence (F(*ke))keN in [0, 1] x [0, T'], where F(*k() e FN. Fol-
lowing an identical reasoning, we can find a subsequence of the subsequence, which
converges pointwise in [0, 1] x [0, T + 1]. Proceeding by induction then establishes

pointwise convergence in [0, 1] x [0, co); we denote F* € F N the limit point. O

Step 4: Conclusion The preceding steps established the existence of a convergent sub-
sequence of approximate fixed points. Proposition 4 asserts that the image of this limit
is a fixed point of H, which concludes the proof of Theorem 1.

PROPOSITION 4. H[F*] is a fixed point of H : FN — FNV.

The proof of this proposition is deferred to Appendix A.3.

Remark!® Theorem 1 can be generalized to restrict attention to closed, convex sub-
sets of measurable functions. Formally, consider the restriction to a subset of functions
¢ < FN such that H maps C into itself, i.e., H[C] C C, and maintain that H satisfies the
theorem’s premises (i) and (ii) where FN is now replaced by C. Then introduce the ad-
ditional assumption that C € FV is convex and closed under dV. Then the theorem’s
conclusion can be strengthened: H admits a fixed point in C. The proofis as follows.

Proor. DefineCy) C F, (Nk) the set of functions derived via convolution of functions F € C
with the approximate identity function 8, as defined in Step 1. To simplify the nota-
tion, we write F * 8(x). Then Cxy = {F(x) € FN|F) = F % 84, for some F € C}. We note
that Cy inherits from C convexity and closedness. It follows that (C), dV) is compact

18We thank the coeditor for suggesting this generalization
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(because the closed subset of a compact space, here (}'(1}/(), d") as shown in Proposi-
tion 1, is compact). Then our application of Schauder’s fixed-point theorem in Proposi-
tion 2 applies to the convex, closed, and compact set Cj. Hence, as established in Step 2,
there exists a sequence of approximate fixed points (F (k) keN where F ) € Cuor- And ac-
cording to Step 3, Proposition 3, this sequence admits an accumulation point, denoted

F*. Therefore, also the sequence (F(*k))keN in C where F(*k) = F(*k) * 8(k) admits F* as
an accumulation point under dV. Since (C, d") is closed, it follows that F* € C. Then
Proposition 4 allows us to conclude. O

3. THE SEARCH-AND-MATCHING ECONOMY

This section presents the continuous-time, infinite-horizon search-and-matching mo-
del. We first describe the set-up. We then lay out the assumptions that we rely on to
prove the existence of a non-stationary equilibrium. The formal definition of equilib-
rium and the proof of its existence are deferred to later sections.

3.1 Set-up

Agents engage in time-consuming and random search for potential matches. When two
agents meet, they observe each other’s type. If both agents give their consent, they per-
manently exit the search pool and consume their respective match payoffs. Otherwise
they continue waiting for a more suitable partner. Each agent maximizes their expected
present value of payoffs, discounted at rate p > 0.

Agents There are two distinct populations denoted X and Y, each containing a con-
tinuum of agents that seek to match with someone from the other population. Each
agent is characterized by a type, which belongs to the unit interval [0, 1]. We usually
denote by x a type of an agent from population X, and y a type of an agent from popu-
lation Y. The distribution of types in the search pool at time ¢ is characterized by a pair
of functions u, = (1%, 1)), such that for any U C [0, 1], the mass of types x € U in the
search pool is [, u¥ (x) dx. The initial distribution at time 0 is given by some uniformly
bounded wuq.

Note: We typically construct the value-of-search and related concepts from the per-
spective of population X; symmetric constructions apply to agent types y from popula-
tion Y. Furthermore, we impose that all functions introduced are Lebesgue measurable.

Search Over time agents randomly meet each other. Meetings follow an (inhomoge-
neous) Poisson point process. Such a process is characterized by the time-variant (Pois-
son) meeting rate A = (A%, AY) where A (y|x) is agent type x’s time-¢ meeting rate with
an agent type y. In the simplest case, the meeting rate is proportional to the search pool
population so that AX (y|x) = u} (), as in Shimer and Smith (2000) and Smith (2006).
More generally, we take A to be a function of the underlying state variable u; and time
t. Then the subindex ¢ is shorthand for dependence on both the prevailing time ¢ and
state ur, i.e., AX (y|x) = AX (¢, o) (y]%).
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The meeting rates A and A} are not arbitrary but intricately linked. Coherence of
the meeting rate requires that the number of meetings of agent types x with agent types
y must be equal to the number of meetings of agent types y with agent types x:

A (lopd () =AY (xly)wd ).

Population dynamics Population dynamics are governed by entry and exit. Any two
agents x and y of opposite populations that meet and mutually consent to form a match
exit the search pool. The rate at which an individual agent type x matches and exits the
market at time +—the hazard rate—is

1
/ m(x, Y)AY (y|x) dy;
0

m¢(x, y) € {0, 1}, determined in equilibrium, denotes the time-# match indicator. This
is equal to one if agent types x and y match upon meeting and zero otherwise. Entry
is characterized by a time-variant rate n = (9%, n¥). We take 7 to be a function of the
underlying state variable u; and time ¢. Then nf‘ (x) = nX(¢, us)(x) is agent type x’s
time-¢ entry rate.

The economy can be non-stationary in that entry and exit need not be equal, leading
to a time-variant state u; = (uX, u}).!¥ The population dynamics are given by

t+h 1
i () = pi () + ft {—ui‘ (x) /O AX (ylxyme(x, y)dy + ¥ (x)}df. o)
Value-of-search Any given agent’s experience in the search pool is characterized by
random encounters with other agents. Presented with a match opportunity, an agent
must weigh the immediate match payoff against the option value-of-search, the dis-
counted expected future match payoff were one to continue one’s search. Denote agent
type x’s time-¢ value-of-search V;X (x) and 7 (y|x) the one-time match payoff when
matching with y. Naturally, the optimal matching decision is to accept to match with
another agent whenever the payoff exceeds the option value-of-search:

() = V¥ (x). (08)
Knowledge of the value-of-search uniquely determines the match indicator:

1 if mX (ylx) = VX (x) and 7 (x]y) = V.Y (),

0 otherwise.

my(x,y) = { (2)

Our definition of the value-of-search is recursive: agents form beliefs about future match
probabilities and payoffs. Future match probabilities depend jointly on the Poisson rate

190ur formulation is that of a system of integral equations rather than differential equations, because
the left- and right-time derivative of ;Lf((x) do not always coincide as will be the case if z foz m(x,y)dy
is discontinuous.
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A and match outcomes upon meeting m, which depends on the value-of-search. Reflect-
ing optimality of individual strategies, we define the value-of-search to be the solution
to

o0 1
VX = e [aXolpt oindyds, )
t 0

where pr( y|x) is the density of future matches with y at time 7 conditional on x being
unmatched at time ¢. This is a standard object and is characterized by the matching rate
(see Appendix B.1):

T 1
p,{(T(y|x) =Ai((y|x)exp{—f / Af((z|x)dzdr}
t Jo

where Af(y|x) = A ¥(r, wr)(v|x)me(x, y).

We consider the two most studied paradigms for defining match payoffs: non-
transferable utility (NTU) and transferable utility (TU).

Payoffs: NTU In the NTU paradigm, match payoffs are exogenously given and time-
invariant. We denote 7 (y|x) = 7 (y|x) and normalize payoffs, i.e., 7¥ (y|x) € [0, 1].
This paradigm precludes individualized price-setting and bargaining.

Payoffs: TU Alternatively, the TU paradigm takes as its primitive the match output
f(x,y) €0, 1], generated when agent types x and y match with one another. Any di-
vision of output is conceivable. As in the Diamond-Mortensen—Pissarides model, we
use Nash bargaining as a solution concept for the bargaining problem in which agents
can claim their value-of-search ;X (x) as a threat point. Surplus f(x, y) = VX (x) = V,Y (y)
is shared according to bargaining weights aX and a¥ (where o + oY = 1). Formally,

aX (o) =VE () + X [f(x, ) = V0 = VY )] 4)
It follows that match decisions (2) are intratemporally efficient: m;(x, y) =1 if and only

if f(x, y) = VX (x) = VY (y) = 0.

3.2 Assumptions

Our assumptions on search and entry rates make use of the L' seminorm:
box X Loy Y
NG ) = ma] [ oo = ol [ 00 - w7 0] as)
Search We first assume that higher types meet other agents at a weakly faster rate.?°

AssumpTioN 1 (hierarchical search). Higher types meet other agents at a weakly faster
rate; i.e., )\f((y|x2) > )\f((y|x1)forx2 > x1 and )\tY(x|y2) > )\tY(x|y1)fory2 > y].
20Hjerarchical search encompasses, as a special case, anonymous meeting rates whereby the meeting

rate does not depend on the agent’s type and yet, critically, preserves later established bounds on the value-
of-search across types under mimicking (Lemmata 3 and 4).
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ReMARK 1. The meeting rate satisfies coherence and hierarchical search if and only if
there exists a function ¢,(x, y), nondecreasing in both types x and y, such that )ttX y|x) =

ée(x, )y (v) and AY (x|y) = s (x, I (x).

Under symmetry, i.e., uX (x) = u) (x) and VX (x) = V,Y (x), the function ¢,(x, y) is
moreover symmetric, i.e., ;(x, y) = ;(y, x).

PRrROOF. (=) Without loss, write AX (y|x) = ¢,(x, y)u) (y) and AY (x|y) = ¢, (x, y)uX (x).
Coherence implies that ,(x, y) = ¢((x, y), while hierarchical search implies that these
functions are nondecreasing in both arguments. The reverse is immediate. O

We further require that the meeting rate is linearly bounded and Lipschitz continu-
ous in the following sense.?!

AssuMPTION 2 (regularity of meetings). There exists L* > 0 such that forallx, y,and z:
M) A (lx) <LMA+ ) () and Y (x|y) < LA+ pf (x));

(i) N(A, w)(]2), At w)(]2)) < LAN (uf, 7).
Entry Entry rates satisfy analogous conditions as meeting rates.

AssuMPTION 3 (regularity of entry). There exists L™ > 0 such that for all x, y, and t:
@) nX(x)<L"andnY(y) <L";

i) N(n(t, '), n(t, u”)) < LN (w), py).

Examples The entry rate n encompasses several natural entry rates, including no en-
try, to study, for instance, a gradually clearing job market (by which, e.g., academic
economists have organized the junior job market for Ph.D. hires) and constant flows of
entry (as in Burdett and Coles (1997)). Moreover, the entry rate can be time-dependent
to account for seasonal fluctuations, e.g., in the housing market (see Ngai and Tenreyro
(2014)) or the business cycle (see Beaudry, Galizia, and Portier (2020)).

Population dynamics To ensure that the population dynamics are well-defined, we
adapt the proof of the well-known Cauchy-Lipschitz-Picard-Lindel6f theorem, which
typically establishes the local existence of a unique solution for a system of finite-
dimensional ODEs, to our infinite-dimensional context (see Appendix B.2).?? To ensure
that the unique solution exists globally for all ¢, we rely on Assumption 3, whereby in the

21 Assumptions 1 and 2 relax a proportionality assumption in Lauermann, Néldeke, and Tréger (2020).
To prove the fundamental matching lemma in the steady state (see their Condition 32), they assume that
A (¢, 1) (y|x) is proportional to ) (). Our non-stationary analysis does not require this.

22There is one difference from the classical result: owing to our focus on a continuum of types, the system
is infinite-dimensional. We draw on the more general treatment by Dieudonné (2013) (see Chapter 10.4) to
deal with the dimensionality of our problem. What is key when passing from the finite to the infinite is the
mean field property embedded in Assumptions 2(ii) and 3(ii), whereby changes in the pool of unmatched
agents, driven by individual types, have a negligible impact on entry and meeting rates.
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absence of exit the search pool population grows at most linearly in time. We denote
this bound &, and reference it in the proof.?3

ProprosITION 5. System (1) admits a unique solution for any (uo, A, n, m) satisfying As-
sumptions 2 and 3.

Payoffs: NTU In line with the literature, we consider vertically differentiated types.?
To encompass payoffs that are not strictly increasing for some types, e.g., 7% (y|x) = y*,
we impose the slightly weaker assumption that the set of types for whom the gains of
matching with a superior type are small and has vanishingly small mass as captured by
Holder continuity.

AssumpTION 4 (NTU-increasing match payoffs). Match payoffs are nondecreasing in
the partner’s type. Moreover, there exist positive constants C and a such that for all A > 0,
there is a measurable subset Z* of pairs (x, y) satisfying the following:

(i) payoffs for pairs in Z* are at least A-differentiated, i.e.,
WX(y/|x) —7%(y|x) >A and WY(x’|y) — X (x|y) > A
for all pairs (x, y), (x,¥), (x, y) (Wherex' > x andy > y) in Z%;

(ii) pairsnotin ZA have Hélder-vanishing mass, i.e.,

1,1
/ / 1{(x,y) ¢ 28} dxdy < CA®.
0 Jo
We moreover require a regularity condition regarding match payoffs.

AssuUMPTION 5 (NTU). x — #X(y|x) and y — =¥ (x|y) admit a uniform bound L™ on
total variation.

Payoffs: TU To ensure that small changes in individual match prospects do not result
in large changes in matching patterns, Shimer and Smith (2000) impose super or sub-
modular output. Here, we relax their assumption and allow for output functions that
are supermodular for some types and submodular for others, e.g., f(x, y) = x¥ + y*. 2 It
suffices that the set of types for whom complementarity gains are small has vanishingly
small mass, as captured by Holder continuity.?%

23 Tt holds that ,u,[)ih(x) — uX(x) < L"h,and so uX (x) <, + tL" = &, where the initial upper bound 7,
is given by the supremum over u§ and u} .

Z4Vertical differentiation guarantees that higher types face superior match opportunities, a property we
exploit when developing the NTU mimicking argument.

25 Anderson and Smith (2024) study sorting in a frictionless matching market where output functions are
neither supermodular nor submodular.

261f the cross-partial derivative D2, f(x, y) is well-defined, Assumption 6 says that there exist positive

y
constants C and « so that for all A > 0,

1 1
/ / 1{(x,y):\D,26yf(x,y)| <A}dxdy < CA®,
0 Jo
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AssumpTION 6 (TU-differentiated marginal output). There exist positive constants C
and a such that for all A > 0, there are measurable subsets Z=* and Z<~ of pairs (x, y)
satisfying the following:

(i) marginal output is at least A-differentiated for pairs in 2> and at most —A-
differentiated for pairs in Z<2, i.e.,

feay) =6 y) = f(, )+ (¥, y) > A —x)(y' —y) and
f ) = y) = (&, )+ F(*, ) < =A@ —x)(y - y)

forall pairs (x, y), (x, ), (X', ¥), (X, ¥) (Wherex’ > x and y' > y) in Z>8 and z<—4
respectively;

(ii) pairs notin Z>* U Z<~2 have Hélder-vanishing mass, i.e.,
11
/ / 1{(x,y) ¢ 272U z="2}dxdy < CA“.
o Jo

As in the NTU paradigm, we require a further regularity condition for output.

AssuMPTION 7 (TU). x — f(x,y) and y — f(x, y) admit a uniform bound L! on total
variation.

These assumptions are weaker than requiring that 7X (y|x), 7Y (x|y) and f(x, y) are
continuously differentiable (as in Smith (2006) and Shimer and Smith (2000)).2” We
will use these assumptions to prove bounded variation of the value-of-search (Propo-
sition 6).

Note Where Assumptions 4 and 6 hold, our focus on pure strategies is without loss;
As Lemmata 8 and 9 make clear, at any moment in time only a negligible mass of agents
can lie on the indifference threshold of a nonnegligible mass of agents. Further note that
Assumptions 4 and 6 rule out embedding discrete types in our continuum type space.

4. EQUILIBRIUM

An equilibrium jointly determines the evolution of the endogenous variables of the
search-and-matching economy: the distribution of agents’ characteristics in the search
pool, agents’ continuation values of search, matching decisions and transfers (under
bargaining in the TU paradigm). None of those can be determined in isolation. Agents
compute their value-of-search given their beliefs about the economy at large. In equilib-
rium, each individual correctly anticipates future match opportunities and payoffs. This
generates a feedback loop between the population dynamics and the value-of-search.

Z'Discontinuities in payoffs can arise naturally, e.g., when agents differ in discrete attributes such as
workers’ professional degrees, location, or export focus of a firm, or number of bedrooms in the rental
market (see Glaeser and Luttmer (2003)).
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DEFINITION 4. An equilibrium of the search-and-matching economy of given initial
search pool population uy is a triple (x, V, m), solution to (1), (2), and (3), where (NTU)
payoffs are exogenously given, or (TU) determined via Nash bargaining (4).

The interplay between aggregate dynamics and the individual decision problem is
a feature shared with virtually all dynamic general equilibrium models under rational
expectations.

The main result of this paper is to show that an equilibrium exists, both in the NTU
and TU paradigm.

THEOREM 2. Posit Assumptions 1, 2, 3 for both paradigms, 4, 5 for NTU, and 6, 7 for TU.
Then there exists an equilibrium of the search-and-matching economy.

The proof of both results will be developed jointly in Sections 2 and 5. These sections
develop tools to deal with discontinuous value functions

5. PROVING EQUILIBRIUM EXISTENCE

In this section, we use Theorem 1 to prove that the search-and-matching economy ad-
mits an equilibrium. This proof relies on the construction of a fixed-point operator
V : F? — F? that maps a value-of-search profile v = (v¥, v¥) € F? into a new value-of-
search profile. As in the preceding section, F? is the space of jointly measurable map-
pings v: [0, 1] x Ry — [0, 1]2.

Our focus on value function space is common in the literature (see Shimer and Smith
(2000), Smith (2006)). Even though an equilibrium is a triple (V, u, m), the value-of-
search V encodes all the information needed to recover the match indicator function
(through Equation (2)), whence the state u (through Equation (1) as shown in Proposi-
tion 5).

To apply Theorem 1, we construct an operator that satisfies the two conditions that
guarantee the existence of a fixed point: (i) continuity and (ii) uniformly bounded vari-
ation. The proof is extensive. Figure 1 provides a schematic overview.

5.1 Construction of the fixed-point operators

NTU TU
We construct two separate fixed-point operators, denoted ¥ and V. In the interest
of brevity, we detail only the NTU construction in the main text and relegate the TU
construction to the Appendix.

Nontransferable utility To compute his value-of-search, an agent must hold a belief
over the likelihood of future meetings. This is a function of the underlying state variable
w: and time. We begin by defining the aggregate population dynamics under the point
belief that other agents’ value-of-search is v.
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Construct operators V : F2 — F2 : fixed points <> equilibria (Definitions 6 (NTU), 8 (TU))

v+ m[v] continuous
Lemmata 8 (NTU), 9 (TU)

mimicking arguments
Lemmata 3 (NTU), 4 (TU)

HJB equation
Lemma7

v+ pfv] continuous
Lemma 10

z— VX [v)(x,t) ub.v.

Proposition 6(ii)

t+ VX[v](x,t) Lipschitz
Proposition 6(i)

N/

v+ V[v] continuous (z,t) — VX[v](z,t) u.b.v. time
Props. 7 (NTU), 8 (TU) and type

Condition (i) Theorem 1 Condition (ii) Theorem 1

F1GURE 1. A schematic overview of the proof of Theorem 2.

DEFINITION 5. Aﬂf[v] is the unique solution to (1) for given (wo, A, 1, Nr;zU[v]), where

NTU if 7% (y|x) = v (x) and 7Y (x]y) = v} (x)
my [v](x, y) = .
0 otherwise

is the aggregate probability of matching upon meeting under v.

In contrast, agent type x accepts any match whose payoff exceeds his expected dis-
counted match payoff under v, not the value-of-search th (x) he ascribes to other agents
of identical type x. As in the set-up, this match acceptance rule gives rise to an implicit
definition of the value-of-search.

DEFINITION 6. The out-of-equilibrium value-of-search given v?8 is the solution to

[ee) 1
VX i) = f P /0 X () B X, [l (y]x) dydr, (5)
t

28W1(3Truemark that the operator NI;UtX [v](x) in Definition 6 is well-defined. The unique existence of a so-
lution ¥ X[v](x) to equation (5) follows, because the recursively defined value-of-search is the supremum
of the right-hand side of Equation (5) over the set of match indicators m,(x, y) satisfying m,(x, y) = 0 if
¥ (x|y) < v} ().
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where x’s match acceptance decisions are individually rational,

NTU
ey = 11 if 7% (y|x) = V X[vl(x) and 7 (x]y) = v} (y)
0 otherwise,

and the probability of meetings is pinned down by aggregate match decisions,
"2 K w0 = X (7, W 1) 0" v, y)
e { / / (r by ) (¥ |x) 0] (x, ') dy' d’}'

Critically, the fixed points of our operator coincide with the set of equilibria.

REMARK 2. For given o, there exists an equilibrium of the NTU search-and-matching

NTU
economy if and only if V' : 72 — F? admits a fixed point.

To conceptualize this construction, think of v € F2 as a point belief about other
agents’ value-of-search. Under this interpretation, Vf( [v](x) becomes agent type x’s
time-¢ out-of-equilibrium value-of-search when expecting other agents to match ac-
cording to v, yet computing his own value-of-search under the rule that he accepts a
match whenever it is optimal for him to do so: accept if the offered match payoff ex-
ceeds the discounted expected future match payoff.?® Observe that this is an interpre-
tation only. Our objective here is to preserve desirable in-equilibrium properties of the
value-of-search, not decide what is the most “reasonable” out-of-equilibrium behavior.

5.2 The mimicking arguments and uniformly bounded variation

To satisfy Condition (ii) of Theorem 1, we establish the following result.

ProrosiTION 6 (Bounded variation of the value-of-search). In both paradigms:

(i) Posit Assumptions 2 and 3. Then the value-of-search is Lipschitz continuous in
time; i.e., for all moments in time T : 0 < T < oo there exists C > 0 such that for all
0<f<tr<Tandxe|0,1],

VEl(x) — Vi) <Clia—n| forallve F%

(ii) Posit Assumptions 1, 2, 3, and 4, 5 (NTU) and 7 (TU). Then the value-of-search is
of uniformly bounded variation in type; i.e., for all time indices t > 0, there exists
C > 0 such that for all partitions of the type interval [0, 1],

Z|V vl(xi41) = Vi l(x)| < C  forallve F2.

29For comparison, payoffs in the TU paradigm are computed under x’s belief that her threat point will
be VX [v](x) whereas her potential partner’s threat point is v, ).
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Lipschitz continuity in time of any agent’s value-of-search (Condition (i)) is due to an
immediate application of the Hamilton-Jacobi-Bellman equation. Uniformly bounded
variation in types (Condition (ii)) relies on what we refer to as the mimicking arguments
and discuss below. The relevance of these conditions is readily apparent.

COROLLARY 1. Posit Assumptions 1, 2, 3 (both paradigms), and 4, 5 (NTU), 7 (TU). Then

NTU TU
the operators V and V satisfy Condition (ii) of Theorem 1.

Proor. Both V&(x > Vf([v](x)) and Vz(t — VtX[v](x)) are uniformly bounded in both
paradigms due to Proposition 6(i) and (ii). Moreover, due to (i), there exists C such that
forall x € [0, 1]: [V ¥ [v](x) — V{ [v](x)| < C|r2 — 1. Hence,

Vo((x, 1) > Vi[v](x), 10,11 x [0, T]) <sup » _ sup |V [v](x) — Vi [v](x)| <2CT,
P =1 x€l0,1]

where P is any partition of the time interval [0, T1]. O

The mimicking arguments The remainder of this subsection discusses the proof of
Proposition 6(ii) by means of the mimicking arguments: two lemmata first developed
in Bonneton and Sandmann (2021) and Bonneton and Sandmann (2023) to establish
sorting results in equilibrium, provided an equilibrium exists. They are equally indis-
pensable in the pursuit of proving equilibrium existence. The reason is that bounded
variation is a property of the difference in values-of-search across types. However, non-
stationary dynamics typically preclude a closed-form characterization of the value-of-
search. Instead, we employ a revealed preferences argument whereby one type repli-
cates (“mimicks”) another type’s probability of matching with other agents. Since mim-
icking is not the revealed preference, this bounds the difference in values-of-search by
the difference in expected payoffs or outputs with such expectation formed under a dis-
counted measure of the agents’ future match prospects.

More specifically, Bonneton and Sandmann (2023) prove the following: In the NTU
paradigm, posit Assumptions 1, 2, 3, and 4. Then for all x, > xy the equilibrium value-
of-search satisfies

NTU NTU 1
V X x2) = V X (x) z/o (m* (ylx2) — 7 (y1x1)) OF (ylx1) dy

for some discounted density QX (y|x1).3° This result relies on payoff monotonicity (As-
sumption 4): superior types, being more desirable, can exploit their superior match of-
ferings and replicate match outcomes of any inferior type.

30More precisely, QF (y|x1) is the discounted future match density of agent type x; matching with agent
type y.



Theoretical Economics 20 (2025) Existence of a non-stationary equilibrium 1431

Bonneton and Sandmann (2021) prove an analogous mimicking argument in the
TU paradigm. This relies on the preliminary (and well-known) observation that the in-
fratemporal efficiency of matching decisions under Nash bargaining bounds the value-
of-search: for all x, > x1, it holds that

TU oo 1
VE(x2) > f e Prh fo m (y]x2) pi (y|x1) dydr.
t

From a mathematical viewpoint alas, TU payoffs (as defined in (4)) depend on the non-
stationary value-of-search: 7X (y|x) = VX (x) + X [f(x, y) — VX (x) = V;Y ()]. To estab-
lish time-invariant bounds, we must eliminate the value-of-search on the right-hand
side of the integral above. We proceed via iteration and apply the infratemporal effi-
ciency bound to (the weighted discounted future average of) V;(x2) — V;(x1). This gives
two terms: The first term is, as desired, a weighted sum over the difference in match
output. The second term is (a weighted discounted future average over averages of) the
expected difference in values-of-search. Recursively, k iterations give k + 1 terms: The
first k terms converge to a (weighted) difference in match output. The £ + 1th term con-
verges to zero as k grows large. In sum, this proves the following: In the TU paradigm,
posit Assumption 1, 2, and 3. Then for all x, > x13' the equilibrium value-of-search sat-
isfies

PX ey — X ! _ X
V (x2) = V¥ (x1) > (f(XZ,y) fx1, )05 (y]x1) dy

for some discounted density Q; (y|x1). These arguments are fully developed in the Ap-
pendix (cf. Lemmata 3, 5, 4). Unlike in the aforementioned papers, we prove here the
stronger property that the mimicking arguments hold not just in equilibrium but are
satisfied by our operators for any value-of-search profile.

5.3 Continuity of the fixed-point operators

We then turn to item (i) from Theorem 1: Continuity of the operator v — V'[v].

PropositioN 7 (NTU). In the NTU paradigm, posit Assumptions 2, 3, and 4. Then for
allve F?,t € [0, 00): forall e > 0, there exists § > 0 such that

/|Vf([v (x) — Vf([v](x)|dx<e forallv:|v—7| <.

A (needlessly) stronger result obtains in the TU paradigm.

ProrosiTiON 8 (TU). In the TU paradigm, posit Assumptions 2, 3, and 6. For allv € F2,
t €0, 00), x € [0, 1]: for all € > 0, there exists 6 > 0 such that

|TIth[v](x) — %([m(xn <e forallv:|v—71| <.

31 Assuming that the meeting rate is not just hierarchical but in fact identical for all types, it is easy to see
that this holds for any x3, x; irrespective of ordering. If so, one implication of the bound below proves that
the value-of-search is continuous in types.
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To establish these propositions, we rely on two intuitive preliminary results. In Ap-
pendix F, we show that match indicator functions v — m;,[v] are continuous in both
paradigms (see Lemmata 8 and 9).3> Following arguments from differential calculus,
we then use Gronwall’s lemma to track the non-stationary evolution of the state and de-
duce the continuity of v — u,[v] (see Lemma 10). Unlike the forward-looking population
dynamics, the value-of-search is backward-looking in time. The proof of Propositions 7
and 8 (see Appendices E5 and E6) encompasses the infinite time-horizon by considering
the auxiliary function th (x) = eP! VtX (x) (see Corollary 2) that admits a more tractable
HJB equation.

The juxtaposition of both propositions makes apparent a key difference between the
NTU and the TU paradigm. In the TU paradigm, the operator v VX [v](x) is contin-
uous. In the NTU paradigm, it need not be. To see this, it is instructive to decompose
any type x’s time-f match opportunities into marginal and inframarginal prospective
partner types. Marginal types y are indifferent between accepting and rejecting x, infra-
marginal types y strictly prefer entering the match. An increase in other agents’ time-¢
value-of-search has two effects. First, in the TU paradigm x matches with inframarginal
partners at reduced payoffs. Continuity is preserved because the decrease in x’s pay-
off is proportional to the increase in y’s value-of-search. Second, in both paradigms x
ceases to match with marginal types. The loss of marginal types hurts x in the NTU
paradigm because marginal types can be strictly profitable to match with. This gives
rise to a discontinuity in the value-of-search operator if the set of marginal types is non-
negligible. In the TU paradigm, the loss of marginal types is inconsequential due to the
intratemporal efficiency of Nash bargaining: if y is indifferent in between matching and
not matching with x, then so is x with regard to y.3

6. DIscusSsION

This section motivates the generality of our proof and provides some indications as to
how limitations of our model can be addressed.

6.1 Discontinuous value-of-search profiles

Our existence proof, notably Theorem 1, is sufficiently general to accommodate discon-
tinuities in the value-of-search profile across types. We here discuss how discontinuities
can arise—even in the absence of discontinuous primitives such as meeting rates, pay-
offs, or output.

321 emma 8 is analogous to Smith (2006) Lemma 8 a) in the steady state. Lemma 9 relaxes Shimer and
Smith (2000) Lemma 3 who impose global super or submodularity. Those are special cases of the Holder
continuity Assumption 6.

33Note that we did not solve the model by passing to the mean field limit, i.e., by gradually decreasing
the scope of individual agents to influence the future evolution of the search pool. Lemma 10 and Proposi-
tions 7 and 8 suggest that doing so would not lead to the selection of a different set of equilibria. Suppose
that one agent could control the behavior of an interval of agents and thereby exert some nonnegligible
influence on the evolution of the state. Our results show that as this interval shrinks, such control has an
exceedingly vanishing effect on other agents’ matching decisions.
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In the nontransferable utility paradigm, the most well-known example of such dis-
continuity is the steady-state phenomenon of “block segregation” (cf. Smith (2006) and
reference therein) whereby identical Neumann-Morgenstern preferences over partners,
X ( y|x) = y(x)¢(y) with ¢ increasing, give rise to distinct matching classes in all equi-
libria. The intuition for this phenomenon, prominently conveyed by Burdett and Coles
(1997) for 7% (y|x) =y, is straightforward: every agent agrees to match with a set that
includes the highest types because search frictions make any sufficiently high type de-
sirable to all. Since these high types are universally accepted and, by assumption, have
identical preferences, they all share the same acceptance threshold, denoted x. As a
result, the value-of-search jumps at x.

Beyond the von Neumann-Morgenstern case, two key factors are essential to ob-
serve block segregation and thereby discontinuous values-of-search. First, utility must
be nontransferable (NTU). Otherwise, in the TU case, the type below x could compen-

sate the higher type for accepting a partner below the threshold by making a small trans-
fer.34,3

REMARK 3 (TU continuity). Suppose that an equilibrium exists in the TU paradigm. If
the output x — f(x, y) is continuous for population X and meetings are anonymous
(i.e., AX (y|x1) = A (y]x2) for all x1, x2), then population X’s value-of-search x > V;X (x)
is continuous.

Second, when utility is nontransferable (NTU), discontinuities typically require
identical acceptance thresholds across types. Identical acceptance thresholds, however,
signify a violation of strict positive assortative matching, whereby higher-ranked, more
desirable agents are choosier. Complementarity conditions on payoffs prevent this.3

REMARK 4 (NTU continuity). Suppose that an equilibrium exists in the NTU paradigm.
If population Y match acceptance thresholds x,(y) = inf{x : wy(x| y) > VtY( y)} are in-
creasing and population X payoffs x > 7% (y|x) and meeting rates x - AX (y|x) are
continuous in their own type, then population X’s value-of-search x — VX (x) is con-
tinuous.

In the absence of complementarity conditions that ensure strict assortative match-
ing in the NTU paradigm, indifference regions cannot be ruled out.3’

34Transferability guarantees more broadly that if agent heterogeneity aggregates via the price mecha-
nism, e.g., Bewley-style economies, the value function is continuous in types.

35We require anonymous meeting rates for this result to hold to ensure that the mimicking argument
applies symmetrically, i.e., both a higher type mimicking a lower type and a lower type mimicking a higher
type provide bounds on the value-of-search.

36Theorem 2 from Bonneton and Sandmann (2023) entails that if 7Y (x|y) is log submodular and log
submodular in differences, with at least one of these conditions holding strictly, then x,(y) is increasing.

37Higher types generally have better matching opportunities, making them more selective. However,
without such complementarity, some higher types are less selective about matching with lower types. De-
pending on the distribution of agents and the meeting rate, an interval of types may be indifferent between
accepting or rejecting the same threshold type, X. As with identical von Neumann-Morgenstern prefer-
ences, the consequence is that match opportunities and, therefore, the value-of-search is discontinuous at

X.
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6.2 Possible extensions

A vanilla matching model typically assumes quadratic search, constant entry, and su-
permodular output. Our main result ensures that a non-stationary equilibrium exists in
this special case. Going beyond these stylized assumptions, our model also allows to ad-
dress phenomena of matching markets that are rarely modeled in the literature (includ-
ing in the steady state). Our assumption of hierarchical search allows to model greater
visibility of highly ranked individuals (e.g., embedding skewed attention in professional
social media or the added benefit of elite versus state university alumni networks). Time
dependence in meeting and entry rates can capture seasonality (e.g., daily demand and
traffic jam peaks affecting ride hailing services or different market thickness in hot and
cold housing markets). Discontinuities in exogenous payoffs also allow to capture quali-
tative differences between agents (e.g., houses versus apartments, degree versus nonde-
gree workers). Finally, our approach invites directly contrasting equilibrium predictions
of NTU and TU models (e.g., sticky versus flexible wages; marriages with or without
dowry).

Other common model specifications are ruled out by our framework. We here dis-
cuss how those could be addressed in extensions of our model.

Freeentry Ourmodel does not allow the entry rate to depend on the value-of-search, as
would be the case under free entry. In practice, researchers assume that entry is finitely
elastic (e.g., Moll (2020) discussing the original firm-size model by Hopenhayn (1992)).
It would be feasible to accommodate dependency on the value-of-search in our context
as well. The only adjustment required would be in Lemma 10, where we propose that
the search pool population w is continuous in the value-of-search 1. Upon closer in-
spection of the proof, the key arguments continue to hold assuming that ¥ is Lipschitz
continuous in both the state u and the value-of-search 1.

Match destruction In Shimer and Smith (2000) and Smith (2006), exogenous match de-
struction allows to maintain a steady-state population of unmatched agents. This in-
volves a time-invariant distribution of agents £(x) dx, with matches destroyed at an ex-
ogenous rate 6. Unlike in our framework, agents anticipate reentry into the search pool.
Since core proof concepts, notably the mimicking argument, are unaffected by exoge-
nous reentry, this extension is straightforward. Endogenous match destruction, where
agents may opportunistically destroy matches to reenter the search pool, has received
less attention (Smith (1992) is a notable exception). In the NTU paradigm, endogenous
match destruction raises new challenges as the lack of commitment over match du-
ration can make higher types less desirable, invalidating the mimicking argument (cf.
Kreutzkamp, Niemeyer, and Schmieter (2022), Bonneton and Sandmann (2023)). Con-
versely, in the TU paradigm, such decisions preserve intratemporal efficiency, allowing
the proof to accommodate opportunistic match destruction or on-the-job search, as
seen in labor economics (e.g., Cahuc, Postel-Vinay, and Robin (2006)).

Homophily (as in Alger and Weibull (2013)) occurs when agents of similar character-
istics meet more frequently. If this affects all types, our analysis rules this out. Bottom
types cannot meet other bottom types at a higher rate because the added heterogeneity
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at the meeting stage introduces additional variation in the value-of-search that cannot
be accounted for by the mimicking arguments (Lemmata 3 and 4). “Homophily at the
top” is ruled in, by contrast. Specifically, the assumption of hierarchical search allows
higher types to be more likely to meet more desirable prospective partners.

Linear search Linear and Cobb-Douglas meeting rates violate Lipschitz continuity in
the state and are thus ruled out. Either could be incorporated if the search pool popu-
lation was bounded away from zero (e.g., due to lower bounds on entry rates and upper
bounds on meeting rates).

Discrete types With discrete types, an equilibrium in pure strategies may not exist. To
accommodate mixing, the Kakutani-Glicksberg—Fan fixed-point theorem, as utilized by
Jovanovic and Rosenthal (1988) and Manea (2017a), provides a path forward.

7. CONCLUSION

Although many economic questions in the search-and-matching literature concern
non-stationary dynamics (see, for instance, Lise and Robin (2017)), the theoretical lit-
erature has confined itself, with few exceptions,®® to the steady state. This paper proves
the existence of a non-stationary equilibrium for a general class of search-and-matching
models, encompassing model specifications in Shimer and Smith (2000), Smith (2006),
and Lauermann, Néldeke, and Troger (2020).

The tools we develop here have scope, however, that goes beyond search-and-
matching. Our fixed-point theorem, coupled with the economic insight born out by
the mimicking arguments, is applicable in many related dynamic general equilibrium
models with heterogeneous agents (see ABLL+ (2014)) where the aggregate state evolves
deterministically over time.

An interesting open question remains: how large is the set of non-stationary equi-
libria? Could it even be unique? Our paper does not speak to this question.3%4? Existing
examples of multiplicity (see Burdett and Coles (1998), Manea (2017a), Eeckhout and
Lindenlaub (2019)) rely on explicit equilibrium constructions with finitely many (typi-
cally two) types. In the continuum model, it is conceivable that the inability of a single
agent type to coordinate on different equilibria (e.g., high types accepting or rejecting
low types) implies that uniqueness can be restored via an iterated dominance argument.

APPENDIX A: THEOREM 1: OMITTED PROOFS
A.1 Proofof Proposition 1

PrROOF OF PrROPOSITION 1. We show that (F), d) is complete and totally bounded.
This establishes compactness (see, for instance, Munkres (2000), Theorem 45.1, p. 274).

38See, for instance, Boldrin, Kiyotaki, and Wright (1993), Burdett and Coles (1998), Shimer and Smith
(2001).

39We failed in both paradigms at our attempt to construct a contraction mapping, but felt that we came
closer in the TU paradigm.

4OWhether or not an equilibrium is unique is less critical if one is interested in properties that occur in
any equilibrium, as is the case for the literature on assortative matching.
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We focus on completeness first. By abuse of notation, omit superscripts and let
(Fn)nen a Cauchy sequence in (Fg), d). Then for each (x, ) € [0, 1] x [0, co) the se-
quence (F,(x, t)),eny converges as n — oo. Denote F(x, t) its pointwise limit and F the
thereby obtained function in F. We first show that F € F(;,. Fix arbitrary € > 0 and
(x, 1), (y,r) €10, 1] x [0, 00). Due to pointwise convergence there exists N € N, such that
for all » > N, we have

max{|Fy(x, 1) —

N—Fynll<z
It follows from the triangle inequality and k-Lipschitz continuity of Fy that

|F(x,t) = F(y,r)| < |F(x,t) = FN(x, )| + |Fn(x, ) = Fn(y, 1) | + |FN (y, 1) — F(y, 1)

<e+k-max{|x —y|, [t —r|}.

Since € > 0 was arbitrary, this establishes that F € F(,. We then show that F,, — F in the
d-metric. Again fix arbitrary € > 0. If for any given »n € N, the sup is attained for some
t > T where e~ T < ¢, clearly d(F,, F) < e. Let us then focus our attention on the case
(x,1) €[0,1] x [0, T]. Define B(k)(x, H={(y,r):max{|lx —y|, |t —r|} < ﬁ}, andlet N e N
such that for all » > N. We have |F,(x, t) — F(x, t)| < 5. Then for any (y, r) € Bfk) (x, 1),

|Fu(y, 1) = F(y, )| < [Fa(y, 1) = Fu(x, )| + |Fa(x, 1) = F(x, )| + |F(x, 1) = F(y, 1)|

< 2kmax]{[x — y|, [t — |} + g <e.

Finally, observe that the set {B(k)(x, t):(x,t) €[0,1] x [0, T]} forms an open covering
of the compact set [0, 1] x [0, T]. Whence there exists a finite subcovering of that set,
{Bfk)(xj, tj):je{l,...,M}}. Forany j e {l1,..., M}, let N; such that for all n > N; we
have |F,(xj, t;) — F(xj, tj)| < 5. Then it follows from the preceding arguments that for
all n > N =max{N; : j e {1,..., M}} we have d(F,, F) < €. This establishes complete-
ness.

Let us now focus attention on total boundedness. That is, for every € > 0 there ex-
ists a finite number M of functions F; € F such that for all F € F(;) we have d(F}, F) <
€ for some j € {1,..., M}. We achieve this by choosing a grid R€ on [0, 1] as well
as a grid P€ on [0, 1] x [0, T] for some T > 0 such that e~! < e. In particular, let

=10,¢,...,1%)} where [fe <1 < (I + 1)e and P¢ = {(%%, %g) :m,nel0,...,mf} x
{0, ...nc} where mTeg <1< ’"k“ € and ~ ” s§<T< e,jl%. We then consider the (fi-

nite) set of grid functions G¢ = {g : P¢ — RE} Let g an element in this set. The cor-
responding function F; is defined pointwise where Fg(x,t) =g ’,Z’ 5 55) for (x,1) €

(e, i ey x [2€, LSy, Denote F¢,, = {Fg € F : g € G¢} the desired finite set of func-
tions.

e-proximity of F) to 7, then follows immediately: for arbitrary F € Fy,), there
exists g € G¢ such that for all (y, 7) € P€ we have |F(y, 7) — g(y, 7)| < 5. Then con-
sider any (x, ¢) € [0, 1] x [0, T]. Let (x¢, €) the greatest element in P¢ such that x€ < x

and ¢ < t. Then by construction Fg(x¢, t) = Fg(x, t) and max{|x — x€|, |t — €|} < 15
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Using the triangle inequality and the fact that F is k-Lipschitz continuous, we ob-
tain

|F(x, 1) — Fg(x, 1)| < |F(x, 1) — F(x€, )| + |F(x€, 1) — Fg(x, 1) |
——
:Fg(xé,te)

< kmax{|x — x¢|,

t—t€|}+§§a

As (x, t) was arbitrary, this bound holds uniformly across [0, 1] x [0, T]. Meanwhile, for
t > T e-closeness is satisfied vacuously, whence the result. O

A.2 Proofof Lemmata 1 and 2

PROOF OF LEMMA 1. H[} [FN] € Fy). Pick arbitrary F e FV. Pick arbitrary (x1, 11),
(x0, t0) € [0, 1] x [0, 00). We show that

|H {3 [F1(x1, ) = H{ [F1(xo0, o) | < k max{|x1 — xol, |1 — to]} = kC.

Or, this is vacuously the case if kC > 1. Thus suppose otherwise that kC < 1. In particu-
lar, this implies that C < } < £ = b, /2. Then, as Figure 2 illustrates,

|H{yIF1(x1, 1) = H{p, [Fl(xo, fo) |

<1/(bw))* d(x, 1)
B (x1,11) AB k) (x0,0)
<1/(byy)? / d(x, 1
Biy(x1,t1) AB gy (x1+C, 11 +C)
2Cb(k) + (b(k) -O)C
a (b(k))2
o)
2
c(z4Ct+0O)
C
(z,1)
bk
2
b(k) C

F1cure 2. The shaded area corresponds to the measure of B (x, t)AB)(x + C, t + C).
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Ch
<4 (k )2 =kC,
(biy)
where AAB = (A\ B)U (B\ A) denotes the symmetric difference. O

PROOF OF LEMMA 2. Fix F € FN.Fixe>0.Let T >1: ¢~ T < €. Define
1 — el N N =1
A,,:{te[O,T]:/ |H'"[F](x,t)—H’”[F](x,t)\dxsETVFG]—" :d (F,F)<;}.
0

By the continuity Assumption (i) of the theorem, there exists N € N so that foralln > N
and F:dV(F,F) < % the Lebesgue measure of [0, 7] \ A4, is less than 5 (b))?.*! Then
for all (xo, tp) € [0, 1] x Ry and % <1,

e”'|H{} ) [F1(x0, o) — H{}[F1(x0, t0)|

Iflm F /, / _I:Im F /, /
BN L0 e L e e
Bk (x0,10) (by)

T+1 2 R o
</ / |A™F)(x, 1) — A" [F)(x, )| dx dt
-1 Ja1
T 1 .
59/ / |H™[F(x, t) — H"[F](x, 1)| dx dt
0 0

1
59/ /|H’"[F1(x,t)—H'"[F](x,z)|dxdz+E
A, J0 2

el €
—5 t 5 =€

<9T =
- 187 2

Since (xo, fo) was arbitrary, this bound is uniform, i.e., d(H(Z)[F 1, H(”,z)[F]) < € for all
F:dN(F,F)<8Where8§%. O

A.3 Proof of Proposition 4

Proor oF PropPoOSITION 4. By abuse of notation, denote (F(*k))keN the pointwise con-

vergent subsequence with limit point F* € FV. This sequence exists due to Proposi-
tions 2 and 3. Then, due to the triangle inequality,

|F7= = H[F]| < | F* = Fo | + [ Hoo [Fio | = Hao[F7]] + [Huo [F7] - H[F7]

)

where we have made use of the fact that F(*k) is a fixed point, i.e., Hx, [F(*k)] = F(*k). By

construction, the first term converges as k — oo; the third term converges because the
convolution with an approximate delta function converges in the seminorm defined on

41The peculiar number 18 = 2 - 9 is the pertinent bound here because for any point (x, ¢) € [0, 1] x [0, T]
there could exist a ball containing nine distinct points (x’, #') € [—-1, 2] x [—1, o) so that the extension H
interprets (x', ') as if it were (x, 1): H[F](x', ') = H[F](x, t) forall F € V.
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compact sets [0, 1] x [0, T'] to the function itself (see, for instance, Kénigsberger (2004)
10.1 II). This property extends to [0, 1] x Ry under the discounted semimetric.

With regard to the second term, fix arbitrary e > 0. Then there exists 7 > 0 so that
e T < €/2. Therefore, for arbitrary % <1, ||H(k)[F(*k)] — H(jy[F*]|| is bounded from
above by

! 7 7 €
H"'F* 1Y — BYF(, ) d(x, £)| dxdt + <.
(b)) /B(k)(x)t)( [ (k)](x ) [F*](x',¢))d(x, {')| dx :

And the first term is bounded by

T 1 1 R R
m H"|F* Y — HYF*(x, ) |d(x', ¥') dx dt
ne{l.??fN}./o /(-) (b(k))? /B<k>(x,t)| [Fio )6 1) [F] s )l 1) dx

T+1 2 .
< max / [AP[FE e, 0 — AP x, ) dxds
N}J-1 -1

T nefl,...,

T 1 A
§ne{1{1’?§N}9/‘0 /(;’H”[F(*k)](x,t)—H”[F*](x,t)|dxdt

T 1
= max 9/ / |H”[F(*k)](x, 1) — H'[F*](x, t)| dx dt.
Ny Jo Jo

nef{l,...,

Then recall that Proposition 3 establishes that Ffj | converges pointwise to F*. Whence
due to the continuity Assumption (i) of the theorem, the expression goes to zero as k —
Q. O

APPENDIX B: SET-uP: OMITTED PROOFS
B.1 Derivation of the match density

The probability of agent type x not matching during [¢, 7] is

T 1 T 1
exp{—/ /0 Af((z|x)dzdr} =1 —/ /0 pfr(z|x)dzdr,
t t

where the left-hand side is by definition of the inhomogeneous Poisson process and the
right-hand side is by definition of the density of future matches. Differentiating with
respect to time 7 implies that

1 T 1 1
/ Af(z|x)dzexp{—/ / Af((z|x)dzdr} =/ pffT(z|x)dz.
0 t Jo 0

Since this equality holds for any measurable m (x, -), the density must satisfy pf,(T (y|x) =
AX (y|x) exp{— ] fol AX(z|x) dz dr} pointwise.

B.2 Proof of Proposition 5

Step 1: We equip the set of possible evolutions of the state u over a finite time interval
with a norm.



1440 Sandmann and Bonneton Theoretical Economics 20 (2025)

Denote I5(to) the time interval [fg, o + ). Let M be the set of measurable, bounded,
and nonnegative functions 4 : [0, 1] — R;. Denote M the identical set without the re-
quirement that functions must be nonnegative. Equip M with the seminorm, denoted
-, ie, |kl = fol |h(x)|dx, and by abuse of notation, identify M and M with the
set of equivalence classes where any two functions that agree almost everywhere belong
to the same class. It is well known that (M, | - ||1) is a Banach space and (M4, || - ||1) is
complete. Then define Ms(#) the set of continuous mappings w : I5(fo) > M i where
wX (x) <, and u) (y) < m,. We equip Ms(ty) with the norm

we -

Il Moty = sup max{|pi]

1,
tels(to)

Following standard arguments (see Munkres (2000) Theorem 43.6), M5(f) is complete.

Step 2: Fix a time-and type-dependent match probability m(x, y) and initial condi-
tion s, € M_2P We define a mapping T : M;s(fy) — Ms(t) whose fixed points u € M;s(#p)
correspond to the solutions of (1) within time interval /5(#):

t
(TX,u)t(x)zmin{maX{,ufg-i-/ hX(r, Mr)dT;O},ﬁ,}
fo

where h = (WX, hY) : I5(19) x M2 — M? is

(8, ) (x) = = (x)/ Mt m) |)me(x, y) dy + 0% (8, o) (x).

Step 3: We show that T is a contraction mapping for § sufficiently small. Whence by
the contraction mapping theorem it admits a unique fixed point. To begin with, consider
arbitrary u/, u” € Ms(tp). Then

sup [[(T% ), = (T¥w") |y =8 sup A% (e i) = H¥ (6, i) |-

tels(to) tels(to)

Expanding gives for all x € [0, 1] and ¢ € I5(#),
[P (2, i) () = ¥ (1, ) ()]

<|wF ) - ”X(x)|/ A (8, 1)) lx)my(x, y) dy

+ (x)/ A (1, 1) 1) = A (2, i) 1) e (x, ) dy

+ (2, ) (x) = m(t, w) (x)].

We then make use of Assumptions 2 and 3:

[P (6 i) o) = 1 (1, ) O = ' = LA+ ) + (L + LN ("),

whence || Tw' — T | my(r) < S(LT + LA+ 2LV, | — w” | m(19)- Hence, T is a contrac-
tion mapping for & sufficiently small.



Theoretical Economics 20 (2025) Existence of a non-stationary equilibrium 1441

Step 4: We establish existence of a unique solution on successive time intervals
[Ze _o%¢ Ze Ls0) beginning at initial time ¢ = 0.

To ensure that T: Ms,, (Zezl 8¢) > M, (Zif:l d¢) is a contraction mapping for
each k, we construct the sequence (6 )>; as the solution to

k
Sp1 (LT + LA + 2L <ﬁ0 + Z S L™ + 8k+1Ln) = —
=1

Here, we used that u;¥ (x) is uniformly bounded by &, = &y + tL" (cf. footnote 23).
With T a contraction mapping, the Banach fixed-point theorem guarantees the exis-
tence of a unique fixed point of 7 in M5, (>k_, 8¢), solution to (1) in Is,., (K 80).22
Step 5: It remains to show that > 72 ; 8; = oo, as this guarantees that the solution to
the population dynamics is globally defined for all ¢ > 0.
Or, solving for 641 yields

1
_ _ 2 2
B  L"+L* ¢ B  L"+L' ¢
Lt 2L Z " oA Z )
Bis1 = — =L+ =1 +
* 2 2 ALALY

Then suppose by contradiction that ) ;7 ; 8 is finite. If so, per the formula above, 64,
is uniformly bounded away from 0, and so the sum )77 ; 8; must be infinite. Absurd.

APPENDIX C: CONSTRUCTION OF THE TU FIXED-POINT OPERATOR

As in the NTU construction, we begin by defining the aggregate population dynamics
under the belief v.

DEFINITION 7. ﬁi[v] is the unique solution to (1) for given (wo, A, 7, %[v]), where

1 iff(x,y) —vX () —v (1) =0

TU
me[v](x, y) =
' Y 0 otherwise

is the aggregate probability of matching upon meeting under the value-of-search profile
v.

To define the individual value-of-search in the TU paradigm, we must also specify
future match payoffs. Those are defined implicitly by the Nash bargaining solution. The
individual agent believes that her threat point is her actual value-of-search whereas her
potential partner’s threat point is v} (y).

42Strictly speaking, the proof of Proposition 5 identifies a unique solution w to the system (1) within the
equivalence class of states My 5, (0). Existence of a unique solution to the system (1) for a fixed type x is
then established as follows: solve (1) for type x only while maintaining that /J,[X (x") for x’ # x and ;L?’ (y) are
given by the solution u € My 5,(0).



1442 Sandmann and Bonneton Theoretical Economics 20 (2025)

DerINITION 8. The out-of-equilibrium value-of-search given belief v is the solution to

00 1
VX [i(x) = / e Plm0) / T X0 2 X I (ylx) dy dr,
0

t

where x’s subjective match payoffs are

TU TU
TE ) = VI x) + & (Fx, y) = VEIx) —v) (),

x’s match acceptance decisions are individually rational,

TU TU
1 i f(x,y) = VEIx) —v) () =06 X i(yx) = VX l(x)

0 otherwise

mi[v](x, y) = {

and the probability of meetings is pinned down by aggregate match decisions,
25 Il =AY (1, g v]) (o me ] (x, y)
x exp{— /;T]: )\X(r, ﬁi[v])(yﬂx)%r[v] (x,y)dy dr}.
Definition 8 is well posed for identical reasons as in the NTU paradigm.
APPENDIX D: MIMICKING ARGUMENT

We prove the following results.

LeMmA 3 (NTU mimicking argument). In the NTU paradigm, posit Assumptions 1, 2,
3, and 4. Then, for all x, > x) there exists a nonnegative operator QlX[v] (y|x1), with
fol QX l(y|x1) dy < 1, such that

NTU NTU 1
V Xvl(x2) = V vl(x1) z/o (7% (y]x2) — 7% (y]x1)) @ W1 (y]x1) dy.

LemMmA 4 (TU mimicking argument). In the TU paradigm, posit Assumption 1, 2,
and 3. Then for all x, > x), there exists a nonnegative operator Q,X[v] (v|x1), with
fol QX wl(y|x1) dy < 1, such that

U Uy 1 X
Vil(x2) — Vi [w](x1) 2/0 (f(x2, y) = f(x1, )07 I (y|x1) dy.

D.1 Proofof Lemma 4

We introduce a preliminary lemma.

Lemwma 5 (TU intratemporal efficiency). Under hierarchical search 1: for all x, > x,

TU [e’s) 1
VX [ul(xz) = / ) f WX Iy x2) B I (ylx) dydr.
t 0
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TU
PROOE. Define u(t) = e P{V ¥ [v](x2) — [ e [N WX [0](y|x2) g, (0] (y]x1) dy d7}.
An identical construction as in Corollary 2 guarantees that for all 7 > ¢,

u(T) - u(r) = / e m/ X o] (yr2) — V¥ v](x2))
x (AX (7, g [v]) (p]x2) - [v] (x2, ¥)
— X (7, o [0)) (plxn)mo ] (x1, y)) dy dr.
Since %T[v](xg, y) is intratemporally efficient for given payoffs and search is hierar-

chical, i.e., Assumption 1 holds, and it follows that u(7) — u(¢) < 0. Then noting that
u(T) < e~PT and taking the limit T — oo establishes that u(t) > 0. O

I TU
ProoF oF LEMMA 4. Define pfg,,l [v](x) = fol pfg’tl [](y|x) dy.
Definefork=1,2, ...

> k-1
Mmoot = [~ 7 / PN RE | )y dre(1 - o)
T0=l JT1

1
x [T 7ol dre
l=k—1

RX [v](x1, x2) = / / e Plk=1) VX[v](xz)— Tk[v](xl))(l—a )
T1

ToO=I

x ]_[ 2r LI dre.
=k

(Note that, due to the order of integration, the product counts downwards from £ = k — 1
or ¢ =k, respectively, to 1.) We then prove by induction that

TU TU
VX vl(xa) - V;X[U](xl)>/ (f(x2, ) = f(x1,) ZMX[vl(y|x1)dy+ R, [v](x1, X2).
=1

Base case: Due to the preceding Lemma 5,
VX ltx2) - Vi)
> /t gt /0 (X ) e2) = FE IO ben) KX 0]yl dyd
=/01(f(x2,Y)—f(x1»y))/tooe PT=0 X ﬂm[v](ﬂxl)dey

+ / e (X () ) — VX [l (e) (1 o), 0] (1) d
t
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1 [l]X [I]X
= fo (f(x2, ) = flx1, »))M7 [wl(y|x1) dy + R} [v](x1, x2).
Induction step: Suppose that

TU TU
VXl (x2) — V¥ vl (x1)

k— 1

1
2/0 (f(x2, y) = fx1, ) ZMX[v Glendy+ " R Xl(rn, x2).
(=1

k1] (k] [k]
We show that R X [v](x1, x2) = fi (f(x2, ) — f(x1, Y)IM ¥ [wl(y|x1) dy + R ¥ [v](x1, x2)
from which the claim follows.
To see this, it suffices to note that once more due to the preceding lemma we have

[k—1]
R X[v](x1, x2)

TU
[m t/n / L =D (VX (u0) = VX (u]en)
1

(1-a¥ ]_[ 2y lxn)dre

{=k—
f/ /epmn
T0=t J 711

1
X |:/ e PUTk—Ti- 1)/0 ( Tk[v](y|x2) [v](y|x1));5/ii_h7k[v](y|x1)drk]
Th-1

1

Xkt

(1-a® [T 75, -l dr
{=k—1

/(f(xz,y) flx1,y) [/ / / e P0G X P X l(yla) dr
To=t J 1] Tk

1
11— ] ﬂiil,T[[U](xl)dTe:| dy
(=k—

f / [ e PUTk=1) VX [v](xz)—VX[v](xl))(l—aX)k
To=t J 1]

X l—[ pwibn[v](xl)drg.
=k

4]
Then define QX [v](y|x1) = Zif:le([v](ypcl). This is nonnegative. It remains to
verify that the integral over y is less than one. To see this, it suffices to note that



Theoretical Economics 20 (2025) Existence of a non-stationary equilibrium 1445

(k] (k]
Jo M¥IGIx) dy < X1 — &X)51, whence [y QX [wI(y|x1)dy = Y6, fy M¥ w10
x)dy <Yk ja¥1-aX)l=1-1-a¥)k<1. O

D.2 Proofof Lemma 3

We prove a slightly stronger result than Lemma 3.43

LEMMA 6 (NTU mimicking argument). Under hierarchical search 1 and 4: for all x, > x1,

NTU o] 1
V ¥ vl(x2) zf e“’““)/o X (y2) "R K (1) dy .

t

Proor. Define u(t) as in the proof of Lemma 5, but now consider exogenous payoffs
and the NTU value-of-search. Then forall 7 > ¢,

T 1 NTU
u(T) — u(t) = —/ e"”/o (TX (y|x2) — V X l(x2))
t

NTU NTU
x (AX (7, mr 0]) (v]x2) m £[v](x2, y)
Y (xa|y)zvf (D3{mX (y]x2) 2] (x2)}

— X (r, 'y ) Olx0)m ] (x1, ) dy dr

Under Assumption 4, it holds that x, being of a superior type, is accepted by a greater
number of agents. Formally, 1{7Y (x1]y) > v} ()} =1= 1{#Y (x2]y) = v} (»)} = 1. It fol-
lows that the preceding is weakly smaller than

T 1
—[ e‘m/o (WX(nyz)—NIT/Ui([v](xz))
t

NTU
x U (x1]y) = o) MO (7, o)) ) ¥ (v]x2) = V X[wl(x2))
NTU
— X (7, o)) e 7 (vlx1) = V Xlx))) dydo.

This expression is less than zero: First, x2’s acceptance threshold is weakly more desir-
able for x, than whichever threshold is instituted by x;. Second, following Assumption 1,
the search is hierarchical. We conclude that u(¢) > 0 by letting T converge to infinity. O

APPENDIX E: BOUNDED VARIATION: PROOF OF PROPOSITION 6

Proor oF ProrosiTION 6 (11). Consider a generic function 4(x, y) short for WX(y|x) or
f(x,y) and L" short for L™ or L. Consider an arbitrary partition of the unit interval
[0,1]: 0 =x¢ < x1 <--- < X, = 1. Recall the mimicking argument, namely Lemmata 3

430ur companion paper Bonneton and Sandmann (2023) contains another proof of this result.
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and 4. Those assert that in both the NTU and TU paradigm the difference in values of
search can be bounded as follows:

1
VEWI(x) =V l(xi1) = /0 (h(xi, y) — h(xi-1, ) QX (y|x:) dy.

Further recall that match payoff or output is normalized, i.e., #(x, y) € [0, 1]. Then
m
> Xl - viElxio))|

i=1

=-2) min{V¥[vl(x;) = V¥ ixio), 0} + > (V¥ wl(x) — Vvl (xi1)
i=1

i=1

< ZZmln{/ h(xl,y) h(xl'_l,y))Qf((ylxi)dy’O} +1
<2f Z| h(xi, y) — h(xi-1, )| QF (v]xi) dy + 1

< ZSupZ|(h(xi, ¥) = h(xio1, )| +1<2LP 4+ 1.
Yoi=1

The last inequality is due to Assumptions 5 and 7, which posit that match payoffs and
output are of uniformly bounded total variation. O

ArPPENDIX F: CONTINUITY

The proofs of Propositions 7 and 8 make use of the following results.

E1 Preliminary results

LEMMA 7 (dDynamic programming). In both paradigms,

Vvl (x) = V¥ v](x)
h

= pV vl (x)

1 t+h
_ _f e PT—1)
hJ

1
x fo (mX 1)) = VEWI)AY (7, o v]) (]x)m-[v] (x, y) dy dT + o(1)

where X [v](y|x) = Tygf[v](ypc) in the TU and = ¥ (y|x) in the NTU paradigm.

The proofis in Appendix E2.
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COROLLARY 2. In both paradigms, for vf‘[v] (x)= e"”VtX[v] (x),

v l(x) — v l(x)
h

t+h
= —l e_pT

h

1
x /0 (mX Iy|x) = VEI10))AY (7, e, 0]) (] x)m- (01 (x, y) dydT + 0(1)

where X [v](y|x) = Tygf.([v](y|x) in the TU and = 7% (y|x) in the NTU paradigm.

Proor. Observe that

vfi,,[v](x)h— vy [WI(x) _ ,+h[v1(x)h VEWI) g ot e—f’;‘l -1 VX 1o,
Then use Lemma 7 to conclude. O

Next, we require, as in the main text (see Definition 1) a notion of distance be-
tween arbitrary match indicator functions m,(x, y). Define |m| = [;* fol fol e !lmy(x,
y)|dxdydzt.

LEMMA 8 (NTU). Inthe NTU paradigm, posit Assumption 4. Then for allv and t € [0, 00):
forall e > 0, there exists 6 > 0 such that ||NnT1U[v] — NnT1U[§] | <eforall|v—v| <Sé.

LEmMMA 9 (TU). In the TU paradigm, posit Assumption 6. Then for all v and t € [0, 00):

forall e > 0, there exists 6 > 0 such that ||;111/[v] — ;rlz][ﬁ] | <eforall|v—v| <8é.

Continuity of the match indicator functions implies continuity of the state at all
times.

LEMMA 10. In both the NTU and TU paradigm, posit Assumptions 2, 3, 4, and 6. Fix v.
Then forall t € [0, 00): for all € > 0 there exists § > 0 such that

/\M [v](x) — f‘[ﬁ](x)\dx« forallv:|v—1v| <8.

E2 Proofof Lemma 7

We only prove this in the TU paradigm; NTU follows from identical arguments.

Proor oF LEMMA 7: TU. We make use of the dynamic programming principle:

t+h 1
VX [w](x) = / P / WX () B [0l () dy dr
t 0
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t+h p1
— TU TU
+e Pt exp{— f fo A (r, g, 1) (%) me [0] (x, ) dy/dr}
t

TU
x V& () l(ylx),

which used that 2% [v](y|x) = exp{— [ [1AX(r, g lo]) (V| )m, 0] (x, Y) dy dr} x

TU
2 1))
Equivalently, we can write

TU TU
Vi) = Vi)
h
1 t+h 1 —ph _ 1
- {Z/ e*”“*‘)/o Ta%]f[v](ylx)%]z},(f[v](ylx)dyd7+ eTTI}Jt)ih[”](x)
t

t+h pl1 X TU , TU . )
eXp{_f /)‘ (s e, [0)) (V' |x)mr (0] (x, ') dy dr}—w
— h vE L l(x)

+ePh

TU TU
The term in the curled brackets is finite, whe;qnce Vfi plvl(x) = Vf( [v](x) 4+ o(1).** This
ph_1

proves Proposition 6(i). Further note that “’_T =—p+o(1)and

A IO =AY (1, G v]) (o) m vl (x, y) + o(1)

= —f[w /01 A (7l o) (0 m [] (x, y) dy dr + 0(1),
It follows that
Vi) - V)
h
— VX W)

t+h
— l/ e_p(T_t)
hJi

1
x /0 (XX wIOl) — VI 0)A (7, dr0]) () w0 x, y) dy dr + o(L).

TU
X (£, )=V Xl (x)—vY (1)) u

E.3 Proof of Lemma 8
ProoF oF LEMMA 8. Observe that |%§][v](x, y) — %?[6](% y)| is smaller than
[Hm(|x) = vf (0] = Umlx) =5 )|+ {7y =) )} = Haxly) =57 0}

44The little- o refers to the Landau notation; o(1) means that limj,_,¢ o(1) = 0.
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We bound the double integral of the first term: For any x, observe that
IH{m* (y]x) = v¥ (0} = ¥ ]x) = 55 (0}
= 1{y:min{v} (x), 5¥ (x)} < 7¥ (y|x) < max{v}* (x), ¥ (0)}}.

Fix some y such that 7% (y|x) € [min{v¥ (x), v (x)}, max{vX (x), v (x)}].
Casel: y: WX(y|x) < ﬁf((x). Denote y the greatest y such that limy,y 7(y|x) < ﬁf((x).
Then

7 (Fx) — 7 (y|x) < v (x) = v (0)].
Case 2: y: 7¥ (y|x) = v (x). Denote y the smallest y such that limy 5 7(y|x) > X (x).
7% (y]x) — 7 G|x) < v (x) = v (0).

It follows that
1 1
f f Ly :min{vy (x), 5 (0)} < 7% (y]x) < max{v) (x), 5¥ (x)}} dy dx
0 Jo

< / \ l{y:min{vtx(x), Ef((x)} <X (ylx) < max{v;x(x),ﬁf((x)}}d(x, y) + CA*
2t
"1y =X
5/ — v (x) =7 (x)| dx + CA®,
0o A
and we can similarly bound

1 1
/(;/(;l{x:min{vty(y),ﬁty(y)}§7TY(x|y)gmax{vty(y),ity(y)}}dydx

1
1 - o
< [ 301 -3 ]y + cac.
0
In effect, we can conclude that
NTU NTU __
| )~ 1]

1 [ 1 1
SEfO e_t{/o |”tX(x)—55((x)|dX+/O |vty(y)—if(y)|dy+2cm}d:

2
< K”U — || +2CA“.
Thenforanye>01etA:2CA"‘<%,andletS:%6<§. O

E.4 Proofof Lemma 9

Proor oF LEMMA 9. Step 1: Observe that for all v,

|mivl(x, y) — my[ml(x, )|

= [1{f(x, ) = v () +vf )} = 1{f(x, ) =T () + 37 ()]
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=1{y:min{v} (x) + v/ (1), TX (x) + 7 (1))
< f(x, y) <max{vy (x) + v (»), 5 (x) + 3 (0 }}
H(x,y): [f(x, ) =55 (x) = vy ()] < 2max{[v¥ (x) =¥ ()|, [v) () =0} ]} }-

Step 2: Denote S:(x, y)=f(x,y)— ﬁf((x) — ﬁ,Y(y) and define

>A O(x) = {y: |§t(x, V<A, y) e Z>A}

DI M) =y [Six, )| <8 A (x, y) € 2574,

where Z>2 and Z<~2 are as defined in Assumption 6.
Then consider pairs (x, y), (', y), (x, '), (x¥/,y') in Z>4 (an analogous construction
applies for Z<~2). The triangular inequality implies that

1S:(x, Y)| = [Se(x, y) = Se(xs ) = Se(x, y) +Se(x, ¥)| = [Se(x, y) = Se(x, y) = Si(x, )|
>A—-36>96

if A > 48. In effect, for such chosen §, A the set DfA’S(x) N DfA"S(x/) contains at most
one point y for all x, x'.

Step 3: We claim that [ 1{|S;(x, y)| < 8}d(x, y) = fol fo” dydx;=,0.*> An anal-
ogous construction applies for Z<~2. If not, for some k there are infinitely many
{x,} with fD;A,é(x) dy > %, whereupon Zzozl(fD?A,é(xn) dy) = oo. Since, for § < A/4,
D70 (x) N DfA”S(xj) = y;; contains at most one point, N7A2 = Ui =1, is countable,
and so th>A,6 dy =0. Also, D;*°(x;) \ N;*? and D;*° \ N2 are disjoint for all i # .
This gives the absurd assertion that

=) -2/, -2,
UZQ=1D1>A‘6(XV!)\NI>AB Z >A8(xn)\N>AB Z D>A5(x”)

Step 4: Pick arbitrary e > 0. Let T > O so that (1 —e~7) < £ pandletA>0:CA*T
Then due to Step 1 and Assumption 6, it holds that

J;Im

[miv) = m

m[v] |

/ / {(x, ») 1 |Se(x, »)| < 2max{|v¥ (x) = 55 (), v} () =57 W)} }d(x, y)dt
/ / {(x, ) 1 [Se(x, y)|

< 2max{|vy (x) =¥ ()], [of ) =37 W[} }d(x, y)dt+—.

45We follow Shimer and Smith (2000), Lemma 3, Step 1, second paragraph.
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We then twice apply Egorov’s theorem. First, due to Step 3, there exists §; > 0 with 487 <
A, so that for all 8’ < 8 the set of ¢t € [0, T] for which

— , — , le
/Z>A 1{|St(x, y)| <&'}d(x,y) +/2;<—A 1{|St(x, y)\ <&'}d(x,y) = T2

has mass at most § > 0. Second, we choose 5, > 0, so that for all 8 < &, the set of
(¢, x,¥) €[0, T] x [0, 1] x [0, 1] for which

Y ) =v ()] >

X =X
|vt (x) —v;

has mass at most g. In effect, for 6* = min{81, 6,2} it holds that ||§rlz/[v] - ;7(1][6] || < € for all
v:|lv—"1| < 6* as claimed. O

E5 Proof of Lemma 10

Proor oF LEMMA 10. Step 1: Manipulating (1) gives
p () — pf [](x)

t 1
:/ {Mf[ﬁ](x)/ A (7, o [0]) (y|x)m, 0] (x, y) dy
-1 [v](X)/ (7, e []) (y|xX)m [v](x, y) dy
+ 0% (7, 0] () — 0% (7, e, [0]) (x) } dr
t 1
= /0 {(uf [01(x) — p¥ 1 (x)) fo A (7, L [01) (]0)m, [0 (x, y) dy
1
+n§[v](x)/ (A (7, m,[01) ]x) = AX (7, . [0]) (9]%))m- (9] (x, y) dy
+p; [v](x)/ (7, o [0]) ]x) (M- [01(x, y) — m[v](x, y)) dy

+ 0 (7, 1) () — (7, g, [9]) (1) } dr.

Using Assumptions 2 and 3, we obtain the following upper bound:
1
/0 | () — i [O10x)| dx
_ t el
<(+@)L /0 /0 X [9](x) — 7 [0l(x) | dx 7

t
+ L /0 N(p,[v], . [v]) d7
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_ . t pl pl
+ 2, (1 + )L fo fo fo |m[V](x, y) — m[v](x, y)| dydx dr

t
+ L7 /0 N(m,[v], p.[0])d7. (%)

Step 2: The preceding Lemmata 8 and 9 imply that in both paradigms for all ¢ > 0 (to be
determined) there exists § > 0 such thatforallv: ||v — | < &:

t 1 1
/ / / |m:[v](x, y) — m:[v](x, y)|dydxdr < £. (%)
0o Jo JO

Step 3: We show that Ve > 0 36 > 0 such that N (u,[v], m,[v]) < €Vv: ||[v— 7| < 6.
Indeed, inequalities (x) and (x#) jointly imply that

!
N(Mt[v]» I-’vt[ﬁ]) = ((1 +ﬁt)LA +ﬁtL)\ +Ln)/ N(MT[U]’ M’T[E]) d7+ﬁt(1 +ﬁz)L/\ '3
0 —_—

=K; =K

forallv: |lv —v| < 6, and an application of Gronwall’s inequality gives N (u,[v], m,[V]) <
Ko §eK1’
Then to satisfy the € — § argument, choose £ = e e~Kit, O

Proof of Proposition 7

Proor oF ProrosIiTION 7. Pick 4 such that 1/4 € N. Then, due to Corollary 2, it holds
that [V [v](x) — Vi [0](x)],

< P e POV [l (x) = Vi [O100)| = e PV [v](x) = Vi [O](x) |} + 7Pl

1
1-1

— oPloj, Z{ o—plio+nh) ’VtoJrnh[U](x) . lo+nh[v](x)’

n=0

X X —
_ Pl 1)) Vit s V1) = Vi i1y 01 ()| } L+ ep10)

h
_ oty Z A Ol G R A )| I LR D) CO R A I (€0
h h
+e*P(11*[0)
11 _

< gt hhz Vi s V1O = Vg 010 0 ) 01(0) — v (0] ()
- = h h

_|_e—P(t1—lo)

1

h
S ept() h
n=0

1 to+(n+1) 1 X X X
_f e—pt/g (@ Gl = VE@I0) A (1, e, []) () m, D] (x, )
1

o+nh
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— (7 G0 = V1)) AN (£, e [0]) (P[] (x, )} dy dt| + 0(1) 4 e=P(1=0)

— ePlo

1 1
/ e P! fo {(7X (ylx) = VE 1)) AX (8, 1, [0]) (y]x)me[0] (x, )
fo
— (7X (y]x) = VE 0l () A (¢, my [0]) ]0) me (] (x, p) } dydt‘ + e Pli—0),
Next, recall the definition of m[v](x, y). In the NTU paradigm, the preceding term is

o eptO

5] 1
/ e /0 (7 01 = VE@I0)AY (1 w01 ()
fo

< (H{m" (xly) =8 0} = Yz (xly) = o) () 7Y (1) = 57 ()}

+ [(7X (y]x) = V1) AX (1, m, 01) () {7 (x|y) = of D {7 ]x) = 08 (0}
— (7% (y|x) = VEWI(0))AX (2, p,[0]) (]x)

x 1{7TY(x|y) > v,Y(y)}l{ﬂ'X(y|x) > v[X(x)}]}dydt

+ e—Phi—1)

t 1
Se—P(tl—t0)+/le_P(l—lo)/ {(1 +ﬁt)L)\|1{7TY(x|y)Zi,¥(y)}—1{7TY(x|y)ZU,Y(y)}|
fo 0

+ [[7* () = V1], AX (8, [01) (%)
= [7* o) = VEI] AT (6 ) 1)} dy e

<eri=0) 4 (1 +ﬁ,l)LA/ttl /01|1{7TY(x|y) =9 (N} = 1{a" (xly) = o) ()] dydt
0

+(1+ﬁ,1)LA/:/OI|[wX(y|x)—V,X[m(x)];[wX(ylx)—V?([vl(x)leydf
+ /z: fo 1Wf(r,ut[v])(ylx) =AY (1, wy[0]) (|3 | dy d

<a +ﬁ,1)LAft” f01|1{wY(x|y) =5 (1) = 1a¥ (aly) 2 0] )| dyde + ¢ =0)

!
+(1+ﬁtl)L)‘/ttl|VtX[v](x)—VtX[E](x)|dt+LA/t1N(Mt[U]yMz[5])df
0

fp

where we have made use of Assumption 2. By integrating over all x € [0, 1], it follows
that f; |V [v](x) — V¥ [0](x)| dx is bounded by

t 1 pl
Az [ [ Gl =57 0} = 1 el = o )} dwdydi+ e
fo
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_ h 1 n
+(1 +ﬁtl)L"/ /O |Vf([v](x)—Vf([ﬁ](x)‘dxdt—l—L)‘/ N (], p[01) dt.
Io

fo

To conclude, fix some ¢ (yet to be determined). Let #; be the smallest time such that
e~Pi=) < ¢ The proof of Lemma 8 implies that there exists 8; > 0 such that for all
v:|v—1| < é1,

h 1 1
/ /0/0|1{7TY(x|y)zitY(y)}—1{wY(x|y)zv,Y(y)}|dxdydz<g.
to

Lemma 10 implies that there exists 82 > 0 such that ftgl N(p,[v], p,v])dt < ¢ forall v:
lv—7| < &2. Then set § = min{d, d»}. It follows that forall v: |[v — V| < §,

1
/0 VX wl(x) — Vi [0](x)] dx

— n 1 J—
<1 —i—ﬁtl)L)‘/ f V¥ i) — V1) dxde + (2 + &, ) LY +1) €.
— 0

=K =K>

And an application of Grénwall's inequality gives fol VX ](x) — V¥l(x)|dx <
Ka¢eK1(h=) Then to satisfy the e — § argument, choose ¢ = e~ K1(1=/0), O

E.6 Proof of Proposition 8

Proor oF ProrosITION 8. Pick / such that 1/ 4 € N. Then (details for the first inequal-
ity that is not specific to the TU paradigm are given in the proof of Proposition 7)

Vi wl(x) — VX [0](x)]

< ept0

f 1
/ e P! /0 {(7mX 01(y|x) — Vi [01(0) A% (¢, i [01) (y|x)m 0] (x, y)
fo

— (T WI]x) = V1)) A (4, g, 1) (] me (vl (x, y) } dy dit| + e P =)

n 1
5/ /0 [mX Wil = VI ] A% (6 i) 010
fo
= [ IOk = VERIE ] AT (6w w]) 0] dydi + emP0 70
n 1
:aX/ /0 {lreen =77 ) = Vi),
fo

—[F G, ) = v ) = VI 0)], A% (¢, e, [01) (]x)

+ A (t, w01 ]x) — A (8, g 01) () x) |} dy di + e P —10)

. h 1
<X +7,)L / fo (@Y ) = VE@I(0) = (v) () = VEI(x) | dydt
fo
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n
+aXL)‘/ N(p[v], py[0]) dt + e~ PL1—10)
I{

0

_ h 1
<a¥(1 +ﬁ,1)LA/ /0 9 (») — v ()| dydt
fp

J— |
+ o (1 +H,1)LA/ VEm(x) — V] (x)|dt

fo

n
+a¥ L / N (], p,[0]) dt + e~Pl1=10),
fo
To conclude, fix some ¢ (yet to be determined). Let #; be the smallest time such that
e~Phi—h) ~ £ To bound the first term, set §; = e~1£. Lemma 10 implies that there exists
82 > 0such forall v: [[v— ]| < 82: [," N(p,[v], g, [v]) dt < &.

Then set § = min{d, 6»}. It follows that forall v: ||v — V|| < §,

V¥ wlx) — V()]

<a¥(1 +E,1)L)‘/ V¥l — V)| de + o (2 + &, )L + 1) €.
—
=K, =K»

An application of Gronwall’s inequality gives |Vf§ [v](x) — Vfg [0](x)| < Kpé&eK1(n=t),
Then to satisfy the e — § argument, choose ¢ = & e~ X1(1710), O

APPENDIX G: DiscussioN: OMITTED PROOFS

Proor oF REMARK 3. Careful inspection of the proof of Lemma 4 reveals that under
anonymous meeting rates, the following inequalities hold irrespective of the order of
types for any two types x1, x2:

1 % U U,
/0 (f(x2, ¥) = f(x1, )05 I (y|x2) dy = Vi [v](x2) — V7 [v](x1)

1
> /0 (f(x2,¥) — f(x1, »))OF [v(y]x1) dy.

In light of continuity of x — f(x, y), the difference in values-of-search then tends to zero
as x» — Xxi1. O

Proor oF REMARK 4. Fix types x and x — 6 with § > 0. We show that
VX(x—8)—>VX(x) asél0.

(The mapping x — VX (x) is right continuous because, by construction, agents ac-
cept one another if indifferent. Given our continuity assumptions, this readily implies
limsyo VX (x +8) = VX (x).)

Step 1: We construct an individual type x — § matching rate whereby, at all times,
a single agent of type x — 6 accepts a match with type y if a type x individual accepts
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a match with type y, whereas all other agents of type x — § continue to best-respond
to their match opportunities. Since individual deviations from match acceptance rules
do not change the evolution of the search pool, meeting rates remain unaffected. In-
dividual type x — 8 matches with type y, and thus occur at rate A (y|x — §)1{mY (x —
8ly) = V.Y )11{#X (y|x) = VX (x)}. Considering hierarchical search, whereby AX (y|x —
8) < A¥X(y|x), and vertically differentiated types, whereby 1{mY (x — 8|y) > V,Y (»)} <
7Y (x|y) = VtY (»)}, this matching rate is weakly lower than that of x. We then introduce
the object P/ (y|x — &), which analogous to the construction in the proof of Lemma 3,
captures the resulting discounted probability of matching for type x — . In particular,
the discounted probability of matching with some type less than y is foy PX(y|x — 8)dy.

Step 2: By revealed preferences, the value-of-search for type x — 6 for 6 > 0 must
weakly exceed the expected discounted match payoff when following the constructed
matching rate. Thus

1
VX (x—8)> / 7 (vl — 8YPX (y]x — 8) dy
0

1 1
= /0 7X (y]x — 8) 0 (y|x) dy + fo 7 (y|x — &) (P (y|x — 8) — O (y|x)) dy,

where Qf( (y]x) is as defined in Lemma 3.

Step 3: We show that PtX(y|x —9) — Qf((y|x) as 6 — 0. First, note that by as-
sumption, meeting rates satisfy A (y|x — 8) — A (y|x) as 8§ — 0. Additionally, since
v x;(y) is assumed to be increasing, the match opportunities for type x — §, as given by
{y:m¥(x— 8|y) = Vi(»)}, almost surely coincide with the interval [0, infy : x,(y) > x — §],
and inf{y : x,(y) > x — 8} — inf{y : x,(y) > x} as 6 tends to zero. Consequently, the indi-
vidual type x — 8 matching rate converges to type x’s matching rate, thereby implying
the convergence of discounted match probabilities.

Step 4: We deduce from the preceding that VX (x) — V;X(x — 8) is bounded from
above by

1 1
/0 (m* () — 7 (y]x = 8)) Q¥ (y]x) dy + fo 7 (ylx — &) (P (ylx — 8) — O (y]x)) dy.

Moreover, due to the mimicking argument (Lemma 3), V;X (x) — VX (x — §) is bounded
from below by

1
fo (X () — 7X (yx — 8) QX (] — 8) dy.

Then the continuity of x X ( y|x) and the convergence of P,X (y|Jx—8) — Qf( (y|x) as
8 — 0 ensure that both bounds tend to zero as 6 — 0. O
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