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Screening for breakthroughs

GREGORIO CURELLO
Department of Economics, University of Mannheim
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How best to incentivize prompt disclosure? We study this question in a general
model in which a technological breakthrough occurs at an uncertain time and is
privately observed by an agent, and a principal must incentivize disclosure via her
control of a payoff-relevant physical allocation. We uncover a deadline structure
of optimal mechanisms: they have a simple deadline form in an important special
case, and a graduated deadline structure in general. We apply our results to the
design of unemployment insurance schemes.
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1. INTRODUCTION

Society advances by finding better ways of doing things. When such a technologi-
cal breakthrough occurs, it frequently becomes known only to certain individuals with
particular expertise. Only if such individuals share their knowledge promptly can the
promise of progress be unlocked.

The resulting need to incentivize prompt disclosure engenders a screening problem
in which the agent’s private information is about when, rather than about what. We call
this screening for breakthroughs.

The need to screen for breakthroughs is widespread. One example is the much dis-
cussed problem of talent hoarding in organizations (see Hégele (2025)). The manager
of a team is well placed to know when one of her subordinates acquires a skill. When
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this happens, headquarters may wish to reassign the worker to a new role better suited
to her abilities. Managers, however, have a documented tendency to want to hold on to
their workers. Careful design is thus needed to incentivize prompt disclosure.

Another example is unemployment insurance. Since unemployed workers are typi-
cally privately informed about when they receive a job offer, benefits must be designed
with a view to incentivizing them to start work promptly. A third example concerns tech-
nical innovations that reduce firms’ greenhouse-gas emissions, at the price of raising
production costs.! Only with suitable regulation will firms which discover such innova-
tions choose to adopt them.

In this paper, we study the general problem of screening for breakthroughs. We in-
troduce a model in which an agent privately observes when a new productive technol-
ogy arrives. This breakthrough expands utility possibilities for the agent and principal,
but generates a conflict of interest between them. The agent decides whether and when
to disclose the breakthrough, and the principal controls a payoff-relevant physical al-
location over time. Our model deliberately focuses on the screening-for-breakthroughs
problem, excluding well-understood frictions such as the need to incentivize the agent
to exert unobservable effort. It can be shown that adding such a moral-hazard friction
to the model does not affect our results.?

We ask how the principal can best incentivize prompt disclosure of the break-
through. Our answer uncovers a deadline structure of optimal mechanisms: only simple
deadline mechanisms are optimal in an important special case, while a graduated dead-
line structure characterizes optimal incentives in general. We apply these insights to the
design of unemployment insurance schemes.

1.1 Overview of model and results

A breakthrough occurs at a random time, making available a new technology that ex-
pands utility possibilities for an agent and a principal. There is a conflict of interest:
were the principal to operate the old and new technologies in her own interest, the
agent would be better off under the old one. The agent privately observes when the
breakthrough occurs, and (verifiably) discloses it at a time of her choosing. The prin-
cipal controls a physical allocation that determines the agent’s utility over time. (The
description of a physical allocation may include a specification of monetary payments
to the agent; in this case, the conflict-of-interest assumption requires that the agent be
protected by (at least a degree of) limited liability prior to disclosure.)

To focus on the robust qualitative features of optimal screening, we study undomi-
nated mechanisms, meaning those such that no alternative mechanism is weakly better
for the principal under any arrival distribution of the breakthrough and strictly better
under some distribution. We further describe, for any given breakthrough distribution,
the principal’s optimal choice among undominated mechanisms.

Such innovations are expected to account for the bulk of abatement in the cement industry, currently
the source of about 7% of all CO, emissions (Czigler, Reiter, Schulze, and Somers (2020)).
2We omit this extension, but it may be found in the working paper (Curello and Sinander (2025)).
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Toward our deadline characterization, we first study how undominated mechanisms
incentivize the agent. We show that the agent should be indifferent at all times between
prompt and delayed disclosure (Proposition 0). This is despite the fact that the stan-
dard argument fails: were the agent strictly to prefer prompt to delayed disclosure, then
lowering the agent’s post-disclosure utility would not necessarily benefit the principal.

We then elucidate the deadline structure of undominated mechanisms when the
pre-breakthrough technology’s utility possibilities have an affine shape. Theorem 1 as-
serts that in this case, all undominated mechanisms belong to a small class of simple
deadline mechanisms. Absent disclosure, these mechanisms give the agent a Pareto-
efficient utility u° before a deadline, and an inefficiently low utility u* afterwards.® The
proof of Theorem 1 argues (loosely) that any mechanism may be improved by front-
loading the agent’s pre-disclosure utility, making it higher early and lower late while
preserving its total discounted value. We further characterize the principal’s optimal
choice of deadline as a function of the breakthrough distribution (Proposition 2).

Outside of the affine case, optimal mechanisms exhibit a graduated deadline struc-
ture (Theorem 2): absent disclosure, the agent’s utility still starts at the efficient level u®
and declines monotonically toward the inefficiently low level u*, but the transition may
be gradual. For any given breakthrough distribution, we describe the optimal transition
(Proposition 3).

We then apply our results to the design of unemployment insurance schemes. An
unemployed worker (agent) receives a job offer at a random time, and chooses whether
to accept, and if so how soon to start. Offers are private, but the state (principal) observes
when the worker starts a job. The state controls unemployment benefits and income
taxes, and cares both about the worker’s welfare and net tax revenue.

Many countries, such as Germany and France, pay a generous unemployment ben-
efit until a deadline, and provide only a low benefit to those remaining unemployed be-
yond this deadline. Our results provide a potential rationale for such deadline schemes:
they are approximately optimal provided that either (a) the worker’s consumption utility
has limited curvature, or (b) tax revenue is comparatively unimportant for social welfare.
Conversely, our analysis suggests that where neither (a) nor (b) is satisfied, substantial
welfare gains could be achieved by tapering benefits gradually, as in Italy.

1.2 Related literature

This paper belongs to the literature on incentive design for a proposing agent, initiated
by Armstrong and Vickers (2010).% In their (static) model, the agent privately observes
which physical allocations are available, then proposes one (or several). The key as-
sumptions are that

(a) the agent can propose only available allocations, and that
3u0 and u* are functions of the technologies, so the deadline is the only free parameter.

4See also Nocke and Whinston (2013) and Guo and Shmaya (2023). Our account of the literature follows
the latter authors’ insightful discussion. The literature has precedents in applied work on corporate finance
(Berkovitch and Israel (2004)) and antitrust (Lyons (2003)).
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(b) the principal can implement only proposed allocations.

Our dynamic problem shares these key features: the new technology (a) can only be
disclosed (proposed) once available, and (b) can be utilized by the principal only once
disclosed.

Bird and Frug (2019) study a different dynamic environment with features (a) and
(b). Payoffs are simple: there is an allocation « preferred by the principal and a default
allocation favored by the agent,” and the principal can furthermore reward the agent ata
linear cost. In each period, the agent privately observes whether « is available; it can (a)
be disclosed only if available, and (b) be implemented only if disclosed. Were rewards
unrestricted, « could be implemented whenever available by rewarding the agent just
enough to induce disclosure. (And this is optimal; thus there is no conflict of interest
in our sense.) The authors instead subject promised rewards to a dynamic budget con-
straint,® and study how the budget should be spent over time. By comparison, we allow
for general payoffs (technologies) and impose no dynamic constraints, focusing instead
on a conflict of interest.

Feature (a) means that the agent’s disclosures are verifiable, a possibility first stud-
ied by Viscusi (1978), Grossman and Hart (1980), Milgrom (1981), Grossman (1981). A
strand of the subsequent literature examines the role of commitment in static models,”
while another studies the timing of disclosure absent commitment;® our environment
features both commitment and dynamics.” These models lack property (b): the agent
cannot constrain the principal.

More distantly related is the large literature on dynamic adverse-selection models
with cheap-talk communication (contrast with (a)) and no scope for the agent to con-
strain the principal’s choice of allocation (contrast with (b)). The strand on dynamic
“delegation” allows for nontransferable utility, as we do;'? otherwise the literature tends
to focus on monetary transfers.!! A recent strand examines models which, like ours,
feature private information about when, rather than about what. For example, Green

5There is an extension to multiple allocations «; little changes.

6They assume in particular that the agent can be rewarded only using exogenous reward “opportunities,”
which arrive randomly over time; but nothing changes if rewards take other forms, for example, (flow)
monetary payments subject to a per-period cap.

“Particularly Glazer and Rubinstein (2004, 2006), Sher (2011), Hart, Kremer, and Perry (2017), Ben-Porath,
Dekel, and Lipman (2019).

8See Dye and Sridhar (1995), Acharya, DeMarzo, and Kremer (2011), Guttman, Kremer, and Skrzypacz
(2014), Campbell, Ederer, and Spinnewijn (2014), Curello (2023a,b). The last three papers feature “break-
throughs,” but these engender no conflict of interest in our sense; the incentive problem is instead that of
deterring shirking.

9S0 does recent work on revenue management, where a firm contracts with customers who arrive un-
observably over time and choose when verifiably to reveal themselves; see Pai and Vohra (2013), Board and
Skrzypacz (2016), Mierendorff (2016), Garrett (2016, 2017), Gershkov, Moldovanu, and Strack (2018), Dilmé
and Li (2019).

10Gee Jackson and Sonnenschein (2007), Matsushima, Miyazaki, and Yagi (2010), Frankel (2016), Guo
(2016), Li, Matouschek, and Powell (2017), Lipnowski and Ramos (2020), Guo and Hérner (2020), de Clippel,
Eliaz, Fershtman, and Rozen (2021).

Eor example, Roberts (1982), Baron and Besanko (1984), Courty and Li (2000), Battaglini (2005), Es6
and Szentes (2007a,b), Board (2007), Pavan, Segal, and Toikka (2014).
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and Taylor (2016) show how moral hazard may be mitigated by conditioning pay and
termination on cheap-talk “progress reports.”'? In their model, the agent privately ob-
serves the arrival of a signal, which indicates that project completion is within reach
(given enough effort). Completion is observable. There is no conflict of interest in our
sense; instead, the challenge is to incentivize unobservable (completion-hastening) ef-
fort. (Absent this moral hazard, the principal would have no reason to elicit the signal.)
Relatedly, Madsen (2022) studies how cheap-talk progress reports may be elicited by
conditioning pay and termination on a contractible signal. In his model, the agent pri-
vately observes when a project “expires,” and the principal decides when to terminate
the project. The principal (agent) prefers termination close to expiry (as late as possi-
ble). Crucially, there is a noisy contractible signal of expiry.'® Both of these papers use
the term “deadline,” as we do, but mean quite different things by it 14

1.3 Roadmap

We introduce the model in the next section, then formulate the principal’s problem in
Section 3. In Section 4, we show that undominated mechanisms incentivize the agent
by keeping her always indifferent. We then describe the deadline structure of optimal
mechanisms (Sections 5 and 6). In Section 7, we apply our results to the design of un-
employment insurance schemes.

2. MODEL

There is an agent and a principal, whose utilities are denoted by u € [0, c0) and v €
[—o0, 00), Tespectively. A frontier FO : [0, c0) — [—o0, oo) describes utility possibilities:
FO(u) is the highest utility that the principal can attain subject to giving the agent utility
u. We assume that F° is concave and upper semicontinuous, that it has a unique peak
u® > 0 (namely, FO(u%) > FO(u) for every u # u), and that it is finite on (0, u°]. Such a
frontier is depicted in Figure 1.

Time ¢ € R, is continuous. The principal controls the agent’s flow utility u (and thus
her own utility F 0(w)) over time, and is able to commit.

We interpret this abstract description of utility possibilities in the standard fashion:
there is an (unmodeled) set of feasible physical allocations over which the agent and
principal have preferences, and the principal decides which allocation prevails in each
period. She thus effectively controls the agent’s flow utility. We illustrate and interpret
further in Section 2.1 below.

At a random time 7, a breakthrough occurs: a new technology becomes available
which expands the utility possibility frontier to F! > FO. The new frontier is likewise

123ee also Feng, Taylor, Westerfield, and Zhang (2024).

131f there were no contractible signal, then nontrivial screening would be impossible, since the agent’s
preferences are the same whatever her type (expiry date).

l4Deterministic hard deadlines, as in our result, appear only in the benchmark case of Green and Taylor
in which there is no signal (a case unrelated to our model and Madsen’s). In Green and Taylor, “(soft)
deadline” means a time after which termination may randomly occur if the agent has not yet reported
the signal’s arrival. Madsen uses “(soft) deadline” to mean that termination depends on the realization of
the contractible signal.
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Ficure 1. Utility possibility frontiers. The new technology expands utility possibilities
(F' > FY), but creates a conflict of interest (u! < u%). u* denotes the rightmost point to the left of
u® at which FO, F! have equal slopes.

concave and upper semicontinuous, with a unique peak denoted by u! > 0. (Note that
we allow for the possibility that u' = 0, in which case F! is decreasing.) The break-
through engenders a conflict of interest: the new frontier peaks at a strictly lower agent
utility (u! < u%), so that the breakthrough would hurt the agent were the principal to
operate both technologies in her own interest. This is illustrated in Figure 1.

The breakthrough is observed only by the agent. At any time ¢ > 7 after the break-
through, she can verifiably disclose to the principal that it has occurred. (That is, she
can prove that the new technology is available.) The new technology can be used only
once its availability has been disclosed.

The agent and principal discount their flow payoffs at rate r > 0 and have expected-
utility preferences, so that their respective payoffs from random flow utilities # — x; and

E(r/ e‘”x,dt) and E(r/ e‘”ytdt>.
0 0

The random time 7 at which the breakthrough occurs is distributed according to an ar-

t+— y, are

bitrary cumulative distribution function G.

We write u* for the rightmost u e [0, u°] at which the old and new frontiers F°, F!
have equal slope (in the sense of sharing a supergradient (see Rockafellar (1970,
part V))), and let u* := 0 in case no such u € [0, u%] exists. This utility level will fea-
ture prominently in our analysis. To avoid trivialities, we impose the weak genericity

assumption that u* is a strict local maximum of F! — F°. Note that u* < u' < u°.
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F1GURE 2. Finitely many allocations: the old (@), the new (0), and utility possibilities (grey).

Here, u* = ul.

2.1 Interpreting the frontiers

In the simplest applications, there are finitely many (old) allocations, and the agent pri-
vately observes when a single new allocation becomes available. For example, a man-
ager may observe when a worker on her team acquires a skill, or a firm may discover
an emissions-reducing innovation. Each allocation provides some utilities (i, v) to the
agent and principal, which may be plotted as in Figure 2. The utility possibility set is
the convex hull of these profiles,'® and the frontier F? is its upper boundary. The agent
privately observes when a new allocation (u!, v') becomes available. The principal likes
the new allocation better than any other, whereas the agent prefers the principal’s fa-
vorite old allocation (u°, v°). Thus utility possibilities expand, but there is a conflict of
interest.

ExampLE 1. The simplest formalization of the talent-hoarding story from the introduc-
tion is as follows. A worker belongs to a team in an organization. Her productivity on
the team is v° > 0, while her productivity outside of the team is strictly lower, normalized
to zero. At some uncertain time, she acquires a skill that can be exercised only outside
of her current team, at productivity v! > 90, (This could be the skill to manage a team
of her own, for example.) Headquarters (the principal) cares about output, while the
worker’s manager (the agent) has a pure empire-building motive: her payoff is u =1 if
the worker is on her team and u = 0 otherwise. In this case, the frontiers are given by
FO(u) = un® and F'(u) = (1 — u)v! + wr? for each u € [0, 1].'6 These frontiers satisfy
our model assumptions; in particular, the conflict-of-interest assumption holds since
ul=0<1=ud. O

15In-between profiles are achieved by rapidly switching back and forth (or randomizing).
16And FO(u) = F!(u) = —oo forall u € (1, 00), since u > 1 is impossible.
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Richer applications feature (infinitely) many allocations. In our application to un-
employment insurance (Section 7), for example, an allocation specifies the worker’s con-
sumption and (if she is employed) her labor supply.

Our abstract treatment of allocations allows for a broad range of applications. Allo-
cations may be multidimensional, for example, with some dimensions corresponding
to observable actions taken by the agent. (The principal controls these by issuing action
recommendations, backed by the threat of giving the agent zero utility forever unless
she complies.) One dimension of the allocation may describe monetary payments to
the agent; we discuss this possibility in Section 2.2 below.

Rich downstream interactions between the principal and agent can be accommo-
dated by reinterpreting the frontier F! in lifetime terms, so that F!(u) is the principal’s
continuation utility from the post-disclosure interaction when she is constrained to pro-
vide the agent with a continuation utility of u.!” The post-disclosure interaction could
be one of contracting under (rich, possibly dynamic) moral hazard, for example: that
yields a frontier F! which satisfies our shape assumptions (see, e.g., Sannikov (2008,
Figure 1)).

2.2 Discussion of the assumptions

Two of our assumptions are economically substantive. First, the agent privately observes
a technological breakthrough, but cannot utilize the new technology without the prin-
cipal’s knowledge. Many economic environments have this feature: in unemployment
insurance, for instance, the state observes the worker’s employment status (from, e.g.,
tax records).

Second, there is a conflict of interest, captured by u! < u°. Such conflicts arise nat-
urally in applications: in unemployment insurance, for example, the state (principal)
would like an employed worker (agent) to work and pay taxes, but the worker would
rather not. Absent a conflict of interest, the principal can attain her first best (see Re-
mark 1 below).

Many of the remaining model assumptions are innocuous, as we next briefly relate.
For more details, see the working paper (Curello and Sinander (2025)).

Utility possibilities The assumption that F! > FO is without loss of generality (the old
technology remains available after the breakthrough, so the principal can still attain util-
ity > F°(u) while giving the agent utility u, for every u € [0, 00)). The assumption that
the frontiers are concave is likewise without loss: if one of them were not, then the prin-
cipal could get arbitrarily close to any point on its concave upper envelope by rapidly
switching back and forth between agent utility levels. Upper semicontinuity is similarly
innocuous. The stipulation that u* is a strict local maximum of F! — FO essentially just
rules out a saddle point, and is anyway dispensable.

Not every agent utility u € [0, o) need be feasible: if no physical allocation provides
utility u, then we let F/(u) := —oo, ensuring that u is never chosen by the principal. Our
assumption that FO is finite on (0, u°] is without loss.

17The legitimacy of this re-interpretation is formally established in Section 3.1 below. Note that the pre-
breakthrough frontier F® cannot be reinterpreted in this “lifetime” fashion.
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We have required the agent’s flow utility u to be nonnegative, meaning that there is a
bound (normalized to zero) on how much misery the principal can inflict on the agent.
This assumption may be replaced with a participation constraint without affecting our
results.

Distribution The distribution G of the breakthrough time is unrestricted: it can have
atoms, for example, and need not have full support. It can be shown that our results
extend to the case in which G is endogenously generated by the agent’s unobservable
exertion of costly effort.

Uncertain technology Our analysis applies unchanged if the new frontier F! is random,
provided the agent does not have private information about its realization.

Cheap talk Nothing changes if the agent’s disclosures are nonverifiable, provided the
principal observes her own payoffs in real time, since she can then verify cheap-talk
reports at negligible cost.'8

(Non)transferable utility The frontiers F°, F! can encode monetary transfers between
the principal and agent; our model assumptions restrict such transfers only by requir-
ing that before the breakthrough, the agent is protected by (at least a degree of) lim-
ited liability. In detail, write F°, F! for the frontiers describing utility possibilities absent
monetary transfers. If the principal gives the agent gross utility # € [0, c0) and pays her
w € R, then net flow utilities are # + w for the agent and Fi (1) — w for the principal when
technology j € {0, 1} is used. Any constraints on payments, such as limited liability, are
captured by constraint sets W° C R before disclosure and W! C R after disclosure. For
j € {0, 1}, the utility possibility frontier F/ equals the concave upper semicontinuous
upper envelope of
U sup {fj(ﬂ)—w:ﬁ+w=u}.
11€[0,00), weW/

Assume that F0, F! satisfy the model assumptions. Then F°, F! also satisfy all model
assumptions, except possibly for the conflict-of-interest assumption u! < u°. What is
needed for u! < u° to hold is that the agent be protected by a degree of limited liability
before the breakthrough, that is, inf Wy > —k for some k € R;; in particular, this con-
dition with k = 0 is sufficient, and it is necessary for this condition to hold with some
k > 0.19 The model assumptions imply no restrictions on post-disclosure payments W'!.

2.3 Mechanisms and incentive compatibility

A mechanism specifies, for each period ¢ € R,, the flow utility x that the agent enjoys
at ¢ if she has not yet disclosed, as well as the continuation utility X/ that she earns
by disclosing at ¢. Formally, a mechanism is a pair (x°, X1), where x° : R, — R, and

18Eollowing a report, the principal can provide utility ! for a short time, earning F'(u!) if the break-
through really did occur and FO(u!') < F!(u!) if not.

19Write 720, %! for the peaks of FO, F1. Note that u! < @' < #° > u°. If inf W, > 0 then u® =7°, so u! <@! <
70 = u0. Ifinf Wy < —k for every k e Ry, then u® =0 < u!.
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X1:R, — [0, o] are Lebesgue-measurable. We call x° the pre-disclosure flow, and X!
the disclosure reward.

(Our notation uses lowercase for flows and uppercase for stocks: flow utilities are
x; € [0, 00), while continuation payoffs are X; € [0, co]. As usual, “x” and “X” denote the
functions ¢ — x; and t — X}, respectively.)

Note that the description of a mechanism does not specify what utility flow s > x{*’
the agent enjoys after disclosing at ¢, only its present value

oo
X! =r/ e "B 0xbids
t

(which may be equal to co). Nor does the definition specify which technology is used
when both are available. These omissions do not matter for the agent’s incentives, so we
shall address them when we formulate the principal’s problem (next section).

A mechanism is incentive compatible (IC) if and only if the agent prefers disclosing
promptly to (a) disclosing with a delay or (b) never disclosing. The formal definition is
as follows.

DErFINITION 1. A mechanism (x°, X1) is incentive compatible (IC) if and only if for every
period r e Ry,

(@ X} > rftt+d e 0x0ds + e x ]

i1q foreveryd > 0, and

(b) X} >r [ e 6=0x0ds.

By a revelation principle a la Bull and Watson (2007), we may restrict attention to in-
centive compatible mechanisms (for details, see the working paper (Curello and Sinan-
der (2025))).

ReMARK 1. Although we have not yet stated the principal’s problem, it is clear that her
first best is the mechanism (x°, X1) = (10, u!), which fails to be incentive compatible
due to the conflict of interest (u! < u°). If there were no conflict of interest (u! > u?),
then the first best would be IC.

In the sequel, we equip the set Ry of times with the Lebesgue measure, so that a
“null set of times” means a set of Lebesgue measure zero, and “almost everywhere (a.e.)”
means “except possibly on a null set of times.”

Observe that two IC mechanisms (x°, X!) and (x°f, X1) which differ only in that
x9 # x°7 on a null set are payoff-equivalent.?’ For this reason, we shall not distinguish

between such mechanisms in the sequel, instead treating them as identical.?!
20x0 enters payoffs as Eg(f; e "x%dt) and Eg(fy e " F(x?)dr), respectively. Modifying x° on a null
set has no effect on the integrals, and thus leaves both players’ payoffs unchanged, no matter what the
breakthrough distribution G.
21we term such (x°, X1) and (x°7, X1) versions of each other. A mechanism is really an equivalence
class: a maximal set whose every element is a version of every other.
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3. THE PRINCIPAL'S PROBLEM

In this section, we formulate the principal’s problem, and define undominated and opti-
mal mechanisms. We then derive an upper bound on the agent’s utility in undominated
mechanisms.

3.1 After disclosure

To determine the principal’s payoff, we must fill in the gaps in the definition of a mech-
anism. So fix a mechanism (x°, X!), and suppose that the agent discloses at time ¢. For
each of the remaining periods s € [, 00), the principal must determine:

(1) which technology (F° or F!) will be used, and
(2) what flow utility x}** the agent will enjoy.

Part (1) is straightforward: the principal is always (weakly) better off using the new tech-
nology.

For (2), the principal must choose a (measurable) utility flow x!! : [¢, c0) — [0, 00)
subject to providing the agent with the continuation utility specified by the mechanism:

oo
r/ e "0y ds = x|
t

She chooses so as to maximize her post-disclosure payoff

0
r/ e "OTOF (xp") ds.
t

Since the frontier F! is concave, the constant flow x}! = X tl is optimal.
Parts (1) and (2) together imply that the principal earns a flow payoff of F Lox tl) for-
ever following a time-¢ disclosure in a mechanism (x9, x1y.

3.2 Undominated and optimal mechanisms

The principal’s payoff from an incentive compatible mechanism (x°, X1) is
Hg(xo, Xl) =Eg <r/ e‘”FO(x?) dr+e"F! (X;)),
0

where the expectation is over the random breakthrough time r ~ G.??> Her problem is to
maximize her payoff by choosing among IC mechanisms.

A basic adequacy criterion for a mechanism is that it not be dominated by another
mechanism, by which we mean that the alternative mechanism is weakly better under
every distribution and strictly better under at least one:

22For IC mechanisms (x°, X1) such that X! = oo with positive probability, we interpret “F1(c0)” as
limyjo0 F1 (1) = —00, so that I (x0, X1) := —oco.
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DEerINITION 2. Let (x%, X1) and (x°f, X'7) be incentive compatible mechanisms. The
former dominates the latter if and only if

TG (x% X)) >(>) I (x%, X'7)  for every (some) distribution G.
An IC mechanism is undominated if and only if no IC mechanism dominates it.

Domination is a distribution-free concept: the principal weakly prefers a dominat-
ing mechanism whatever her belief G about the likely time of the breakthrough. When
the principal’s belief G makes her exactly indifferent between two mechanisms, one of
which dominates the other, choosing the dominating mechanism means maximizing
the principal’s ex post payoff (which cannot hurt, and seems more prudent if the princi-
pal entertains even a little doubt about G).

DEFINITION 3. An incentive compatible mechanism is optimal for a distribution G if
and only if it maximizes 15 and is undominated.

Undominated and optimal mechanisms exist, by standard arguments, which we
omit (see the working paper (Curello and Sinander (2025))).

3.3 An upper bound on the agent’s utility

Absent incentive concerns, the principal never wishes to give the agent utility strictly
exceeding u°, since both frontiers are downward-sloping to the right of u°. The principal
could use utility promises in excess of u° as an incentive tool, however. The following
result shows that this is never worthwhile.

LEMMA 0. Any undominated incentive compatible mechanism (x°, X1) satisfies x° < u°

almost everywhere.

Proor. Let (x% X!) be an IC mechanism in which x° > ¥° on a nonnull set of

times. Consider the alternative mechanism (min{x?, 4%}, X1) in which the agent’s pre-
disclosure flow is capped at u°. This mechanism dominates the original one: its pre-
disclosure flow is lower, strictly on a nonnull set, and the frontier F is strictly decreasing
on [u°, 00). And it is incentive compatible: prompt disclosure is as attractive as in the
original (IC) mechanism, and disclosing with delay (or never disclosing) is weakly less
attractive since the agent earns a lower flow payoff min{x?, u°} < x° while delaying. [

4. KEEPING THE AGENT INDIFFERENT

In this section, we describe how undominated mechanisms incentivize the agent. This
result is a stepping stone to the deadline characterization of undominated mechanisms
that we develop in next two sections.

To formulate the agent’s problem in a mechanism (x9, X1, let X to denote the
period-¢ present value of the remainder of the pre-disclosure flow x°:

oo
X? :=r/ e "0 0 ds.
t
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In a period ¢ in which the agent has observed but not yet disclosed the breakthrough,
she chooses between

e disclosing promptly (payoff X tl),

o disclosing with any delay d > 0 (payoff X7 +e~"(X]. , — X?, ), and

e never disclosing (payoff X?).

Incentive compatibility demands precisely that the agent weakly prefer the first option.
Our first result asserts that in an undominated mechanism, she must in fact be indiffer-
ent between all three alternatives:

PROPOSITION 0. Any undominated incentive compatible mechanism (x°, X!) satisfies
X0=x1

That is, the reward X! for disclosure must equal the present value X? =
r [ e~ x0 ds of the remainder of the pre-disclosure flow x°.

A naive intuition for Proposition 0 is that, were the agent strictly to prefer prompt
disclosure in some period ¢, the principal could reduce her disclosure reward X} without
violating IC. The trouble with this idea is that if X} < u!, then lowering X} would hurt
the principal (refer to Figure 1 on p. 1328). This is no mere quibble, for (as we shall
see) undominated mechanisms will spend time in [0, u'l. More broadly, in a general
dynamic environment, it is not clear that IC ought to bind everywhere.

The proof is in Appendix A. Below, we outline the main idea in discrete time, then
highlight the additional details that arise in continuous time.

SKETCH PROOF. Lettime € {0, 1,2, ...} be discrete, and write 8 := ¢~" for the discount
factor. A mechanism (x°%, X!) is incentive compatible if and only if in each period s, the
agent prefers prompt disclosure to delaying by one period and to never disclosing:

X! >0-px0+BXx), (delay IC)
DEED ¢ (nondisclosure IC)
(Delay IC also deters delay by two or more periods.) We shall show that undominat-
edness requires that the delay IC inequalities be equalities; we omit the argument that

nondisclosure IC must also hold with equality.
Solet (x°, X1) be an IC mechanism with delay IC slack in some period t:

x> -p)x0+BxL,.

Observe that if the terms x? and X/} ', on the right-hand side are > u!, then the left-hand

side X! must strictly exceed u'. Equivalently, it must be that either

0 X! >u, @()x2<u!, or (i) X}, <ul.
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In each of these cases, we shall find a mechanism that dominates (x%, X1). We will use
the fact that nondisclosure IC is slack in each period s < ¢.23

In case (i), the naive intuition is vindicated: lowering X! toward u' really does im-
prove the principal’s payoff (strictly in case of a breakthrough in period ). And this pre-
serves IC: the (slack) period-¢ delay IC and nondisclosure IC hold for a small enough
decrease, while delay IC slackens in period ¢ — 1 and is unaffected in all other periods,
and nondisclosure IC is unaffected in all periods other than ¢.

In case (ii), increase x? toward u'!, by an amount small enough to preserve the (slack)
period-¢ delay IC and period-s nondisclosure IC for each s < ¢. Other periods’ delay IC
is undisturbed, and so is nondisclosure IC in periods s > ¢. Since F 0 increases strictly
to the left of u! < u°, the principal’s payoff improves (strictly in case of a breakthrough
after ).

Finally, in case (iii), increase X 11 o) toward u!l. (The opposite of the naive intuition.)
The principal is better off (strictly in case of a period-(¢ 4+ 1) breakthrough). Period-¢
delay IC abides provided the modification is small, while delay IC is loosened in period
t + 1 and unaffected in other periods. Nondisclosure IC is clearly preserved. O

The proof in Appendix A is based on the logic of the sketch above, but must handle
two issues that arise in continuous time. First, in case (ii), x° must be increased on a
nonnull set of times if the principal’s payoff is to increase strictly under some distribu-
tion. Second, in cases (i) and (iii), it is typically not possible to modify X lina single
period while preserving IC.

In light of Proposition 0, an undominated incentive compatible mechanism (x°, X1)
is pinned down by the pre-disclosure flow x°, since the disclosure reward X' must al-
ways equal the present value of the remainder of x°:

o

X =x0= r/ e "670x0ds foreacheR;.
t

We therefore drop superscripts in the sequel, writing an IC mechanism simply as (x, X),

where X; := rftoo e "D xds for each ¢ € R;. Since mechanisms of this form are au-

tomatically IC, we refer to them simply as “mechanisms.” By Lemma 0, we need only

consider mechanisms (x, X) that satisfy x < u° a.e.

5. DEADLINE MECHANISMS

In this section, we uncover a deadline structure of undominated mechanisms when the
old utility possibility frontier F? is affine on [0, u°], as in Figure 3. We further characterize
the optimal choice of deadline, given the breakthrough distribution.

We start with the affine case partly for reasons of conceptual clarity: this case lays
bare a “front-loading” force that will provide the key to understanding undominated

#3To prove this, use inductionons € {, 1 —1, ..., 2,1, 0}. Inthe base case s = ¢, X} > (1 - B)x{ + BX}, | =
(1-8)x% + BX?Jr1 = X? by period-t delay IC (which is slack) and period-(¢ 4 1) nondisclosure IC. For the
induction step, suppose that period-(s 4 1) nondisclosure IC is slack, where s < ¢; then X! > (1 — 8)x0 +
BX}, > (1—pB)x?+BX? | = X?, where the weak inequality holds by period-s delay IC.
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v

Ficure 3. Utility possibility frontiers in the affine case. u* is where the frontiers are furthest
apart.

mechanisms in general. The affine case is also important in its own right, since affine-
ness frequently arises in applications, for two basic reasons. The first reason is convex-
ification (recall Figure 2 on p. 1329). In the simplest case, with just two allocations, the
utility possibility frontier is the straight line connecting the two feasible utility profiles.?*
More generally, the utility possibility set is the convex hull of all feasible utility profiles,
so its upper boundary F? is affine if there are two profiles such that the line segment
connecting them lies above all other profiles.

The second reason is that in (utilitarian) policy applications, such as unemployment
insurance (Section 7 below), the agent’s utility directly enters the principal’s payoff in
a linear fashion. Explicitly, the agent’s utility is u = ¢(a), where a € A is a policy vari-
able and ¢ : A — [0, o0) is surjective, and the principal’s utility is v = u — /(a) for some
function ¢ : A — R, so

Fou) = sup{u—y(a):u=da)}=u— in£{¢(a) tu=d¢(a)} foreachue (0, c0).
acA ae

The first term is linear, so if the second term has almost no curvature, then F° is approx-
imately affine.?®

The utility level u* (defined in Section 2) admits a simple description when FO is
affine: it is the unique u € [0, u°] at which the frontiers are furthest apart,?% as indicated
in Figure 3. A deadline mechanism is one in which the agent’s utility absent disclosure is
at the efficient level u° before a deterministic deadline, and at the inefficiently low level
u* afterwards.

24In-between profiles are attained by rapidly switching back and forth (or randomizing).

25For example, if A is a convex subset of R and ¢, ¢ are twice continuously differentiable with ¢’ >
0 < ¢/, then FO(u) = u — (¢~ (u)) for each u € [0, 00), so the curvature |F?’ /F?| is small if the curvature
difference |¢" /' — ¢/ ¢’| is small.

26y* is a strict local maximum of the gap F! — F°, which is concave when F? is affine.
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DEFINITION 4. A mechanism (x, X) is a deadline mechanism if and only if

O forr<T,
X = {u - for some T € [0, o0].

uw fort>T

Deadline mechanisms are simple: only two utility levels are used, with a single
switch between them. And they form a small class of mechanisms, parametrized by a
single number: the deadline 7. (The utility levels u° and u* are not free parameters,
being pinned down by the technologies F°, F1.)

The agent’s reward X upon disclosure in a deadline mechanism (equal to the present
value of the remainder of the pre-disclosure flow x) is decreasing until the deadline, then
constant at u*:

(1- e_r(T_t))uo +e Ty fort<T,

X, =
' u* fort>T.

()

5.1 Only deadline mechanisms are undominated

The affine case admits a sharp prediction: no matter what the shapes of the new frontier
F! and breakthrough distribution G, the principal will choose a mechanism from the
small and simple deadline class.

TueoreM 1. Ifthe old frontier F° is affine on [0, u®], then any undominated mechanism
is a deadline mechanism.

The welfare implications are stark: ex post Pareto efficiency in case of an early break-
through, and surplus destruction otherwise. In particular, absent a breakthrough, the
old technology is operated Pareto-efficiently (i.e., on the downward-sloping part of F 0
specifically at u%) before the deadline, and inefficiently (at u*) afterwards. Once the new
technology arrives, it is deployed efficiently (on the downward-sloping part of F1) if its
arrival was early (while X > u!).?” If its arrival was late, then F! is operated inefficiently
if u* < u!, and efficiently if u* = u'. These welfare implications, as well as the special
role played by u*, are general properties that hold even outside of the affine case, so we
postpone discussing them fully until Section 6.2 below.

We prove Theorem 1 in Appendix B. Below, we give an intuitive sketch.

SKETCH PROOF. Fix a nondeadline mechanism (x, X) with x < u°, and assume for sim-
plicity that x > u*. We will show that (x, X) is dominated by the deadline mechanism
(x¥, XT) whose deadline T satisfies

(1- e*’T)uo +e Ty = X,.

=X by (©)

27A detail: X, > u! holds in early periods ¢ only if the deadline is sufficiently late. We show in the next
section that this must be the case in undominated mechanisms.
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(b) X7 < X, with equality at 0.

(a) xT is higher early and lower late.
F1GURE 4. Sketch proof of Theorem 1: front-loading by a deadline mechanism.

This mechanism is a front-loading of (x, X): the pre-disclosure flow has the same
present value Xo = r [;° e~"'x, dt, but is higher early and lower late, as depicted in Fig-

ure 4a.
As time passes, the present value X, = r [ e70~9x] ds of the remainder of the
front-loaded flow x' rapidly diminishes, so that X is weakly below X in every period

(see Figure 4b).
o0 o0
Y, :=r/ e"(s_’)FO(xs)ds=F0<r/ e_r(s_l)xsds> =FO(X)),
t t

where the middle equality holds by the affineness of F°. Her payoff is thus

Hg(x, X) =EG(Yo —e 7Y, + e "F (X))
= F(Xo) + Eg(e ""[F' - F](X:)).

The principal’s period-¢ continuation payoff if the agent never discloses is

Front-loading lowers X toward u*, leaving X unchanged. Since F' — F9 is (strictly)
decreasing on [u*, u®] by definition of u*, this improves the principal’s payoff whatever
O

the distribution G. The improvement is in fact strict for any full-support distribution.

Thus (x, X7) dominates (x, X).
The key simplification in the above sketch is the assumption that x > u*. The proof

in Appendix B dispenses with this assumption by choosing the deadline T to satisfy
(1—eTyu® 4+ e"Ty* = max{Xy, u*}, and showing (in a few extra steps) that this yields a

dominating mechanism even if x % u*.

Theorem 1 provides a rationale for deadline mechanisms even when F? is not exactly
affine: provided F° has only moderate curvature, the principal loses little by restricting

attention to deadline mechanisms.
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5.2 Undominated deadlines

Theorem 1 asserts that only deadline mechanisms are undominated when F? is affine,
but does not adjudicate between deadlines. In fact, not every deadline mechanism is
undominated. Consider a deadline T so early that X < u!. Since the disclosure reward
X decreases over time in a deadline mechanism, we have X, < u! whatever the time 7
of the breakthrough.

The principal can do better by using the later deadline T that satisfies Xy = u!, or
explicitly (using equation (<) on p. 1338)

(1- e_rz)uo +e Ly =yt

This raises the agent’s disclosure reward X toward u!, improving the principal’s post-
disclosure payoff F!(X,) whatever the breakthrough time r (strictly if 7 < 7). The prin-
cipal also enjoys the high pre-disclosure flow F°(u?) > FO(u*) for longer, which is bene-
ficial in case of a late breakthrough.

Undominatedness thus requires a deadline no earlier than 7. This condition is not
only necessary, but also sufficient.

ProPOSITION 1. Ifthe old frontier F° is affine on [0, u®], then a mechanism is undomi-
nated if and only if it is a deadline mechanism with deadline T € [T, co].

The proofis in Appendix C.

5.3 Optimal deadlines

Proposition 1 narrows the search for an optimal mechanism to deadline mechanisms
with a sufficiently late deadline. The optimal choice among these depends on the break-
through distribution G.

A late deadline is beneficial if the breakthrough occurs late, as the efficient high util-
ity u¥ is then provided for a long time. The cost is that in case of an early breakthrough,
the agent must be given a utility of X > u! forever. A first-order condition balances this
trade-off.

PROPOSITION 2. Assume that the old frontier F° is affine on [0, u®], that the new frontier
F! is differentiable on (0, u®) with bounded derivative, and that u* > 0. A mechanism
is optimal for G if and only if it is a deadline mechanism and satisfies Eg(FV (X;)) =
0.

In other words, the new technology should be operated optimally on average. This
is a restriction on the deadline T because X is a function of it, as described by equa-
tion (<) on page 1338. Indeed, it implies comparative statics: optimal deadlines become
later when the breakthrough distribution G becomes later in the sense of first-order



Theoretical Economics 20 (2025) Screening for breakthroughs 1341

stochastic dominance.?® This improves the agent’s ex ante payoff Xy, as can be seen
from equation ().
Proposition 2 is proved in Appendix G.

6. OPTIMAL MECHANISMS IN GENERAL

In this section, we show that optimal mechanisms in the general (nonaffine) case ex-
hibit a graduated deadline structure: absent disclosure, the agent’s utility still declines
from u° toward u*, but not necessarily abruptly. Given the breakthrough distribution,
we describe the optimal path.

To shorten proofs, we shall impose a well-behavedness assumption. The results re-
main true if this assumption is dropped: see the working paper (Curello and Sinander
(2025)).

DEeFINITION 5. We say that the model primitives FO F1, G are well behaved if and only
if FO and F! are differentiable on (0, u°) with bounded derivatives, and either (i) FO is
strictly concave on [0, u®) or (ii) F!is strictly concave on [0, 1] and G has full support.

6.1 Qualitative features of optimal mechanisms

Recall from Section 2 that u* denotes the greatest u € [0, u°] at which the old and new
frontiers F°, F1 have equal slopes, as depicted in Figure 1 (p. 1328).

THEOREM 2. Let G be a distribution with G(0) = 0 and unbounded support. Assume
that F°, F1, G are well behaved. Then any mechanism (x, X) that is optimal for G has x
decreasing

0 29

toward lim x;=u".

from limx,=u
t—0 t—00

Thatis, optimal mechanisms are just like deadline mechanisms, except that the tran-
sition from u° to u* may be gradual. This graduality follows directly from relaxing affine-
ness: when FO has a strictly concave shape, by definition, the principal prefers provid-
ing intermediate utility to providing only the extreme utilities *, u®. Theorem 2 is the
combination of this mechanical effect with the front-loading insight expressed by The-
orem 1.

The proofis in Appendix E. As mentioned above, Theorem 2 remains true if the well-
behavedness assumption is dropped, at the cost of a longer proof; see the working paper
(Curello and Sinander (2025)).

28To see why, recall that F! is concave, and observe (from (<) that a deadline mechanism’s disclo-
sure reward X is decreasing over time and increases pointwise when the deadline becomes later. This
comparative-statics result remains true if F! is not differentiable; see the working paper (Curello and Sinan-
der (2025)).

29Recall that a mechanism has multiple versions (footnote 21, p. 1332). Theorem 2 asserts that any op-
timal mechanism has a version with the stated properties. We focus on lim,_,¢ x; rather than x( because

“xo = u®” is vacuous: any mechanism has a version satisfying it.
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The role of monotonicity is not to provide incentives: on the contrary, mechanisms
of the form (x, X) satisfy IC (with equality) by definition, whatever the pre-disclosure
flow x : Ry — [0, u®]. Rather, what Theorem 2 asserts is that if x is not decreasing, then
there is a better mechanism. This claim is nontrivial to prove.

Absent a breakthrough, efficiency deteriorates as we travel leftward along the
upward-sloping part of the old frontier F°. Once the new technology becomes avail-
able, it is operated efficiently (on the downward-sloping part of F!) if its arrival was
sufficiently early.3? If its arrival was late, then F! is operated inefficiently if u* < u!, and
efficiently if u* = u'.

The distributional hypotheses are mild: G(0) = 0 means that the new technology
is unavailable initially, while unbounded support rules out an effectively finite horizon.
The former’s role is as a sufficient condition for lim,_, o x, = u°, while the latter is required
by our proof strategy.

6.2 Discussion

Two salient features of Theorems 1 and 2 are the special role played by «* and the possi-
bility (in case of a late breakthrough) of perpetual surplus destruction. We now discuss
these two properties.

For simplicity, assume that F 0 and F! are differentiable, and consider a mechanism
that is eventually constant: x = & on (7, c0), where u € (0, 1% and G(T) < 1. Unless
it = u*, the mechanism (x, X') may be improved by a simple perturbation:

X on [0, 7],
x*=3u+e on(T,T+In(2)/r], wheree#D0.
u—e on[T+1In(2)/r, c0)

If £ > 0, then this is a “front-loading,” making the pre-disclosure flow x higher early
on (before T 4+ In(2)/r) and lower later, while keeping X¢ = X on [0, T].3! Since
%x‘%:o = %X ¢le=0 =0 on [0, T], perturbing ¢ away from zero changes the principal’s
payoff Il (x4, X¢) at rate

d T
£E0<r/0 e ”Fo(xf)dt)
T d
=Eg <r/ e —x¢? dt) x F¥(@) + Ko x FY (@)
0 d8 =0

=Kg x [FY(#) — F”(a1)] where K¢ :=Eg (e—”ngTs
&

d —rT &
Bl F (X)),

e=0

)
e=0

where the second equality holds since the big expectation equals Eg(¢,(0)) where
¢:(e) i=r [y e ""xfdt = X§ — e”""X?. Thus whatever the breakthrough distribution

30We show in Appendix F that X, > u! holds in all sufficiently early periods .

31Because X% = X7 + ae’T(fTT“n(z)/' re " ds — f}’iln(z)/, re " ds) = X for each «.
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G, the principal’s payoff can be improved by perturbing & except if F¥ (i) = FV (1), or
equivalently # = u*.

This accounts for the special role of u*. It also implies the optimality of perpetual
surplus destruction in case of a late breakthrough (after 7), since setting u = u* < ul
yields X = x < u' on (T, c0).

Economically, the above argument boils down to a demonstration that u* balances
the cost and benefit of “front-loading,” so that neither front-loading (¢ > 0) nor “back-
loading” (& < 0) yields an improvement. The benefit of front-loading is that the pre-
disclosure flow x is experienced only before the breakthrough, so making it higher early
and lower late is mechanically better.3> The cost of front-loading is that it lowers the
disclosure reward X, thereby increasing the severity of perpetual surplus destruction in
case of a late breakthrough.

6.3 Optimal transition

Theorem 2 describes the distribution-free qualitative features of optimal mechanisms,
but does not specify the precise manner in which the agent’s utility ought to decline from
u® toward u*. The optimal path, for a given breakthrough distribution, is characterized
by an Euler equation.

ProposiTioN 3. Let G be a distribution with G(0) = 0 and unbounded support. Assume
that u* > 0, and that F°, F1, G are well behaved. Then any mechanism (x, X) that is
optimal for G satisfies the initial condition Eg(FY (X)) = 0 and the Euler equation

FY(x,) > EG(Fl’(XT)|T > 1) foreacht € Ry, with equality if x; < ub 33

The initial condition Eg (F" (X)) = 0 demands that the new technology be used op-
timally on average, just like the first-order condition for an optimal deadline in the affine
case (Proposition 2, p. 1340). The special role of u* can be deduced from the Euler equa-
tion: as 1 — oo, X; =r [ e7"6"Dx ds converges to u := lim/ o x4, 0 F¥ (1) = FV (u),
which is to say that u = u*.

The proof is in Appendix F. Proposition 3 remains true if well behavedness is weak-
ened to differentiability of F°, F! on (0, u%); see the working paper (Curello and Sinander
(2025)).

SKETCH PROOF. A mechanism (x, X) with 0 < x < u° may be perturbed near an arbi-
trary period ¢ € Ry by adding ¢ to x on [z, t + §), where £ # 0 and 6 > 0 are small. This
changes X, =r [*° e7""=9x, ds for s < t by re """ 8¢ + 0(8¢), so changes the princi-
pal’s payoff Il; (x, X) by

re "' F¥ (x)8e[1 - G(1)] + f e SFY(Xy) (re "9 8¢)G(ds) + o(Se).
[0,7]

32The principal prefers a higher pre-disclosure flow since F? is increasing on [0, u°].

33Here, F/'(0)(F/ (u?)) for j € {0, 1} denotes the right-hand (left-hand) derivative. Recall that a mecha-
nism has multiple versions (footnote 21, p. 1332). In full, the proposition asserts that some (any) version
satisfies the Euler equation for (almost) every t € Ry.
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If (x, X) is optimal, then it cannot be improved by such perturbations:

FO’(xt)[l—G(t)]—i—/O FV(X,)G(ds) =0. &)
[0,7]

Letting t — oo yields Eg(FY(X;)) = 0. Substituting this equality into (£;) and dividing
by 1 — G(t) > Oyields F¥(x;) = Eg(FV(X,)|7 > t). O

To understand the Euler equation, differentiate it and rearrange to obtain
; ( G'(1) )F‘”(xt) —FY(X0) 3
t=— .

1-G(1) —F%(x,)
hazard rate curvature

-

Thus the agent’s pre-disclosure utility declines in proportion to the hazard rate, and
in inverse proportion to the local curvature of the old frontier FO. As the latter would
suggest, outside of the well-behaved case, x jumps over any affine segments (F”" =0
and “x = 00”), and pauses at kinks (“F% = —o00” and x = 0).

As for comparative statics, it can be shown (see the working paper (Curello and
Sinander (2025))) that as the breakthrough distribution G becomes later in the sense of
monotone likelihood ratio, the disclosure reward X increases in every period. (The pre-
disclosure flow x need not increase pointwise.) It follows in particular that the agent’s ex
ante payoff Xy improves.

Although our focus is on general properties, there are special cases in which the Eu-
ler equation may be solved in closed form.

ExamPLE 2. Let the breakthrough arrive at constant rate A > 0, so that G(¢) =1 — e M
forevery t e R,. Fix u! < u®in (0, 00), and assume that

) 1 )
Fl(u):=d (uf - Eu)u—}—b] foreach j € {0, 1} and every u € [0, u’],

where 0 < a® < a' > a®u®/u', and b' — b is large enough that F! > F°. Solving the Euler
equation yields the optimal mechanism x given by

X = (uo - u*)ef)‘kt +u* foreachteR,,
where
1,1 _ 0,0 1
- 1 A A
L L Y RS () e
a —a 2 14+7r/A a
2
In the special case r = A, this simplifies to k = \/al/a® — 1. O

34This expression is valid under the additional assumptions that G admits a continuous density and that
FO possesses a continuous and strictly negative second derivative.
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7. APPLICATION TO UNEMPLOYMENT INSURANCE

If unemployment benefits are generous but time limited, then a worker who receives a
job offer before her benefits run out may have an incentive to delay starting her new job,
for example, by arranging a deferred start date (or by simply waiting before accepting
the offer). Empirically, such strategic delay appears to be widespread.3®

In this section, we study the design of unemployment insurance (UI) schemes when
workers can exercise such strategic delay. We focus in particular on the merits of dead-
line benefit schemes, in which the short-term unemployed receive a generous benefit,
while those remaining unemployed past a deadline see their benefit reduced to a much
lower level. Such schemes are used in many countries, including Germany, France, and
Sweden. We also study the optimal choice of deadline.

Related literature The literature on optimal unemployment insurance has two main
strands. The first concerns the moral-hazard problem of incentivizing job-search effort
(Shavell and Weiss (1979), Hopenhayn and Nicolini (1997)). We contribute to the second
strand, which studies the adverse-selection problem arising from privately observed job
offers (Atkeson and Lucas (1995)).3¢ (It can be shown that our conclusions in this section
would not change if we added moral hazard to the model; see the working paper (Curello
and Sinander (2025)).) Within this second strand, our contribution is to characterize
optimal UI under the assumption that workers can delay starting a new job, rather than
having to start right away.

7.1 Model

A worker (agent) is unemployed. At a random time 7 ~ G, she receives a job offer. If she
accepts, then she chooses when to start. The worker’s ability to delay her start date is
the distinguishing feature of our otherwise standard model. The state observes in real
time whether the worker is employed, but cannot observe whether she has received a
job offer. All jobs are permanent and pay the same wage, denoted w > 0.

The worker’s utility is u = ¢(C) — «(L), where C > 0 is her consumption and L > 0
her labor supply. We assume that ¢, « : [0, c0) — [0, co) are respectively strictly concave
and strictly convex, that they are differentiable on (0, co) with strictly positive deriva-
tives that satisfy

lim ¢'(C)=0, lim ¢'(C)=00 and lim «'(L) =0,
C—o00 C—0 L—0

and that they are continuous with ¢(0) = k(0) =0 and lim¢_, o, ¢ (C) = co. We interpret
C = 0 as the lowest socially acceptable standard of living. If the worker is unemployed,
then L =0.

35See Boone and van Ours (2012), DellaVigna, Lindner, Reizer, and Schmieder (2017), Kyyré, Pesola, and
Verho (2019).

36See also Thomas and Worrall (1990), Atkeson and Lucas (1992), Hansen and hnrohoroglu (1992),
Shimer and Werning (2008).
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The state controls unemployment benefits and income taxes. Following the litera-
ture, we impose no constraints on policy:3’ income taxation after re-employment can be
nonlinear, for example, and can depend on the length of the preceding unemployment
spell. These policy instruments can implement any allocation (C, L) which the worker
prefers to autarky.>® We may therefore model the state as directly choosing (C, L), sub-
jecttou=¢(C) — k(L) > 0.

The state’s objective is social welfare v =u + A x (wL — C), where u is the worker’s
welfare, wL — C is net tax revenue, and A > 0 is the shadow value of public funds. The
utility possibility frontiers for unemployed and employed workers are thus

Fou) = rgag{u +A(=C):¢p(C)=u} and
Fl(u):= CrnLaxO{u +AwL —C): ¢(C) — k(L) =u},
respectively. These frontiers satisfy our model assumptions (Section 2).

LEMMA 1. In the application to unemployment insurance, the frontiers F°, F are strictly
concave and continuous, with unique peaks u°, u' that satisfy u' < u®. The gap F' — F°
is strictly decreasing, so that u* = 0.

The conflict of interest u! < u° arises because the social first best requires employed

workers to supply labor (L > 0), which they dislike, without compensating them with ex-
tra consumption (first-best consumption is C° := (¢')~!(A) regardless of employment
status). This is an instance of the fact, well known in public finance since Mirrlees
(1971, 1974),3% that welfare-maximization (absent incentive constraints) does not “re-
ward merit”: on the contrary, it dictates efficient production, meaning that more pro-
ductive workers work harder. The proof of Lemma 1 is elementary but tedious, so we
omit it.

We shall use the term “unemployment insurance (UI) scheme” for a mechanism.
By Proposition 0 (p. 1335), undominated schemes keep the worker only just willing
promptly to start a job, so have the form (x, X). Implicit in a UI scheme (x, X) are
the benefit B, paid to the time-¢ unemployed (given by x; = ¢(B;)) and the labor sup-
ply L; and tax bill §; = wL; — C; of a worker who started working at ¢ (which satisfy
X =¢(wL; — 0;) — k(Ly)).

7.2 Optimal unemployment insurance

Optimal Ul schemes are described by Theorem 2 (p. 1341): unemployment benefits B; =
¢~ 1(x,) decrease over time, from C® = ¢! (u°) toward 0 = ¢! (u*). Thus workers enjoy

37This has been the standard approach since Hopenhayn and Nicolini (1997).

38An unemployed worker’s consumption is simply her benefit. To get an employed worker to choose a
bundle (C, L) satisfying u := ¢(C) — k(L) > 0, use the income tax schedule 0(Y) = min{Y, mY + b}, with
m, b € R chosen so that the worker’s income L’ — wL’ — §(wL') is tangent at L to her indifference curve
L' ¢ (kL) +u).

39See the third section of Mirrlees (1974), as well as page 201 of Mirrlees (1971).
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socially optimal consumption at the beginning of an unemployment spell, but see their
benefits reduced over time, with the long-term unemployed provided only with society’s
lowest acceptable standard of living (“zero consumption”).

Employed workers are rewarded with a higher continuation utility X, the earlier they
start a job. This involves a mix of lower labor supply and more generous tax treatment
of earnings (yielding higher consumption).

A deadline UI scheme is one in which a generous benefit of C° is paid to the short-
term unemployed, while those remaining unemployed beyond a deadline receive a low
benefit just sufficient to finance the minimum standard of living (“zero consumption”).
Such schemes are widespread in practice, used in, for example, Germany, France, and
Sweden.

Our results speak to the desirability of such deadline schemes. Theorem 1 (p. 1338)
implies that a deadline scheme is approximately optimal if F° is close to affine, a con-
dition which is satisfied if the worker’s consumption utility ¢ has limited curvature or if
the social value A of tax revenue is moderate. Conversely, if neither assumption is close
to being satisfied, then our results predict substantial welfare gains from more gradual
tapering, as in Italy.

Given the prevalence of deadline schemes (whatever their merits), the choice
of deadline is an important policy problem. Our analysis highlights labor-market
prospects as a key consideration: a worker with worse chances (a later job-finding dis-
tribution G, in the sense of first-order stochastic dominance) should be set a later dead-
line.*? Two implications are that older workers ought to face later deadlines and that
extensions should be granted during recessions. These recommendations are broadly
followed in Germany and France, where workers older than about 50 face more lenient
deadlines, and all workers’ deadlines were prolonged during the 2020 recession.

APPENDIX A: PROOF OF PROPOSITION O (P. 1335)

We shall follow the sketch proof, but with significant elaborations aimed at overcoming
the two technical hurdles discussed at the end of Section 4.

For any mechanism (x%, X!),let 4 : R, — [—00, o] be given by A(t) := e/ (X} — X?)
for each t € Ry.*! Proposition 0 asserts precisely that undominated IC mechanisms have
h identically equal to zero.

OBSERVATION 1. A mechanism (x°, X1) is incentive compatible exactly if 4 is (a) de-
creasing and (b) nonnegative.

Proor. Part (a) (part (b)) of the definition of incentive compatibility on page 1332 re-
quires precisely that # be decreasing (nonnegative). O

CoNTINUITY LEMMA. Any undominated IC mechanism has / continuous.

40n particular, the optimal deadline described by Proposition 2 (p. 1340) is later when G is, as noted at
the end of Section 5.3.
411n case X} = X? = oo, we let h(t) := 0 by convention.
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ProoF. We prove the contrapositive. Fix an IC mechanism (x°, X1).

Suppose that / is discontinuous at some ¢ € (0, o). Since / is decreasing and X° is
continuous, limg, X} and limy, X! exist and satisfy limgy, X! > X} > lim,,, X}, with one
of the inequalities strict. We shall assume that

lim X! = X} > lim X!,
st st
omitting the similar arguments for the other two cases. If lim;); X! < u!, then we may
increase X! toward u! on a small interval (¢, ¢ + &) while keeping h decreasing.*? If in-
stead limy), X} > u!, then limsy, X! = X! > ul, so that we may decrease X! toward u'! on
asmallinterval (¢ — ¢, #] while keeping & decreasing.43 In either case, IC is preserved, and
the principal’s payoff 11 is (strictly) increased under any (full-support) distribution G.
Suppose instead that 4 is discontinuous at ¢ = 0; then X} > limy0 X! by IC and the
continuity of X°. The case lim,;o X! < u' may be dealt with as above. If lim;jo X} >
u!, then lowering X/ toward lim,;o X} preserves IC and (strictly) increases Il for any
distribution G (with G(0) > 0). O

PRrROOF OF PropPOsITION 0. Let (x°, X1) be an IC mechanism, so that / is nonnegative
and decreasing, and suppose that 4 is not identically zero. By the continuity lemma, we
may assume that / (and thus X 1y is continuous.

We consider three cases. (The first two concern slack “delay IC”: Case 1 [Case 2]
corresponds to the sketch proof’s case (ii) [cases (i) and (iii)]. Case 3 is where “delay IC”
binds, but “nondisclosure IC” is slack.) In each case, we shall construct an incentive
compatible mechanism (x°7, X!) such that

HG(xOT, X”) >(>) HG(xO, Xl) for every (full-support) G. (D)

Define A4 := {t € Ry : h is differentiable at  and 4'(¢) < 0}.
CaseI: {t e A:x? < u% is nonnull. Since h > 0 on A4,* there is an & > 0 for which the
set

Agzz{teA:x?+s<uo,h(t)zsandh’(t)+rs§0}

42Choose an ¢ > 0 small enough that X! + & < min{u!, X}} on (¢, 1 + &). Let X\T:= X! — (s — 1) + & for
se(t, t+¢)and X7 := X! off (, t + £). Then X! < X' <!, with the first inequality strict on (¢, ¢ + ).
We have i > >0, and 4 is clearly decreasing on [0, ] and on (¢, 00). At ¢, we have h' () — lim,), hT(s) =
e~(X} —limgy, X! — &) > 0.

#3Choose an ¢ ¢ (0, 1/r) small enough that X! — & > lims, X! and 4 > £ on (¢ — &, #]. Let X} := X! +
t—s—sforse(t—e t]and X7 := X! off (t — &, r]. Then u! < X'T < X1, with the second inequality strict
on (¢t — g, t]. Clearly Kt is nonnegative, and is decreasing on [0, ¢ — ¢] and on (¢, c0). It is decreasing on
[t — &, t] since hf(s) — h(s) = e ™S(t—s—¢) is (by our choice of ¢ < 1/r). And at ¢, () — limw,hf(s) =
e (X} — e —limy, X)) > 0.

44Since h > 0, h(t) = 0 implies liminf, |, [A(t') — h(¢)]/(¢ —t) >0, and thus ¢ ¢ A.
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is nonnull.#® Define x°T := x° + £1 4,, and consider the mechanism (x°7, X1). Clearly,
x9 < x% <40, and x° + x0 on the nonnull set A4,, so that (D) holds by the strict mono-
tonicity of F° on [0, u°]. /47 is decreasing since for any ¢ < ¢ in R,

t/
R () — kT () = h(t) — h(t) + rs/ e 14,(s)ds
t

v t
< h’1A€+ra/ e "14,(5)ds <0,
t t
where the first inequality holds since # is decreasing,*® and the second holds by defi-
nition of A,. As for nonnegativity, we have h'=h>0o0n (sup Ag, 00), while At >0o0n
[0, sup A,) since A is decreasing and AT > h — & > 0 on A, by definition of the latter.
Thus (x°7, X1) is incentive compatible.

Case 2: Therearet <t" inRy suchthat h(t') > h(t") and X' # u' on [, "]. Since X!
is continuous, we have either X! > u! on [¢, /] or X! < u! on [, ¢’]. We shall assume
the former, omitting the similar argument for the latter case. Because s > e"*h(t") + X0

is continuous and takes the value X}, > u' ats =",

t:=inf{te[f, "] : " h(t") + X0 > u' forall s [t, "]}
is well-defined and strictly smaller than ¢”. Define

it e"h(t")+ XY fortelr, 1),
L X} fors¢ [1*, 1),
and consider the mechanism (x°, X7). This mechanism is IC since A" = h + [h(¢") —
h]1js ¢y is clearly decreasing and nonnegative.

It remains to show that (x°, X!7) satisfies (D). Since X! and X7 differ only on [*, ")
and F! is strictly decreasing on [u!, 00), it suffices to prove that

ul §XtIT <(<) X} forevery (some) ¢ € [¢*, ¢").47

The first inequality holds by definition of #*. For the second, observe that
XX =e"[hT (1) — h(n)] =" [h(1") = h(t)] <0 forte[r, ")

since 4 is decreasing. We claim that the inequality is strict at ¢t = ¢*. If * = ¢/, then this is

true because A(¢') > h(¢”). And if not, then ¢* € (¢, ¢’), in which case X[lf =ul < X}, by

continuity of X? and X! > u!.

Case 3: Neither Case 1 nor Case 2. Since X! is continuous, every ¢ € Ry belongs
either to a maximal open interval on which X' # u! or else to a maximal closed interval

45 49 = Upen A1/x is nonnull, so continuity of measures (with A denoting the Lebesgue measure) yields
0 < A(Ap) =lim,_, o A(A1/,), whence A(Ay/,) > 0 for some n € N.

46Recall the Lebesgue decomposition 4 = h, + hs where A, is decreasing and absolutely continuous and
hy is decreasing with #, = 0 a.e. (e.g., Stein and Shakarchi (2005, p. 150)).

471t is enough for the inequality to be strict at a single time ¢ € [¢*, ¢”), since it then holds strictly on a
proper interval by the continuity of X! and X1 on [¢*, 1).



1350 Curello and Sinander Theoretical Economics 20 (2025)

on which X! = u!. h is increasing on any interval of the former kind since we are not in
Case 2. We shall show that # is also increasing on each interval of the latter kind; then
since 4 is continuous, it is increasing, and thus constant.

So, fix an interval I of the latter kind. Since # is decreasing, its derivative A'(¢) =
re‘”(x? — ul) exists a.e. on I. As we are not in Case 1, we have for a.e. ¢ € I that either
K (t) =0 or x? = 40, and in the latter case #'(t) = re”"(u° — u') > 0. Assuming without
loss of generality that x* < u0,*8 the expression for 4’ implies that 4 is ru®-Lipschitz on
I. Thus A is increasing on /, as desired.

Since (by hypothesis) /4 is not identically zero, it is constant at some k& > 0, so that
X! = X0 + ¢k for every t € Ry. Thus X' := min{X!, X° 4 u!} is strictly smaller than
X1 after some time T > 0, so that (x°, X'T) satisfies (D). And it is incentive compatible.*°

O

APPENDIX B: PROOF OF THEOREM 1 (P. 1338)
Fix a nondeadline mechanism (x, X) with x < u° a.e.;° we will show that it is dominated

by the deadline mechanism (xt, XT) whose deadline T satisfies
(1- el e Tyr = Xg =Xo Vv u*,
where “v” denotes the pointwise maximum.

CraiM. X7 < X vu*.

PrOOF. Fort>T,wehave X" = u* < X vu*. Fort < T, suppose first that X! = Xo; then
since x' = u® > x on [0, 7] € [0, T], we have

X t
X = X] - r/

¢
- - —rt —rt
; e ”x;rdstg—r/O e Pxsds=e" X, <e7"(X; v ut).

If instead X, g = u*, then the fact that x™ > u* yields

t
e "xlds <u* — r/ e urds=eur <e7(X; v ut). n

t
X = X] - r/
0

0

The concave function F! — F? is uniquely maximized at u*, so is strictly increasing on
[0, u*] and strictly decreasing on [u*, u°]. Since u* < X T<Xvu by the claim, it follows
that

[F! - F°(x") = [F' - F°](X v u*). ey
Since X v u* > X, and the two differ only when both are in [0, u*], we have

[F' - FOl(Xx vu*) > [F' - F°](X), )
~ 480therwise the IC mechanism (min{x®, u°}, X1) would satisfy (D).

“9We have h' (1) = e"u! € (0, T (T)) for t > T, and this expression is decreasing.
501C mechanisms not of this form are dominated, by Lemma 0 and Proposition 0.
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which chained together with the preceding inequality yields
[F! - F°)(x") = [F' - F°](X). 3)
The facts that X g = Xo vV u* > X and that FO is increasing on [0, u°] together imply
FO(X}) = FO(Xo). )

Thus for any distribution G, using the expression for the principal’s payoff derived in the
sketch proof (p. 1339), we have
(', XT) = FO(X}) + (e [F* ~ F)(x1))

T

+

> F(X{) +Eg(e7""[F' = F°](X,)) by (3)
> FO(Xo) +Eg (e ""[F' = F°](X;)) by @
=Ilg(x, X).

It remains show that (x, X) delivers a strict improvement for some distribution G.
We shall accomplish this by showing that the inequality (3) holds strictly on a nonnull
set of times, so that the first inequality in the above display is strict for any distribution
G with full support. Since X f<XxXvu by the claim and X, X T are continuous, there are
two cases: either (a) X < X v u* on a nonnull set of times, or (b) X = X v u*.

Case (@): X7 < X v u* on a nonnull set T. In this case, the inequality (1) holds strictly
on 7, and thus so does (3).

Case (b): XT = X v u*. Since the original mechanism (x, X) is not a deadline mech-
anism, there must be a nonnull set of times on which x ## xt and thus X #X f—Xxvu
on some nonnull set 7, so that X < X v u* on 7. Then (2) is strict on 7, and thus so is

(3).

APPENDIX C: PROOF OoF PRoPOSITION 1 (P. 1340)

Write (x”, XT) for the deadline mechanism with deadline 7, and m(T) for its pay-
off under a distribution G. By Theorem 1, any undominated mechanism is a deadline
mechanism. We showed in the text (Section 5.2, p. 1340) that those with deadline 7' < T
are dominated, so it remains only to show that those with deadline 7 > T are not. We
shall rely on the following claim.

CraiM. If the deadline mechanism (x7, X7) is dominated for some 7 > T, then it is
dominated by another deadline mechanism.

PROOF OF THE CLAIM. Fixa T > T such that (x”, XT) is dominated by some IC mecha-
nism (x%, X1); we must show that (x”, X7) is dominated by a deadline mechanism. We
may assume without loss that x° < u°, since if x° > 4° on a nonnull set of times, then
we may replace (x0, X!) with the IC mechanism (x°f, X17) obtained from the proof of
Lemma 0, which satisfies x°" < 1? and dominates (x°, X!), hence dominates (x, X7).
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The proof of Theorem 1 (Appendix B) shows that any IC mechanism (x°, X!) that
satisfies x* < u? a.e. and X? = X! is either a deadline mechanism or is dominated by a
deadline mechanism. It therefore suffices to show that X° = X1,

For each 1 € Ry, let G' denote the point mass at ¢. Note that

FY(X]) = mo(T) <o (2%, X1) = F1(X}),

where the inequality holds since (x7, X7) is dominated by (x°, X1). Then X} < x[
since X! > u! (as T > T) and F! is concave with unique peak u!. Moreover,

oo
FO(X]) = / re”""FO(x{)dt = lim mg:(T)
0 —

o0
< limsup Tl (x%, X1) < / re " FO(x%) dr = FO(X9),
t—00 0
where the first and last equalities hold since FU is affine, the second equality since F!
is bounded on [0, u°] and X7 < 49, the first inequality since (x?, X7) is dominated by
(x%, X1), and the second inequality since F! is bounded above. Then X[ < X{ since
X! < u® and F is strictly increasing on [0, u°]. Altogether, we have shown that X} <
X! < XxJ. Since (x%, X1) is IC, it follows by Observation 1 in Appendix A (p. 1347) that
X0=x1. O

By the claim, it suffices to prove that (x?, XT) for T € [T, co] is not dominated by
another deadline mechanism.

Part 1: Finite deadlines. Fix a deadline T € [T, co); we shall identify a distribution
G under which the deadline T yields a strictly higher payoff than any other deadline.
In particular, consider the point mass at 7 — T'. The mechanism (x?, X7) has x = u°
on[0,T—T]1<[0,7T]and XF . =(1—e"L)u + e7"Lu* = u! by (<) on page 1338 and
the definition of 7. Thus (x”, XT) provides flow payoff F°(u°) before the breakthrough
and F!(u') afterwards, which is the first best. Any other deadline 7’ has X1 . # u!, so
provides a strictly lower post-disclosure payoff and a no higher pre-disclosure payoff.

Part 2: The infinite deadline. Fix an arbitrary finite deadline T € [0, co0); we must
show that (x7, XT) does not dominate (x>, X°°). To that end, we shall identify a dis-
tribution G under which the former mechanism is strictly worse. In particular, let G’
denote the point mass at some ¢ > 7. Under this distribution, the payoff difference be-
tween the two mechanisms is

76 (T) = mgi(00) = e {[F! (u?) = F' (u”)] = [F° (") — F*(u°) ]}
+ e_rT[FO(u*) — FO(u%)].

The second term is strictly negative since F° is uniquely maximized at u° and u* < u! <
u®. By choosing ¢ > T large enough, we can make the first term as small as we wish, so

that the payoff difference is strictly negative.
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APPENDIX D: AN EULER EQUATION

In this appendix, we argue that optimal mechanisms are described by an Euler equation,
and that this equation admits a decreasing solution. These results will be used in the
next two appendices to prove Theorem 2 and Proposition 3 (pp. 1341 and 1343).

We assume throughout this appendix that F° and F! are differentiable on (0, u°)
with bounded derivatives F” and F'. Extend both continuously to [0, u°].

A The Euler equation and optimality

Let X be the set of all measurable maps R, — [0, u°].

DEFINITION 6. Given a distribution G, a mechanism (x, X) with x € X satisfies the Euler
equation (for G) if and only if for a.e. r e R4,

[1-GO]FY(x)+ | FY(X)G(ds) <(2)0 ifx, <u® (if x; > 0). (B)
[0,1]
For a given breakthrough distribution G, define 7 : ¥ — R by
me(x) =g, X)=Eg <r/ e FO(x5)ds+ e "TF! (XT)>.
0

This is the principal’s payoff under G from the mechanism (x, X).

EUuLER LEMMA. For a mechanism (x, X) with x € X and a distribution G, x belongs to
argmaxy 7 if and only if (x, X)) satisfies the Euler equation for G.

Proor. Note first that for all x, x’ € X, the Gateaux derivative of 7 at x in the direction
x' —xis

/_ —_—
D7g(x, x' —x) = lii% mo(x + o’ ~x]) = m6(x)
a a

=Eg (r f e "FY (x)[x; — x;]dt + e "TFV (X[ X - X7]>
0
=Eg <r/0 e[ 1(1,00) (T)F (x1) + Ljo, () FY (X )] [x], — x/] dt)

:r/ e”[[l — G()]FY(x) +/ Fl’(XS)G(ds)}[x/t — x/]dt,
0 [0,7]

where the third equality follows by the bounded convergence theorem since F* and F"
are bounded.

For the “if” part, suppose that (x, X) satisfies the Euler equation. Then D7 (x, x' —
x) <0 for any x’ € X. Since F?, F! are concave and the map x > X is linear, 7 is con-
cave. Thus for any @ € (0, 1) and x’ € X, we have

. 76 (x + a[x' — x]) — mg(x)
76 (x') — mo(x) < - :

so that letting « | 0 yields 7mg(x") — mg(x) < D7mg(x, X’ — x) <0. So x € argmax y 7¢.
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For the “only if” part, we prove the contrapositive: suppose that x € X does not sat-
isfy the Euler equation; we will show that x ¢ argmaxy 7. It suffices to exhibitan x’ € X
such that Dzg(x, x' — x) > 0. If there exists a nonnull A € R; on which (E) fails and
x < u% holds, then choose x” := x + (u® — x)1 4. If not, then there exists a nonnull 4 < R,
on which (E) fails and x > 0 holds; in this case, choose x’ := x1g_\ 4. O

For x > 0, the backward-looking integral equation (E) is equivalent to a forward-
looking integral equation plus an initial condition.

LEmMA 2. For any x € X with x > 0, (x, X) satisfies the Euler equation if and only if
EGg(FV(X,)) =0and, fora.e. t e R, with G(t) < 1,

FY(x;) > Eg(FV(X;)|7 > t) with equality if x, < u°. (5)

PROOF. Let (1) :=[1—G()IFY(x:)+ [, F"(X5)G(ds) foreach r € R;. Forany € Ry,
f (1,00) FV(X,)G(ds) is finite since F! is bounded, so we may add and subtract it to obtain

[1-GO][F”(x) —EG(FY(X:)|r > t)] +EG(FY(X;) iG(t) <1,

t) =
Vo EG(FV(X,)) ifG(t)=1.

Thus if Eg(FY(X;)) = 0 holds and (5) holds for a.e t € R with G(¢) < 1, then (x, X)
satisfies the Euler equation. For the converse, suppose that (x, X) satisfies the Euler
equation; we will show that lim,;_, o essinfs>; ¢/(s) = 0. This is sufficient since it implies
that there is a sequence (¢*),cn in R} along which " — oo and /(¢"*) — 0 as n — oo,
so that Eg(FY (X)) = 0 by bounded convergence, as F” and F! are bounded, which
implies that (5) holds for a.e. t € Ry with G(¢) < 1.

Since (x, X) satisfies the Euler equation and x > 0, we have ¢ > 0 a.e. and (#) =0
for a.e. t € Ry such that x; < u®. It follows immediately that if there is no 7’ € R, such
that x = u® a.e. on [T/, 00), then lim,_, « ess infs>; ¥ (s) = 0. Assume for the remainder
that there exists a T’ € Ry such that x = u% a.e. on [T, 00), and let T be the smallest such
T'. Tt suffices to show that (¢) < 0 holds for every ¢ > T such that x, = u°.

Note that T > 0, because otherwise X = u°, which since F'(u°) < 0 would imply
that (E) fails for sufficiently large ¢ € R;.. Choose an increasing sequence (¢*),cn in R4
converging to T along which (E) and x < u° both hold. Then for all ¢ > T with x, = u°,

P(t) < [1-G(D]F () +f FY(X,)G(ds) <limsup (") <0,
[0,T] n—oo

where the first inequality holds since FV(X;) = FV(u%) <0 < FY () for all s > T, and
the second inequality holds since F (x;) > F%(u°) for each n € N (as x" < u°, and F¥
is decreasing) and FV(X7) = FV(u°) < 0. O

B Constructing a solution of the Euler equation

Let X’ be the set all of decreasing maps Ry — [u*, u%], endowed with the topology of
pointwise convergence.
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EXISTENCE COROLLARY. For any distribution G with unbounded support, there is a
mechanism (x, X) with x € X’ which satisfies the Euler equation for G.

We prove the existence corollary in two steps. We first show that it holds for a partic-
ular class of technologies F 0 F1 and distributions G (Lemma 3 below), then extend the
claim via a series of limit arguments.

Say that FO, F! are simple if and only if they possess bounded derivatives on (0, u°),
FY is strictly decreasing with Lipschitz continuous inverse, F! is Lipschitz continuous,
and u* > 0.

LEMMA 3. Suppose that F° and F! are simple. Then for any distribution G such that the
supportsupp G is bounded and G has an atom at maxsupp G, there is a mechanism (x, X)
with x € X' which satisfies the Euler equation for G.

We first prove the existence corollary using Lemma 3, and then prove Lemma 3. Both
proofs use the following simple fact.

OBsERVATION 2. If a sequence (x"),ecN in X' converges pointwise to x € X’ as n — 00,
then F¥(x") - F¥(x) and FV(X") — FV(X) pointwise as n — oc.

PrROOF OF OBSERVATION 2. Since F°, F! are concave, their derivatives F”, FV are con-
tinuous. By the bounded convergence theorem, X" — X pointwise as n — oo. O

PROOF OF THE EXISTENCE COROLLARY. Consider two cases.

Case 1: FO, F! are simple. For any n € N, let G" := 1/0,,)G + 1[,0), and observe that
since G has unbounded support by hypothesis, Lemma 3 delivers an x" € X" such that
(x", X") satisfies the Euler equation for G". By the Helly selection theorem (e.g., Rudin
(1976, p. 167)), we may assume (passing to a subsequence if necessary) that (x"),cn
converges to some x € X’. Then, for any ¢ € R, such that r < n,

[1—G"(t)]F°’(x';)+/ FY(X")G"(ds)
[0,7]

=[1—G(t)]F°’(x?)+/ FY(X")G(ds)

[0,7]

— [1—G(t)]FO’(x,)+/ FY(X,)G(ds) asn— oo,
[0,7]

where convergence follows from Observation 2 and the bounded convergence theorem.
Since (x", X") satisfies the Euler equation for G” for each n € N and x" — x pointwise as
n — oo, it follows that (x, X) satisfies the Euler equation for G.

Case 2: FO, F! are arbitrary. Choose a sequence (F?, Fl),cn of technologies satisfy-
ing the following:

(a) foreachn eN, F?, F} are simple, u% > u*, and u9 = u?,

(b) FY > F” and F}' > FY foralln € N,
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(© (F,}’ )neN is uniformly bounded, and
(d) forallue (0, u®), F¥ — F” and FY — FY uniformly on [u, u°].

By (a) and Case 1 above, there exists for each n € N an x” € X’ such that (x", X") satisfies
the Euler equation for (F,? , F,}, G). By the Helly selection theorem (e.g., Rudin (1976, p.
167)), we may assume (passing to a subsequence if necessary) that (x"),cN converges
pointwise to some x € X”. For each t € Ry, define

P(t)=[1— G(t)]F,?’(xf’) +/ F,l’(XS”)G( ds) foreachneN,and

(0,7]

P :=[1- GO (x) + /[0 ) GLds),
,t

Since (x", X™) satisfies the Euler equation for (F,?, F,}, G) for every n € N, it suffices to
show that liminf,_, o " (¢) > ¢ (¢) for all ¢ € R, and that lim,— . " (¢) = (z) for all t €
R; such that x; > 0, since then (x, X) satisfies the Euler equation for (F 0 Fl, G).

For the former, fix a t+ € Ry. Since FY(x7) > FY(x") for all n € N by (b),
liminf,_, oo FY (x") > F¥(x,) as F¥ is continuous. Similarly, liminf,_, o, F} (X?) > FV(Xj)
for every s € [0, t]. Hence liminf,_, » " (¢) > (¢) by Fatou’s lemma, which is applicable
by (c).

For the latter, fix a t € Ry such that x; > 0. Choose a u € (0, x;), further choose an
N e N large enough that x} > u for all » > N, and note that

\FY(x?) = F¥(x)| < sup |FY(w) - F¥ ()| + |[F”(x}) — F”(x,)| foralln>N.

w elu,ul)

Letting n — oo yields FY'(x") — F%(x,), by (d) and Observation 2. Similarly, since X >
0 on [0, t] (because x is decreasing), FY'(X") — FY(Xy) as n — oo for each s € [0, ¢].
Then lim,_, - ¢"(#) = /(¢) by the bounded convergence theorem, which is applicable
by (c). O

PROOF OF LEMMA 3. Let T := maxsupp G € R,. We shall prove that for each « € [u*, u°],
there exists a unique x* € X’ satisfying (5) (p. 1354) for each t < T' and x¢ = « for each
t > T. Taking this claim for granted for the time being, define ¢ : [u*, u°] — R by

Y(a) :=Eg (Fl’(Xf_‘)) for each a € [u*, u°].

It suffices to show that there is an « € [u*, u°] such that ¢(«) = 0, since then (x%, X%)
satisfies the Euler equation for G by Lemma 2 and the fact that x* > u* > 0.

Note that the constant map ¢ — u® satisfies (5) for all t < T, since F”(u°) > 0 >
FV(u0). Thus x*’ is constant at u.°. Similarly, the constant map ¢ — u* satisfies (5) for all
t < T,since F¥(u*) = FV(u*) as u* > 0. Hence x*" is constant at u*. Therefore,

b = PV () = F () 2 02 FY(u) = ().

Note also that for any convergent sequence (ay)qen in [u*, u®] along which (x®),en
converges in X’ to some x € X/, we have x = x'im~ since x satisfies (5) forall t < T, by
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Observation 2 and the bounded convergence theorem. Since X” is sequentially compact,
it follows that the map [u*, u°] — X’ given by a - x® is continuous,®! so i is likewise
continuous, by Observation 2 and the bounded convergence theorem. Hence by the
intermediate value theorem, there is an « € [u*, 1°] such that P (x*) =0, as desired.

It remains to prove the existence and uniqueness of x“ for each « € [u*, u°]. To this
end, fix an « € [u*, u%], and let X/, be the set of all x € A’ such that x = a on [T, 00).
Extend the inverse

invF” : [FO’(uO), FO/(O)] — [0, uO]

of F” to R by letting inv F¥ be constant on (—oo, F¥(1°)] and on [F?(0), o). Given any
x € X/, let Hx : Ry — [0, 0o) be given by

invFY(EG(FY(X;)|r> 1)) ift<T,

(HX)[ = .
o lle T,

and note that Hx € X, since Hx is decreasing as inv F” and F' are, bounded above by
u? since inv F¥ is, and bounded below by u* since inv F? is decreasing and

EG(F"(X:)|r>t) < FY(u*) = F¥(u*), (6)

where the inequality holds since F' is decreasing, and the equality holds since u* > 0.
Observe that for any x € X, and ¢ < T, (5) implies x; = (Hx),.22 Conversely, for any
xeX,andt <T, x; = (Hx); implies (5) since

Eg(FV(X.)|r > 1) < F¥(u*) < FY(0)

by (6) and the fact that F” is decreasing.’® It thus suffices to show that the map H : X/, —
X/, has exactly one fixed point.

Since F9, F! are simple, we may choose an ¢ > 0 such that invF" and F! are ¢-
Lipschitz. Let

limG(z) ifT >0,
G(T-):={1T
0 ifT =0,

and k :=¢2/[1 — G(T—-)]. Define p : X, x X, — R, by

p(x, x*) — sup kG0 |xt _

te[0,T]

xj| forallx, x* € ).

It is easy to see that p is a metric on X,.

51f & > x® were not continuous, then we could choose a sequence (a,)qeN in [u*, u°] converging to
some « € [u*, u°] along which (x*),cn does not converge to x®. Then for some ¢ € Ry, x;" converges along
asubsequence to some u € [u*, u°]\ {x¢}. By the sequential compactness of X”, there are sub-subsequences
along which (x%),cn converges pointwise, but none has limit x*.

521f x, = u®, then F¥(u%) > Eg(FV(X,)|r > t) by (5), so (Hx), = inv F¥(F¥(u0)) = u® = x,, where the first
equality holds since inv F¥ is constant on (—oo, F¥ (19)].

53This is immediate if F(u°) < Eg(FY(X,)|r > t) < FY(0). If Eg(FV(X,)|r > t) < F¥(°), then x, =
(Hx), implies x, = u® as inv F¥ is constant on (—oo, F¥(19)], so (5) holds.
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CrLaiM. # is a contraction on the metric space (X, p).

Since p is equivalent to the supremum metric, the metric space (X}, p) is complete.
Thus by the claim and the Banach fixed-point theorem, # has exactly one fixed point.

ProoF oF THE cLAIM. The result is immediate if 7 = 0, so assume that 7 > 0. Define
invG(z) ;= min{r € Ry : G(¢) > z} for each z € [0, 1], and note that for all x, x* € X, and
z€[0,1],

k k
e Ximi ~ Kir| 4 sup =i
elinvG(z),
< ekG(invG(z)) sup |xt _ x” < p(x’ x*),
te[invG(z),T]

where the last inequality holds since G is increasing. Thus for all x, x* € X,

p(Hx, Hx*) < sup kekG(t)/ |X — X*|dG
te[0,T) (£,00)

1
= sup kekG(”/G ek | Xiny (o) — Xie (| 42
(1)

te[0,T)
1
< ( sup kekO® f e k= dz)p(x, x)=(1- e_k[l_G(O)])p(x, x*),
te[0,T) G(1)
where the first inequality holds since inv F” and F!' are ¢-Lipschitz and (#x)7 = (Hx*)7.
Since 0 < ¢ k[1=GO)] < 1/ this shows that % is a contraction. O
With the claim established, the proofis complete. O

APPENDIX E: PROOF OF THEOREM 2 (P. 1341)

We shall argue as follows. Fix an optimal mechanism (x, X). We first show that if x
is decreasing, then lim;_.g x; = u° and lim;_, o x; = u* (Lemma 4 below). We then show
that x is indeed decreasing, using the Euler equation (Appendix D, p. 1353), which (x, X)
must satisfy by the Euler lemma (Appendix D, p. 1353).

Recall from Appendix D that F” and FV denote the derivatives of F° and F! on
(0, u%), extended continuously to [0, u°]. Also, recall from Appendix B the definition
of X',

LEMMA 4. Suppose that F® and F' are differentiable on (0, u®) with bounded derivatives.
Let (x, X) with x € X' satisfy the Euler equation for some G with unbounded support and
G(0) =0. Then lim;_ o x; = u® and lim,_, o x; = u*.

PROOF. Since x is decreasing with u* < x < 0, the limits

u:=limx, and u:= lim x,
t—0 t—00

exist and satisfy u* < u < it < u0.
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0 0

To show that iz > 1%, assume toward a contradiction that & < u°. Then x < u? since x
is decreasing. Since G(0) = 0, letting  — 0 in (E) (p. 1353) then yields F? (iz) < 0, which
is impossible since F? is concave and strictly increasing on [0, u°].

To show that u < u*, note first that this is immediate if u = 0. Assume for the re-
mainder that u > 0, so that x > 0 since x is decreasing. Then Lemma 2 (p. 1354) yields
Eq(FV(X;))=0and

FY(x;) =Eg(FV(X:)|r > 1) < F"(w) )

for a.e. t € R, such that x; < u®, where the equality holds since G has unbounded sup-
port and the inequality holds since F! is concave and X > u. Note that x, < u° for all
sufficiently large ¢, since otherwise X = u? as x is decreasing, which would contradict
EG(FY(X,)) =0. Hence letting t — oo in (7) yields F¥(u) < F"(u), which implies that
u < u* by definition of the latter. O

Recall from Appendix D the definitions of X’ and 7, the Euler lemma, and the exis-
tence corollary.

PrROOF oF THEOREM 2. Let G be a distribution with unbounded support and G(0) =0,
and assume that F°, F!, G are well behaved; we must show that (x, X) has the properties
listed in Theorem 2.

By the existence corollary, there is a mechanism (x*, X7) with x™ € X’ which satis-
fies the Euler equation for G. Then lim,_¢ x}L = 1% and lim,_, o x,T = u* by Lemma 4. It
therefore suffices to show that x is a version of x*. We begin with a claim.

CLAIM. 3x+ 3x" belongs to X, and mg(3x + $x7) < S7G(x) + g (xT).

ProOE. x belongsto X by Lemma 0 (p. 1334), since (x, X) is optimal (and optimality en-
tails undominatedness by definition). Furthermore, x' belongs to X’ C X by hypothesis.
Since X is convey, it follows that %x + %x* belongs to X. For the remainder, x belongs to
argmax y 7 since (x, X) is optimal, and x' belongs to argmax y 7 by the Euler lemma.
Hence

L0+ Lro(eh) = maxmo = mo( L+ L
- X - X' )= X —X —X y
TG T TG N Ta=TE 5 T
where the inequality holds since 3x + 1x' belongs to X O

Suppose toward a contradiction that x is not a version of xt. Since F°, F1, G are well
behaved, there are two cases to consider.

Case 1. FO is strictly concave on [0, u®]. Choose a bounded nonnull 4 € R, on which
x # x', and note that G(sup A) < 1 since G has unbounded support. Since F? is strictly
concave on [0, u°] and F! is concave, it follows that 7 (3x + 3x7) > 1 mg(x) + 376 (x7),
which contradicts the claim.

Case 2. F! is strictly concave on [0, u°] and G has full support. Since x is not a version
of x, there exists a bounded proper interval I € R; on which X # X'. Since G has full
support, I is G-nonnull. Since F° (F') is concave (strictly concave) on [0, u%], it follows
that g (3x + 3x7) > 376 (x) + 75 (x"), a contradiction with the claim. O
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APPENDIX F: PROOF OF PROPOSITION 3 (P. 1343)

Recall the Euler equation defined in Appendix D (p. 1353).

ProrosIiTioN 3’. Assume that FO and F! are differentiable on (0, ) with bounded
derivatives. Any mechanism that is optimal for G satisfies the Euler equation for G.
Moreover, any undominated mechanism that satisfies the Euler equation for G is opti-
mal for G.

This result refines Proposition 3 in two ways: it provides that the Euler equation is
necessary under fewer assumptions and, furthermore, asserts sufficiency.

Proor oF ProposiTioN 3’. Fix a distribution G. By Lemma 0 and Proposition 0
(p. 1334), any undominated mechanism has the form (x, X) with x € X. If (x, X) is
undominated and satisfies the Euler equation for G, then it maximizes the principal’s
payoff under G by the Euler lemma (Appendix D, p. 1353), so is optimal for G. Con-
versely, if (x, X) is optimal for G, then by the Euler lemma, (x, X) satisfies the Euler
equation. O

ProoF oF PropPosITION 3. Let (x, X) be optimal for a distribution G with G(0) = 0 and
unbounded support. Then x is decreasing with x > u* > 0 by Theorem 2 (p. 1341), and
(x, X) satisfies the Euler equation by Proposition 3'. Since G has unbounded support,
Lemma 2 (Appendix D, p. 1354) yields that Eg(F" (X)) = 0 and that equation (5) holds
fora.e. t € R;. Since F” is continuous and x decreasing, the right-continuous version of
x satisfies (5) forall € R,.. O

Proposition 3’ implies the assertion made in footnote 30 on page 1342.

CoROLLARY 1. Let G be a distribution with unbounded support and G(0) = 0. Assume
that F°, F', G are well behaved. Then any mechanism (x, X) that is optimal for G has

Xo > ul.

ProoOF. If u* =u', then Xy > u* = u' by Theorem 2 (p. 1341). Assume for the remainder
that u* < u', and suppose toward a contradiction that Xy < u'. Then X, < u! forall¢t> 0
since X is decreasing with lim;_, ., X; = u* < u! by Theorem 2 (p. 1341), and thus X < u!
G-a.e. since G(0) = 0. Since F! is strictly increasing on [0, «!], it follows that FV(X;) > 0
for G-a.e. s € R;. Then since (x, X) satisfies the Euler equation by Proposition 3', it
holds for a.e. t € R, with G(¢) > 0 and x; < u° that

0< / FY(X)G(ds)=—[1-G)]F”(x)) <0,
[0,7]

which is absurd. ]
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APPENDIX G: PROOF OoF ProroOSITION 2 (P. 1340)

As per Appendix D, F? and F! are differentiable on (0, u°) with bounded derivatives,
and we extend these continuously to [0, u°]. (This means, in particular, that “F% (x0)”
denotes the left-hand derivative of F° at «°.) Fix a distribution G. By inspection, for any
deadline mechanism (x, X), x belongs to X and satisfies (5) (Appendix D, p. 1354) for
all t € Ry with G(7) < 1 and, furthermore, x > u* > 0. Hence by Lemma 2 (Appendix D,
p- 1354), a deadline mechanism (x, X) satisfies the Euler equation for G if and only if
EG(FV(X;))=0.

To prove the “only if” part of Proposition 2, fixa mechanism (x, X) that is optimal for
G. Itis a deadline mechanism by Theorem 1 (p. 1338), and satisfies the Euler equation
for G by Proposition 3’ (Appendix F, p. 1360). Hence E (FV (X)) = 0 by the above.

To prove the “if” part of Proposition 2, fix a deadline mechanism (x, X) such that
Eg(FV(X;)) =0. Since X is decreasing, it follows that X > ul, so (x, X)isundominated
by Proposition 1 (p. 1340). By the above, (x, X) satisfies the Euler equation for G. Hence
by Proposition 3’, (x, X) is optimal for G.
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