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Implementation theory is concerned with the existence of mechanisms in which,
at each state of the world, all equilibria result in outcomes that are within a given
social choice correspondence (SCC). However, if agents make mistakes, if their
preferences or the solution concept are misspecified, or if the designer is limited
in what can be used as punishments, then it may be desirable to insist that also
deviations result in “acceptable” outcomes. Safe implementation adds this extra
requirement to standard implementation. Our primitives, therefore, also include
an acceptability correspondence, which, like the SCC, maps states of the world
to sets of allocations. When the underlying solution concept is Nash equilibrium,
we identify necessary and sufficient conditions (namely, comonotonicity and safe
no-veto) that restrict the joint behavior of the SCC and of the acceptability corre-
spondence, and that generalize Maskin’s (1999) conditions. In relevant economic
applications, these conditions can be quite permissive, but in “rich” preference
domains, safe implementation is impossible, regardless of the solution concept.

Keywords. Comonotonicity, mechanism design, implementation, robustness,
safe implementation.
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1. Introduction

Since Maskin (1999)’s seminal work, implementation theory has played a central role in
developing our understanding of market mechanisms, institutions, and their founda-
tions.1 The theory starts out by specifying a set of agents, a set of states that pin down
agents’ preferences, and a social choice correspondence (SCC) that specifies, for each
state, the set of allocations that the designer wishes to induce. While commonly known
by the agents, the state of nature is unknown to the designer and, hence, to choose the
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allocation, the designer must rely on agents’ reports. The main objective of the theory
is to study the conditions under which it is possible to specify a mechanism in which,
at every state, the allocations selected by the SCC are sustained as the result of agents’
strategic interaction. The latter is suitably modelled via game theoretic solution con-
cepts, each giving rise to different notions of implementation.2

In its baseline form, the theory imposes no restriction on the mechanisms that may
achieve implementation or on the outcomes that may arise from agents’ deviations.3 In
practice, though, the designer does not always have this freedom, or perhaps not inde-
pendent of the kind, the circumstances, or the number of deviations. In some contexts,
especially harsh punishments may not be “acceptable” and, hence, certain allocations
may be used to incentivize the agents in some states of the world, but not in others;
also, depending on the states, the designer himself may be able to commit to certain
outcomes of the mechanism, but not to others. When these considerations are present,
the insights we receive from the classical literature are not applicable. We provide some
examples:

(i) In a juridical context, for instance, the viable punishments and rewards in re-
sponse to deviant behavior are often restricted by other constraints or desiderata, such
as constitutional rights, higher level legislation, culture, or social norms.

(ii) A competition authority wants to induce a certain market arrangement, which
depends on information that is only available to the firms, but is subject to political
constraints that limit its ability to use certain punishments and rewards at certain states
(see Example 1).

(iii) The designer may also care that the outcomes of deviations are acceptable, or
very close to the first-best “target” allocation, if he is concerned that the agents may
make mistakes, that they are boundedly rational, or that their preferences are misspeci-
fied.

To account for these considerations, we enrich the baseline framework by adding
an acceptability correspondence that specifies, for each state of the world, the set of
allocations that the designer wishes to ensure if up to k agents deviate from the profiles
that are consistent with the solution concept at that state. The resulting notion of safe
implementation thus requires that, besides achieving implementation, the outcomes
of up to k deviations are also acceptable. Besides the illustrative examples above, this
notion provides a flexible framework to study a variety of robustness notions related to a
mechanism’s safety and resilience properties; it may also accommodate important and
understudied problems within the implementation literature, such as the case of state-
dependent feasible outcomes (Postlewaite and Wettstein (1989)), limited commitment

2For instance, Nash (Maskin (1999)) and subgame perfect (Moore and Repullo (1988)) or, more recently,
rationalizable (Bergemann, Morris, and Tercieux (2011), Kunimoto and Serrano (2019), Kunimoto, Saran,
and Serrano (2024)), level-k (De Clippel, Saran, and Serrano (2019)), and behavioral (De Clippel (2014))
implementation. Maskin and Sjöström (2002) survey the early literature. Robustness with respect to mis-
specification of the solution concept is studied in Jain, Lombardi, and Penta (2024).

3Restrictions on the mechanisms have sometimes been imposed, but by and large the literature has
not paid attention to a mechanism’s outcomes at profiles that are not consistent with the solution concept.
Some exceptions are Bochet and Tumennasan (2023a,b), Shoukry (2019), and Eliaz (2002), which we discuss
in Section 6.
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on the designer’s part (as in Example 1 below), a variety of robustness concerns, and
behavioral considerations.

This modelling change, however, raises a number of challenges. These are due to
a tension between the elicitation of the state of the world, the outcomes that need to
be implemented, and the punishments that the designer can use to discipline agents’
behavior, which are state-dependent themselves. Intuitively, if achieving standard (i.e.,
non-safe) implementation can be thought of as providing agents with the incentives
to reveal the state through a suitable scheme of punishments and rewards, with safe
implementation the punishments that can be used are restricted by the very information
they are designed to extract. Hence, not only must agents be given the incentives to
induce socially desirable allocations, but also to reveal which prizes and punishments
can be used to achieve this task.

This interplay becomes apparent in the necessary and sufficient conditions that we
provide, respectively, in Sections 3 and 4, when the underlying solution concept is Nash
equilibrium. Our necessary condition, comonotonicity, entails a joint restriction on the
social choice and on acceptability correspondences. For single-valued SCC (or social
choice functions (SCF)), for instance, if Maskin monotonicity requires that an allocation
that is selected by the SCF at one state must also be selected at any other state in which
it has (weakly) climbed up in all agents’ rankings of the feasible alternatives, comono-
tonicity strengthens it in two ways: first, it states that for such an allocation to be selected
by the SCF at the second state, it suffices that it climbs (weakly) up in everyone’s ranking
only compared to the alternatives that are acceptable at the first state; second, it requires
the acceptability correspondence (not the SCF) to satisfy a form of monotonicity akin to
Maskin’s. As for sufficiency, our results show that comonotonicity is almost sufficient as
well, since it always ensures safe implementation in combination with a generalization
of Maskin’s no-veto condition that we call safe no-veto, which is often automatically sat-
isfied.4 Both comonotonicity and safe no-veto coincide with Maskin’s conditions when-
ever the acceptability correspondence is vacuous, in which case safe implementation
also coincides with (non-safe) Nash implementation, but they are stronger in general.
For the necessity part of our results, this is because the safety requirement that we im-
pose does make implementation harder to obtain, and the conditions we provide di-
rectly reflect the extent to which this is the case.5 Consider the following example.

Example 1 (Competition Policy With Non-Credible Punishments). Three firms, 1, 2,
and 3, are monopolists within their respective countries. While currently active only in
their local markets, firms 1 and 2 could operate in any country. Firm 3 instead is a highly
indebted company that can only operate in its own country. A competition authority
needs to choose between maintaining the status quo (allocation a) or changing the level

4For our general results on SCC, we distinguish between a weak and a strong version of comonotonicity.
The two notions coincide for SCF. For SCC, the first notion is necessary; the second is for sufficiency.

5This result highlights an important difference between our approach and Eliaz’s (2002), where the re-
strictions on the mechanism cannot be thought of as an extra desideratum on top of Nash implementation:
implementation in the sense of Eliaz (2002) may obtain even if Nash implementation is impossible (see
Section 6).
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Figure 1. Preference orderings of firms 1, 2, and 3 over the three alternatives, at the three states,
L, M , and H (e.g., firm 3’s ordering at state L is a ≻ c ≻ b). The acceptability correspondence,
shown by dashed lines, is such that A(L) = A(M ) = {a, b} and A(H ) = {a, b, c}. In this setting,
the SCF such that f (L) = a and f (M ) = f (H ) = b is Nash implementable, but not safely so, with
respect to acceptability correspondence A.

of competition in the three markets by implementing alternatives b or c. In alternative
b, all firms are active on all markets they can access, which they share equally with the
competing firms. Alternative c is the same as the status quo, except that the regulator
lets firm 3 go bankrupt and splits 3’s market equally between 1 and 2, but these firms
must each pay half of the debt of firm 3.

There are three possible states for the demand in market 3, which can be low (L),
medium (M), or high (H). The true state is known to the firms but not to the designer.
Firms’ preference orderings at each state are represented in Figure 1. The competition
authority would like to induce the competitive outcome, b, unless all firms prefer to
maintain the status quo. Then the SCF they wish to implement is such that f (L) = a

and f (M ) = f (H ) = b. Based on Maskin’s results, absent safety concerns, this SCF is
Nash implementable in this setting.

Now suppose that alternative c is not acceptable at the states where it is at the bot-
tom for a majority of the firms, even as the outcome of a punishment designed to im-
plement the SCF above. This may be because it would not be desirable for the designer
to let firm 3 go bankrupt or because it would not be politically credible to commit to
enforcing such an outcome, if needed, in response to someone’s deviation (for instance,
the three firms can be from three different European countries, and it may not be credi-
ble that the competition authority would get the political support to let country’s 3 firm
go bust, if needed, at a state when it is the worst outcome for the majority). That is,
suppose that outcome c does not belong to the acceptability correspondence at states L
and M . Then it turns out that the SCF above cannot be safely implemented in this case.
Thus, if the designer is subject to such political constraints, which make outcome c not
credible at some states, then the insights based on the classical results are misleading.

Specifically, our results imply that to fulfill the safety requirement, the designer in
this case must settle for the status quo also at state H, thereby implementing a SCF that
induces the competitive outcome less often. The intuition is that if b and not a has
to be selected at state H (as entailed by SCF f above) to avoid the existence of a Nash
equilibrium at H in which firms collude so as to induce the noncompetitive outcome,
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the designer must rely on outcome c as a deterrent, since at such a state all agents prefer
a over b. If this were allowed, then c could emerge as the outcome of a deviation from an
equilibrium at state L, where it is not acceptable. As a consequence, c cannot be used
to discipline behavior at state H either and, hence, only a SCF that chooses the same
outcome at both L and H can be implemented. ◊

After providing the general necessary and sufficient conditions for safe implemen-
tation, and discussing several extensions of the main results, in Section 5 we move on
to consider special cases of interest. Overall, these results show that there are important
economic environments in which safety concerns can be accommodated at minimal or
no cost. However, safe implementation also has its limits: as we further show, seemingly
plausible safety requirements can never be implemented, regardless of the underlying
solution concept (be it Nash equilibrium or not), when preferences are “rich” or when
the SCF is surjective on the space of feasible allocations. Thus, safety requirements are
demanding in general, and there are serious limits to their implementability. Nonethe-
less, economically important settings exist in which they can be guaranteed under stan-
dard and generally weak conditions.

We discuss the related literature in Section 6 and conclude with Section 7, where we
explain how our approach may contribute to the literature on behavioral implementa-
tion (see, e.g., Eliaz (2002), Renou and Schlag (2011), Tumennasan (2013), De Clippel
(2014), De Clippel, Saran, and Serrano (2019), Crawford (2021)), both by favoring its in-
tegration with classical notions and by providing a “detail-free” way to account for the
possibility of behavioral deviations without necessarily ascribing to a particular theory
thereof.

2. Model

We consider environments with complete information, with a finite set of agents, N =
{1, � � � , n}, and an outcome space X . Each agent i has a bounded utility ui : X × � →
ℝ, where � is the set of states of nature, with typical element θ ∈ �, which we as-
sume is commonly known by the agents but unknown to the designer. We let ℰ =
⟨N , �, X , (ui )i∈N ⟩ denote the environment from the viewpoint of the designer and, for
any θ ∈ �, we let ℰ(θ) := ⟨N , X , (ui(·, θ))i∈N ⟩ denote the environment in which agents
commonly know that preferences are (ui(·, θ))i∈N . Finally, for any i ∈ N , θ ∈ �, and
x ∈ X , we let Li(x, θ) := {y ∈ X : ui(y, θ) ≤ ui(x, θ)} denote i’s lower contour set of x in
state θ.

A social planner aims to choose an outcome (or a set of outcomes) as a function of
the state of nature. These objectives are represented by a social choice correspondence
(SCC), F : � → 2X \ {∅}. The special case when F(θ) is a singleton for every θ is referred
to as social choice function (SCF) and is denoted by f : �→ X .

A mechanism is a tuple ℳ = ⟨(Mi )i∈N , g⟩, where for each i ∈ N , Mi denotes the set of
messages of agent i and g : M →X is an outcome function that assigns one allocation to
each message profile, where we let M = ×i∈NMi and M−i = ×j≠iMj . Similarly, for sub-
sets of players D ⊂ N , we let MD and M−D denote, respectively, the set of message pro-
files of all agents who are inside and outside the set D. For each θ ∈ �, any mechanism
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ℳ = ⟨(Mi )i∈N , g⟩ induces a complete information game Gℳ(θ) := ⟨N , (Mi, Uθ
i )i∈N⟩,

where Mi is the set of strategies of player i, and payoff functions are such that Uθ
i (m) =

ui(g(m), θ) for all i ∈ N and m ∈M .
Our main focus is on the case where agents’ behavior is captured by Nash equilib-

rium. To this end, given a mechanism ℳ, we let 𝒞ℳ(θ) denote the set of Nash equilibria
of Gℳ(θ). General solution concepts are discussed in Section 6.

Definition 1 (Implementation). A SCC is (fully) implementable if there exists some
mechanism ℳ such that g(𝒞ℳ(θ)) = F(θ) for all θ ∈�.6

Next we introduce the new primitives that are needed for safe implementation. As
we discussed in the Introduction, the idea is that the designer not only wishes to attain
full implementation, but also to ensure that the implementing mechanism has the prop-
erty that, should a number of agents deviate (perhaps due to irrationality or a mistake,
or because the planner’s model of their preferences or of their behavior is misspecified),
the mechanism still induces outcomes that the designer regards as acceptable. Like the
target allocations in the SCC, what is regarded as acceptable may depend on the state.
This is modelled by an acceptability correspondence, A : � → 2X \ {∅}, where A(θ) de-
notes the set of outcomes that the social planner regards as acceptable at state θ. A nat-
ural requirement (that, in fact, would follow immediately as a necessary condition from
Definition 2 below and that, therefore, we maintain throughout) is that F(θ) ⊆ A(θ) for
all θ ∈�.

Example 2. Some Examples and Special Cases

(i) Minimal Safety Guarantees. In some settings, it may be natural to require that no
agent should receive their least preferred outcome, even as the result of devia-
tions. This can be modelled by letting the acceptability correspondence A : � →
2X \ {∅} be minimally safeguarding, i.e., such that for all θ ∈�,

A(θ) =X\{︁x ∈X : ∃j ∈ N such that x ∈ argmin
x∈X

uj(x, θ)\argmax
x∈X

uj(x, θ)
}︁

.

(ii) Planner’s Welfare Guarantees. The acceptability correspondence may explicitly
represent the concerns of a social planner under second best considerations.
For instance, if the planner has state-dependent preferences over allocations,
W : X × � → ℝ, then it is natural to think about the SCC as the set of optimal
outcomes at every state (i.e., F(θ) = arg maxx∈X W (x, θ) for all θ), and to consider
acceptable allocations that ensure that the planner attains at least a certain (pos-
sibly state-dependent) reservation value w̄(θ). In this case, the acceptability cor-
respondence is defined such that, for all θ ∈ �, A(θ) = {x ∈X : W (x, θ) ≥ w̄(θ)}.

6Since F is assumed to be non-empty-valued, the requirement g(𝒞ℳ(θ)) = F(θ) implicitly ensures ex-
istence of the solution in the implementing mechanism (i.e., 𝒞ℳ(θ) is non-empty for all θ). Hence, with
𝒞ℳ(θ) denoting the set of Nash equilibria, this definition coincides with the standard notion of Maskin
(1999).
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(iii) Perfect Safety. Another interesting special case is when A(θ) = F(θ) for all θ ∈ �.
This is in a sense the most demanding notion of safety in that it requires that the
deviations do not also induce outcomes inconsistent with the SCC.7

(iv) ϵ-Perfect Safety. When X is a metric space, one reasonable restriction is that the
acceptable allocations are within a given distance from the choices in the SCC
or SCF. For instance, one could define A(θ) = 𝒩ϵ(f (θ)) for all θ ∈ �, where 𝒩ϵ

is an epsilon neighborhood with respect to the metric on X . In this sense, the
acceptable allocations would be close to the optimal ones in the literal sense.

(v) Limited Commitment Interpretation. The A(·) correspondence may also repre-
sent other constraints that the planner faces in designing the mechanism. For
instance, in designing punishments and rewards for the agents, the designer may
be constrained in what he can commit to, i.e., mechanisms that prescribe es-
pecially harsh punishments may not be credible at certain states after a small
number of deviations. Then, for each θ, A(θ) can be taken as a primitive that en-
compasses the set of outcomes that the planner can credibly commit to using at
that state.

(vi) State-Dependent Feasible Allocations. Our framework can also be used to
accommodate the case in which the very set of feasible allocations is state-
dependent, and the outcomes of a mechanism are required to be feasible both
on and off equilibrium. This can be accommodated within our framework by
reinterpreting A(θ) as the set of allocations that are feasible at state θ.8

◊

Next let k ∈ {1, � � � , n} denote the safety level that the designer wishes to impose. That
is, the maximum number of deviations from the equilibria m∗ ∈ 𝒞ℳ(θ) that the designer
wants to ensure they induce outcomes in A(θ) for all θ. Formally, for each k, let Nk

denote the set of all subsets of N with k elements (that is, Nk := {C ∈ 2N : |C| = k}),
and further define a distance function dN (m, m′ ) := |{i ∈ N : mi ≠ m′

i}| and a neighbor-
hood Bk(m) := {m′ ∈ M : dN (m, m′ ) ≤ k}, which consists of the set of message profiles
m′ that differ from m for at most k messages. Also, we say that A∗ : � → 2X \ {∅} is a
sub-correspondence of A : � → 2X \ {∅} if it is such that A∗(θ) ⊆ A(θ) for all θ ∈ �. With
this, (A, k)-safe implementation is defined as follows.

Definition 2 ((A, k)-Safe Implementation). Fix a SCC F : �→ 2X \ {∅} and let A : � →
2X \ {∅} denote an acceptability correspondence such that F(θ) ⊆ A(θ) for all θ ∈�. We

7Earlier work of Shoukry (2019) introduced several related notions of implementation, one of which
(weak-outcome robust implementation) coincides with perfect safety in our framework. For that notion,
he provides one impossibility result (cf. footnote 18 below). This and other related papers are discussed in
Section 6.

8State-dependent feasibility constraints have been studied by Postlewaite and Wettstein (1989) in the
context of Walrasian implementation, but the problem has been thoroughly neglected by the subsequent
literature.
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Figure 2. Preference orderings of firms 1, 2, and 3 over the three alternatives at the three states
L, M , and H. For each state, the allocation chosen by SCF f ∗ in Example 3 is indicated by a
square. The acceptability correspondence A from Example 1 is shown by the dotted lines and
is not maximally safe for this SCF. Acceptability correspondence A∗ in Example 3 is maximally
safe, and is represented by the dashed lines in the figure.

say that F is (A, k)-safe implementable if there exists a mechanism ℳ = ⟨(Mi )i∈N , g⟩
such that (i) F is implemented by ℳ (Definition 1) and (ii) for all θ ∈ �, m∗ ∈ 𝒞ℳ(θ),
and for all m′ ∈ Bk(m∗ ), g(m′ ) ∈A(θ).

If, furthermore, the acceptability correspondence, A, admits no sub-
correspondence A∗ for which (A∗, k)-safe implementation is possible, then we say that
A is maximally safe.

First note that, for any k, if a SCC is (A, k)-safe implementable, then it is (Â, k)-
safe implementable for any “more permissive” correspondence, Â : � → 2X \ {∅}, such
that A(θ) ⊆ Â(θ) for all θ ∈ �. This observation motivates the notion of maximally safe
acceptability correspondence in Definition 2: if a SCC is (A, k)-safe implementable, but
not with respect to any sub-correspondence of A, then it means that A reflects the most
demanding acceptability correspondence that can be attained.

Example 3. Consider again the environment in Example 1: it will follow from our re-
sults that a SCF such that f ∗(L) = f ∗(H ) = a and f ∗(M ) = b is safe implementable with
respect to the A correspondence in Example 1 (see Figure 2). That acceptability corre-
spondence, however, is not maximally safe for such a SCF, because it can be shown that
the same SCF can also be safely implemented with respect to a sub-correspondence
of A that rules out outcome c also at state H. Formally, A∗ : � → 2X \ {∅} such that
A∗(θ) = {a, b} for all θ. ◊

With this in mind, it should also be clear that the case A(θ) = F(θ) for all θ ∈ � is the
most demanding one and will be referred to as perfectly safe implementation. We will
instead use the term almost perfectly safe implementation to refer to the case in which,
for all ϵ > 0, safe implementation can be obtained with respect to an ϵ-perfectly safe
acceptability correspondence (case (iv) in Example 2).

It is also immediate to check that if a SCC is (A, k)-safe implementable, then it is
(A, k′ )-safe implementable for all k′ ≤ k— that is, increasing the number of deviations
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the mechanism makes implementation harder—and that it always implies (baseline)
Nash implementation (as we discuss in Section 6, no analogous results hold for Eliaz’s
(2002) concept). Also note that when k> 1, safe implementation may accommodate the
designer’s concern for possibly multilateral deviations, even if the underlying solution
concept is fully non-cooperative.9

Finally, the baseline notion in Definition 1 obtains as a special case of Definition 2
when the extra safety requirement is moot (i.e., if A(θ) = X for all θ ∈ �). In that case,
Maskin (1999) showed that the following condition is necessary.

Definition 3 (Maskin Monotonicity). A SCC is (Maskin) monotonic if for any θ, θ′, if
x ∈ F(θ) is such that Li(x, θ) ⊆Li(x, θ′ ) for every i ∈ N , then x ∈ F(θ′ ).

Maskin (1999) also showed that, together with the following “no-veto condition.”
monotonicity is also sufficient for (baseline) Nash implementation, whenever n ≥ 3.

Definition 4 (Maskin No-Veto). A SCF satisfies the no-veto property if x ∈ F(θ) when-
ever x ∈ X and θ ∈ � are such that ∃i ∈N : ∀j ∈N\{i}, x ∈ argmaxy∈X uj(y, θ).

Obviously, Definition 4 has no bite if preferences rule out “almost unanimity.” as is
the case in economic environments, where agents have strictly opposing interests (e.g.,
Mirrlees (1976), Spence (1980), Arya, Glover, and Rajan (2000), and Kartik and Tercieux
(2012)).

In the next two sections we provide necessary and sufficient conditions for safe im-
plementation. Since Nash implementation is a special case of safe implementation, the
necessary conditions for safe implementation will have to be a generalization of Defini-
tion 3. Our sufficient conditions will also be a generalization of Maskin’s, and they co-
incide with the necessary conditions under an economic condition analogous to Kartik
and Tercieux (2012)’s, or if the designer is allowed to adopt stochastic mechanisms.

3. Necessity

We introduce next a generalization of (Maskin) monotonicity, which will be shown to be
necessary for (A, k)-safe implementation.

Definition 5 (Weak Comonotonicity). A SCC, F : � → 2X \ {∅}, and an acceptability
correspondence, A : � → 2X \ {∅}, are weakly comonotonic if the following statements
hold:

(i) A-Constrained Monotonicity of F . If θ, θ′ ∈� and x ∈ F(θ) are such that Li(x, θ)∩
A(θ) ⊆Li(x, θ′ ) ∩A(θ) for all i ∈N , then x ∈ F(θ′ ).

9In the spirit of renegotiation proofness, for instance, one may want to ensure that besides implementing
a SCF, the mechanism also deters joint deviations of subsets of agents. This may be achieved, for instance,
by letting the acceptability correspondence be such that, for each θ ∈�, no two agents prefer some x ∈ A(θ)
over f (θ).
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(ii) Weakly F-Constrained Monotonicity of A. If θ, θ′ ∈ � are such that, ∀x ∈ F(θ),
Li(x, θ) ∩A(θ) ⊆Li(x, θ′ ) ∩A(θ) for all i ∈N , then A(θ) ⊆A(θ′ ).

To understand this condition, first note that weak comonotonicity implies Maskin
monotonicity: If θ, θ′ ∈� are such that Li(x, θ) ⊆Li(x, θ′ ) and x ∈ F(θ), then the condi-
tion in part (i) of Definition 5 is satisfied for any A and, hence, x ∈ F(θ′ ).

Second, if A(θ) = X for every θ, i.e., if the safety requirement is vacuous, then part
(ii) in Definition 5 holds vacuously, and part (i) coincides with (Maskin) monotonicity.
Otherwise, part (i) of Definition 5 restricts the SCC more than (Maskin) monotonic-
ity does. For a SCF, for instance, this condition requires that f (θ) = f (θ′ ) whenever
Li(f (θ), θ) ∩ A(θ) ⊆ Li(f (θ), θ′ ) ∩ A(θ), which may be the case even if Li(f (θ), θ) ⊈
Li(f (θ), θ′ ). In the latter case, (Maskin) monotonicity alone would leave the SCF free to
set f (θ′ ) ≠ f (θ), but weak comonotonicity would not (see Example 1 in the Introduc-
tion). Thus, when the acceptability correspondence is nontrivial, weak comonotonicity
forces the SCF to be relatively more constant than Maskin’s monotonicity would, and
more so as the acceptability correspondence gets less permissive. More broadly, note
that part (i) of Definition 5 gets less restrictive as the acceptability correspondence gets
more inclusive: if A satisfies part (i) of Definition 5 and Â is such that A(θ) ⊆ Â(θ) for
all θ ∈�, then Â also satisfies it.

Part (ii) of Definition 5 states a monotonicity property of the acceptability corre-
spondence, akin to Maskin’s monotonicity for SCC, which imposes a lower bound on its
inclusivity. Looking at the contrapositive statement, if some allocation is acceptable at
state θ but not at state θ′, then there must exist a target allocation x ∈ F(θ) that, going
from state θ to θ′, has moved down in the ranking of the allocations within A(θ) for at
least one of the agents. Note that, in this case, the bite of the condition depends on the
SCC: the more inclusive is the SCC, the less stringent is part (ii) of Definition 5. This
suggests, for instance, that compared with the case of SCF, this condition leaves more
freedom for the set of acceptable allocations to vary with the state when the designer
aims to implement a (non-single-valued) SCC.

We can now turn to our main results on necessity. As discussed in Section 2, safe im-
plementation becomes more restrictive as the A correspondence gets finer. Hence, as
far as necessary conditions are concerned, it is natural to start with the case when the ac-
ceptability correspondence is maximally safe, which puts the most stringent constraints
on safe implementation (if a SCC is (maximally) safely implementable with respect to
A, then it would also be safely implementable with respect to any coarser acceptability
correspondence, A∗, such that A(θ) ⊆A∗(θ) for all θ). We show next that weak comono-
tonicity is necessary for maximally safe implementation.

Theorem 1 (Necessity). A SCC, F : � → 2X \ {∅}, is maximally (A, k)-safe imple-
mentable only if (F , A) are weakly comonotonic.

To gain some intuition for this result, note that if the SCC is (A, k)-safe imple-
mentable and A is maximally safe, then for each θ ∈ �, A(θ) comprises all the out-
comes that the designer can use to deter agents’ deviations, and no more than those.
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Thus, from the viewpoint of providing agents with the right incentives within the mech-
anism, at any given θ, it is only agents’ preferences over the set A(θ) that matter. So, if
going from one state θ to another θ′, one of the target allocations x climbs (weakly) up in
everyone’s ranking within the restricted set A(θ) of acceptable allocations (not over all
of X), and if—by the Nash implementation requirement—x must be a Nash equilibrium
outcome at state θ for some mechanism, then it would also have to be a Nash equi-
librium outcome at state θ′. However, then x should be within the SCC at both states;
otherwise Nash implementation would not obtain. This explains the necessity of part (i)
of Definition 5.

To understand part (ii), if going from state θ to θ′ we have that all the allocations in
F(θ) (weakly) climb up in everyone’s ranking within the A(θ) set, then all such alloca-
tions would be Nash equilibrium outcomes at both states θ and θ′, and would each be
induced by some Nash equilibrium profile m∗ in some mechanism. However, then, in
such a mechanism, the set of outcomes that are within k deviations from m∗ at state θ

would also be within k deviations from a Nash equilibrium at state θ′ and, thus, they
must also be acceptable at that state. It follows that A(θ′ ) must contain at least all of the
outcomes that are within k deviations from Nash equilibria at θ and, hence, in A(θ).

As we discussed, moving to the case of non-maximally-safe acceptability correspon-
dences, safe implementation gets less demanding. Nonetheless, it is easy to see from
the argument above that if A is not maximally safe, then the first part of Definition 5 is
still necessary. The second part, however, need not hold.

Example 4. Consider again the environment in Example 3 (see Figure 2). As discussed,
the SCF f ∗ from that example is safely implementable with respect to both correspon-
dences A and A∗, but only the latter is maximally safe with respect to f ∗ (A cannot
be, since A∗ is a sub-correspondence of A). It is easy to check that, as follows from
Theorem 1, A∗ satisfies both conditions in Definition 5 and, hence, that it is (weakly)
comonotonic with respect f ∗. In contrast, the A correspondence only satisfies part (i)
of Definition 5 (as implied by Proposition 1), but not part (ii): moving from state θ = H

to θ′ = L, allocation a = f ∗(H ) moves (weakly) up in everyone’s ranking within the set
A(H ) = {a, b, c}, yet A(H ) ⊈A(L). This is obviously not the case for the A∗ correspon-
dence, since A∗(H ) = A∗(L) = {a, b}. ◊

Proposition 1 (Non-Maximally-Safe Implementation (Necessity)). The SCC F : � →
2X \ {∅} is (non-maximally) (A, k)-safe implementable only if (F , A) satisfy part (i) of
Definition 5.

The results above formalize a trade-off between the restrictiveness of the acceptabil-
ity correspondence and the way in which the SCC correspondence varies with θ. This
is easier to see considering the case of a SCF. Suppose that the designer starts with a
(Maskin) monotonic SCF. Then, among the A∗ : � → 2X \ {∅} correspondences that sat-
isfy parts (i) and (ii) of Definition 5, those (if they exist) that are minimal with respect
to set inclusion at every state identify the most demanding acceptability requirements
that the designer can impose if he wishes to achieve safe implementation. If, however,
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the safety desiderata are more stringent than this (i.e., if no such ⊆-minimal A∗ is a
sub-correspondence of the acceptability correspondence that the designer wishes to
impose), then safe implementation necessarily forces the SCF to be more constant than
what is implied by (Maskin) monotonicity (Example 1 in the Introduction provides an
instance of this).

Theorem 1 also has the following direct implication.

Corollary 1 (Impossibility of Perfectly Safe Implementation of SCF). For any k ≥ 1, if
f : � → X and A : � → 2X \ {∅} is such that A(θ) = {f (θ)} for some θ, then f is (A, k)-
safe implementable only if f is constant. It follows that only constant SCFs can be perfectly
safely implemented.10

This result follows directly from part (i) of Definition 5: if A(θ) = {f (θ)}, then
Li(f (θ), θ)∩A(θ) = {f (θ)} ⊆Li(f (θ), θ′ ) for any θ′, and the necessity of comonotonicity
implies that f is (A, k)-safe implementable only if x= f (θ′ ) for all θ′.

Despite Corollary 1, however, in Section 5 we show that in an important class of
environments it is possible to get arbitrarily close to perfect safety. Specifically, under
a standard single-crossing condition, safe implementation is possible for any (Maskin)
monotonic SCF in the almost perfectly safe sense (i.e., for all ϵ > 0, (A, k)-safe imple-
mentation is possible for an A-correspondence that satisfies the condition in point (iv)
of Example 2). We also stress that the negative result above holds for SCF, but as the
next example shows, perfectly safe implementation may be achieved if the SCC is non-
single-valued.

Example 5. Let the environment be such that � = {L, R}, X = {a, b, c}, and N =
{1, 2, 3, 4}. Preferences are as follows: In state L, players 1 and 2 prefer a to b to c,
while players 3 and 4 prefer b to c to a; in state R, players 1 and 2 prefer c to b to
a, while players 3 and 4 prefer a to c to b. The designer wishes to implement a SCC
that selects the alternatives that are at the top of at least half of the agents (hence,
F(L) = {a, b} and F(R) = {a, c}), but ensuring perfect safety, in the sense that only the
outcomes consistent with the SCC are deemed acceptable (that is, A(L) = {a, b} = F(L)
and A(R) = {a, c} = F(R)). Figure 3 summarizes, as usual, agents’ preferences, the SCC,
and the acceptability correspondence. As it will follow from Theorem 3 in the next sec-
tion, such a SCC can be perfectly safely implemented. To see this, first notice that the
intersection of player 3’s lower contour set of b at state L with the acceptable allocations
at that state is not a subset of his lower contour set at state R. Hence, comonotonicity
does not require that b ∈ F(R). Similarly, comonotonicity does not require that c ∈ F(L),
even if c ∈ F(R), because the relevant contour set of player 1 at state L is not a subset
of that at state R. Indeed, it will be easy to verify that this environment satisfies the suf-
ficient conditions that we provide within the next section; hence, the result will follow
directly from Theorem 3. ◊

10Shoukry (2019) obtains a slightly weaker version of Corollary 1, in that A(θ) = {f (θ)} is required at all
states as opposed to some. The connection with Shoukry (2019) is further discussed in Section 6.
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Figure 3. Preference orderings of players 1, 2, 3, and 4 over the three alternatives, at the two
states L and R. For each state, the allocation chosen by SCC F in Example 5 is indicated by a
square. The acceptability correspondence A is shown by the dashed lines and is perfectly safe,
as it coincides with the SCC at every state.

Theorem 1 follows directly from the next result, which describes a structural prop-
erty of any mechanism that safely implements the SCC. To this end, for any mechanism
ℳ, for any k ≥ 1, and for any θ ∈ �, let Rk(θ) = ⋃︁

m∗∈𝒞ℳ(θ) Bk(m∗ ), where 𝒞ℳ(θ) de-
notes the set of Nash equilibria of Gℳ(θ). That is, Rk(θ) consists of all message profiles
that, given ℳ, are within k deviations from some Nash equilibrium at state θ. Finally,
given an acceptability correspondence A∗ : � → 2X \ {∅} and k≥ 1, we say that a mech-
anism ℳ = ⟨(Mi )i∈N , g⟩ is k-surjective on A∗ if, for every θ ∈�, g(Rk(θ)) =A∗(θ).

Theorem 2 (On the Structure of Safe Mechanisms). Any mechanism that (A, k)-safe
implements F must be k-surjective on some weakly comonotonic sub-correspondence of
A. If, moreover, A is maximally safe, then the implementing mechanism is k-surjective
on A itself.

Theorem 2 ties together the restrictions on the acceptability correspondence im-
posed by weak comonotonicity, with the safety level parameter k. First, this result
says that if a mechanism (A, k)-safely Nash implements F , then the Ak correspon-
dence defined as Ak(θ) := g(Rk(θ)) for all θ ∈ � is weakly comonotonic and a sub-
correspondence of A. This directly implies that Ak and F are weakly comonotonic, and,
hence, Theorem 1 follows from Theorem 2 when Ak =A, as well as the following further
necessary condition for (non-maximal) safe implementation.

Corollary 2. The relationship F : � → 2X \ {∅} is (non-maximally) (A, k)-safe imple-
mentable only if A admits a sub-correspondence, A∗, such that (A∗, F ) satisfy part (ii) of
Definition 5.11

Finally, notice that holding a mechanism ℳ fixed, increasing k (weakly) enlarges
the set of outcomes that are within k deviations from the Nash equilibria at state θ,

11Proposition 1 and Corollary 2 jointly imply that a SCC is (non-maximally) (A, k)-safe implementable
only if A admits a weakly comonotonic sub-correspondence. Note, however, that a non-maximally-safe
acceptability correspondence may still satisfy part (ii) of Definition 5, i.e., with A∗ in Corollary 2 such that
A∗(θ) = A(θ) for all θ.
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Ak. As long as the corresponding Ak defined as above is weakly comonotonic and
such that Ak(θ) ⊆ A(θ) for all θ ∈ �, then the necessary condition for (A, k)-safe im-
plementation is satisfied. However, if, as k increases, the Ak correspondence is not a
sub-correspondence of A or not weakly comonotonic, then ℳ cannot (A, k)-safe Nash
implement the SCC. In that case, safe implementation by ℳ requires either relaxing the
requirement by making A more inclusive (if Ak is not a sub-correspondence of A or if
it violates part (ii) of Definition 5) or reducing the dependence of the SCC on θ (if Ak

violates part (i) of Definition 5). In this sense, the structural properties of any imple-
menting “safe” mechanism in the statement of Theorem 2 reflect a trade-off between
the safety level parameter k ≥ 1, the strictness of the acceptability correspondence, and
the responsiveness of the SCC to the state of the world.

4. Sufficiency

Our sufficiency results rely on the following stronger version of comonotonicity.

Definition 6 (Strong Comonotonicity). A SCC, F : � → 2X \ {∅}, and an acceptability
correspondence, A : � → 2X \ {∅}, are strongly comonotonic if the following statements
hold:

(i) A-Constrained Monotonicity of F . If θ, θ′ ∈ � and x ∈ F(θ) are such that Li(x, θ) ∩
A(θ) ⊆ Li(x, θ′ ) ∩A(θ) for all i ∈N , then x ∈ F(θ′ ).

(ii) Strongly F-Constrained Monotonicity of A. If θ, θ′ ∈ � are such that ∃x ∈ F(θ) such
that Li(x, θ) ∩A(θ) ⊆Li(x, θ′ ) ∩A(θ) for all i ∈N , then A(θ) ⊆ A(θ′ ).

First, notice that the difference between strong and weak comonotonicity (Defi-
nition 5) is only in the quantifier of the x ∈ X in part (ii) of the definition: in the
weak version, the property A(θ) ⊆ A(θ′ ) is only required for states θ, θ′ ∈ � in which
Li(x, θ) ∩ A(θ) ⊆ Li(x, θ′ ) ∩ A(θ) holds for all i ∈ N and for all x ∈ F(θ). In contrast, in
Definition 6, this property is required to hold for all θ, θ′ ∈ � in which Li(x, θ) ∩A(θ) ⊆
Li(x, θ′ ) ∩ A(θ) holds for all i ∈ N and for some x ∈ F(θ). The latter definition, there-
fore, is clearly more demanding in general, except when the SCC is single-valued (that
is, when the designer wishes to implement a SCF, f : � → X), in which case the two
notions of comonotonicity coincide.

Strong monotonicity ensures that when any allocation x that is selected at θ climbs
up in the ranks for all agents when moving to θ′, all acceptable allocations that are used
within the mechanism to prevent deviation at θ can also be used at θ′. Our main suffi-
ciency result will show that, under the following generalization of Maskin’s no-veto con-
dition, strong comonotonicity is sufficient for (A, k)-safe implementation (in the case
of SCFs, this will imply that comonotonicity (either Definition 5 or 6) is both necessary
and sufficient).

Definition 7 (Safe No-Veto). The pair (F , A) satisfies safe no-veto if x ∈ F(θ) and
A(θ) = X whenever x ∈ X and θ ∈ � are such that ∃i, θ′ ∈ N × � : ∀j ∈ N\{i}, x ∈
argmaxy∈A(θ′ ) uj(y, θ).
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This property restricts both the SCC and the acceptability correspondence at states
θ in which all agents but one agree that a particular allocation x ∈X is “best” among the
set of allocations A(θ′ ) that are acceptable at some other state θ′. At any such state, the
condition requires that the SCC include such x and that all allocations be acceptable.

First note that if the safety requirement is vacuous (i.e., if A(θ) = X for all θ ∈ �),
then Definition 7 coincides with Maskin’s no-veto condition. In all other cases, the con-
dition is stronger than Maskin’s no-veto for two reasons: first, because it suffices that x
is at the top for almost everyone only within the set A(θ′ ) ⊂ X for some θ′ ∈ �, which
is implied by being at the top among all allocations in X , as requested by the condition
for Maskin’s no-veto; second, because it entails a restriction also on the acceptability
correspondence, which is required to be vacuous at least at such states θ.

Theorem 3 (Sufficiency). If n ≥ 3, and (F , A) are strongly comonotonic and satisfy safe
no-veto, then F is (A, k)-safe implementable for all k ∈ℕ : 1 ≤ k < n

2 .

Obviously, Definition 7 has no bite if preferences rule out “almost unanimity” on
any subset of allocations, as is the case in many economic settings, such as the single-
crossing environments that we will consider in Section 5 or whenever the following
(weaker) “economic” restrictions hold (cf. Kartik and Tercieux (2012)).

Definition 8 (Economic Restrictions). The acceptability restrictions are economic if,
for all θ, θ′ ∈� and x ∈X , |{i ∈ N : x ∈ argmaxy∈A(θ′ ) ui(y, θ)}| < n− 1.12

Corollary 3. If the acceptability restrictions are economic, strong comonotonicity of
(F , A) is sufficient for F to be (A, k)-safe implementable for all k ∈ℕ : 1 ≤ k< n

2 .

Since Definitions 5 and 6 coincide for SCFs, Theorems 1 and 3 also imply the follow-
ing corollary.

Corollary 4. Let f : � →X be such that (f , A) satisfies safe no-veto (as it is the case, for
instance, under the economic condition in Definition 8). Then (i) f is maximally (A, k)-
safe Nash implementable only if (f , A) are comonotonic; (ii) (f , A) are comonotonic only
if f is (A, k)-safe Nash implementable for all k ∈ℕ : 1 ≤ k< n

2 .

In the next subsections we further discuss the safe no-veto condition and various
ways in which it can be weakened or dispensed with. The proofs of these results follow
from minor adaptations of the results above; hence, we omit them. We point interested
readers to the working paper version for the full proofs (Gavan and Penta (2024)).13

12Kartik and Tercieux (2012)’s economic condition obtains if A(θ) = X for all θ.
13We also note that, in the same sense as Maskin’s no-veto is almost necessary for Nash implementation,

so is Definition 7 for safe implementation. The formal statement and proof can also be found in the working
paper version.
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4.1 Weakenings and dispensability of safe no-veto

Safe no-veto holds in most standard environments, as it is unusual to have preferences
where almost all agents agree. An example of this is environments that satisfy the stan-
dard single-crossing condition that we discuss in Section 5 or those that satisfy the eco-
nomic condition in Definition 8, where safe no-veto can be entirely dispensed with.
However, even outside of these cases, under a weak “no-unanimity” condition, the re-
quirement that A(θ) =X at those special θ can be weakened to the much more permis-
sive condition that A(θ) ⊆ A(θ′ ).

Definition 9 (No Unanimity in A). An environment satisfies no unanimity in A if for
all θ, θ′ ∈� and x ∈X , |{i ∈N : x ∈ argmaxy∈A(θ′ ) ui(y, θ)}| < n.

Definition 10 (Weak Safe No-Veto). The pair (F , A) is said to satisfy weak safe no-veto
if x ∈ F(θ) and A(θ) ⊆ A(θ′ ) whenever x ∈X and θ ∈� are such that ∃i ∈N , θ′ ∈� : ∀j ∈
N\{i}, x ∈ argmaxy∈A(θ′ ) uj(y, θ).

Result 1 (Safe Implementation Under Weak Safe No-Veto). For any n ≥ 3, if (F , A)
are strongly comonotonic, satisfy no unanimity in A and weak safe no-veto, then F is
(A, k)-safe implementable for all k ∈ ℕ : 1 ≤ k< n

2 − 1.

Under mild conditions on the environment, safe no-veto can also be dropped from
the sufficient conditions via the use of a stochastic mechanism. Hence, if stochastic
mechanisms are allowed, strong comonotonicity is sufficient on its own. Formally, first
assume that each ui(·, θ) represents von Neumann–Morgenstern preferences, and say
that a SCC is (A, k)-safe implementable by a stochastic mechanism if there exists ℳ =
(⟨(Mi )i∈I , g⟩, where g : M → �(X ), such that (i) ℳ Nash implements the SCC and (ii) for
all θ, for all Nash equilibria m∗ of Gℳ(θ), and for all m ∈ Bk(m∗ ), supp(g(m)) ⊆ A(θ).
Then strong comonotonicity is sufficient under the following mild domain restriction.

Definition 11. Preferences satisfy no total indifference across F and A if, for all θ, θ′ ∈
�, x ∈ F(θ′ ), and y ∈A(θ′ )\{x}, ∃i ∈N such that ui(x, θ) ≠ ui(y, θ).

Result 2 (Safe Implementation via Stochastic Mechanisms). Under the condition in
Definition 11, for all n ≥ 3 and finite X , if (F , A) are strongly comonotonic, then F is
(A, k)-safe implementable by a stochastic mechanism for all k ∈ℕ : 1 ≤ k < n

2 − 1.

For SCFs, this result immediately implies that comonotonicity (weak or strong) is
both necessary and sufficient for safe implementation via stochastic mechanisms.

Corollary 5. Let n ≥ 3 and X be finite. Under the condition in Definition 11, (i) f is
maximally (A, k)-safe Nash implementable by a stochastic mechanism only if (f , A) are
comonotonic; (ii) (f , A) are comonotonic only if f is (A, k)-safe Nash implementable by
a stochastic mechanism for all k ∈ℕ : 1 ≤ k< n

2 − 1.
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Finally, another beaten path within the literature is to consider preferences that favor
truthfully reporting the state and allocation (for similar ideas, see Matsushima (2008),
Dutta and Sen (2012), Kartik, Tercieux, and Holden (2014), and Lombardi and Yoshihara
(2020)). In this case, it can be shown that even if such preferences for honesty are weak
in the sense of being lexicographically subordinated to the outcome of the mechanism,
then a mild unanimity restriction suffices for safe implementation (see Gavan and Penta
(2024)).

4.2 On the gap between weak and strong comonotonicity

Unlike Nash implementation, where Maskin monotonicity is both necessary and suf-
ficient when using stochastic mechanisms under mild domain restrictions (Bochet
(2007), Benoît and Ok (2008)), a gap between necessity and sufficiency remains for safe
implementation, since weak and strong comonotonicity only coincide for SCFs.

In Appendix B we provide a stronger condition than weak comonotonicity that is
necessary and almost sufficient in general environments, thereby reducing the gap be-
tween necessity and sufficiency. Similar to the μ condition in Moore and Repullo (1990),
this condition relies on identifying which sub-correspondences of A are used within
an implementing mechanism to support each of the different allocations in the SCC.
Specifically, for each x ∈ F(θ) and for each equilibrium that induces x, we can think of
the sub-correspondences of A that consist of all allocations that are within κ = 1, � � � , k
deviations from such equilibrium. If, moving from θ to θ′, preferences do not change
within the sub-correspondences used to prevent unilateral deviations from an equi-
librium that induces x ∈ F(θ), then x must also be implemented at θ′ and, hence,
x ∈ F(θ′ ). Furthermore, the sub-correspondence of A that consists of the allocations
that are reachable in k deviations from the equilibria that induce x at θ must also be
in the analogous sub-correspondence used for x at θ′ (see Appendix B). We refer to this
condition as safe-μ. However, much like Moore and Repullo’s μ condition compared
to Maskin monotonicity, safe-μ is a more complex definition to check. For this reason,
we elect to provide weak and strong comonotonicity as transparent and easy to check
definitions, and instead leave this analysis for the Appendix.

Turning back to stochastic mechanisms, however, it is possible provide a result par-
allel to Bochet (2007) and Benoît and Ok (2008). Specifically, safe-μ implies the following
weaker notion of comonotonicity, which under a mild domain restriction is both neces-
sary and sufficient for safe implementation via stochastic mechanisms (cf. Gavan and
Penta (2024)): (A, F ) satisfy sub-comonotonicity if there exists a correspondence G that
maps each pair (θ, x) in the graph of F to a subset of A(θ), such that if moving from
state θ to θ′, an allocation x ∈ F(θ) “climbs up” in the ranking of all agents within the
allocations in G(x, θ), then we have that x ∈ F(θ′ ) and G(x, θ) ⊆ G(x, θ′ ). (For a closely
related condition, see Bochet and Maniquet (2010).) Note that sub-comonotonicity also
boils down to Maskin monotonicity if one takes G to be constant and equal to X .

5. Applications and extensions

We now turn to two canonical applications of Nash implementation and include safety
concerns. In the first application, we explore implementation of SCFs in environments
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that satisfy a standard single-crossing condition. In these settings, we show that essen-
tially any SCF can be implemented in the almost perfectly safe sense that we discussed
following Example 3. We then go on to explore the problem of allocating one unit of an
indivisible good. We show that when there is an appropriate null allocation that is ac-
ceptable at all states of the world, safe implementation of the efficient SCF is possible.
Finally, we explain how our framework can accommodate arbitrary solution concepts,
and we provide some negative results in environments that satisfy a strong but standard
“richness condition” on preferences.

5.1 Environments with private goods and single-crossing preferences

Consider a private value setting with two private goods and single-crossing preferences.
That is, for each i ∈ {1, � � � , n}, let Xi := ℝ2+ denote the consumption space, with generic
element xi = (x1

i , x2
i ), where x

g
i denotes the quantity of good g consumed by i. The

space of feasible allocations is X ⊆ ×i∈NXi, assumed to be compact and convex, with
generic element x = (xi )i∈N , which is sometimes convenient to write as x = (xi, x−i ) to
separate i’s own consumption bundle from the profile of consumption bundles of the
others. For each agent i, there is a set of types �i = {θ1

i , � � � , θlii } ⊂ ℝ+ that pin down

i’s preferences over X , labelled so that θ1
i < · · · < θ

li
i , and let � := ×i∈N�i, with typical

element θ. The assumption of private goods is reflected in that each agent i’s utility over
X is constant in x−i; hence, utility functions can be written as ui(xi, θi ), assumed to be
continuously differentiable and strictly increasing in both x1

i and x2
i for each θi ∈ �i.

Finally, we assume that preferences are single-crossing in the sense that for each i, the
marginal rate of substitution between good 1 and good 2 is increasing in θi.

Letting f : � → X denote the SCF, it seems sensible to include in the acceptabil-
ity correspondence, allocations that are sufficiently close to f (θ) at every θ ∈ �. (This
would be natural, for instance, if the social planner chooses f (θ) to be in the argmax of a
welfare functional that is continuous in x.) Formally, for some ϵ > 0 and neighborhood
𝒩ϵ(f (θ)) = {(x1, x2 ) ∈ X : d(f (θ), (x1, x2 )) < ϵ}, where d(·, ·) is the Euclidean distance,
we assume that 𝒩ϵ(f (θ)) ⊆ A(θ).

Lemma 1. Under the maintained single-crossing condition, if A : � → 2X \ {∅} is such
that, for some ϵ > 0, we have that 𝒩ϵ(f (θ)) ⊆ A(θ) for all θ ∈ �, then for any SCF such
that f (θ) ∈ int(X ) for all θ ∈�, the set (f , A) satisfies (weak and strong) comonotonicity.

In addition, this weak condition also suffices for safe implementation.

Proposition 2. Suppose that n ≥ 3 and that the single-crossing condition above is satis-
fied. If (f , A) is such that f (θ) ∈ int(X ) for all θ ∈� and ∃ϵ > 0 such that 𝒩ϵ(f (θ)) ⊆ A(θ)
for all θ ∈ �, then f can be (A, k)-safely implemented for any 1 ≤ k< n

2 .

5.2 Efficient allocation of an indivisible good

A social planner wants to allocate an indivisible good to one of the agents in N or to
no agent. The set of feasible outcomes, therefore, is X = N ∪ {∅}. Like Eliaz (2002), we
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assume that the set of states and agents’ preferences are such that (P.1) agents always
prefer getting the object themselves rather than having it assigned to someone else; (P.2)
conditional on not obtaining the object, agents always prefer it being assigned to agents
with a higher utility, and prefer it not being assigned at all over being assigned to some-
one other than the highest utility agent; (P.3) at any state of the world, there is always a
single agent with the highest valuation.14 Finally, we assume that the SCF and the ac-
ceptability correspondence are such that (A.1) the SCF is efficient, (A.2) not assigning the
object is always acceptable, and (A.3) whenever agent i is the designated winner, some
other allocation is also acceptable.15 Under these assumptions, the following possibility
result obtains.

Proposition 3. If n ≥ 3 and preferences satisfy assumptions (P.1)–(P.3), any (f , A) that
satisfies assumptions (A.1)–(A.3) is (A, k)-safe implementable for all 1 ≤ k< n

2 .

The assumptions on the preferences (P.1)–(P.3) are the same as in Eliaz (2002) and
they are mild. Given the weakness of (A.1)–(A.3), this proposition provides a rather per-
missive result for safe implementation of the efficient SCF in single-good assignment
problems.

5.3 Safe implementation with general solution concepts

Our framework can be easily extended to accommodate arbitrary solution concepts be-
yond Nash equilibrium. To this end, note that for any mechanism ℳ, any solution con-
cept for complete information games induces a correspondence 𝒞ℳ : � → 2M that as-
signs a (possibly empty) set of message profiles to every state of the world. So far, we
took such 𝒞 to denote the Nash equilibrium correspondence (i.e., 𝒞ℳ(θ) := {m∗ ∈ M :
∀i ∈ N , Uθ

i (m∗ ) ≥ Uθ
i (mi, m∗

−i )} for each θ), but both Definitions 1 and 2 extend seam-
lessly to any correspondence 𝒞ℳ : �→ 2M that may be taken to model agents’ strategic
interaction, provided that one reinterprets notation 𝒞ℳ(θ) above as the set of solutions
(whether Nash equilibrium or not) in mechanism ℳ at state θ. With this, the concep-
tual apparatus of safe implementation extends to general solution concepts: A SCC F

is (A, k)-safe 𝒞-implemented if it is 𝒞-implemented by a mechanism in which, at ev-
ery state, any deviations of up to k agents from the profiles consistent with the solution
concept 𝒞 induce outcomes that are within the acceptability correspondence (cf. Gavan
and Penta (2024)).

This general framework is useful to provide a unified view of a few related papers
(which we discuss in the next section) as well as to highlight a few methodological points
regarding the agenda on behavioral implementation (which we return to in the Conclu-
sions). However, as we discuss next, some insights about the bite of safety consider-
ations may be provided independent of the solution concept, at least in environments
that satisfy a richness condition analogous to the universal domain assumption in social
choice theory.

14Formally, for all i and θ, (P-1) ui(i, θ) > ui(j, θ) for all j ∈ N\{i}, (P.2) ∀j, k ∈ N\{i}, ui(j, θ) > ui(k, θ) if
uj(j, θ) > uk(k, θ) and ui(∅, θ) > ui(j, θ) if j /∈ arg maxi∈N ui(i, θ), and (P.3) | arg maxi∈N ui(i, θ)| = 1.

15Formally, (A.1) f (θ) ∈ arg maxi∈N ui(i, θ) for all θ ∈ �, (A.2) ∀θ ∈ �, {∅, f (θ)} ⊂ A(θ), and (A.3) for any i,
whenever f (θ) = i, ∃x ≠ i, ∅ such that x ∈ A(θ).



1304 Gavan and Penta Theoretical Economics 20 (2025)

Definition 12 (Richness). We say that � is rich if for every possible profile of strict
preference orderings over X , ≻= (≻i )i∈N , there exists θ ∈ � such that ui(·, θ) represents
≻i for all i ∈ N .

Under this condition, we provide two negative results for safe implementation. For
the first result, take an arbitrary solution concept 𝒞 and consider the minimal safety
guarantee that we introduced in point (i) of Example 2. Under these restrictions, the so-
cial planner wishes to ensure that, in the case of deviations from the profiles admitted
by the solution concept, no agent receives their least preferred outcome. This is a plau-
sible, seemingly weak criterion for safety restrictions. Yet, under richness, we obtain the
following negative result.

Proposition 4. Suppose that � is rich, 1 < |X| ≤ n. No SCF is (A, k)-safe 𝒞-
implementable for some k≥ 1, if A satisfies the minimal safeguarding guarantee.

Hence, contrary to what could perhaps be surmised from the previous subsections,
safety is not a trivial restriction, regardless of the underlying solution concept.

When Nash equilibrium is taken as the underlying solution concept, as was the case
in the previous sections, then this message is further reinforced by the following result:
Under richness, if the SCF is onto, then the safety requirement can only hold vacuously,
which is formally stated as follows.

Proposition 5. Suppose that � is rich and that the SCF, f , is surjective. Then f is (A, k)-
safe (Nash) implementable for some k ≥ 1 only if A(θ) =X for all θ.

Muller and Satterthwaite (1977) showed that any SCF satisfying the above conditions
must be dictatorial and can be trivially implemented via a simple mechanism that asks
the dictator for his/her most preferred outcome. Furthermore, our result shows that all
such rules require the acceptability correspondence to be vacuous. Hence, no safety
considerations can be accommodated in these settings: such dictatorial rules cannot be
safe.

6. Related literature

The closest paper to ours is Eliaz (2002), who studies an implementation problem im-
posing the requirement that the mechanism’s outcome is not affected by deviations of
up to k agents. In that sense, the robustness desideratum in Eliaz (2002) is more de-
manding than ours, as it coincides with the special case of perfect safety, in which the
acceptability correspondence coincides with the SCC (cf. point (iii) in Example 2). An-
other important difference is in the solution concept: in Eliaz’s (2002) k-fault-tolerant
Nash equilibrium (k-FTNE), agents’ reports are required to be optimal not only at the
equilibrium profile, but also at all profiles in which up to k agents have deviated. Thus,
the solution concept is stronger than Nash equilibrium, and more so as k increases,
with the implementation notion approaching dominant-strategy implementation as k
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approaches the number of opponents. This has important implications for the compar-
ison with our approach. First, it may be that a SCC is implementable in the sense of Eliaz
(2002) but not Nash implementable; hence, unlike our notion, k-FT implementation is
not necessarily more demanding than baseline Nash implementation. Second, it may be
that FT implementation is possible for some k, but not for some smaller k′; hence, un-
like our notion, the implementation notion in Eliaz (2002) does not necessarily become
more demanding as k increases.

In contrast, even if one replaces Nash equilibrium in Definitions 1 and 2 with a
general solution concept 𝒞ℳ : � → M (see Section 5.3), safe implementation always
gets more demanding as k increases.16 Fault-tolerant implementation (FTI) fails this
monotonicity because, letting 𝒞ℳk (θ) denote the set of k-FTNE at state θ, it may be that
∅ ≠ 𝒞ℳk (θ) ⊂ 𝒞ℳk′ (θ) ≠ ∅ for some k′ < k. Thus, although k-FTNE is monotonic with re-
spect to k (that is, all k-FTNE are also (k− 1)-FTNE), the resulting notion of implemen-
tation is not, since the finer solution concept may make it easier to avoid the bad equilib-
ria. Hence, k-FTI does not imply (k− 1)-FTI.17 For the same reason, k-FTI may be more
permissive than (baseline) Nash implementation. With this, one may still ask whether
(A, k)-safe (Nash) implementation collapses to k-FTI in the event that A(θ) = F(θ) for
all θ. This is not the case. First, contrary to k-FTI, (A, k)-safe (Nash) implementation
is not possible for non-constant SCFs (Corollary 1). Thus, k-FTI may be more permis-
sive than our concept, even though the two solution concepts are nested under perfect
safety (i.e., when A = F , all k-FTNE are also (A, k)-safe Nash equilibria). Also, for any
A : � → 2X \ {∅}, it is not possible to have a non-constant SCF be double-implemented
in k-FTI and (A, k)-safe Nash. Finally, it can also be shown that (A, k)-safe (Nash) im-
plementation may be possible when k-FTI is not (Gavan and Penta (2024)). Hence, de-
spite the similarity in their motivation, the two implementation concepts are distinct: (i)
they are not nested; (ii) unlike k-FTI, (A, k)-safe implementation is monotonic in k; (iii)
unlike k-FTI, (A, k)-safe implementation implies Nash implementation. Appendix C
provides examples to illustrate these points.

Eliaz (2002) also inspired Shoukry (2019), which maintains Nash equilibrium as we
do, but like Eliaz (2002) only considers perfect safety. As noted, this implies that the
SCF is constant (cf. Corollary 1). Possibility results for non-constant SCFs are recov-
ered, allowing for transfers and a preference for the truth.18 In contrast, here we follow
the standard approach of full implementation with standard preferences and study SCC
that select subsets of the whole space of outcomes.19As for the safety requirement, our

16More precisely, if the solution concept 𝒞 does not vary with k, for any acceptability correspondence
A : � → 2X \ {∅}, a SCC is (A, k)-safe 𝒞-implementable only if it is (A, k′ )-safe 𝒞-implementable for all
k′ ≤ k.

17The non-monotonicity of implementation with respect to nestedness of the solution concepts is well
known. It provides one of the main motivations for the notion of strategically robust implementation2 in
Jain, Lombardi, and Penta (2024).

18SCCs are also studied in Shoukry (2019), but relying on an even stronger restriction than perfect safety,
which demands that the outcome does not change if up to k agents deviate, not just that it stays within
the SCC. The concept of weak outcome robust implementation instead coincides with perfect safety in our
framework. For this notion, he provides an impossibility result under strict unanimity and rich preferences.

19That is, we do not leave dimensions of the outcome space, such as transfers, outside of the SCC’s
codomain. Shoukry (2014) studies a distinct special case of our A-correspondence, where some agents
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framework allows a wide range of acceptability correspondences beyond the case of per-
fect safety, and we insist that all equilibria be safe.

Perhaps the closest to our conditions can be found in Bochet and Maniquet (2010),
who study virtual implementation with support restrictions. Their extended mono-
tonicity also restricts the joint behavior of two correspondences—the SCC and the
(state-dependent) support—in a very similar way to the sub-comonotonicity we dis-
cussed in Section 4.2. Jackson and Palfrey (2001) instead study voluntary implementa-
tion, with state-contingent participation constraints that can be seen as a special case
of our acceptability correspondence.

Another related paper is Hayashi and Lombardi (2019), which studies Nash imple-
mentation in a two-sector economy, in which the social planner can only design the
mechanism for one sector, taking the other mechanism as given. With this restriction,
the possibility of preference interdependence between the two goods leads to a con-
straint on the planner’s ability that is akin to our acceptability correspondence, because
only certain allocations within the fixed sector can be achieved by deviations from a
candidate equilibrium.

Postlewaite and Wettstein (1989) and Hong (1995) study continuous implementa-
tion in a Walrasian economy. They show that the implementing mechanism can be
designed so that the outcome function is continuous and, hence, such that small de-
viations from the equilibria lead to small changes in the allocation, which can also be
seen as a special instance of our acceptability correspondence. More broadly, the liter-
ature on feasible implementation (Postlewaite and Wettstein (1989), Hong (1995, 1998))
is also related to our approach: as the allocations that occur upon deviations must be
feasible at a given state, and feasibility constraints are state-dependent in this literature,
the notion of implementation indirectly restricts the allocations that can be used upon
deviations, much like safe implementation.

A distinct strand of literature includes concerns for robustness via changes to the so-
lution concept. For instance, Renou and Schlag (2011) study an implementation prob-
lem where agents are unsure about the rationality of others, using a solution concept
based on ϵ-minmax regret. Similarly, Tumennasan (2013) studies implementation un-
der quantile response equilibrium, letting the logit parameter approach the perfect ra-
tionality benchmark. Barlo and Dalkıran (2021) explicitly model the possibility of prefer-
ence misspecification, letting the states not pin down agents’ preferences, and pursuing
a notion of implementation where agents act à la Nash for all preferences that are con-
sistent with each state.20 In our paper, in contrast, we maintain Nash equilibrium and
capture the possibility of mistakes (or preference misspecification) as an extra desidera-
tum on top of the standard notion of implementation. Bochet and Tumennasan (2023b)

cannot obtain alternatives that are too low in their rankings, which yields an impossibility under rich pref-
erences. Positive results are obtained by weakening the implementation requirement so as to effectively
allow some equilibria to not be safe.

20In that sense, Barlo and Dalkıran (2021) can be seen as an original take on the broader idea of robust
implementation, where the types that are relevant for the allocation rule pin down agents’ preferences, but
not their beliefs, which, however, matter since implementation is required to be achieved for all beliefs
consistent with the designer’s information (cf. in Bergemann and Morris (2005, 2009a,b), Ollár and Penta
(2017, 2022, 2023)).
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also maintain Nash equilibrium, but add the extra requirement that, in a direct mech-
anism, not only do all non-truthful profiles admit a profitable deviation (as required by
baseline Nash implementation), but that deviating to truthful revelation is profitable in
such instances. This notion is motivated by resilience considerations. A related notion
can be found in De Clippel (2014), where the designer takes into account that agents
may display specific deviations from rationality. For further recent approaches to be-
havioral implementation, see De Clippel, Saran, and Serrano (2019), Crawford (2021),
Kneeland (2022), Barlo and Dalkıran (2023), and Bochet and Tumennasan (2023a).

Finally, our results are also connected to the literature on implementation with ev-
idence (e.g., Kartik and Tercieux (2012), Ben-Porath, Dekel, and Lipman (2019)), which
also enriches the baseline framework with an extra feature: the ability to produce evi-
dence. Similar to our comonotonicity, their main conditions are also suitably adjusted
versions of monotonicity. Unlike ours, however, their conditions are more permissive
than Maskin’s (1999), effectively restricting the set of states over which monotonicity is
required.

7. Conclusions

We introduce safe implementation, a notion that adds to the standard implementation
requirements the restriction that deviations from the baseline solution concept induce
outcomes that are acceptable. This is modelled by introducing, next to the social choice
correspondence (which represents the first best objectives when agents behave in ac-
cordance with the solution concept), an acceptability correspondence that assigns to
each state of the world the set of allocations that are considered acceptable. This frame-
work generalizes standard notions of implementation and can accommodate a variety
of questions, including robustness with respect to mistakes in play, model misspecifi-
cation, behavioral considerations, state-dependent feasibility restrictions, and limited
commitment.

Robustness concerns for mistakes in play and other behavioral considerations have
been considered in the literature, mainly through changes to the solution concept (e.g.,
Eliaz (2002), Renou and Schlag (2011), Tumennasan (2013), De Clippel (2014), De Clip-
pel, Saran, and Serrano (2019), Crawford (2021)). Our approach differs mainly in that
we impose restrictions also on the outcomes of players’ deviations and may thus be
adopted to capture concerns for misspecification of agents’ behavior of any kind, as
something which can be superimposed on any solution concept, be it classical or behav-
ioral (see Section 5.3). This way, our framework can also be used to accommodate broad
robustness concerns, to account for the possibility that even a behavioral model, which
may have been developed to overcome certain limitations of classical notions, may, of
course, also be misspecified. This modelling innovation, therefore, has the further ad-
vantage of addressing the frequent critique of behavioral models, of being ad hoc: in our
approach, the deviations that are the object of safety considerations are unrestricted in
their nature and, hence, are model-free.

Decoupling these concerns from the outcomes of the solution concept, however,
raises some challenges: on the one hand, as in the standard approach, the outcomes
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that ensue from deviations must provide the agents with the incentives to induce so-
cially desirable outcomes, consistent with the criteria that are embedded in the under-
lying solution concept; on the other hand, our concerns for safety limit precisely the
designer’s ability to specify such outcomes. The fact that the acceptable allocations are
themselves state-dependent, like the SCC, means that not only must agents be given the
incentives to induce socially desirable allocations, but also to reveal which outcomes
can be used as punishments to achieve this objective. Our main results, which refer
to Nash equilibrium as the underlying solution concept, precisely formalize this inter-
play: the necessary and sufficient conditions that we provide entail joint restrictions on
the structure of the SCC and of the acceptability correspondence, and formally gener-
alize the standard conditions for baseline Nash implementation (Maskin (1999)). While
we also offer some results for general solution concepts that identify substantive limits
to the possibility of achieving nontrivial safety desiderata, a systematic exploration of
solution concepts other than Nash equilibrium is beyond the scope of this paper and
provides an interesting direction for future research in this area.

Our framework is also general in the specification of the acceptability correspon-
dence, which can be used to accommodate different special cases, which include (i)
perfectly-safe implementation, which deems acceptable only the outcomes of the SCC
(e.g., Eliaz (2002)), (ii) almost-perfectly-safe implementation, when only outcomes that
are arbitrarily close to those in the SCC are acceptable, which provides a connec-
tion with the literature on continuous implementation (e.g., Postlewaite and Wettstein
(1989), Hong (1995)), (iii) state-dependent feasibility constraints (e.g., Postlewaite and
Wettstein (1989), Hong (1995, 1998)), (iv) minimal guarantees based on a variety of wel-
fare criteria (cf. Exercise 2), (v) limited commitment in mechanism design, if the de-
signer can only commit to carrying through, depending on the state, certain punish-
ments but not others (cf. Exercise 1). But these are only some of the possibilities that
can be cast within our framework. Further exploring these or other special cases, explic-
itly tailored to address specific concerns in more applied settings, may provide another
promising direction for future research.

Finally, as is customary when conceptual innovations are introduced within im-
plementation theory, we have maintained the complete information assumption and
imposed no further restrictions on the mechanisms. Combining safety considerations
with incomplete information or with other restrictions on the mechanisms (e.g., Jackson
(1991, 1992), Ollár and Penta (2017, 2022, 2023), etc.) is yet another direction for future
research.

Appendix A: Proofs

Proof of Theorem 1. Suppose that F is (A, k)-safe implementable. Further, suppose
that it is maximally so. Therefore, there is some mechanism ℳ that (A, k)-safe imple-
ments F and is such that A(θ) = g({m ∈M|d(m, m∗ ) ≤ k, m∗ ∈ 𝒞ℳ(θ)}).

We will show that F and A are weakly comonotonic in two steps.
First, we will show that for some θ, θ′ ∈�, if there exists x ∈ F(θ) such that Li(x, θ) ∩

A(θ) ⊆ Li(x, θ′ ) ∩ A(θ) for all i ∈ N , then x ∈ F(θ′ ). To do so, take m∗ to be a Nash
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equilibrium at θ that induces x. Hence, g(m∗ ) = x ∈ F(θ). Let θ′ ∈ � be a state such
that x /∈ F(θ′ ). Therefore, m∗ is not a Nash equilibrium at θ′ and, hence, ∃i ∈ N , m′

i ∈
Mi such that ui(g(m′

i, m
∗
−i ), θ′ ) > ui(x, θ′ ). It follows that g(m′

i, m
∗
−i ) ∈ X\Li(x, θ′ ) and

g(m′
i, m

∗
−i ) ∈ g({m ∈ M|d(m, m∗ ) ≤ k, m∗ ∈ 𝒞ℳ(θ)}) = A(θ). However, as m∗ is a Nash

equilibrium (NE) at θ, we have that g(m′
i, m

∗
−i ) ∈Li(x, θ) ∩A(θ). Therefore, it cannot be

the case that Li(x, θ) ∩A(θ) ⊆Li(x, θ′ ) ∩A(θ), a contradiction.
Now we show that if for some θ, θ′ ∈ �, all x ∈ F(θ) are such that Li(x, θ) ∩ A(θ) ⊆

Li(x, θ′ )∩A(θ) for all i ∈N , thenA(θ) ⊆ A(θ′ ). Suppose that θ and θ′ are states such that
Li(x, θ) ∩ A(θ) ⊆ Li(x, θ′ ) ∀i ∈ N for all x ∈ F(θ). Suppose to the contrary that A(θ) ⊈
A(θ′ ) and let m∗ be a Nash equilibrium at θ that induces x ∈ F(θ).

We consider two cases: (i) If m∗ is a Nash equilibrium at θ′, then Bk(m∗ ) ⊆ A(θ′ ) by
definition. (ii) If m∗ is not a Nash equilibrium at θ′, there must be some i ∈ N , which at
the state θ′ has a profitable deviation from m∗, i.e., ui(g(m′

i, m
∗
−i ), θ′ ) > ui(x, θ′ ). We

conclude that g(m′
i, m

∗
−i ) ∈ X\Li(x, θ′ ). By (A, k)-safe implementation, and by def-

inition, we have that A(θ) = g({m ∈ M|d(m, m∗ ) ≤ k, m∗ ∈ 𝒞ℳ(θ)}), it must be that
g(m′

i, m
∗
−i ) ∈ Li(x, θ) ∩ A(θ), which is a contradiction to Li(x, θ) ∩ A(θ) ⊆ Li(x, θ′ ) for

all x ∈ F(θ).
We conclude that all m∗ that are Nash equilibria at θ and induce x are also Nash

equilibria at θ′. Now notice that if this holds for all y ∈ F(θ), then all Nash equilibria at
θ are also Nash equilibria at θ′. Given this, the outcomes induced by k agents deviating
from equilibrium at θ are also reached within k deviations of an equilibrium at θ′ and,
hence, A(θ) ⊆ A(θ′ ). Thus, (F , A) must be weakly comonotonic.

Proof of Proposition 1. Suppose that F is (A, k)-safe implementable. Therefore,
there is some mechanism ℳ that (A, k)-safe implements F . We will show that for some
θ, θ′ ∈ �, if there exists x ∈ F(θ) such that Li(x, θ) ∩A(θ) ⊆ Li(x, θ′ ) ∩A(θ) for all i ∈ N ,
then x ∈ F(θ′ ). That is, A-constrained monotonicity of F is satisfied. To do so, take m∗ to
be a Nash equilibrium at θ that induces x. Hence, g(m∗ ) = x ∈ F(θ). Let θ′ ∈� be a state
such that x /∈ F(θ′ ). Therefore, m∗ is not a Nash equilibrium at θ′ and, hence, ∃i ∈ N ,
m′

i ∈ Mi such that ui(g(m′
i, m

∗
−i ), θ′ ) > ui(x, θ′ ). It follows that g(m′

i, m
∗
−i ) ∈ X\Li(x, θ′ )

and g(m′
i, m

∗
−i ) ∈ g({m ∈ M|d(m, m∗ ) ≤ k, m∗ ∈ 𝒞ℳ(θ)}) ⊆ A(θ) by definition of safety.

However, as m∗ is a NE at θ, we have that g(m′
i, m

∗
−i ) ∈ Li(x, θ) ∩ A(θ). Therefore, it

cannot be the case that Li(x, θ) ∩A(θ) ⊆ Li(x, θ′ ) ∩A(θ).

Proof of Theorem 2. Suppose that F is (A, k)-safe implementable. Therefore, there
is some mechanism ℳ that (A, k)-safe implements F and is such that g({m ∈ M|
d(m, m∗ ) ≤ k, m∗ ∈ 𝒞ℳ(θ)}) ⊆ A(θ). Take A∗ to be a sub-correspondence of A such
that g({m ∈ M|d(m, m∗ ) ≤ k, m∗ ∈ 𝒞ℳ(θ)}) = A∗(θ) for all states. By definition, ℳ is
k-surjective on A∗. Moreover, for maximal safety, we require A∗(θ) =A(θ) for all θ; oth-
erwise, some alternatives could be removed, contradicting maximally safe. With this,
the logic of Theorem 1 holds exactly, as the proof only relies on the outcomes obtainable
within k deviations of the implementing mechanism; that is, one could replace A(θ)
with A∗(θ) throughout.
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Proof of Theorem 3. For each i ∈ N , let Mi = ⋃︁
θ′∈�A(θ′ ) × � × ℕ, with typical ele-

ment mi = (xi, θi, ni ). Let g(m) be as follows.

Rule (i) If mi = (x, θ, ni ) ∀i ∈ N and x ∈ F(θ), then g(m) = x.

Rule (ii) If mi = (x, θ, ni ) ∀i ∈N\{j} with x ∈ F(θ) and mj = (y, ·, ·), then

g(m) =
{︄
y if y ∈Lj(x, θ) ∩A(θ),

x if y /∈Lj(x, θ) ∩A(θ).

Rule (iii) If k > 1 and mi = (x, θ, ·), x ∈ F(θ) ∀i ∈ N\D, 2 ≤ |D| ≤ k such that ∀j ∈ D,
mj ≠ (x, θ, ·),

g(m) =
{︄
xi

∗
if D∗(θ, D) ≠ ∅,

x if D∗(θ, D) = ∅,

where D∗(θ, D) = {j ∈D|xj ∈A(θ)}, i∗ = min{i ∈D∗(θ, D)|ni ≥ njj ∈D∗(θ, D)}.

Rule (iv) Otherwise, let g(m) = xi
∗
, where i∗ = min{i ∈N|ni ≥ nj∀j ∈N }.

From here we can complete the proof in three steps: showing that all x ∈ F(θ) are in-
duced by a Nash equilibrium at θ, showing that there is no y /∈ F(θ) such that y is induced
by an equilibrium at θ, and finally showing that the mechanism is indeed (A, k)-safe.

Step 1. First we show that all x ∈ F(θ) are induced by Nash equilibria at θ.
Consider m∗ such that m∗

i = (x, θ, ·) ∀i ∈ N , where x ∈ F(θ) at the state θ. To be
a Nash equilibrium, we need to rule out the possibility that ∃j ∈ N , m′

j ∈ Mj such
that uj(g(m∗

−j , m
′
j ), θ) > uj(g(m∗ ), θ). However, g(m∗

−j , m
′
j ) = y must be such that

y ∈ Lj(x, θ) by rule (ii). Therefore, it is not possible that uj(y, θ) > uj(x, θ). Hence, m∗ is
a Nash equilibrium leading to x ∈ F(θ).

Step 2. We show there is no Nash equilibrium m∗ at θ such that g(m∗ ) = y /∈ F(θ).
Case 1. Suppose m∗ is a Nash equilibrium in rule (i) at state θ such that g(m∗ ) =

y /∈ F(θ). It must be that m∗
i = (y, θ′, ni ) for all i ∈ N and, necessarily, as y /∈ F(θ), that

θ′ ≠ θ. Given this, it must be that there is no profitable deviation, as m∗ is a Nash
equilibrium. As deviations may only lead to rule (ii), it must be that for all i ∈ N , for
any z ∈ Li(y, θ′ ) ∩ A(θ′ ), we have that z ∈ Li(y, θ), as there is no profitable deviation
to report mi = (z, θ, ·) inducing outcome z from rule (ii). With this, Li(y, θ′ ) ∩ A(θ′ ) ⊆
Li(y, θ) ∩ A(θ′ ). Therefore, by strong comonotonicity, we have that y ∈ F(θ), a contra-
diction.

Case 2. Now suppose that there is a Nash equilibrium m∗, which is in rule (ii), at
state θ such that g(m∗ ) = y /∈ F(θ). It must be that ∃j ∈ N such that ∀i ∈ N\{j}, we have
m∗

i = (x, θ′, ni ), while m∗
j ≠ (x, θ′, ·). For this to be a Nash equilibrium, it must be that

there is not an incentive for any agent to deviate. If k> 1, a deviation can lead to rule (i),
(ii), or (iii), regardless, as m∗ is a Nash equilibrium at θ, no agent i ≠ j wishes to change
his/her report, inducing rule (iii), it must be that y ∈ argmaxz∈A(θ′ ) ui(z, θ). By safe no-
veto, it must, therefore, be that y ∈ F(θ), a contradiction to y /∈ F(θ). For k = 1, we have
that a deviation can lead to rule (i), (ii), or (iv), which in the case of rule (iv) can induce
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any outcome. Those who can deviate to impose rule (iv) are all agents other than j. With
this, we have that, as there is no incentive to deviate, y ∈ argmaxz∈⋃︁

θ′′∈�A(θ′′ ) ui(z, θ) for
all i ∈ N\{j}. With this, it must be that y ∈ argmaxz∈A(θ′ ) ui(z, θ) for all i ∈ N\{j} and,
therefore, by safe no-veto, we have that y ∈ F(θ), a contradiction.

Case 3. Now suppose that there is a Nash equilibrium m∗, which is in rule (iii), at
state θ and g(m∗ ) = y /∈ F(θ). Suppose that |D| <k and m∗

i = (x, θ′, ·) for all agents i /∈D.
Given this, it must be that there is no profitable deviation for any agent. As there exists
for any player a message that leads to any allocation in A(θ′ ) via rule (iii), we conclude
that y ∈ argmaxz∈A(θ′ ) ui(z, θ) for all i ∈ N . Therefore, by safe no-veto, we have that y ∈
F(θ). Now suppose that |D| = k. For there to be no profitable deviation, it must be that
for ∀i ∈ D, y ∈ argmaxz∈A(θ′ ) ui(z, θ). For all agents in i ∈ N\D it must be that for any x ∈⋃︁

θ′′∈�A(θ′′ ) ⊇ A(θ′ ), we have that ui(y, θ) ≥ ui(x, θ), as there is no profitable deviation.
Given this, we conclude that y ∈ argmaxz∈A(θ′ ) ui(z, θ) for all i ∈N and, therefore, by safe
no-veto, we conclude that y ∈ F(θ), a contradiction.

Case 4. Finally, if there is a Nash equilibrium m∗ at θ in rule (iv), we can see that a
unilateral deviation can lead to any outcome in

⋃︁
θ′′∈�A(θ′′ ) via rule (iv). With this, it

must be that for m∗ with g(m∗ ) = y to be a Nash equilibrium in this state, we have that
y ∈ argmaxz∈⋃︁

θ′′∈�A(θ′′ ) ui(z, θ) for all i ∈N . Therefore, y ∈ argmaxz∈A(θ′ ) ui(z, θ) for some
θ′ and, therefore, by safe no-veto, we have that y ∈ F(θ).

Step 3. We will now show that all Nash equilibria are safe. We consider four cases:
Case 1. If m∗ is a Nash equilibrium at θ that falls into rule (i), it must be that

m∗
i = (y, θ′, ni ). By the previous analysis, we know that y ∈ F(θ). If θ′ = θ, we conclude

that safety is satisfied as k deviations can only lead to rule (ii) or (iii). Either way, we re-
main in A(θ). Now suppose that θ′ ≠ θ while m∗ is a Nash equilibrium at θ. Notice that,
regardless, k deviations must lead to remaining within A(θ′ ) via rule (ii) or (iii). By the
previous analysis, we know that this only occurs when Li(y, θ′ )∩A(θ′ ) ⊆Li(y, θ)∩A(θ′ )
for all i ∈ N . Given this, A(θ′ ) ⊆ A(θ) must hold for strong comonotonicity to be satis-
fied. Therefore, any deviation from this Nash equilibrium must remain in A(θ′ ) ⊆A(θ),
maintaining safety.

Case 2. Now suppose that m∗ is a Nash equilibrium at θ that falls into rule (ii). It
must be that ∀i ≠ j, m∗

i = (x, θ′, ni ) while m∗
j ≠ (x, θ′, ni ). Notice that k deviations can

lead to rule (i), rule (iii) if k> 1, and rule (iv). Notice that k deviations can lead to rule (iii)
for some state θ′′ ≠ θ′ if k = n

2 − 1, depending on the report of j. Regardless, safety will
require that A(θ) = ⋃︁

θ′′∈�A(θ′′ ) for this mechanism. To see that this is implied by the
condition of safe no-veto, we only have a Nash equilibrium at such a state if ∀i /∈ N\{j},
they prefer g(m∗ ) = y rather than inducing any outcome in rule (iii) in the case k > 1 or
rule (iv) in the case that k = 1. Given this, it must be that y ∈ argmaxz∈A(θ′ ) ui(z, θ) for
all i /∈ N\{j}, and, hence, by safe no-veto, A(θ) = X ⇒ X = ⋃︁

θ′′∈�A(θ′′ ), so safety is not
violated.

Case 3. Now suppose that m∗ is a Nash equilibrium at θ that falls into rule (iii) and,
therefore, k > 1. It must be that all agents in i ∈ N\D for some D ⊂ N with |D| ≤ k are
reporting m∗

i = (x, θ′, ni ). By the structure of the mechanism, k deviations can lead to
rules (i) or (ii) if n = 3 and k= 1 or, if k≥ |D| > n

4 and all those in D report mj = (z, θ′′, nj )
it could lead to rules (iii) or (iv). With this, it is possible that for safety to be achieved,
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we require that A(θ) = ⋃︁
θ′′ A(θ′′ ). Notice that for y = g(m∗ ) to be a Nash equilibrium

at state θ, by the previous analysis it must be that y ∈ argmaxz∈A(θ′ ) ui(z, θ) for all i ∈ N .
With this, it must then be that by safe no-veto, A(θ) = ⋃︁

θ′′∈�A(θ′′ ). Therefore, safety is
necessarily achieved.

Case 4. Finally, suppose that m∗ is a Nash equilibrium at θ with g(m∗ ) = y. Note that
by the rules of the mechanism, k deviations can lead to any outcome via rule (iv). If we
have a Nash equilibrium within this rule, it must be that y ∈ argmaxz∈⋃︁

θ′′∈�A(θ′′ ) ui(z, θ)
for all i ∈N , as otherwise any agent could deviate to induce any outcome in

⋃︁
θ′′∈�A(θ′′ )

they wish via announcing a higher integer. With this, we conclude that it must be that
y ∈ argmaxz∈A(θ′ ) ui(z, θ) for any A(θ′ ) such that y ∈A(θ′ ). With this, by safe no-veto, we
conclude that A(θ) = X ⇒ ⋃︁

θ′′∈�A(θ′′ ) =X and, therefore, safety is achieved.

Proof of Lemma 1. Take θ, θ′ ∈ � such that f (θ) = x ≠ f (θ′ ). Let agent i be such that
θi ≠ θ′

i. Without loss of generality, suppose that θ′
i > θi. We need to show ∃y ∈ A(θ) such

that y ∈Li(f (θ), θ) while y /∈ Li(f (θ), θ′ ). By Taylor’s theorem, ∃ϵ > 0 such that for 𝒩ϵ(x),
the remainder term of the Taylor expansion is sufficiently small to preserve inequalities.
Therefore, we need to show that there exists y ∈ 𝒩ϵ(x) such that (yi1 − xi1 ) ∂ui(f (θ),θi )

∂xi1
+

(yi2 − xi2 ) ∂ui(f (θ),θi )
∂xi2

< 0 while (yi1 − xi1 )
∂ui(f (θ),θ′

i )

∂xi1
+ (yi2 − xi2 )

∂ui(f (θ),θ′
i )

∂xi2
> 0 as 𝒩ϵ(f (θ)) ⊆

A(θ). With some rearranging, we find

∂ui(f (θ),θi )

∂xi2
∂ui(f (θ),θi )

∂xi1

< − yi1−xi1
yi2−xi2

<

∂ui(f (θ),θ′
i )

∂xi2
∂ui(f (θ),θ′

i )

∂xi1

, which as θ′
i > θi is

satisfied by single crossing, as we can find − yi1−xi1
yi2−xi2

satisfying the inequalities needed in

the neighborhood.

Proof of Proposition 2. Let each agent i ∈ N announce an outcome, which excludes
all reports that would be their maximal allocation, and the state. Therefore, Mi =
int(X ) ×�, with typical element mi = (x(i), θ(i)) Let g(m) be as follows:

Rule (i) If mi = (x(i), θ(i)) is such that θ(i) = θ ∀i ∈N , then g(m) = f (θ).

Rule (ii) If mi = (x(i), θ(i)) is such that θ(i) = θ ∀i ∈ N\{j}, where mj = (x(j), θ′ ), θ′ ≠
θ,

g(m) =
{︄
x(j) if x(j) ∈Lj

(︁
f (θ), θ

)︁ ∩𝒩 ϵ
2

(︁
f (θ)

)︁
,

f (θ) if x(j) /∈Lj

(︁
f (θ), θ

)︁ ∩𝒩 ϵ
2

(︁
f (θ)

)︁
.

Rule (iii) If ∃D ⊂ N such that k ≥ |D| > 1, where mi = (x(i), θ(i)) and θ(i) = θ ∀i ∈
N\D, then g(m) is constructed as follows. Let ϵ be fixed across agents such that
𝒩ϵ(f (θ)) ⊆ A(θ). For all i ∈ D, let x̃(i) = x(i) if x(i) ∈ 𝒩 ϵ

|D|
(f (θ)), x̃(i) = λix(i) +

(1 − λi )f (θ) such that d(f (θ), x̃(i)) = ϵ
|D|+1 , λi ∈ (0, 1) otherwise. Let g(m) =

f (θ) + ∑︁
i∈D(x̃(i) − f (θ)).

Rule (iv) Otherwise, let g(m) = 1
n

∑︁
i∈N x(i).

Step 1. First to show that x = f (θ) is a Nash equilibrium at θ, consider m∗ satisfying
rule (i). Any unilateral deviation of agent i leads to rule (ii), where the only way to change
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the allocation is in Li(f (θ), θ), which cannot give a strictly higher utility by definition.
Therefore, all m∗ satisfying rule (i) are equilibria.

Step 2. We want to show that ∄m∗ that is an equilibrium at θ with g(m∗ ) ≠ f (θ).
Case 1. Suppose that there is an equilibrium in rule (i), where g(m∗ ) ≠ f (θ), where

the true state is θ. It follows that all agents are announcing some state θ′ ≠ θ. With this,
there exists some agent who announces his/her own type to be θj(j) = θ′

j ≠ θj . For this
agent, ∃xj such that xj ∈ Lj(f (θ′ ), θ′ ) ∩ 𝒩 ϵ

2
(f (θ′ )) while xj /∈ Lj(f (θ′ ), θ) ∩ 𝒩 ϵ

2
(f (θ′ )) by

the same logic as Lemma 1 via the single-crossing condition. Therefore, m∗ cannot be a
Nash equilibrium.

Case 2. There are no Nash equilibria for any θ in rule (ii). Suppose that m∗ is an
equilibrium at that θ, where for all i ∈ N\{j}, we have that mi = (x(i), θ(i)) with θ(i) = θ′
while mj = (x(j), θ(j)) with θ(j) ≠ θ′. Regardless of whether g(m∗ ) = f (θ) or g(m∗ ) =
x(j), notice that any agent i ≠ j can induce an increase in both dimensions of the bundle
by announcing mi = (x′(i), θ′(i)), where θ′(i) ≠ θ′ and x′(i) such that x′

j(i) = fj(θ), and

x′
i(i) is chosen such that x′(i) ∈ 𝒩 ϵ

2
(f (θ)) and

xk, ′
i (i)+x̃kj (j )

2 > fki (θ), which is achievable by
the construction of rule (iii). As ui is strictly increasing, m∗ is not a Nash equilibrium.

Case 3. There cannot be an equilibrium in rule (iii). Any agent i ∈ D can announce
an allocation to the northeast of x̃(i) such that x(i) ∈ 𝒩 ϵ

|D|
(f (θ)), leading to rule (iii) or

(iv), regardless, monotonically increase his/her allocation.
Case 4. The final case is within rule (iv). Again, this cannot be an equilibrium,

as agents can deviate to announcing an allocation to the northeast of the current one,
leading to rule (iv). This deviation is profitable given the assumption of increasing utility.
Whereas the message can only be interior in X , such a profitable deviation always exists.

Step 3. Notice that all equilibria lie in rule (i). Furthermore, any such equilibrium
m∗ at θ leads to g(m∗ ) = f (θ) by Case 1 of Step 2. The k deviations that remains in rule (i)
must lead to the same allocation and, therefore, safety is guaranteed. The k deviations
that lead to rule (ii) lead to allocations in 𝒩 ϵ

2
(f (θ)) ⊂ 𝒩ϵ(f (θ)) ⊆ A(θ) and, therefore,

safety is maintained. The only check needed for this is that rule (iii) lies within an ϵ

neighborhood of f (θ) and, therefore, within A(θ). To see this, notice that

d
(︁
f (θ), g(m)

)︁ = d

(︃
f (θ), f (θ) +

∑︂
i∈D

(︁
x̃(i) − f (θ)

)︁)︃ =
⃦⃦⃦
⃦∑︂
i∈D

(︁
x̃(i) − f (θ)

)︁⃦⃦⃦⃦
≤

∑︂
i∈D

⃦⃦
x̃(i) − f (θ)

⃦⃦ =
∑︂
i∈D

d
(︁
f (θ), x̃(i)

)︁
< |D| 1

|D|ϵ= ϵ

(the weak inequality comes from the triangle inequality). Hence, g(m) ∈ 𝒩ϵ(f (θ)) for
any m within rule (iii) that is k deviations from an equilibrium at θ.

Proof of Proposition 4. If |X| ≤ n, by richness, ∃θ ∈ � such that, for every x ∈ X ,
∃i ∈ N such that {x} = argminy∈X ui(y, θ). Hence, if A is minimally safeguarding, then
X∗(θ) = ∅ and, therefore, no SCC can be safely 𝒞-implemented for any k ≥ 1 and any
𝒞.
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Proof of Proposition 5. If it is not the case that A(θ) = X for some θ, then it must be
that some x ∈ X is not in A(θ). By surjectivity, there is some state where x = f (θ′ ) and
x ≠ z = f (θ). By richness, ∃θ′′ ∈ �, x is the top ranked alternative for all players, while z

is second ranked for all players. Hence, by comonotonicity, both z and x are chosen by
the SCF at θ′′. However, since x ≠ z and we have a SCF, this is a contradiction.

Proof of Proposition 3. Let X = N ∪ {0}, where 0 represents the good not being al-
located. For each θ ∈ �, let θ ∈ ℝn+ denote the vector of agents’ values. Let Mi =
X × ℝn+ for all i ∈ N with a typical message mi = (j, v) ∈ N ∪ {0} × ℝn+. Let Ã(θ) =⋂︁

θ′∈�|f (θ′ )=f (θ) A(θ′ ). Let g(m) be as follows:

Rule (i) If ∀i ∈N , mi = (j′, v) with v = θ ∈� and j′ = f (θ), then g(m) = j′ = f (θ).

Rule (ii) If mi = (j′, v) ∀i ∈N\{j} with v = θ ∈�, and f (θ) = i′ and mj = (l, ·), then

g(m) =
{︄
l if l ∈ [︁

Lj

(︁
j′, θ

)︁ ∩ Ã(θ)
]︁\{︁j′}︁,

∅ if l /∈ [︁
Lj

(︁
j′, θ

)︁ ∩ Ã(θ)
]︁\{︁j′}︁.

Rule (iii) If mi = (j′, v) such that v = θ ∈ � and j′ = f (θ) ∀i ∈ N\D, 2 ≤ |D| < n
2 such

that ∀j ∈D, mj = (lj , ·), lj ≠ j′, then

g(m) =
{︄
li

∗
if D∗(θ, D) ≠ ∅,

j′ if D∗(θ, D) = ∅,

where D∗(θ, D) = {j ∈D|lj ∈ Ã(θ)} and i∗ = min{i ∈D∗(θ, D)|vii ≥ v
j
jj ∈D∗(θ, D)}.

Rule (iv) Otherwise, let g(m) = li
∗
, where mi = (li, ·) and i∗ = min{i ∈ N|vii ≥ v

j
jj ∈N }.

Notice that, at state θ, with messages that fall into rule (i) with m∗ = (j′, θ), m∗ is a
Nash equilibrium, since any deviation from m∗ either leads to the good not being allo-
cated or it must be that a less deserving agent receives the good. To show that all Nash
equilibria are safe, we will show that rule (i) constitutes the only Nash equilibria, and
always allocate the f (θ) at state θ.

Suppose that there is a Nash equilibrium m∗ at state θ in rule (ii). Let m∗
i = (j′, θ′ ) for

all i ≠ j and m∗
j = (l, ·). It must be that either g(m∗ ) = l ∈ Ã(θ′ ), l ∈ N\{j′}, or g(m∗ ) = 0.

Suppose that j = j′. Here there is a profitable deviation to announce mj = (j′, θ′ ) and be
allocated the good, which cannot be the case under rule (ii). Suppose instead that j ≠ j′.
Let i = j′, which can announce mi = (i, v′′ ) such that v′′

i is strictly higher than the ith (or
equivalently j′th) component of θ′ and receive the good by inducing rule (iii).

As all agents prefer to have the good allocated to themselves, there can be no equi-
libria in rule (iii) and (iv). To see that in the case of rule (iii) there is no Nash equilibrium,
suppose that the message of |N| − k agents is mi = (j′, v′ ), with v′ = θ′ and f (θ′ ) = j′,
while m∗ is a Nash equilibrium. Given that there is some agent j ∈ Ã(θ′ ) such that
g(m∗ ) ≠ j by (A.3), such an agent prefers to have the good allocated to him-/herself,
he/she can announce mj = (j, v′′ ), such that v′′

j = maxi≠j v
i
i + ϵ, and, therefore, would
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induce that the good is allocated to him/her. However, by rule (iv), any agent who is not
allocated the good could deviate.

Suppose that there is some Nash equilibrium in rule (i), m∗ at θ, such that, for some
θ′, we have g(m∗ ) = f (θ′ ) = j′ ≠ f (θ), where j′ is undeserving. Any agent can announce
l = 0 (or any l /∈ A(θ)), which, given rule (ii) and (P.2), induces no agent to receive the
good, as is not preferred at θ′. However, this is preferred at θ, as reverting to the empty
allocation is attainable and, by assumption, gives a higher payoff than an undeserving
agent.

Notice that they all lie within rule (i) with m∗
i = (j′, θ) at state θ′, where j′ has the

highest valuation in state θ′. Up to k deviations can only lead to rules (ii) or (iii), where
the majority still announces (j′, θ). With this, we remain in Ã(θ) ⊆ A(θ′ ).

Appendix B: On the gap between weak and strong comonotonicity

Strong and weak comonotonicity coincide for SCFs, but when the SCC is not single-
valued, there is a gap between necessary and sufficient conditions. In this appendix,
we show that a stronger condition than weak comonotonicity is necessary and al-
most sufficient, thereby reducing the gap between necessity and sufficiency. Similar
to Moore and Repullo (1990)’s condition μ, this condition relies on identifying which
sub-correspondences of A are used, within an implementing mechanism, to support
each of the different allocations in the SCC. Like Moore and Repullo (1990)’s condition
μ compared Maskin monotonicity, however, this condition too is harder to check than
weak comonotonicity.

Specifically, let ℳ = ⟨(Mi )i∈N , g⟩ be a mechanism that (A, k)-safe implements F .
For any θ and x ∈ F(θ), let NE(x, θ) ⊆ M denote the (non-empty) set Nash equilibria at
state θ that induce x. Then, for each m∗(x, θ) ∈ NE(x, θ), we know that (i) x = g(m∗ )
and (ii) g(m) ∈ A(θ) for any m ∈ Bk(m∗ ) (i.e., for any m that is within k deviations from
m∗). Next, let Gk(x, θ) := ⋃︁

m∗∈NE(x,θ) Bk(m∗ ). By definition of safety, Gk(x, θ) ⊆ A(θ).
Essentially, for each θ and x ∈ F(θ), Gk(x, θ) is the subset of A(θ) that consists of all the
allocations that are used to “sustain” the implementation of outcome x.

Notice that, for k = 1, the set G1(x, θ) consists of the set of allocations that can be
induced by unilateral deviations from one of the Nash equilibria m∗ ∈ NE(x, θ), and
similar to Moore and Repullo (1990), let Ci(x, θ) ⊆G1(x, θ) denote the set of allocations
that can be induced by unilateral deviations of player i alone. Then Ci(x, θ) ⊆Gk(x, θ) ⊆
A(θ) and x ∈ argmaxy∈Ci(x,θ) ui(y, θ) for all i ∈ N .21 Next notice that if, for some θ′, it
holds that x ∈ argmaxy∈Ci(x,θ) ui(y, θ′ ) for all i, then all m∗ ∈ NE(x, θ) are also equilibria

at θ′ and, hence, NE(x, θ) ⊆ NE(x, θ′ ). It follows that (i) x ∈ F(θ′ ) and (ii) Gk(x, θ) ⊆
Gk(x, θ′ ).22 With this, we obtain that the following condition is necessary.

21To see why the latter condition holds, for any m∗ ∈ NE(x, θ), let Ci(m∗ ) := {y ∈ X : ∃mi ∈
Mi such that y = g(mi , m∗

−i )}. Then Ci(x, θ) = ⋃︁
m∗∈NE(x,θ) Ci(m∗ ), and since x ∈ argmaxy∈Ci(m∗ ) ui(y, θ) for

all i and for all m∗ ∈ NE(x, θ), it follows that x ∈ argmaxy∈Ci(x,θ) ui(y, θ) for all i ∈ N .
22Point (i) follows from implementation; point (ii) from the fact that NE(x, θ) ⊆ NE(x, θ′ ).
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Definition 13. The set (A, F ) satisfies the safe-μ condition if there exist correspon-
dences G : X × � ⇉ X and Ci : X × � ⇉ X such that G(x, θ) ⊆ A(θ) and Ci(x, θ) ⊆
Li(x, θ) ∩ G(x, θ) for all i, θ and x ∈ F(θ), which satisfy the following conditions: if
θ, θ′ ∈ � and x ∈ F(θ) are such that Ci(x, θ) ⊆ Li(x, θ′ ) for all i, then (i) x ∈ F(θ′ ) and
(ii) G(x, θ) ⊆ G(x, θ′ ).

Theorem 4. The variable F is (A, k)-safe implementable only if the safe-μ condition is
satisfied. If, moreover, A is maximally safe, then

⋃︁
x∈F(θ) G(x, θ) =A(θ) for each θ.

The gap between comonotonicity and Definition 13 is analogous to the gap between
monotonicity and condition μ of Moore and Repullo (1990). Similarly, under the appro-
priate no-veto condition, the safe-μ condition can be shown to be sufficient for (A, k)-
safe implementation when k < n

2 . All the results in Section 4.1 would also hold under
the suitable adaptations of no unanimity and no total indifference, and, hence, a tight
characterization can be provided for general SCC in those environments.

This condition also identifies the exact source of the gap between strong and weak
comonotonicity when the SCC is non-single-valued: if, for some state θ, F(θ) contains
multiple allocations, say x, x′ ∈ F(θ), different subsets of A(θ) may be used to sustain
them, namely Gk(x, θ) and Gk(x′, θ). When x “climbs up” from θ to θ′, then it must be
that the x ∈ F(θ′ ) and that all Gk(x, θ) must also be acceptable at θ′. However, unless
this happens for all allocations in F(θ) (cf. point (ii) in Definition 5), we cannot con-
clude that A(θ) ⊆A(θ′ ), even under maximal (A, k)-safe implementation. We may only
conclude that some subset of allocations of A(θ) are a subset of A(θ′ ) (more precisely,
that Gk(x, θ) ⊆ Gk(x, θ′ ) ⊆ A(θ′ )). Clearly, A(θ) ⊆ A(θ′ ) would follow immediately if
Gk(x, θ) = A(θ) for all θ ∈ � and x ∈ F(θ), in which case in fact safe-μ boils down pre-
cisely to strong comonotonicity. However. when the Gk are strict sub-correspondences
of A, then the condition becomes much harder to check. For these reasons, we elect to
provide weak and strong comonotonicity as more transparent and easy to check condi-
tions.

Appendix C: On the relationship between safe implementation and

fault-tolerant implementation

In this appendix, we provides two examples to show that, despite their similar moti-
vation, the safe implementation and fault-tolerant implementation of Eliaz (2002) are
distinct and non-nested notions. We first recall the definition of fault-tolerant Nash
equilibrium.

Definition 14. A k-fault-tolerant Nash equilibrium (k-FTNE) for the instance (θ, k) is
a profile of messages m∗ ∈ M having the property that ∀i ∈ N , ∀mi ∈ Mi, ∀mD ∈ MD, and
∀D ⊆N such that |D| ≤ k,

ui
(︁
g
(︁
m∗

i , m∗
N\{D∪{i}}, mD

)︁
, θ

)︁ ≥ ui
(︁
g
(︁
mi, m

∗
N\{D∪{i}}, mD

)︁
, θ

)︁
.

Let 𝒞ℳk (θ) denote the set of k-FTNE in mechanism ℳ at state θ.
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The definition of k-fault-tolerant implementation (k-FTI) requires that the set of k-
fault-tolerant implementation coincide with the designer’s desired outcomes, as dic-
tated by the social choice correspondence (SCC) and, additionally. that the set of out-
comes that are reachable within k deviations from any such equilibria are also within
the SCC.

Definition 15. Let ⟨N , �, X , (ui )i∈N⟩ be an environment. The SCC F : � → 2X\{∅} is
k-fault-tolerant implemented by g : M →X if ∀θ ∈ �, ∀m∗ ∈ 𝒞ℳk (θ), (i) g(𝒞ℳk (θ)) = F(θ)
and (ii) g(B(m∗, k)) ⊆ F(θ).

Eliaz (2002) introduced two key conditions, k-monotonicity and weak k-
monotonicity, and showed that the first is necessary for k-FTI in the case of SCF, and
the second is necessary for SCC. (In the case of SCFs, the two notions coincide.)

Definition 16. A SCC F : � → 2X\{∅} is k-monotonic if, whenever x ∈ F(θ) and x /∈
F(θ′ ), there exists D ⊂N and ∃y ∈X such that |D| ≥ k+1, every i ∈M satisfies ui(x, θ) ≥
ui(y, θi ), and at least one player j ∈M satisfies uj(y, θ′

j ) > uj(x, θ′
j ).

Definition 17. A SCC F : � → 2X\{∅} is weakly k-monotonic if, whenever F(θ) ⊈
F(θ′ ), there exists D ⊆ N have at least k + 1 players and ∃y ∈ X such that, for every
player i ∈ D, there is an outcome xi ∈ F(θ) satisfying ui(xi, θ) ≥ ui(y, θ), and for at least
one of these players j ∈D, uj(y, θ′ ) > uj(xj , θ′ )

The next example shows that a non-(Maskin) monotonic SCC may be 1-FTI. This il-
lustrates three things, all of which were discussed in the main text: first, 1-FTI is possible
when safe implementation is not, regardless of the acceptability correspondence; sec-
ond, since 0-FTI coincides with Nash implementation, k-FTI need not imply (k−1)-FTI;
third, k-FTI cannot be seen as an extra desideratum on top of Nash implementation.

Example 6 (A Rule That Is Implementable in 1-Fault-Tolerant Equilibrium But Not
Nash Equilibrium). Take N = {1, 2, 3}, � = {θ1, θ2}, X = {a, b, c, d, e}, ui(x, θ2 ) = 0 ∀x ∈
X , ∀i ∈ N , and let utilities u(x, θ1 ) = (u1(x, θ1 ), u2(x, θ1 ), u3(x, θ1 )) of each outcome at
state θ1 be u(a, θ1 ) = (1, 1, 1), u(b, θ1 ) = (1, 0, 1), u(c, θ1 ) = (0, 1, 1), u(d, θ1 ) = (0, 0, 0),
and u(e, θ1 ) = (1, 1, 2). Finally, the SCC is F(θ1 ) = {a, b, c} and F(θ2 ) =X .

Note that this SCC violates (Maskin) monotonicity: since X = Li(e, θ1 ) = Li(e, θ2 )
for all i, monotonicity would require e ∈ F(θ1 ). Hence, this rule is not Nash imple-
mentable, and, thus, not safe implementable, for any acceptability correspondence or
k. Yet, the following mechanism achieves 1-FTI of this SCC: For each i, Mi = {1, 2, 3} and
g(m) is as in Table 1.

At state θ1, this mechanism induces the game given by Table 2.
First note that m = (1, 1, 1) is a 1-FTNE that induces a: under any unilateral devia-

tions of some of i’s opponents, message mi = 1 still yields a payoff at least as high as that
obtained from sending a different message, while at the same time ensuring outcomes
consistent with the SCC at that state (namely, b or c).
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Table 1. A 1-fault-tolerant implementing mechanism: 1 chooses the row message, 2 chooses
the column message, and 3 chooses the table message; the outcome g(m) induced by each mes-
sage profile is represented in the corresponding cell.

m2

1 2 3

m1 1 a c c

2 b d d

3 b d d

m3 = 1

m2

1 2 3

m1 1 c c c

2 b d d

3 b d d

m3 = 2

m2

1 2 3

m1 1 b c c

2 b d d

3 b d e

m3 = 3

Second, m = (1, 1, 2) induces c and is also a 1-FTNE: if any one opponent deviates,
no player can increase his/her utility by also deviating, and any unilateral deviation still
results in outcomes (a or c) consistent with the SCC at θ1.

The same is true of m = (1, 1, 3), which induces b. Further, it can be seen that there
are no other 1-FTNE in this game. Hence, each of the outcomes in F(θ1 ) is induced
as a 1-FTNE outcome, and unilateral deviations from any such equilibrium result in
outcomes within F(θ). Since implementation at state θ2 is trivial, it follows that this
mechanism 1-fault-tolerant-implements the SCC. ◊

We now turn to showing there are cases where safe implementation is possible, even
under the most restrictive case of perfect safety, while 1-FTI is not. To do so, we will
show that both 1-monotonicity and weak 1-monotonicity are violated.

Example 7. Let there be four players N = {1, 2, 3, 4}, three alternatives X = {a, b, c}, and
two states of the world, L and R, with the SCC such that F(L) = X while F(R) = {b, c}.
Then consider perfect safety, i.e., A(θ) = F(θ) for all θ (see Figure 4).

First notice that comonotonicity holds. To see this, we need to consider that a ∈ F(L)
but a /∈ F(R). Howevere, since L1(a, R) ∩ A(R) = X while L1(a, L) ∩ A(R) = {a, c}, we

Table 2. The induced game at state θ1.

m2

1 2 3

m1 1 (1,1,1) (1,0,1) (1,0,1)
2 (0,1,1) (0,0,0) (0,0,0)
3 (0,1,1) (0,0,0) (0,0,0)

m3 = 1

m2

1 2 3

m1 1 (1,0,1) (1,0,1) (1,0,1)
2 (0,1,1) (0,0,0) (0,0,0)
3 (0,1,1) (0,0,0) (0,0,0)

m3 = 2

m2

1 2 3

m1 1 (0,1,1) (1,0,1) (1,0,1)
2 (0,1,1) (0,0,0) (0,0,0)
3 (0,1,1) (0,0,0) (1,1,2)

m3 = 3
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Figure 4. Let F(L) =X =A(L) and F(R) = {b, c} =A(R). The preferences are represented top
to bottom. For instance, in state L, player 1 has the ordering a ≻ b≻ c.

have Li(a, R) ∩A(R) ⊈Li(a, L) ∩A(R) for some i and, hence, comonotonicity does not
require that a ∈ F(R). Further, as safe no-veto is not violated, F is (A, 1)-safe imple-
mentable with A(θ) = F(θ) for all θ.

However, 1-monotonicity does not hold. For it to hold, it must be that two players at
state R prefer some other common allocation to a, and one such agent reverses his/her
preferences at state L. However, a is worst ranked for 3 and 4 in both L and R, and,
hence, the only possible candidate is agent 2, who only prefers a to c in L. As neither
1 or 2 has a preference reversal around a and c from L to R, 1-monotonicity does not
hold. Since 2’s preferences do not change, the same logic also applies to show that weak
1-monotonicity does not hold either, as there is no preference reversal around the only
commonly dominated outcome c in any of the outcomes in F(L) for 1 and 2. ◊
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