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Probabilistic verification in mechanism design

Ian BaLL
Department of Economics, MIT
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We introduce a model of probabilistic verification in mechanism design. The prin-
cipal elicits a message from the agent and then selects a test to give the agent.
The agent’s true type determines the probability with which he can pass each test.
We characterize whether each type has an associated test that best screens out
all other types. If this condition holds, then the testing technology can be repre-
sented in a tractable reduced form. We use this reduced form to solve for profit-
maximizing mechanisms with verification. As the verification technology varies,
the solution continuously interpolates between the no-verification solution and
full surplus extraction.

KeywoRrbDs. Probabilistic verification, ordering tests, evidence.
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1. INTRODUCTION

In the standard paradigm of mechanism design, the principal elicits information from
the agents, but the principal cannot verify whether the agents are being truthful. In
many applications, however, claims about private information can be verified. Sellers
have long offered discounts to certain groups such as students, seniors, or veterans, and
sellers increasingly make targeted offers to different consumer segments. To verify a
buyer’s eligibility for an exclusive offer, many sellers use identity verification platforms
such as ID.me and SheerID. If a buyer claims to be eligible for a particular offer, he is
directed to a portal, which asks identifying questions or requests documentation, such
as a student ID or a company email address. Depending on the buyer’s responses, the
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platform’s proprietary algorithm either accepts or rejects the buyer’s claim. In other con-
texts, governments verify income reports to determine eligibility for means-tested pro-
grams. Insurers verify the legitimacy of insurance claims. None of these verification
systems is perfect—false claims sometimes go undetected. In this sense, verification is
probabilistic.

The goal of this paper is to introduce a tractable model of probabilistic verification.
A parsimonious model of probabilistic verification, directly generalizing Green and Laf-
font’s (1986) deterministic model, would specify for any types 6 and 6’ the probability
a(0'|6) with which type 0 can “pass” as type #'.! Call this function « the authentication
rate. The difficulty is that with unrestricted communication, the authentication rate is
generally endogenous. Whether type 6 can “pass” as type 6’ depends on what the prin-
cipal demands of an agent who claims to be of type ¢’, e.g., which questions must be
answered correctly or which documents must be provided.

We model probabilistic verification by endowing the principal with a set of pass—fail
tests. A test could be a particular set of questions or a request for certain documentation.
We represent a test by its type-dependent passage rate: type 6 can pass test 7 with prob-
ability 7(7|6). We assume that every type can intentionally fail any test. For example,
the agent could leave a question blank (whether or not he knows the answer) or decline
to provide the requested documentation (whether or not he has it).

The principal chooses how to utilize the testing technology within a mechanism.
Formally, we consider the following protocol. The principal elicits a type report from
the agent. Based on the report, the principal selects one test to give the agent. The agent
sees the test and privately chooses whether to try on the test. This choice is costless. If
the agent tries, then his passage probability depends on the test and his type, according
to the function 7. If the agent does not try, then he fails the test with certainty. The
principal observes whether the agent passes or fails—but not whether the agent tried—
and then makes a decision.

Our analysis proceeds in two parts—methodology and then applications.

In the first part of our analysis, we study whether there exists a canonical assignment
of a test to each type. For each type 6, we introduce an associated order on tests. Intu-
itively, test 7 is more 0-discerning than test ¢ if type 6 performs relatively better on test =
than on test ¢y, compared to every other type. The formal definition requires that there
is a “conversion” from 7-scores to i-scores that is fair for type 6 but disadvantageous for
all other types. This score conversion is similar to a Blackwell garbling of an experiment,
but our order neither implies nor is implied by Blackwell’s order.

We use our order on tests to simplify the principal’s implementation problem. Con-
sider two tests, 7 and ¢, such that 7 is more #-discerning than y. Theorem 1 says that
any social choice function that the principal can implement by giving test ¢ to type 6
can also be implemented by giving test 7 to type 6. We apply this logic repeatedly to
obtain Theorem 2: If each type 6 has an associated test that is most 6-discerning, then
there is no loss in assuming that the principal gives each type the associated test. In a

1For example, Caragiannis, Elkind, Szegedy, and Yu (2012) and Ferraioli and Ventre (2018) take this ap-
proach.
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contemporaneous paper, Ben-Porath, Dekel, and Lipman (2023) prove a related result
in their model of stochastic evidence acquisition; we compare our model with theirs in
Section 8.

If each type 6 has an associated most-6 discerning test, then the testing technology
can be represented by a single authentication rate: type 6 is authenticated as type ¢ if
and only if he passes the most #’'-discerning test. The principal’s design problem reduces
to a tractable optimization problem involving this authentication rate. An authentica-
tion rate that represents a testing technology in this way is called most-discerning. Not all
authentication rates are most discerning. We characterize the class of most-discerning
authentication rates. Our condition generalizes the conditions imposed in the litera-
ture on deterministic verification (Green and Laffont (1986)) and evidence (Lipman and
Seppi (1995), Bull and Watson (2007)).

For the second part of our analysis, we turn to applications, taking a most-discerning
authentication rate as a primitive. Unlike in models of deterministic verification, we
can use the Myersonian local approach. Consider a seller who can imperfectly verify
a potential buyer’s membership in different market segments. It is more difficult for
the seller to distinguish buyers who are in market segments with closer valuations. If
the seller has a single indivisible good, it is no longer optimal for the seller to post one
price. The seller prefers to charge higher prices to higher-valuation market segments. If
a buyer in a higher segment claims to be in a lower segment, there is a chance that he
is authenticated and charged a lower price. But there is also a chance that his misreport
is detected and he does not receive the good. Under the optimal price schedule, these
deviations are unprofitable.

To solve for profit-maximizing mechanisms in general quasilinear settings with ver-
ification, we derive a new expression for the virtual value that reflects the verification
technology. As verification ranges from uninformative to perfectly informative, the vir-
tual value increases from the classical virtual value to the true valuation. The associated
revenue-maximizing mechanism continuously interpolates between the classical, no-
verification solution and full surplus extraction.

The rest of the paper is organized as follows. Section 2 presents our model of testing.
Section 3 discusses our modeling choices. Section 4 introduces the discernment orders
and characterizes whether a single testing function suffices for all implementation. Sec-
tion 5 characterizes the class of most-discerning authentication rates. Section 6 solves
for revenue-maximizing mechanisms. Section 7 extends the model to allow for nonbi-
nary tests. Section 8 discusses related literature. The conclusion is Section 9. Proofs are
in the Appendix.

2. MODEL

We model probabilistic verification by endowing the principal with a testing technology.
The principal can commit to use this technology (and communicate with the agent)
however she wishes.
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2.1 Setting

Principal-agent environment There are two players: a principal (she) and an agent
(he). The agent has a private type 6 € ®, drawn from a commonly known distribution.
The principal controls a decision x € X.?> The agent and the principal have bounded,
type-dependent utilities u(x, 8) and v(x, 0), respectively. We extend these functions lin-
early to A(X) x 0.

Verification There is a testing technology (7, 7), which consists of a set T' of pass—fail
tests and a passage rate

a: T x0—][0,1],

where 7(7]|0) denotes the probability with which type 6 can pass test 7. The spaces X,
0, and T are assumed to be Polish spaces.

The principal can give the agent one test from the set 7.* The agent observes the
selected test and chooses whether to try on the test. This choice is costless. If the agent
tries, his passage probability is determined by 7. If the agent does not try, then he fails
with certainty. The principal observes the test score (“pass” or “fail”), but not whether
the agent tried. Thus, there is moral hazard as well as adverse selection. In Section 3, we
discuss why this modeling choice is natural in many applications. Section 7 considers
tests with more than two scores.

Mechanisms and strategies The principal can commit to an arbitrary dynamic mecha-
nism. We consider protocols of the following form, shown in Figure 1. First, the principal
elicits a message from the agent. Based on the message, the principal selects a test and
then sends a message to the agent. The agent sees the realized test and the message and
then privately chooses whether to try on the test. Nature draws the test score: “pass”
(denoted 1) or “fail” (denoted 0). The principal observes this score—but not whether
the agent tried—and then makes a decision.

Formally, a mechanism is a tuple (M, M’; t, ¥/, g) consisting of message spaces M
and M’ for the two rounds of messaging, a testing rule 1: M — A(T), a messaging rule
r'* M xT— A(M'),and an outcome rule g: M x T x M’ x {0, 1} - A(X). A strategy for

2Transfers could be one component of the decision x.

3We further assume that the primitives , v, and 7 are Borel measurable and that mechanisms are uni-
versally measurable. The details are in Appendix A.13.

41f the principal can give multiple tests, then the resulting compound test can be included in 7. A com-
pound test may have more scores than “pass” and “fail.” Section 7 extends the model to allow for nonbinary
tests.
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the agent is a pair (r, a) consisting of a messaging strategy r: ® — A(M) and an action
strategy a: ©® x M x T x M’ — [0, 1], which specifies the probability with which the agent
tries on the test he is given.

2.2 Implementation

We introduce two social choice objects. A social choice function is a map from 0 to
A(X), which specifies a decision lottery for each type. To keep track of which test is
given, we define an extended social choice function to be a map from 0 to A(T x X),
which specifies for each type a joint lottery over tests and decisions. A mechanism and
a strategy together implement an (extended) social choice function f if (i) the strategy
is a best response to the mechanism and (ii) the composition of the mechanism and the
strategy induces f. An (extended) social choice function is implementable if there exist
amechanism and a strategy that implement it.

We show below that it is without loss to focus on a special class of direct mechanisms
that induce the agent to (i) report his type truthfully and (ii) try on whichever test he is
given. In these mechanisms, the principal’s message to the agent is omitted. Formally,
a canonical mechanism is a pair (¢, g) consisting of a testing rule : ® — A(T) and an
outcome rule g: ® x T x {0, 1} — A(X), which specifies a decision lottery as a func-
tion of the reported type, the test given to the agent, and the agent’s score on that test.
Given such a mechanism, a strategy for the agent is a pair (, @) consisting of a reporting
strategy r: ® — A(®) and an action strategy a: ® x ® x T — [0, 1], which specifies the
probability with which the agent tries as a function of his true type, his reported type,
and the test. An (extended) social choice function f is canonically implementable if f is
implemented by some canonical mechanism (¢, g) and some strategy (r, a) in which r is
the identity and a(6, 6, 7) = 1 for all types 6 and all tests 7 in supp £(0). In this case, we
say that (¢, g) canonically implements f.

ProprosiTioN 1 (Revelation Principle). Every implementable (extended) social choice
function is canonically implementable.

The proof has two parts. First, a standard argument (see Myerson (1982)) shows that
every implementable social choice function can be implemented by a truthful and obe-
dient mechanism. The second part is specific to testing. Consider a truthful, obedient
mechanism. Whenever the principal recommends the agent to not try on a test, we
modify the mechanism as follows. The principal recommends that the agent try on the
test. Then, if the agent passes that test, the principal selects the decision as if the agent
had failed. Now passing and failing result in the same decision. The agent is willing
to follow the recommendation, and the resulting outcome is unchanged. Since every
type can fail every test, this modification of the mechanism introduces no new devia-
tion outcomes. Since the principal always recommends that the agent try, the principal’s
message conveys no information, and hence can be dropped.

3. DISCUSSION OF THE MODEL

We discuss two important features of the model: the agent’s choice of whether to try on
the test, and the principal’s choice of a testing rule.
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3.1 Trying on the test

When the principal gives the agent a test, the agent privately chooses whether to try
or intentionally fail. If the agent fails, the principal cannot observe whether the failure
was intentional. This assumption is reasonable in our motivating applications.® If the
test asks the agent a question and the agent leaves the question blank, then the prin-
cipal cannot tell whether the agent knows the answer. On an aptitude test, both high-
and low-ability types are able to perform poorly.® If the agent does perform poorly, the
principal cannot tell whether the agent is capable of performing well. Finally, if the test
requests a document and the agent does not provide it, then the principal cannot tell
whether the agent has the document. Indeed, our model nests previous models of de-
terministic hard evidence. In those models, the agent’s choice to present evidence that
he possesses is an “inalienable action” (Bull and Watson (2007, p. 76)).

The importance of allowing intentional failure is illustrated in the following example.

ExamPLE 1 (Passing vs. Failing). Consider the problem of allocating a single desirable
good to an agent with two possible types, 6; and 62. There is a single test. If the agent
tries on this test, then type 0; passes with certainty and type 6. fails with certainty. To
allocate the good to type 60; only, the principal can give the agent the good if and only
if he passes the test. On the other hand, the principal cannot allocate the good to type
0, only. If the principal gives the good to the agent if and only if he fails the test, then
type 6; would intentionally fail to receive the good.

The logic of Example 1 holds more generally. Without intentional failing, “pass” and
“fail” would be arbitrary, interchangeable labels. On any test, if type 6; is more likely
to pass than type 63, then type 6, is more likely to fail than type 6;. Thus, without in-
tentional failing, each test unavoidably links the ability of type 6; to mimic 6, with the
ability of type 6, to mimic 6.

Finally, we discuss two alternative assumptions about the agent’s control over the
test result: (i) observable skipping and (ii) exogenous scores. Under (i), the agent cannot
intentionally fail a test, but he can “skip” the test; skipping is observed by the principal.
Under (ii), the agent can neither intentionally fail nor skip a test. These assumptions are
nested in terms of the power afforded to the principal. Every social choice function that
is implementable under our model is also implementable under (i),” and every social

5In their model of adaptive testing, Deb and Stewart (2018) make the same assumption about the agent’s
performance on each “task.” The principal commits to an adaptive sequence of binary tasks and then
assigns a final verdict—pass or fail. Each agent type wants to pass. In our model, by contrast, the principal
chooses from a richer space of decisions, and different agent types have different preferences over those
decisions.

6Myerson (1984, p. 74) gives the example of playing the piano. A good pianist can intentionally play
poorly, but a bad pianist cannot play well.

“Given a canonical mechanism that is truthful and obedient in our model, the induced social choice
function can be replicated under (i) by treating “skip” as “fail” on each test.
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FiGuRre 2. Directed graph representing a {0, 1}-valued authentication rate.

choice function implementable under (i) is also implementable under (ii).8 In Exam-
ple 1, allocating the good only to type 6, is implementable under both specifications
(i) and (ii).?

3.2 Test choice

To cleanly separate verification from communication, we explicitly model the princi-
pal’s choice of a test as part of the mechanism. As a result, the effective authentication
rate faced by the agent is endogenous. Treating the authentication rate as an exogenous
primitive can introduce difficulties, as illustrated in the following example, adapted
from Green and Laffont (1986).

ExampLE 2 (Exogenous Authentication Rate). There is a single agent with three possible
types, denoted 6, 02, 03. In Figure 2, the directed graph (shown twice) represents the
verification technology: there is an edge from 6 to ¢’ if type 6 can “pass” as type ¢'. The
principal decides whether to allocate a good to the agent. Every type wants the good.

Each copy of the graph illustrates a social choice function. On the left, this function
allocates the good to types 6; and 602 (which are shaded). This cannot be implemented
by giving the good to the agent if and only if he passes as type 6; or as type 6,. Then type
03 would pass as type 60; to get the good as well. Instead, the principal must give the
good to the agent if and only if he passes as type 6,. Types 6; and 6, can do so, but type
03 cannot. On the right, the social choice function allocates the good to types 6, and 63
(which are shaded). Symmetrically, this can be implemented only by giving the good to
the agent if and only if he passes as type 65.

According to the directed graph, type 6; can “pass” as type 62. But type 6; can copy
type 02’s equilibrium strategy only in the equilibrium of the left mechanism (where type
0> passes as type 62), but not in the right mechanism (where type 6, passes as type 63).

8Under (i), the analogue of Proposition 1 still holds; the argument is essentially the same as in our model,
with “skipping” in place of “intentionally failing.” Under canonical implementation, the agent never skips
a test, so the incentive constraints are preserved if the agent’s option to skip a test is removed.

9The same social choice functions are implementable under (i) and (i) whenever there is a decision that
all types consider to be the worst (since this worst decision can be used to punish skipping). This condition
is called TIWO for “type-independent worst option” in Strausz and Schweighofer-Kodritsch’s (2023) model
of deterministic evidence. For an example of a social choice function that is implementable under (ii), but
not under (i), reinterpret their Example 1 (Strausz and Schweighofer-Kodritsch (2023, p. 16)).
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As Example 2 illustrates, the authentication rate «(-|-) implicitly (a) introduces a fam-
ily of tests, and (b) assigns to each type 6 a test, so that “passing” as type # means passing
the test assigned to type 6. There is no guarantee, however, that this is the “right” assign-
ment of tests to types. In Example 2, type 62 must be given different tests to implement
different allocation rules. We model this test choice as part of the principal’s protocol.
Moreover, our model allows for an unrestricted test set (possibly larger than the type
space), unrestricted communication, and test randomization.!?

4. ORDERING TESTS

In this section, we introduce a family of orders on tests. We use these orders to identify
a smaller class of testing rules that suffices for all implementation.

4.1 Discernment orders

For a fixed type 6, our order captures whether one test is better than another at distin-
guishing type 6 from all other types.

DerINITION 1 (#-Discernment). Fix a type 6. Test 1 is more 0-discerning than test i,
denoted 7 > ¢, if there exist probabilities k; and k¢ with k; > k¢ such that:

(i) 7(7|0)k1+ (1 — 7 (7|60))ko = 7(|6);
(i) 7 (7|0)k1+ (1 — 7 (7|0")ko < 7(|6') for all types 6’ with 6’ # 6.

The interpretation is that after the agent takes test 7, his score s, € {0, 1} can be con-
verted into a score sy, € {0, 1} according to the transition probabilities P(s; = 1|s, =1) =
ki1 and P(sy = 1|s; = 0) = ko. The inequality k1 > ko ensures that passing (rather than
failing) test  weakly increases the converted pass probability. Condition i says that this
score conversion is fair for type 6. If type 6 tries on test 7 and his score is converted, he
is just as likely to pass as if he tries on test ¢ directly. Condition (ii) says that this score
conversion is weakly disadvantageous for any other type 6'. If type ¢’ tries on test 7 and
his score is converted, he is weakly less likely to pass than if he tries on test ¢ directly.

In the language of statistical hypothesis testing, we can think of failing a test as re-
jecting the null hypothesis. Our definition requires that the conversion of test 7 con-
stitutes an hypothesis test of the null # against the alternative © \ {6} with significance
1 — w(¢|6) that is uniformly more powerful than test . The requirement that k; > ko
preserves incentives, which are not relevant in the statistical framework.

THEOREM 1 (Test Replacement). Fix a type 0 and tests T and  such that v =¢ . If a
social choice function is canonically implemented by a mechanism (t, g) in which t(6) =
¥, then it is also canonically implemented by some mechanism (¢, g') in which t'(0) = 7.

10Test randomization is useful if different tests are needed to deter deviations by different types; see
Appendix A.2 for an example.
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Here is a sketch of the proof. Start with a canonical implementation in which type 6
is given test . Adjust the mechanism after the report 6 as follows. The principal gives
the agent test 7 and then converts the agent’s score s, into a new score sy using the
transition probabilities k; and k¢. Then the principal makes the decision that she would
have made in the old mechanism after score sy, on test i (following report 6).

This new mechanism implements the same social choice function. Suppose that
type 6 reports truthfully and tries on test 7. By (i), he will get the same decision as in
the equilibrium of the original mechanism. Suppose another type 6’ reports type 6 and
tries on test 7. By (ii), he will get a decision that he could have gotten in the original
mechanism by reporting type 6 and then trying on test ¢ with some probability. The
inequality k1 > k¢ ensures that intentionally failing test 7 also yields a decision that was
achievable in the original mechanism.

For each fixed type 0, the 6-discernment order > is neither stronger nor weaker
than Blackwell’s (1953) order. Blackwell’s order takes the same form as Definition 1 ex-
cept (a) the inequality k1 > kg is dropped, and (b) the inequality in (ii) is strengthened
to equality. Blackwell’s order is not suited to our setting because it does not consider
the agent’s incentives to intentionally fail a test. Indeed, Blackwell’s order is invariant to
relabeling the realizations “pass” and “fail.” Our #-discernment order is not.

Like Blackwell’s order, each 6-discernment order >, is reflexive and transitive but
not generally antisymmetric. Tests 71 and 7 are 0-equivalent, denoted 11 ~¢ 72, if
T1 > 72 and T2 >¢ 1. If two tests have the same passage rates, then they are clearly
0-equivalent. We show that the converse holds except in the special case that neither
test can screen any other type away from type 6. Formally, type 0 is minimal on test 7 if
7(7|0) < w(7|0') for all types ¢'.

ProprosITION 2 (6-Discernment Equivalence). Fix a type 0. Tests 1 and T, are 0-
equivalent if and only if (a) w(71|-) = w(72|) or (b) type 0 is minimal on 1 and on 7.

4.2 Implementation with most-discerning testing

Theorem 1 is particularly useful if, for a given type 6, there is a single test that can replace
every other test.

DEerINITION 2 (Most Discerning). A test 7 is most 6-discerning if = =4 ¢ for every ¢
in T. A function ¢: ® — T is most discerning if for each type 6 the test ¢(0) is most
0-discerning.

Whether a test is most 6-discerning depends on the other tests in 7. The only test
that is more 6-discerning than every test is the perfect test 7y that exactly identifies
whether the agent’s type is 0, i.e., w(79|0') = [0’ = 6], where [-] is the indicator function
for the predicate it encloses.

To state the main result, we define a decision environment to consist of a decision
set X and a utility function u: X x ® — R for the agent.

THEOREM 2 (Most-discerning implementation). Fix a type space ® and a testing tech-
nology (T, m). For a testing function t: ® — T, the following are equivalent:
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(i) fis most-discerning.

(ii) In every decision environment (X, u), every implementable social choice function
can be canonically implemented with testing rule t.

The forward implication from condition i to condition (ii) says that a most-discern-
ing testing function suffices for all implementation problems. In the proof, for each
type 6, we apply the procedure from Theorem 1 to replace any test given to 6 with the
test 7(6).

The backward implication from condition ii to condition i confirms that the most-
discerning property is the right one. If 7 /4 i, then replacing test ¢ with test = for type 6
introduces a new deviation outcome for some type. The proof constructs a decision
environment in which this deviation outcome is profitable.

Even if the testing technology does not admit a most-discerning testing function,
we can still use the replacement theorem (Theorem 1) to reduce the class of tests that
need to be considered. Suppose there is a set 7'(6) of tests with the following property:
for every test ¢, there is some test 7 in f“(()) such that 7 >=¢ . Then there is no loss in
assuming that the principal gives type 6 only tests in 7'(6), though the principal may
randomize over tests in 7'(6). See Appendix A.6 for a formal statement.

ReEMARK 1 (Discernment Orders Under Alternative Specifications). Under the two al-
ternative testing specifications described in Section 3.1—observable skipping and ex-
ogenous scores—the appropriate analogue of the -discernment order >4 is Blackwell’s
order, for each 6 in ®. With this redefinition of the discernment orders, it can be shown
that Theorem 1 and Theorem 2 go through under each alternative specification.

4.3 Sufficient conditions for discernment orders

Checking whether one test 7 is more-6 discerning than another test ) amounts to ver-
ifying the feasibility of the system of linear inequalities in Definition 1. Here, we give a
sufficient condition for #-discernment in terms of relative performance.

ProposITION 3 (Relative Performance). Fix a type 6 and tests T and .1

(i) Suppose w(7|0) > w(f|0) > 0. Test T is more 0-discerning than test i if

’/'T(Tle/) - 7T(l//|9/)
w(r]0) ~ w(¢|6)’

forall o' € 0©. 1)

(i) Suppose 7(7|0) < w(|0) < 1. Test 7 is more 0-discerning than test i if
1 —a(7|6) - 1—m(y|6)
1—m(7]0) = 1—7(4]0)

'The two (nonexclusive) cases exclude the following two edge cases. If w(7|6) > m(|6) =0, then 7 >=¢ .
If w(7]6) < w(y|0) =1, then 7 %4 ¢, provided that 7 (|-) is nonconstant.

, forall§ €. )
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In the first case, where type 6 is more likely to pass test r than test ¢, test 7 is more
0-discerning than test i if for each type ¢’ the relative passage rate of type ' compared
with type 6 is lower on test 7 than on test . In the second case, where type 6 is more
likely to fail test 7 than test ¢, test 7 is more #-discerning than test ¢ if for each type ¢’
the relative failure rate of type 6’ compared with type 6 is higher on test 7 than on test ¢.

REMARK 2 (Sufficient Condition for Most #-Discerning). In view of Proposition 3, a sim-
ple sufficient condition for test 7 to be most §-discerning is that r maximizes = (-|0) and 7
minimizes 7 (-|0") for each type 6’ with 6’ # 6. That is, among all tests in T, test 7 is one
that type 6 is most likely to pass but every other type is most likely to fail.

5. TESTING IN REDUCED FORM

If the testing technology admits a most-discerning testing function, then the principal’s
design problem can be represented as a tractable optimization problem involving a sin-
gle authentication rate «. In this section, we analyze this reduction.

Suppose that the testing technology (T, 7) admits a most-discerning testing func-
tion ¢: ® — T. By Theorem 2, there is no loss of generality in restricting the principal to
using 7 as the testing rule. With this testing rule, the principal selects two decisions for
each report #—the decision, g; (#), if the agent passes test 7(8') and the decision, go ('),
if the agent fails test 7(6'). Suppose type 6 reports type ' and then tries on test #(6'). With
probability 7 ((6')|0), he passes and gets g1 (6’). With probability 1 — 7 ((6’)|0), he fails
and gets go(6'). Define the induced authentication rate a by

a(0'10) = mw(1(0)]6), foralle, o 0. 3)

For any reduced outcome rule g = (go, g1): ® — A(X) x A(X), define the agent’s asso-
ciated utilities by

u(0'16) = a(6'16)u(g1(6'), 6) + (1 — a(6'16))u(go(6'), 6), forall g, 6’ € ®.
The principal’s problem is to choose a reduced outcome rule g to solve

maximize E[a(60]6)v(g1(6), 6) + (1 — a(6]6))v(g0(6), 6)] @
subjectto  u(6|6) > u(6'|6) v u(go(6'), 6), forallg, ¢ €0.

The constraints capture truth-telling and obedience. They require that for each type 0,
reporting 6 and trying on test () is weakly preferred to reporting any type ¢’ and either
trying on test 7(#') or intentionally failing it. In particular, with ¢’ = 6, the constraint
ensures that type 6 weakly prefers to try on test 7(9) rather than intentionally failing it.
In contrast to models of exogenous lying costs,'? here the effective cost of misreporting

12In models of lying costs, reports have literal meanings. The agent pays a cost c(#'|6) if he reports ¢’
when his true type is 6. See, for example, Lacker and Weinberg (1989), Maggi and Rodriguéz-Clare (1995),
Crocker and Morgan (1998), Kartik, Ottaviani, and Squintani (2007), Kartik (2009), and Deneckere and Sev-
erinov (2022). Within mechanism design, Kephart and Conitzer (2016) show that if the lying cost function
satisfies the triangle inequality, then there is no loss in restricting to truthful equilibria.
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is determined jointly by the authentication rate and the principal’s choice of decisions
when the agent is not authenticated.
The approach described above motivates the following definition.

DEerINITION 3 (Most-Discerning Authentication Rate). An authentication rate « is most-
discerning if there exists a testing technology (7, 7) with a most-discerning testing func-
tion 7 such that

a(0'160) =mw(1(0)|6), foralle, o 0. (5)

If « is most discerning, then we can directly study the program (4), with the assur-
ance that it represents the designer’s full problem for some testing technology.

Now suppose that an arbitrary authentication rate « is specified directly; for exam-
ples of this approach, see Caragiannis et al. (2012) and Ferraioli and Ventre (2018). As
long as communication is unrestricted, we believe the natural interpretation of a primi-
tive authentication rate « is that for each report ' there is an associated test, which each
type 6 can pass with probability «(6'|0). Formally, the principal has available the testing
technology (T¢, 7“), defined by

Ta={73/10/€®}, 77“(7(0,‘/|0)=a(0’|0). (6)

If this construction is applied to Example 2, then the testing function 6 — 7§ is not most
discerning.

REMARK 3 (Most Discerning). It is easily verified that an authentication rate « is most
discerning if and only if, under the associated testing technology (T, 7%), the testing
function 6 — 7¢ is most discerning.!® Therefore, an authentication rate « is most dis-
cerning if and only if for all distinct types 6 and ¢', we have 7§ >4 7§, i.e., there exist
ko=ko(0, 0)and k1 =k1(6, 8') with 0 < kg < k; < 1 satisfying

a(0]0)k1 + (1 — a(6]6))ko = a(6']6),

W]
a(6]6")ky + (1 —a(6]6"))ko < a(6'|6”), forall6” <O\ {6}.
By Remark 3, checking whether an authentication rate « is most-discerning amounts
to verifying whether a particular system of linear inequalities is feasible. We now give a
simpler characterization of whether an authentication rate « is most-discerning, under
one additional assumption on «.

ProrosiTION 4 (Most-Discerning Characterization). Let « be an authentication rate
satisfying a(6|0) > max{a(60'|0), «(6|6')} forall 6, &' € O. Then a is most discerning if and
only if

a(603]602)a(602]61) < a(63]601)a(62]62), forall 61, 6>, 63 € O. 8)

131f there exists a testing technology (7, 7) with a most-discerning testing function 7 that satisfies (5),
then for all distinct types 6 and ¢, we have 7§ ~ 7(6) =g £(6') ~g 75
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If «(6]6) =1 for all types 6, then it follows from Proposition 4 that « is most-
discerning if and only if « is supermultiplicative: for all types 61, 62, 63, it is more likely
that 0, is directly authenticated as type 63 than that type 6, is authenticated as type 6-,
and type 6, is (independently) authenticated as type 63.

To be sure, the principal’s design problem cannot always be reduced to an opti-
mization problem of the form (4). If the testing technology does not admit a most-
discerning testing function, then the full protocol from Figure 1 must be considered.!*
Similarly, if an authentication rate « is not most discerning, then a solution of (4) need
not be optimal among all dynamic mechanisms that use the associated testing technol-
ogy (T, =*). Still, there are many settings that can be reduced to the program in (4). We
conclude this section with a few examples.

ExampLE 3 (Evidence Verification With Error). Suppose that each type 6 has a distinct
piece of evidence ey. The agent chooses whether to present the evidence he possesses.
The principal has a system to check whether the presented evidence matches what was
requested. A mismatch is detected with probability 1 — &, where 0 < & < 1.

For each type ¢, let ¢ denote the test that requests evidence ey . The agent passes
this test if he presents a piece of evidence, and the system does not detect a mismatch
between the presented evidence and ey. On this test, type 6 can “try” by presenting
evidence ey or “intentionally fail” by presenting no evidence. The associated passage
rate is given by

1 ife=¢,

m(1y]0) = ifo40

The map 6 — 74 is most discerning; to see this, check the sufficient condition in Re-
mark 2. The authentication rate representing this technology is analyzed in Dziuda and
Salas (2018) and Balbuzanov (2019).

ExaMPLE 4 (Semimetric Authentication Rate). Let d be a semimetric on the type
space ©.'° Consider the authentication rate « defined by

a(0']6) = exp{—d(0, 0')).

The interpretation is that types that are closer in the semimetric d are more similar, and
hence are more difficult to distinguish.'® Using Proposition 4, it is easy to check that «
is most discerning.

EXAMPLE 5 (Separate Verifiable and Payoff Components). Let ® = 0% x ®!, with a
generic type denoted by 0 = (6°, '). Let a® be a most-discerning authentication rate

14In many cases, the class of testing rules can still be reduced; see Appendix A.6.

15Unlike a metric, a semimetric does not require that d(6, 6') # 0 for 6 £ ¢'.

1675 a special case, suppose ® = R¥ and d is induced by a norm. The resulting class of functions « is ax-
iomatized in Billot, Gilboa, and Schmeidler (2008). They interpret these functions as measures of similarity
in their model of belief-formation through similarity-weighted averaging.
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on 0. We obtain a most-discerning authentication rate « on © by defining
a(6°, 616°, 61) = a°(8°]6°),

for all 6%, §° € ®° and all ', §' € ®!. Think of 6° as a verifiable attribute, and 6' as
an unverifiable payoff type. Reuter (2023) considers this structure in a model of partial
verification. The prior distribution over ©° x ®! determines how informative the agent’s
verifiable attribute is about his payoff type. For example, the verifiable attribute could
indicate whether the agent is a student, and the valuation distribution among students
may be different from the valuation distribution among nonstudents.

ExamPLE 6 (Partial Verification). Suppose that the authentication rate « is {0, 1}-valued.
For each type 6, let M (0) = {6’ € ® : «(60'|0) = 1}. Hence, type 6 can be authenticated as
any type in M (6). Following Green and Laffont (1986), suppose that each type can be
authenticated as himself, i.e., @(6|6) = 1 for all 6. In terms of M, (8) becomes

93€M(02) & 92€M(91) EESS 93€M(91).

This is exactly Green and Laffont’s (1986) nested range condition. Under this condition,
they argue that the revelation principle is valid.

6. APPLICATIONS: PROFIT-MAXIMIZATION WITH VERIFICATION

As an application of the reduced-form representation of the principal’s design problem,
we solve for profit-maximizing mechanisms with verification in a few classical settings.

6.1 Setting

Authentication rate The type space is an interval ® = [0, 6], where 6 > 0 > 0. We rep-
resent the verification technology by a most-discerning authentication rate «. Assume
that « takes the exponential form

)
a(0'16) = eXp<_Vo' A(&)df‘), forallg, 6 €O, 9

for some continuous function A: [6, 8] — R... It is easily verified that this function «
is most discerning. The exponential authentication rate allows for a cleaner character-
ization of optimal mechanisms. With other most-discerning authentication rates, ad-
ditional regularity conditions are needed to ensure that global deviations are not prof-
itable; see Appendix A.11.

The parameter A(6) quantifies the local precision of the verification technology near
type 6. The function «(6|-) has a kink at type 6 if and only if A(8) > 0. Figure 3 plots the
authentication rate when A(60) = 1 for all 6. The plot shows the authentication probabil-
ity, as a function of the agent’s true type, for two fixed reports 6’ and 6".
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F1GURE 3. Exponential authentication rate.

Quasilinear environment The agent’s type 6 € O = [0, 6] is drawn from a distribution
function F with strictly positive density f. The principal allocates a quantity g € O C R+
and receives a transfer ¢ € R.!7 The set Q will be either [0, 1] or R, depending on the
application. Utilities for the agent and the principal are given by

u(g,t,0)=06g—t and v(q,t)=t—c(q),

for some weakly convex cost function c¢: Q — Ry. For concreteness, we interpret the
principal as the seller of a good and the agent as a potential buyer.'® The agent’s type
represents his market segment, which the principal can imperfectly verify. To avoid the
difficulties of mechanism design with multi-dimensional types, we make the stylized
assumption that the agent’s market segment pins down his valuation. With the specified
authentication rate, it is more difficult for the seller to distinguish buyers who are in
market segments with closer valuations.

The agent is free to walk away at any time, so we impose an ex post participation
constraint.!? If the principal could impose arbitrarily severe punishments for failed au-
thentication, then probabilistic verification would be essentially as effective as perfect
verification; see Caragiannis et al. (2012).

Since «(6|6) = 1 for all 6, the agent is always authenticated if he is truthful. There-
fore, failed authentication is off path. Given the ex post participation constraint, we
may assume without loss that if the agent fails to be authenticated, then the princi-
pal excludes him—the agent pays nothing and does not get the good. Formally, we set
go(0) = (0, 0) for all §, and we optimize over the decision rule g;. Denote the quantity
and transfer components of g; by ¢ and ¢.

17The pair (g, t) corresponds to the decision x in the general model. Throughout Section 6, ¢ always
denotes transfers (and we make no direct reference to tests).

18An alternative interpretation of this setting is that the principal is the procurer of a good who can
imperfectly verify the agent’s production costs.

19Formally, after the agent observes the test result, he has the right to walk away, free and clear, with
no payment obligation. This assumption rules out upfront payments like those used in Border and Sobel
(1987).
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The principal selects a quantity function g: ® — Q and a transfer function#: ® - R
to solve

7
maximize /[t(@)—c(q(@))]f(f))dﬁ
0

10
subjectto 6g(6) —1(6) > a(6'|0)[0g(0') —t(6')], forallg, §' c® 1o

0q(0) —t(6) >0, forall6e®.

Here, the constraints from (4) take a simple form because u(go(6'), §) = 0 forall 6 and ¢'.
These constraints guarantee ex post participation.?°

6.1.1 Virtual value We derive a new expression for the virtual value in this quasilinear
setting with verification. In the classical setting without verification, the envelope the-
orem pins down (almost everywhere) the derivative of the agent’s indirect utility func-
tion U in terms of the allocation rule: U’(6) = ¢(8). Hence,

0 ]
U(9)=U(9)+/; q(g)dnge g(é) dé. an

With verification, the derivative of the agent’s indirect utility function U is no longer
pinned down by the quantity function because of the kink in «(6|-). Instead, the enve-
lope formula gives the differential inequality?!

q(0) = MO)U(0) <U'(0) < q(0) + A(O)U(6). (12)

This differential inequality depends only on the local behavior of @ around the diago-
nal, which is captured by the function A. Indeed, the left and right derivatives of the
function «(6|-), evaluated at 6, equal A(#) and —A(0), respectively. The greater the local
verification precision A(6), the more permissive is the inequality in (12).

The lower bound in (12) can be shown to imply the bound

[}
Uo) > fe e AR gy g (13)

The right-hand side of (13) solves the differential equation U’(0) = ¢q(8) — A(6)U ().
Since « takes the exponential form in (9), the integrand in (13) reduces to «(£|0)g(¢).
We will use this simpler expression below, but remember that the solution is pinned
down by the envelope formula, not by global deviations.

It is optimal to choose U so that (13) holds with equality. After substituting this
choice of U into the objective and changing the order of integration, the principal’s ob-
jective can be expressed as a linear functional in g. The coefficient on ¢(#8) is the virtual

20Since go(0') = (0, 0) for all ¢, the agent gets his outside option whenever he fails to be authenticated.
So in this case, the constraints in (4) imply the ex post participation constraints.

21See Carbajal and Ely (2013) for a general characterization of indirect utility functions, when the agent’s
primitive utility function is kinked. Carbajal and Ely (2016) apply this characterization in a model of
reference-dependent utility.
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\/alue Oftype 6:
(2] = _(1 ’ d
0 — 0 - 0 .

Myerson’s virtual value is derived similarly in the no-verification problem, using (11) in
place of (13). Myerson’s virtual value can be expressed symmetrically as

L
£(0)

The virtual value of type 0 captures the marginal revenue from allocating to type 6. It
has two parts. First, the principal can extract the consumption utility 6 from type 6. Sec-
ond, the allocation pushes up the indirect utility of each type £ with £ > 6. This marginal
effect on type &, which equals 1 (without verification) and «(6|¢) (with verification), is
then integrated against the relative density f(£)/f(0). Comparing the virtual values, we
immediately see that

0
M) =6 / f(&de.
7]

oM (0) < 9(8) < 0.

The virtual value ¢(6) tends toward these bounds in the limiting cases. As A converges
to 0 pointwise, ¢(6) converges to ¢ (6) for each type 6. Conversely, as A converges to co
pointwise, ¢(60) converges to 6 for each type 6.

Below, we will characterize optimal mechanisms under the assumption that the vir-
tual value ¢ is increasing. This is a joint assumption on the type distribution and the
authentication rate. If A(6) = A for all 6, then the virtual value has a simple expression
for some standard distributions. In particular, for both uniform and exponential distri-
butions, the virtual value is strictly increasing.

6.2 Optimal mechanisms

We find the optimal mechanism in two classical problems.

6.2.1 Nonlinear pricing For nonlinear pricing (Mussa and Rosen (1978)), the quantity
space is Q = R;. Assume that the principal’s cost function c satisfies the standard as-
sumptions: ¢'(0) = 0, the derivative ¢’ is strictly increasing, and lim,_, o ¢'(q) > 6. Say
that the optimal mechanism is essentially unique if all optimal mechanisms agree at
almost every type.

ProposiTION 5 (Optimal Nonlinear Pricing). Assume that the virtual value ¢ is weakly
increasing. The optimal quantity function q* and transfer function t* are essentially
unique and given by

0

d(q"(0) =e(0)y,  r(0)=0g%(0) — /0 a(€]0)q" (€)dé.

The optimal allocation rule has the same form as in the classical case, except the new
virtual value appears in place of the classical virtual value. Transfers are determined by
the indirect utility function U, which is given by the minimal solution of (13).



1264 Ball and Kattwinkel Theoretical Economics 20 (2025)

Each type 0 receives the quantity that is efficient for type ¢(0) . Therefore, quantity
is distorted below the efficient level for every type except 6. As the verification preci-
sion A increases pointwise, downward distortion is attenuated. In the limit of perfect
verification, the good is allocated efficiently and the principal extracts the full surplus.

6.2.2 Selling a single indivisible good For a single indivisible good (Riley and Zeck-
hauser (1983)), the quantity space is Q = [0, 1]. Here, quantity is interpreted as the prob-
ability of allocating the good. Hence, c(q) = cq, where c is the cost of producing a single
good. Assume 0 < ¢ < 0.

Without verification, the profit-maximizing mechanism is a posted price. With veri-
fication, the seller charges different prices to consumers in different market segments.

ProposiTiON 6 (Optimal Sale of a Single Good). Assume that the virtual value ¢ is
strictly increasing. The optimal quantity function q* and transfer function t* are essen-
tially unique and given as follows. Let 6* = ¢~ '(c). If 6 < 0%, then q*(0) = t*(0) =0. If
0 > 0*, then g*(0) =1 and

0
t*(0) = 60* +/0 (1 - a(£]0)) dé.

As in the classical solution, the allocation probability takes values 0 and 1 only—
there is no randomization.??> There is a cutoff type #* who receives the good and pays
his valuation. Each type below the cutoffis excluded. Each type above the cutoff receives
the good and pays a price that is less than his valuation. The price is no longer uniform.
Aslong as A is strictly positive, the price is strictly increasing in the agent’s report. Never-
theless, types above the cutoff cannot profit by misreporting downward—the benefit of
alower price is outweighed by the risk of failing to be authenticated and getting nothing.
As verification becomes more precise, the price becomes more sensitive to the agent’s
type, and more types receive the good.

REMARK 4 (Auctions). Our model can be extended to allow for multiple agents.?® In the
revenue-maximizing auction, the allocation rule takes the familiar form from Myerson
(1981), with our generalized virtual value in place of the classical virtual value. In the
asymmetric case, the allocation rule favors a bidder if his valuation distribution is lower
or if his valuation can be verified more precisely.

7. BEYOND PASS—FAIL TESTS

The main model considers pass—fail tests. In this section, we consider tests that generate
scores in a finite score set S. The agent’s type-dependent performance on each test is

22Sher and Vohra (2015) study this selling problem with deterministic evidence, assuming the type space
is finite. The optimal mechanism may involve lotteries. They give a condition on the evidence structure
under which the optimal mechanism is deterministic.

23In this extension, we assume that the principal tests the agents simultaneously. In particular, the test
given to one agent cannot depend on another agent’s test score.
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represented by a map w: T x ® — A(S), which specifies for each type 6 and test 7 a
distribution 7|4 over S.

To generalize the agent’s choice of whether to try on a test, we take as primitive a par-
tial order > on S. The interpretation is that the agent can shift probability from score s to
score s" if and only if s > §’. As before, the agent’s choice is costless, and the principal ob-
serves only the final score. The main model of pass—fail testing corresponds to § = {0, 1}
with the usual order >=; by mixing, type 6 can choose to pass test 7 with any probability
below 7r(7|6). In the general model, type 6 can achieve on test = any score distribution p
in A(S) satisfying M1l Zst P> where > is the stochastic order between probability mea-
sures on the partially ordered space (S, >). That is, u >4 v if and only if u(U) > »(U) for
every upper set U;?* see Kamae, Krengel, and O’Brien (1977).

We define the #-discernment orders in this more general setting. A function k: § —
A(S) isincreasing if k(s) =4 k(s') whenever s > s'. We interpret k as a Markov transition,
and we use the following notation from Markov chains. Given p in A(S) and k: § —
A(S), the measure uk on A(S) is defined by (uk)(A) =) n(s)k(A|s), for A C S.

DEerINITION 4 (f-Discernment for General Tests). Fix a type 6. Test 7 is more 6-
discerning than test i, denoted 7 >¢ ¢, if there exists an increasing function k: S — A(S)
such that:

(1) 7TT|9k = ’7T¢|9;

(i) 79k <5t 7)o for all types 6’ with 6’ # 6.

This order > is reflexive and transitive; see Appendix A.12 for a proof. We can define
most 0-discerning tests and most-discerning testing functions with respect to this defini-
tion of »4. With this generalized testing technology, the revelation principle (Proposi-
tion 1), the replacement theorem (Theorem 1), and the forward implication in the main
implementation theorem (Theorem 2) go through with similar proofs.?®

8. RELATED LITERATURE ON VERIFICATION

Verification has been modeled in many ways, in both economics and computer science.
Here, we focus on costless, imperfect verification.28

Green and Laffont (1986) introduce partial verification.?” They restrict their anal-
ysis to direct mechanisms. Verification is represented as a correspondence M: ® — ©®

24An upper set is a set with the property that if s isin U and s’ > s, then s’ is also in U.

25A most-discerning testing function 7 induces a generalized authentication rate a: ® x ® — A(S) de-
fined by «(6'|6) = m;(4)o. We can set up an analogue of the program in (4), but the incentive constraints
depend on the order > on S.

26In economics, “verification” traditionally means that the principal can learn the agent’s type perfectly
by taking some action, e.g., paying a fee or allocating a good. This literature began with Townsend (1979)
who studies costly verification in debt contracts. Ben-Porath, Dekel, and Lipman (2019) connect costly
verification and evidence. When monetary transfers are infeasible, costly verification is often used as a
substitute; see Ben-Porath, Dekel, and Lipman (2014), Mylovanov and Zapechelnyuk (2017), Erlanson and
Kleiner (2020), Halac and Yared (2020), and Li (2020).

277 precursor of their work is Postlewaite (1979), which considers exchange mechanisms when endow-
ments are hidden. Each agent can benefit by withholding (and consuming) part of his endowment.
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satisfying 6 € M () for each type 0. Each type 6 can “report” any type 6" in M (6). This
correspondence M can be represented within our model as a {0, 1}-valued authentica-
tion rate. We reinterpret the apparent failure of the revelation principle in Green and
Laffont’s (1986) model as a consequence of taking as primitive an authentication rate
that is not most-discerning; see Example 6 for the formal connection.

Bull and Watson (2004, 2007), Deneckere and Severinov (2008), and Lipman and
Seppi (1995) study hard evidence.?® They introduce an abstract evidence set £ and an
evidence correspondence E: ® — £. Type 6 possesses the evidence in E(6), and he can
present one piece of evidence from E(6). Presenting evidence is costless.?? Bull and
Watson (2007) show that this evidence model can be represented in a reduced form if
the evidence environment is normal, i.e., each type 6 has a piece of evidence e(6) in
E(6) that is maximal for type 6 in the following sense: every other type 6’ who has e(6)
also has every other piece of evidence in E(8). This model of deterministic evidence can
be represented within our model as follows. For each piece of evidence ¢ in £, define the
test 7, that requests evidence e. Type 6 can pass test 7. if and only if e is in E£(6). Every
type can intentionally fail any test by withholding his evidence.3? A piece of evidence e
in E(0) is maximal for type 6 in the sense of Bull and Watson (2007) if and only if test 7,
is most-6 discerning in our sense.3!

In computer science, Caragiannis et al. (2012) and Ferraioli and Ventre (2018) con-
sider a primitive authentication rate, and they restrict attention to truthful equilibria of
direct mechanisms. Our paper shows that the restriction to direct, truthful mechanisms
is without loss if « is most-discerning. Caragiannis et al. (2012) allow the principal to
use arbitrarily severe punishments to deter any report that is not authenticated with
certainty. In our applications (Section 6), the agent can walk away at any time, so pun-
ishment is limited to the agent’s outside option.

Closest to our paper is the independent paper of Ben-Porath, Dekel, and Lipman
(2023). They consider an abstract evidence set £. In their signal-choice model,>? the
primitive is a correspondence A: ® — A(£). Type 6 can choose any distribution a in
A(6). Then evidence e in £ is realized according to the distribution a. For each type 6,
they define an associated informativeness order over A(6), which depends on the full
correspondence A. In the spirit of our Theorem 1, they show that for implementation,

28Evidence was introduced in games (without commitment) by Milgrom (1981) and Grossman (1981); for
more recent work on evidence games, see Hart, Kremer, and Perry (2017), Ben-Porath, Dekel, and Lipman
(2017), and Koessler and Perez-Richet (2019).

29In Kartik and Tercieux (2012), the agent can provide evidence at a cost, which depends on the state.
The focus of their paper is full implementation.

30Formally, in Bull and Watson (2007), the agent must present a piece of evidence from E(6). Disclosing
nothing can be represented in their framework as a distinguished piece of evidence that every type pos-
sesses. If there exists such “minimal evidence” (Bull and Watson (2007, p. 85)), then their evidence model is
equivalent to our testing representation.

31Strausz and Schweighofer-Kodritsch (2023) revisit the setting of Bull and Watson (2007). They con-
sider both the standard specification (termed “noncontrollable evidence”) and an alternative specification
(“controllable evidence”) in which contracts can be written demanding particular evidence provision. They
give conditions under which controllability has no value for the principal.

32They also consider a more general evidence-acquisition model, and they give conditions under which
a given evidence-acquisition model can be represented as a signal-choice model.
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each type’s equilibrium choice of a less informative distribution can be replaced with
a more informative distribution. It is possible to embed our testing protocol in their
signal-choice model.3® Our papers have different aims. Ben-Porath, Dekel, and Lipman
(2023) study the relationship between different evidence protocols in the most general
setting. We impose more structure to obtain a tractable verification framework that we
can apply to classical mechanism design problems.

9. CONCLUSION

We model probabilistic verification as a technology—a family of tests that are available
to the principal. The principal chooses how to use this testing technology within an ar-
bitrary dynamic mechanism. We characterize whether this complex problem can be re-
duced to a static problem with relaxed incentive constraints. Then we solve this reduced
problem using the first-order approach in a few classical profit-maximization applica-
tions. We believe this first-order approach will be useful for solving other mechanism
design problems with probabilistic verification.

We have found the optimal mechanism for each fixed verification technology in a
nonparametric family. We can therefore quantify the value of each technology to the
principal. This is the first step toward analyzing a richer setting in which the princi-
pal chooses how much to invest in verification technologies. We leave this to future
research.

APPENDIX: PROOFS
A.1 Proofof Proposition 1

Let S = {0, 1}. Consider a mechanism (M, M’; ¢, ¥/, g) and a strategy (r, a). For each fixed
type 0, the sequence (m, 7, m’, s, x) in M x T x M’ x S x X is realized according to the
following procedure. (Below, the symbol ~ denotes “distributed according to.”)

e Agentsends m ~ r(6).
e Principal selects 7 ~ ¢(m).

e Principal sends m' ~ r'(m, 7).

Agent tries with probability a(6, m, 7, m').

Nature draws s” according to 7(7|6) and whether the agent tried.

e Principal selects x ~ g(m, 7, m’, 5').
This distribution of (m, 7, m/, §/, x) is replicated by the following canonical procedure:

e Agentsends 6’ = 6.

33Given a nonbinary testing technology (T, S, 7), consider their signal-choice model with € = T x . For
each type 0, let A(0) be the set of distributions 6, ® p for all 7 € T and p € A(S) satisfying 7)o Zst D- Under

this embedding, 7 is more §-discerning than ¢ in our framework if and only if &, ® 7,4 is more informative
(for type 6) than 6, ® myy in theirs.
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e Principal privately draws m ~ r(8') and then selects 7 ~ (m).
e Agent tries.
e Nature draws s according to 7(7|6) and whether the agent tried.

e Principal privately draws m’ ~ r'(m, 7); then privately draws s” € {0, 1} so that s’ =1
with probability a(¢’, m, 7, m’)s; and finally selects x ~ g(m, 7, m/, §').

We check that the outcome of any deviation by type 6 in the new mechanism can be
replicated by a deviation in the old mechanism. It follows that such a deviation cannot
be profitable. If type 6 (i) reports 6’ ~ p and (ii) tries with probability « (€', 7), this can
be replicated in the old mechanism by (i) privately drawing 6’ ~ p and then sending
m ~ r(#'); and (ii) trying with probability a(¢’, m, 7, m")a(6', 7).3*

A.2 Insufficiency of mixed strategies with exogenous authentication rate

Consider a modification of Example 2. The type space and the verification technology
are as in Figure 2. Now there are three allocations—nothing, low-quality, and high-
quality—with associated type-independent utilities 0, uy, and uj;. Assume 0 < uy < uy,
and uy > uj /2. Consider the social choice function that allocates the high-quality good
to type 6; and the low-quality good to types 6, and 6s.

We claim that this social choice function cannot be implemented in the reduced-
form model, even if the agent uses a mixed strategy. Type 6; can pass only as type 6;
or as type 62. So for some 6 € {61, 62}, the principal must give the high-quality good to
the agent if he passes as type 6. But type 63 can pass as type 60, and type 62 can pass as
type 62, so at least one of the types 63 and 6, has a strictly profitable deviation.

Now replace the authentication rate with a testing technology consisting of three
tests, denoted 71, 72, 73. Test 7; can be passed by those types that can pass as 6; in the
reduced-form model. In this testing model, the principal can implement the specified
social choice function. If the agent reports type 62 or 63, he is given the low-quality good.
If the agent reports type 6;, then the principal gives either test 71 or test 72, each with
probability 1/2. Whichever test is given, the agent gets the high-quality good if he passes
and nothing if he fails. If either type 6 or type 63 deviates by reporting 6, then he gets
the high-quality good with probability at most 1/2, and otherwise he gets nothing. This
deviation is unprofitable since u; > uy /2.

34This argument relies in two places on a form of randomization that our model does not technically
allow. In the canonical mechanism, the principal remembers her privately drawn m and uses it to se-
lect x. In the replicating deviation in the original mechanism, the agent remembers his privately drawn
0’ before choosing whether to try. We can replace this memory with fresh draws from the correct condi-
tional distributions. The principal redraws m conditional on (¢, 7). The agent redraws ¢ conditional on
(6, m). To construct these conditional distributions, apply disintegration of measures (Kallenberg (2017,
Theorem 1.25, p. 39)). This result applies to Borel probability measures, so we first restrict our measures
to the Borel o-algebra, then apply the theorem, and finally extend the resulting measures to the universal
completion.
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A.3 Proof of Theorem 1

Let f be a social choice function that is canonically implemented by a mechanism (¢, g)
in which #(6) = ¢y. Define the mechanism (#/, g’) to coincide with (¢, g) except for the
following modifications. Set ¢'(6) = 7. Choose k; and k¢ from the definition of 7 >¢ .
Foreachs=0, 1, set

§(0,7,5) =ksg(0, ¥, 1) + (1 - ky)g(0, ¥, 0) € A(X).

Under the mechanism (7, g’), if type €’ reports type 6 and tries on test = with probabil-
ity a, the resulting decision will be

p(al6)g(6, ¢, 1) + (1 — p(al0'))g(6, ¥, 0) € A(X),
where
p(al6) =a[m(7|6") k1 + (1 — 7 (7]6)) ko] + (1 — a)ko.

From the definition of 7 >4 ¢, we have p(a|6’) < w(|6#') forall a in [0, 1] and all types ¢’,
with equality if « = 1 and ¢’ = 6. Therefore, (¢, g’) replicates the social choice function f
without introducing any new deviation outcomes for any type.

A.4 Proof of Proposition 2

Fix a type 60 and tests 71 and 7.

One direction is clear. If 7(71|-) = 7(72]-), then we can set (kg, k1) = (0, 1) to see
that 71 >4 72 and 72 >4 71. If 6 is minimal on test 71, then we see that 7, >4 71 by setting
ko = k1 = m(71|6). Symmetrically, if # is minimal on 7,, then we see that 71 >4 12 by
setting ko = k1 = 7(72|0).

For the converse, assume 71 ~¢ 72. Choose (kg, k1) from the definition of 71 >4 72
and (kg, k) from the definition of 72 >4 71. Suppose type 6 is not minimal on one of the
tests, say 71. Hence there exists 6’ such that 7 (71|6) > 7(71|6’). We prove that 7(71|-) =
(72|).

We use Markov transition notation; see Section 7. Let k and k’ denote the Markov
transitions associated with (ko, k1) and (kg, k), respectively. Let |9 denote the prob-
ability measure that puts probability 7(7|6) on s = 1. We have

Tri|okk = Ty )0k’ =719 and 7 g kK <gt Try 9 K <ot 7100
In terms of the probability on s = 1, we can express this system as
koky + (1 — ko)kg + m(71]0) (k1 — ko) (k| — ko) = m(71]6),
koky + (1 — ko)kgy + m(71]6) (k1 — ko) (k) — ko) < 7(71]6').
After subtracting, we conclude that
[(71]6) — 7 (71]6') (k1 — ko) (K} — ko) = m(71]0) — 7 (71]6).

Since m(71|0) — w(71|0") > 0, it follows that (ko, k1) = (ky, k}) = (0, 1), and hence
w(71]) = 7(72|").
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A.5 Proofof Theorem 2

(i) = (ii). Letfbea most-discerning testing function. For each type 0 and test ¢, select
probabilities k¢ (6, ¥) and k1 (6, ) satisfying the definition of 7(0) >4 ; Appendix A.14
shows that there exists a measurable selection. Fix a decision environment (X, u). Let f
be an implementable social choice function. By the revelation principle (Proposition 1),
f is canonically implemented by some mechanism (¢, g). Consider a mechanism (1, &)
in which g satisfies

§(60,1(0), 5) =Eyso)[ks(0, ¥)g(6, ¥, 1) + (1 — ks(6, ¥))g(6, ¥, 0)] € A(X),

for all types 6 and scores s =0, 1.3°

Under the mechanism (7, g), if type @' reports type 6 and then tries on test 7(0) with
probability a, the resulting decision will be

Ey~wo[p(a, 0, ¢]6)g(6, ¥, 1)+ (1 — p(a, 6, ¥|6'))g(6, ¥, 0)] € A(X),
where
pla, 0, y|0') = a[m(i(0)]0')k1(6, ¥) + (1 — m(1(6)|6)) ko (6, ¥)] + (1 — a)ko (6, ).

For each type 6 and test s, the definition of 7(8) >4 ¢ guarantees that p(a, 6, ¢|0') <
w(|6) forall a in [0, 1] and all types @', with equality if a = 1 and ¢’ = 6. Therefore, (7, g)
replicates the social choice function f without introducing any new deviation outcomes
for any type.36

(ii) = (i). Fix a type 6 and a test ¢». We will prove that 7(0) >4 .

Construct a decision environment (X, u) as follows. The decision set X consists of
three decisions, denoted &, x, and y. Every type gets utility 1 from decision x and utility 0
from decision x. Each type ¢’ gets utility 7 (¢|6’) from decision y.

Consider the following mechanism. If the agent reports 6’ with ' # 6, the principal
selects y (the test and score do not matter). If the agent reports 6, the principal gives
test ¢ and then selects & if the agent passes and x if the agent fails. Observe that truth-
telling and trying is a best response for every type. Denote the induced social choice
function by f.

By (ii), f can be canonically implemented by (7, §), for some outcome rule g. For
s =0, 1, let k; be the probability that g(0, (), s) assigns to x. We must have k; > ko;
otherwise, type 6 could profitably deviate by intentionally failing test 7(6).3” Since this
mechanism implements f, the probabilities ko and k; satisfy (i) in the definition of
£(0) >4 . Since no type ¢ can profit from reporting 6 and trying on test (6), we get (ii).
Therefore, 7(0) =¢ i, as desired.

35n a slight abuse of notation, t maps © into A(T'), while 7 maps © into 7.

36Qur argument is similar in spirit to de Oliveira’s (2018) elegant proof of Blackwell’s theorem using dia-
grams.

37If 77(1(0)|6) > 0, this holds because g(6, £(8), 1) must concentrate on {x, X}, and type 6 weakly prefers
y to x. If w(#(0)|0) = 0, then we may assume kj = ko since implementation is preserved by redefining
2(6,1(0),1) toequal g(6, £(6), 0).
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A.6 Most-discerning correspondences

Even if the testing technology does not admit a most-discerning testing function, we can
still use the discernment orders to reduce the class of tests that need to be considered.

DEeFINITION 5 (Most-Discerning Correspondence). Asubset Ty of T is most 6-discerning
if for each test ¢ in T there exists a test 7 in Ty such that 7 >4 . A correspondence
T: © — T is most-discerning if for each type 6 the set T(6) is most §-discerning.

Atestingrule 7: © — A(T) is supported on a correspondence 7: © — T if supp #(6) C
7(6) for each type 6. The next result says that if a correspondence is most-discerning,
then we can restrict attention to testing rules supported on that correspondence.

THEOREM 3 (Implementation With a Most-Discerning Correspondence). Suppose that
the passage rate  is continuous. Let T be a weakly measurable® correspondence from ®
to T with closed values. If T is most-discerning, then for every implementable social
choice function f, there exists a testing rule i supported on T such that f is canonically
implementable with 1.

The proof is essentially the same as the proof of Theorem 2. For each type 6 and
test ¢, there exists a test 7 in f“(@) such that 7 >¢ . But we must check that there exists
such a selection that is measurable; see Appendix A.14. The regularity conditions on
and T ensure that a measurable selection exists. If we can independently construct a
measurable selection, then these conditions are not needed.

A.7 Proof of Proposition 3
There are two cases:

(i) Suppose 7(7|8) > 7(]0) > 0. If (1) holds, then Definition 1 is satisfied with

7(Y]6)

k():O and kl:ﬂ(ﬂ@)'

(ii) Suppose 7(7|6) < 7(¥|0) < 1. If (2) holds, then Definition 1 is satisfied with

w(|0) — 7(7|0)
1 —a(7|6)

k(): and k1=1.

To see this, multiply each side of (2) by 1 — 7(¢/|6). Subtract each side of the re-
sulting inequality from 1 (and flip the direction of the inequality).

38That is, the lower inverse {# € @ : T(6) N G # @} is universally measurable for each open subset G of T;
see (Aliprantis and Border (2006, p. 592)).
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A.8 Proof of Proposition 4

Let « be an authentication rate satisfying «(6|0) > max{a(6’'|6), «(6|6)} for all 6, §' € O.
First, observe that (8) is trivially satisfied if #; = 6. or 6, = 63. Fix distinct types 6, and 65.
By Remark 3, it suffices to show that 732 >0y 7(‘3‘3 if and only if

a(63]62)a(62]601) < a(63]01)a(62]02), forall 61 €O\ {62}. (14)

There are two cases:

(i) Suppose a(602]|62) = 0. It follows from the assumption on « that «(63|62) = 0. Thus,
(14) is satisfied (because both sides are zero). Also, 7‘5‘2 >0, 7‘5‘3 because the sys-
tem (7), with 6 = 6, and 6’ = 63, is solved by k9 = 0 and k; = 1 (by the assumption
on o).

(ii) Suppose a(62|62) > 0. If (14) holds, then 732 >0, T‘gs because the system (7), with
0 = 6, and ¢ = 03, is solved by ko = 0 and k; = a(63|62)/a(62|62); note that
a(63]62)/a(62]62) < 1 by the assumption on a. Conversely, if 75 >, 75, then the
system (7), with 8 = 6, and 6’ = 03, has a nonnegative solution (ko, k1). We claim
that this system is also solved by

1 — a(62|62)

6=0 and k|\=k3+
0 ! ! a(62]62)

ko.
To see this, note that this modification leaves the equality in (7) unchanged and
changes the left-hand side of the §”-inequality by

a(02|0”) i
[(1 - a(OZIGZ))a(TIGz) — (1 —af(62]0 ))}ko,

which is nonpositive because a(62|62) > «(62]6"), by the assumption on «. Now
examine the new solution (kj, k}) of the system (7), with # = 6> and 6’ = 63. Since
ky = 0, the equality gives k] = a(603|62)/a(602|62). In each inequality, scale each
side by a(62|62) to get (14), as desired.

A.9 Proof of Proposition 5

The following lemma is established at the end of the proof.

LemmA 1 (Bounded Mechanisms). Let (q, t) be an incentive compatible mechanism.
There exists a bounded, incentive compatible mechanism (g, t) such that either (i) (g, )
and (g, t) agree almost surely, or (ii) the principal strictly prefers (g, t) to (q, t).

By Lemma 1, it suffices to prove that (¢*, ¢*) is the essentially unique optimum
among all bounded, incentive compatible mechanisms (g, ¢). By setting U (6) = 6q(6) —
t(0), we can equivalently specify a mechanism (g, t) as a quantity-utility pair (g, U).
Note that (g, t) is bounded if and only if (¢, U) is.
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LEmMA 2 (Envelope Theorem Bound). Let (g, U) be a quantity-utility pair. If (q, U) is
bounded and incentive compatible, then for each type 0, we have

0
U) = /B a(£]0)q(£) de. (15)

Lemma 2 is established at the end of the proof. We now prove Proposition 5, assum-
ing Lemmas 1 and 2. Let (¢, U) be a bounded, incentive compatible quantity—utility
pair. We can bound the principal’s objective by applying Lemma 2 and then switching
the order of integration:

0

0
/6[Oq(m—c(q(e))—U(e)]f(e)des/G [¢(8)q(8) —c(q(0))]f(6)d6,

with equality if and only if (15) holds with equality for almost every type 6. For each
type 6, the integrand in brackets on the right-hand side is uniquely maximized by ¢*(0).
The transfer function #* ensures that U satisfies (15) with equality for every type 6.

To complete the proof, we check that (g*, t*) satisfies global incentive compatibility
if the quantity function g* satisfies the following monotonicity condition: Whenever 9 <
&1 < & < 6, we have

a(110)q" (61) < a(é210)q" (&2). (16)

This monotonicity condition holds because g* is weakly increasing (since ¢ is weakly
increasing).
The global incentive constraints require that for all types 6 and ¢, we have

U9) = a(0'16)[U(6) + (6 — 6)g*(¢)],
or equivalently,
Uo)—a(0'|0)U(0') = (6 — 0')a(0']6)g*(6'). 17)
Plug in the right-hand side of (15) for U to get the condition
0 o
/0 a(£]0)q" (£) dé - fe a(£]0)(0]0)q* (£)dé = (6 — 0)a(0']6)g™(¢').  (18)
We separate into cases. If § > ¢’, then (18) is equivalent to
0
| atelorg €)= (0= #)a(@10)q (o).
If 6 < ¢, then (18) holds if
0/
/9 a(£10)q"(&) < (6 - 0)q*(#).

In each case, the inequality is guaranteed by the monotonicity condition in (16).
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Proor oF LEMMA 1. Let (g, t) be an incentive compatible mechanism. Let
O9={0€0:1(8) —c(q(6)) = 0}.

Since lim,_.o () > 6, we may choose L such that 6q — c(q) < 0 for all ¢ > L. For all
0 € Oy, it follows from the participation constraint that 6g(0) — c(g(0)) > 0,s0 q(6) <L,
and hence 0 < 1(6) < L. For each type 6, let ¢(6) be the closure of the bounded set

((«(610)q(0), a(0'10)1(6')) : 0 < Oo}.

By the measurable maximum theorem (Aliprantis and Border (2006, 18.19, p. 605)), the
correspondence

6+ argmax (6q —1')
(¢, 1) eq(0)

admits a measurable selection (§, 7): ® — [0, L] x [0, 6L]. Define (g, ) to equal (g, t) on
®¢ and (g, ) on O \ O.
By the supermultiplicativity of « (see Proposition 4), we have
a(0"]6) = «(6"16")a(6']6),

for all types 6 € ® and all reports 6 € ® \ @y and 6§” € @¢. Thus, it can be checked that
(g, t) is incentive compatible.

Now we complete the proof. If ® \ ©¢ has measure zero, we get (i). If ® \ ¢ has
positive measure, we claim that (ii) holds. We show that for each 6 € ®\ 0y, the principal
strictly prefers (g(0), 1(0)) to (q(6), t(0)). Fix 6 € ® \ @¢. For each ¢’ € 0, we have

a(60'10)t(0') — c((0'16)q(0')) = (6'16)1(6") — a(6']6)c(q(6)) = 0,
where the first inequality uses the convexity of c. We conclude that
1(6) — c(q(0)) = 0> £(6) — c(q(6)). O

Proor oF LEMMA 2. Let (g, U) be a bounded, incentive compatible quantity-utility
pair. We first check that U is absolutely continuous. Choose 6 and ¢’ such that U(68') >
U (0). By incentive compatibility,

U6) = a(6'10)[U(6') + (6 —6')q(6')].
Therefore,
0=<U(8)-U(h)
< (1-a(010)U(6') +a(6'6)(6' — 6)q(6)
<(1—=a(0'10))1Ulloc + [0 = 6] - 1l oo-

Since 1 — e~ * < x, it follows that

6
0=u(e)-v@ =c|[ (o +1)de

/

)
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where C = max{||U ||, [|¢lloo}. Since A + 1 is integrable over [6, 8], we conclude that U is
absolutely continuous.
Now we prove (15). Define the auxiliary function A on [6, ] by

0
A(8) = a(elé)<U<9) —/0 a(€]0)q(é) df)

- 0 -
=a(6|0)U(6) — /0 a(£]0)g(£) dé.

We prove that A is nonnegative. The function A is absolutely continuous since it is the
product of absolutely continuous functions. Let u(60'|0) = «(60'|0)[0q(6') —t(6')]. By The-
orem 1 in Milgrom and Segal (2002), whenever U is differentiable, we have

U'(0) = D21u(6]6) = q(6) — A(6)U (),

where D, u(6|6) denotes the right derivative with respect to the second argument.?? Let
1(6) = f(f a(§|(§)q(§) dé. At almost every 0 in [6, 6], the absolutely continuous functions

AU, a(?|é), and [ are all differentiable, so we get
A'(0) = A(0)a(0|0)U(0) + a(0]0)U'(0) — a(6]0)q(0)
=a(0]0)[U'(0) — (q(6) = A(O)U(6))]
> 0.

By the fundamental theorem of calculus, for § < 6 < §, we have
A(0) = A()=U(0) =0,

where the last inequality follows from the participation constraint. d

A.10 Proof of Proposition 6

We follow the proof of Proposition 5 in Appendix A.9. As before, it suffices to prove es-
sentially unique optimality among all bounded, incentive compatible mechanisms.*’
For any bounded, incentive compatible quantity-utility pair (¢, U), we have

0 0
/ [6g(0) — cq(0) — U (0)]f(6)d6 < / ((6) —c)q(0)f(6)d6,
¢ 6

with equality if and only if (15) holds with equality for almost every type 6. For each type
0, the integrand on the right-hand side is maximized by ¢*(8), uniquely so if 6 # 6*. The
transfer function * ensures that U satisfies (15) with equality for every type 6.

To check that (¢*, t*) is globally incentive compatible, follow the argument from the
proof of Proposition 5 in Appendix A.9.

39That s, Doy u(6|0) =limy 0 h~1 (u(0]0 + 1) — u(6]6)).
40Any quantity function g: ® — [0, 1] is bounded. By Lemma 1, it suffices to consider bounded transfer
functions.
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A.11 Beyond exponential authentication rates

Suppose that the verification technology is represented by a Borel measurable, most-
discerning authentication rate a: ® x ® — [0, 1] that satisfies the following conditions:

(i) «(6]6) =1 for all types 6.
(ii) For each type ', the function 6 — «(6’|6) is absolutely continuous.

(iii) For each type 6, the right and left partial derivatives (with respect to the second
argument) D, «a(6]|0) and D,_«(6]6) exist, and the functions 6 — Dy, «(6]6) and
0 — Dy_«a(06]0) are integrable.

Condition (i) ensures that the agent is authenticated if he reports truthfully. Conditions
(ii) and (iii) allow us to apply the envelope theorem. In particular, the exponential au-
thentication rates studied in the main text satisfy these assumptions.

Define the right and left local precision functions A, A_: ® — R, by

A4 (0) = —Dora(6]0), A_(0)=Dy_«a(6,0). (19)

Define the function A by

o
exp(—/ /\+(§)d§> ifo>¢,
0/

0/
exp(—/ )\_(§)d§> ifo<o.
0

The function A is determined only by the local behavior of « near the diagonal.

A(0']6) =

LEMMA 3 (Lower Bound on Authentication Rate). For all types 6 and ¢, we have
a(0')6) > A(0']6).

Lemma 3 is established at the end of the proof. For the exponential authentication
rate @ considered in the main text, we have A (0) = A_(8) = A(0),so a(6'|6) = A(60'|0) for
all types 6 and ¢'. Therefore, among all most-discerning authentication rates satisfying
()—(iii) with —D2;a(6]0) = D2_«a(6]0) = A(0) for each 6, the exponential authentication
rate with precision function A makes the global incentive constraints weakest.

In this general setting, we show under further regularity conditions that the optimal
mechanisms take the same form, except that the virtual value ¢ is defined with A in
place of a:

L
H=0——— | A0 dé.
¢(0) 7o J, M 1£)f(£)dé

Lemma 1 goes through with exactly the same proof. Lemma 2 can be shown to hold with
A(&|0) in place of a(&]6).41 Therefore, Proposition 5 and Proposition 6 go through, with

41The proof is similar. To establish absolute continuity, apply Lemma 3 and put A Vv A_ in place of A. To
establish the bound, use A in place of « in the definition of the auxiliary function A. The rest of the proof
goes through with A, in place of A.
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the redefined virtual value, if (a) the monotonicity condition (16) holds with A in place
of @, and (b) the following global bound is satisfied: For 6 > ¢,

0 0
[ Aelng@de+ [ Ao @
_9’ 0

«(0'16) < A(0']6) .
A0 (@ dé + /9 CA(010)q"(#) de

(20)

Intuitively, the more rapidly the map ¢ — A(£|6)g*(€) increases over the interval [0, 6],
the more slack there is for a(6'|6) to increase above A(6'|6).

We check that (a) and (b) imply global incentive compatibility. By Lemma 2, the
analogue of (18) is

0 o
fe A(€]0)q* (&) dé — fe A(£16")a(0']0)q" (£)dE = (6 — 6')a(6|60)g"(6). (21
We separate into cases. If 6 < ¢, then (21) holds if

0/
/0 A(é0')g"(&)dé < (6' - 0)g™(¢),

which is guaranteed by (a). If 6 > ¢, then (21) is equivalent to

0 a(0'|6)] 17
A £ d A * d _ /A / * / .
/Q (E10)q7 (&) 52/\(9/|9)|:-/(; (€10)g" (&) dé + (6 — 0')A(6']6)q (0)}

Rearranging, we see that this inequality is equivalent to (20).
Proor oF LEmMma 3. Fix 6 and ¢'. For each #/, supermultiplicativity (see Proposition 4)
gives
a(0')0+ h) > a(6']6)a(6]60 + h).
Subtract «(6'|0) from each side to get
a(0'10+ h) — a(6]6) = «(6'16)(a(0]0 + h) — 1)
=a(0'|0)[(6]0 + h) — a(6]0)].

Dividing by 4 and passing to the limitas # | 0 and /4 1 0, we see that whenever D2« (6'|6)
exists, we have
—A1(0)a(0'16) < D2a(6']6) < A_(6)a(6']6).

Since « satisfies (ii) and (iii), we can use absolute continuity to convert these local

bounds into global bounds. Fix a report #'. Define the function A on [, 6] by
0|6
sy 210)
A(6']6)
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By construction, A(#') = 1. We claim that A(6) > 1 for all . Since A(¢'|6) is bounded
away from 0, the function A is absolutely continuous. Therefore, the functions A, «(6'|-),
and A(#'|-) are simultaneously differentiable almost everywhere. If § > 6’ and these
three functions are simultaneously differentiable at 6, we have

/ _ 1 / 7
A'(0) = NGD! [D2a(0'16) + A1 (8)a(6']60)] > O.

If 6 < 0" and these three functions are simultaneously differentiable at 6, we have

1
A (0)= ———[D2a(0'|6) — A_(0)a(0'|6)] < 0.
(0) A(0’|6)[ 2a(0'60) = A-(0)a(0/]60)] <
Since A is absolutely continuous, it follows from the fundamental theorem of calculus
that A(9) > A(0’) =1 for all 6. O

A.12 Nonbinary tests

First, we check that >4 is reflexive and transitive. Reflexivity is immediate by taking k
to be the identity, which maps each score s to the point mass &;. For transitivity, it
follows from (Kamae, Krengel, and O’Brien (1977, Proposition 1, pp. 901-902)) that
(i) the order > is preserved by increasing Markov transitions; and (ii) the composition
kikz: S — A(S) defined by (k1k2)(s'|s) = D" k2(s'|s”)k1(s”|s) is increasing if k; and k»
are increasing.

In the main model, if type 6 tries on test = with probability a, he passes with prob-
ability aw(7|0). Therefore, type 6 can achieve on test 7 any passage probability p sat-
isfying p < 7(7|0). In the general case, on a nonbinary test 7, type 8 chooses a Markov
transition d: § — A(S) that is downward in the sense that d(s'|s) = 0 unless s = s’. Then
Nature draws the score from the distribution 7 yd. By Kamae, Krengel, and O’Brien
(1977, Theorem 1, p. 900), type 6 can achieve on test 7 a score distribution p in A(S)
if and only if p < 9. Given a general mechanism (M, M’; ¢, ¥, g), a strategy for the
agent is a pair (r, d) consisting of a messaging strategy r: ® — A(M) and an action strat-
egyd: O x M x T x M’ xS — A(S) such that dy 7, : S — A(S) is downward for each
O, mr,m)e®@xMxTxM.

In this setting with nonbinary tests, the following results go through: the revelation
principle (Proposition 1), the replacement theorem (Theorem 1), and the forward im-
plication in the main implementation theorem (Theorem 2). The proofs are virtually
identical, with the downward transition d in place of the trying probability a. The key
property is that the composition of downward kernels is downward, which is easy to
check.

A.13 Universal measurability

We begin by introducing universal measurability. For a more detailed discussion with
proofs, see Bertsekas and Shreve (1996, Chapter 7). Let (X, X) be a measurable space.
Given a probability measure p on (X, X), let ?M denote the u-completion of X, i.e.,
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the o-algebra generated by X and all w-null sets of X'. The universal completion of X,
denoted X, is the intersection N, X ,, where the intersection is taken over all probability

measures w on (X, X). It can be shown that X = X.

Afunction from (X, X) to (Y, )) is universally measurable if it is (X, )’)-measurable.
It can be shown that (X, JV)-measurability is equivalent to (X, ))-measurability. Simi-
larly, it can be shown that any probability kernel from (X, X) to (Y, V) can be uniquely
extended to a probability kernel from (X, X) to (Y, ))). Given (X, X) and (Y, )V), a prob-
ability kernel from (X, X)to (Y,)) is called universally measurable.

On a topological space X, the Borel o -algebra is denoted by B(X). For Polish spaces
X and Y, we have B(X x Y) = B(X) ® B(Y). The left-hand side is the o-algebra gener-
ated by the product topology on X x Y. The right-hand side is the o-algebra generated
by all rectangles with Borel-measurable sides.

Now we return to the model. We make the following standing technical assumptions.
The sets ®, T, and X are Polish spaces. The function 7: T x ® — A(S) is Borel measur-
able (with A(S) viewed as a subset of R%).%2 In a mechanism, the message spaces M and
M’ are Polish, and all maps and probability kernels are universally measurable. Uni-
versally measurable sets are convenient because of the following measurable projection
theorem (Cohn (2013, Proposition 8.4.4, p. 264)).

THEOREM 4 (Measurable Projection). Let (X, X) be a measurable space, Y a Polish
space, and C a set in the product o-algebra X ® B(Y). Then the projection of C on X
belongs to X.

The definition of #-discernment imposes an inequality for each type 6. If there are
uncountably many types, this can create measurability problems. Using the measurable
projection theorem, we can show that the score conversion in the definition of 7 >4 ¢
can be selected in a universally measurable way.

A.14 Measurable selection of score conversion

For each triple (6, 7, ) € ® x T? such that 7 >¢ ¢, there exists an associated score con-
version satisfying Definition 4. Here, we show that this score conversion can be selected
in a universally measurable way.

We represent the space of increasing Markov transitions k: S — A(S) as a polytope
K in RS*S consisting of vectors k = (k(s|s))s,ycs- Define the subset G of ® x T2 x K
to consist of all tuples (0, 7, ¢, k) such that k satisfies the conditions in the defini-
tion of 7 >4 . We will show below that G is in B(0® x T2) ® B(K). Here, we use this
claim to obtain the desired selection. By the measurable projection theorem, the pro-
jection of G onto ® x T?, which we call D, is in B(0® x T2). For each (0, 7, §) € D, let
Go,r,yy =1k € K: (6, 7, ¥, k) € G}. The measurable projection theorem also guarantees
that the section correspondence (6, 7, ) — Gy, -,y on D is weakly measurable,*? where

42We prove the measurability results in the nonbinary testing framework, which includes the main model
as a special case.

43That is, the lower inverses of open sets are measurable. For each open subset A4 of K, the lower inverse
of A equals the projection of G N (® x T? x A) onto O x T2,
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D is endowed with the restriction of the o-algebra B(® x T2). Finally, this section cor-
respondence has nonempty, closed values, so we apply the Kuratowski—Ryll-Nardzewski
selection theorem (Aliprantis and Border (2006, 18.13, p. 600)) to get the desired univer-
sally measurable selection.

Now we check that G isin B(0 x T2) @ B(K). On O x T? x K, define the real-valued
functions f; for each s in S, and gy for each upper set U C S by

fs(a’ T, l!f) k) = (7T’T|0k)(s) - 7T¢/|0(S))
gu(0, 7, , k) =sup[(mg k) (U) — 719 (U)].
0/

The set G is the intersection of Ng[f; = 0] and Ny [gy < 0]. Therefore, it suffices to check
that these functions are all (B(0 x T2) ® B(K), B(R))-measurable. For each function f;,
this is implied by the Borel measurability of 7. For each upper set U, we check that gy
is a Carathéodory function. For each fixed (6, 7, ), the function gy (6, 7, ¢, -) is con-
tinuous. For each fixed k, the function gy (-, k) is (B(® x T2), B(R))-measurable be-
cause the term in brackets, viewed as a function of (6, 7, i, ) is (B(® x T? x ), B(R))-
measurable. Hence, the supremum over ' is (B(® x T2), B(R))-measurable by the mea-
surable projection theorem.** Therefore, gy is a Carathéodory function. By Aliprantis
and Border (2006, 4.51, p. 153), gy is (B(0 x T?) ® B(K), B(R))-measurable.

A.15 Measurable selection of more 0-discerning test

Consider the setting of Theorem 3. For each (¢, 6) € ® x T, there exists a test 7 € f"(H)
such that 7 =4 . Here, we show that this test can be selected in a universally measurable
way.

Consider the following subsets of ® x 7?:

A={0, ¢, 7):m=g¢},  B={(6,4,1):7eT(®).

It suffices to check that A N Bisin B(® x T) ® B(T) and that each section (A N B)g, is
closed. Then the section correspondence (6, /) — (A N B)y,; has a (B(O x T), B(T))-
measurable selection by the same argument from Appendix A.14. We check that 4 and
B are each in B(0® x T') ® B(T) and have closed sections. The set K is compact, and
by assumption 7 is continuous, so it is straightforward to check that A4 is closed. By
assumption, T has closed values and is weakly (B(0), B(T))-measurable, so the corre-
spondence (6, ) — f”(@) has closed values and is weakly (B(0 x T), B(T'))-measurable.
Its graph, B, is therefore in 5(® x T') ® B(T) by Aliprantis and Border (2006, 18.6, p. 596).
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