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We study project selection and development by a principal, interacting with two
agents, each of whom wants his respective project selected. When the best choice
is uncertain, keeping both projects alive gives the principal the ability to adapt
her choice in the future, but implies an efficiency loss of effort being spent on the
project finally not chosen. We show that a time-varying threshold rule is uniquely
optimal: the principal selects the first project to achieve a sufficient lead. The
optimum entails initial competition, always followed by permanent collaboration.
Our proof uses martingale time-change methods that apply weak solutions.
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1. INTRODUCTION

When faced with a choice between different courses of action, organizations often cre-
ate internal competition: allowing multiple teams to develop competing approaches to
solve the same problem. Keeping competing approaches alive provides option value
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when the best course of action is initially uncertain. Consider the example of the in-
formation technology infrastructure firm Telstar Communications that had two distinct
50-person teams working on two competing middleware technology platforms: AX and
EX (see Birkinshaw (2001)). Each team worked on its own platform, knowing the firm
would ultimately adopt exactly one.! When the most promising approach is not clear ex
ante, allowing teams to continue working on competing approaches rather than collab-
orating on a single approach gives an organization the ability to adapt its choice based
on what the future will look like. However, this adaptive benefit must be balanced with
the efficiency loss of wasted productive effort on the “wrong” approach. This tension
is at the heart of our paper. We characterize an optimal selection rule that harnesses
optimally the adaptive benefits of continuing to develop competing approaches and the
efficiency benefits of collaborating on a single approach.

Formally, we study a finite-horizon game in continuous time, in which a principal in-
teracts with two agents until a deadline 7. Each agent has his own project. The principal
evaluates the projects as they are developed and must pick one of them when the dead-
line arrives. At every instant, an agent decides how to allocate a unit of effort between
working on his own project and providing assistance (collaborating) on the other agent’s
project. Effort is costless. Each project’s value evolves as a Brownian motion with a drift.
The drift is increasing in the total effort expended on the project by the two agents, while
the Brownian shocks are exogenous. The vector of the projects’ current state of devel-
opment is publicly observed by both agents and the principal in real time, even though
effort choices are not observed—or at least not contractible. The principal’s payoff is
equal to the state of the project she chooses at the deadline; she does not benefit from
the state of the other project. The agents have conflicting interests, in that each wants
his own project to be chosen. Since effort is costless, an agent may be willing to collabo-
rate (work on the other agent’s project) if doing so does not undermine his own chance
of being selected. Our goal is to characterize the principal-optimal selection rule (that
chooses a project at the deadline as a function of the history of the projects’ evolution),
assuming the principal can commit to any history-dependent rule.

We first note that in the principal’s first-best policy, ignoring agency problems, the
principal would simply wait until the deadline to see the realization of all shocks, and
then pick the project with the higher final state. Moreover, at any instant, she would like
both agents to collaborate on the project that currently has the higher state. This ef-
fort allocation maximizes the likelihood that effort is productively useful. The first-best
policy captures the intuition that the principal wants to foster collaboration (have both
agents work on the same project), while constantly adjusting the project choice to their
shocks, to ensure the agents collaborate on the “right” project. However, it is not in-
centive compatible for the agents, because they will each strictly prefer to work on their
own project. Indeed, consider another benchmark, in which the principal can make no
prior commitments regarding the eventual project choice. It is easy to see that, in this
case too, the principal will pick the project with the higher ex post state at the deadline.

11BM similarly fosters competition between teams for product ideas, encouraging different teams to try
competing approaches to the same problem (Peters and Waterman (2003)).
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A unique equilibrium between the agents ensues, with no collaboration. Agents would
rather compete, each focusing all effort on his own project. The result is an inefficient
use of the agents’ efforts.

The natural question, then, is whether the principal can curtail competition and fos-
ter some efficient collaboration. Giving the principal commitment power can help. For
example, suppose the principal commits to choosing the project that is first to take a
lead by a specified margin. It is easy to see how such a rule can outperform the out-
come under no commitment (pure competition). Moreover, it is incentive compati-
ble, because once an agent’s project is chosen irreversibly, agents are indifferent and,
thus, willing to collaborate. At this point, one might wonder whether the only way for
the principal to induce agents to collaborate is to make an irreversible choice at some
point. One may reasonably conjecture that with strictly opposing interests, if an agent
thought his project could be adopted in the future after enough improvement, how-
ever small the likelihood, he would strictly prefer to work on his own project. Perhaps
surprisingly, this conjecture is false. Many incentive-compatible decision rules induce
agents to switch back and forth between competing and collaborating.? The space of
all incentive-compatible selection rules is rich, and our main result characterizes the
optimal such rule.

We show that the unique principal-optimal selection rule has a simple form: the
principal commits to a time-dependent, decreasing lead threshold {Z;},c[o,7] that de-
creases to 0 as the deadline approaches, such that a project is chosen at the first in-
stant ¢ at which its state exceeds that of the other by at least z;. Agent equilibrium be-
havior therefore also has a simple pattern, namely, that in an initial competitive regime
(before a project is chosen by the principal), agents allocate all effort toward their own
project. This phase is followed by permanent collaboration; that is, agents collaborate
on the chosen project (the first to achieve the threshold lead) until the deadline. In par-
ticular, regardless of the time horizon, a nondegenerate phase of collaboration always
exists. The main force behind this two-phase structure is the option value arising from
front-loading competition: sustaining temporary collaboration before additional com-
petition necessitates that the principal not adapt her project choice to projects’ shocks
during the collaboration phase. Leaving collaboration for later (after having determined
which of the two projects is likely to be chosen) reduces the likelihood of mistakes; i.e.,
collaborating on a project that (due to worse exogenous shocks) is not ultimately cho-
sen. The decreasing lead threshold captures the diminishing benefits of option value
from competition.

This two-phase optimal contract with inevitable collaboration from some point on-
ward is broadly consistent with what we observe in our motivating organizational set-
ting. For example, at Telstar, top-level executives finally chose EX over AX, and both
teams subsequently collaborated on EX to build a common platform.?

The derivation of the optimal contract proceeds in four logical steps. We first show
that any contract is outperformed by one in which the principal resolves her decision

2See Section 3.3 for a more detailed discussion on this point.
3Similarly, at IBM, teams are allowed to work on disparate approaches until, at some point, the firm
conducts performance “shootouts” to pick one (Peters and Waterman (2003)).
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quickly. Intuitively, if she does not adapt her current choice adequately to project shocks
for some time, she is not utilizing the option value of competition. Speeding up her deci-
sion makes room for additional collaboration targeted to the eventual chosen project.*
Second, we show the principal conditions only on relative performance, because ag-
gregate shocks are both irrelevant to the principal’s objective and uninformative about
agent behavior. Third, we show it is optimal for the principal to consider two-phase
policies with initial competition until a stopping time, followed by a permanent switch
to collaboration; in particular, she makes a constrained-efficient choice with the par-
tial information available when ending competition, and has both agents collaborate
thereafter on the chosen winner. Finally, we show that the principal optimally chooses
a project only when its lead over the other project is sufficiently large, lowering her
standards closer to the deadline. Intuitively, when ending competition and choosing a
project, the principal foregoes the option value from adjusting to projects’ future shocks,
but this option value vanishes as the deadline approaches.

A notable feature of the optimal policy is that competition is always temporary. For
any horizon, collaboration starts strictly before the deadline with probability 1. This
implies arbitrarily large ex post inefficiencies can occur on path.

Finally, one of our main contributions is a methodological one. Given our finite
horizon, controlled volatility (with zero volatility being feasible), and discontinuous flow
payoffs, we cannot adopt the standard approach (a la Sannikov (2008)) of heuristically
deriving the Hamilton-Jacobi-Bellman (HJB) equation, establishing the existence of a
smooth solution, and appealing to a verification theorem. As we demonstrate, using
time-change methods to analyze weak controls enables tractable value calculations for
intuitive intertemporal policy modifications. We are hopeful that this approach will be
useful more broadly in economic theory.

1.1 Related literature

At a high level, our paper begins with the premise of March (1962) and Cyert and March
(1963) that individuals within organizations often have goals that are distinct from those
of the organization, and the executive acts like a political broker who cannot solve such
problems by simple payments.®

Our paper is related to work on multi-agent experimentation, e.g., Bolton and Har-
ris (1999), Keller, Rady, and Cripps (2005), Bonatti and Horner (2011), and Halac, Kartik,
and Liu (2017). However, the trade-offs are fundamentally different. Those papers share
two key features: Agents want to free-ride on each others’ costly experimentation,® and

4A similar force manifests in delayed investment when firms face uncertainty about an impending gov-
ernment policy choice (see Stokey (2016)). In that setting, as in ours, the flow of decision-relevant informa-
tion is exogenous to current investment decisions.

5See Gibbons (2020) for a detailed survey.

6Free-riding in teams is an extensively studied topic outside the experimentation framework as well. For
example, see Holmstrom (1982), Mookherjee (1984), and Legros and Matsushima (1991). More themati-
cally related to our work, Marino and Zabojnik (2004) show how internal competition can be beneficial in
addressing the free-rider problem.
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each agent trades off the information from exploration against the myopic value of ex-
ploitation. Taken literally, our paper has neither of these features. Free-riding is com-
pletely absent, and information arrives exogenously. Nevertheless, because incentiviz-
ing agents to collaborate on the principal’s preferred project requires contemporaneous
information to be ignored, she still faces a trade-off between option value and myopic
optimization—just like the exploration—exploitation trade-off in experimentation mod-
els. A particularly related experimentation model is Durandard (2023), which studies
the experimentation problem of a principal choosing between agents. Like our model,
his does not feature free-riding. Durandard’s (2023) principal faces a bandit problem
with strategic arms, trading off the option value of exploration against motivating effort.
In our setting, the principal does not need to motivate (total) effort and again does not
control the learning process. Rather, when the principal wants to use the exogenously
generated information to inform future choices, she distorts the agents’ current effort
choice. Despite the significant modeling differences between our setting and those of
these experimentation papers, our analysis shows our principal’s problem reduces to a
certain single-agent experimentation problem.”

The closest work to ours is that of Bonatti and Rantakari (2016), where each agent
first chooses what type of project to develop and how hard to work on it over time, after
which he negotiates over the adoption choice. Agent interests are partially aligned. A
key lesson is that the project selection mechanism can feed into the development stage
when agents may distort the organization’s decision.? This lesson sets the stage for our
design problem.

Finally, we contribute methodologically to the literature on dynamic mechanism de-
sign without transfers (e.g., Aghion and Jackson (2016), Deb, Pai, and Said (2018), Guo
and Horner (2020)). Like us, McClellan (2022) employs tools from dynamic contracting
in continuous time (e.g., Sannikov (2008), DeMarzo and Sannikov (2006)) to study del-
egated experimentation. We hope our techniques—appealing to martingale methods
rather than HJB equations to simplify a volatility control problem, and passing between
weak and strong solutions—can be used in future work.

2. MODEL

A principal interacts with two agents i € I = {—1, 1} in continuous time over a finite hori-
zon of length T. Each agent i has a project with evolving state X’. The principal must
pick one of the two projects at the deadline 7. At every instant, each agent must allo-
cate a unit of effort between working on his own project and providing assistance on the
other agent’s project. Effort is costless and contributes to projects’ development contin-
uously over time. Let a € [0, 1] denote the effort that agent i allocates to his own project

Less related is the literature on dynamic contests, which focuses on moral hazard and completely
abstracts away from collaboration (e.g., Benkert and Letina (2020), Ryvkin (2022), Moscarini and Smith
(2007)). In spite of this key difference in underlying incentives, it is an outcome of our analysis that the
optimal selection rule induces an initial contest.

8This feature also arises in Hirsch and Shotts (2015) and Callander and Harstad (2015). See also Farrell
and Simcoe (2012), who study related distortions in standards adoption across firms that produce comple-
mentary products.
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at time ¢, having observed both projects’ evolution to date. Agent i allocates the remain-
ing (1 — a!) of his effort to helping agent —i on his project. We interpret (1 — a') as the
extent to which agent i collaborates. Specifically, the productive state of each project X!
as of time ¢ evolves via

dX!=[B+u(ai+ (1 —a;"))] dt + o dBi,

where B! and B~! are independent standard Brownian motions on a filtered probability
space (Q, F, {F:}1>0, P) satisfying the usual conditions: {¥;};>0 is the natural filtration of
F with respect to (B}, Bt_l)tzo, parameters B, u, o € R have u, o > 0, agent i chooses
a progressively measurable [0, 1]-valued stochastic process a' on (Q, {Fi}i>0, P), and
project i has exogenous initial state Xé € R.Y The vector of project states is publicly ob-
served by both agents and the principal, and effort-allocation choices are not observed.
For much of our analysis, rather than working directly with the state of each project,
we find it convenient to instead use a different basis. Define the relative and aggregate
shock processes by

AX:=X'-X"! and SX:=X'+X7",
and define AB, 3B, and Aa analogously. Thus, the law of motion of AX; and X, is
dAX; =2uAa; dt + o dAB;,
dZX;=2(B+pn) dt + o d3B,.

In our main analysis, the principal commits at time zero to an arbitrary project selection
rule. Formally, the principal chooses a {—1, 1}-valued random variable y on ((}, F, P)
for a payoff of X ;; that is, the principal’s profit is equal to the productive state of the
chosen project. Without loss, let us normalize o = u =1, 8 = —1, and X} + X, ' = 0.1
Therefore, after normalization, project X I follows

dX!=iAa, dt + dB..

Hence, the principal’s expected payoff is

1 1- 1
]E[ eryX;Jr zyX;I]ziE[yAXT].

Each agent wants his project to be chosen; that is, agent i gets payoff iy. Given any
(y, a', a~ 1), we can define qf := E[iy|F;] as agent i’s continuation value atany ¢t < 7. In

9An agent i strategy is a measurable function (when the space C[0, T] has its Skorokhod topology)
a' : (C[0, TD? x [0, T] — [0, 1] with the property that ai((X}, X;')scp0,7)) is a function only of ¢ and
(X}, X7 Y)sei0,- A principal strategy is a measurable function y : (C[0, T1)> — {—1, 1}. Because X — Bi =
fot B+ M(aé +(1— a;i))] ds is then a progressively measurable process on (Q, {F;}>0, P) for each i, it follows
that {F;};>¢ is also the natural filtration of 7 with respect to (X,l, Xt’1 )r=0-

10Counting time in different units, we may assume without loss that o = u. Then positively rescaling
the state (thus, principal payoffs), we may take o = u = 1. Because adding a constant to both projects’
initial states or both projects’ drifts simply adds a constant to the principal’s payoff, we may further assume
B=-land X} + X, ' =0.
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what follows, we write agent incentives from the point of view of agent 1. So we drop the
superscript i and define ¢, := g} = E[y|F;]. We denote the current leader at any time ¢ <
T by ¢, := argmax;_; X.

2.1 Discussion of assumptions

Unobservable effort choice. We assume the agent’s choice of effort allocation is unob-
servable to the principal or at least is non-contractible. This is quite likely to be the
case with creative effort. Many modern technology companies foster innovation and
develop new solutions by giving employees the flexibility to spend a fraction of their
time on projects of their choice. We view effort in our model as such unmonitored time
that agents can choose to use on their own or another agent’s pet project.

Agency. We study a principal-agent problem in which an incentive conflict causes
the principal to distort her selection rule. A simple alternative model, but without con-
flict, that would generate similar dynamics is one in which a monolithic organization
operates two projects at fixed flow costs and can permanently shut one down at any
time. Such a model would generate identical dynamics: In fact, a crucial step in our
analysis (Lemma 3) establishes that our principal’s problem with agency conflict reduces
to the problem mentioned above; i.e., choosing the time for irreversible project termi-
nation. In this sense, the characterization of optimal project selection in the simpler al-
ternative model is a by-product of our analysis. Our richer modeling of an organization
provides a microfoundation of how such dynamics can arise: The cost of maintaining
option value arises from a collaborative agency cost of responding to contemporaneous
shocks, and irreversible termination emerges from the optimal front-loading of compe-
tition.

Fixed agent payoff, no transfers. We assume an agent’s payoff is independent of the
chosen project’s state. While somewhat extreme, this assumption captures agents with
empire-building motives: Individuals increase their stature and influence within organi-
zations when their project is chosen. The absence of transfers is assumed also in canon-
ical models of delegated decision-making, and reflects the view that not all organiza-
tional conflict can be contracted away.'! If we allowed the principal to offer agents a
share of the chosen project or to make transfers, inducing collaboration would be eas-
ier. Our optimal rule highlights how, despite a severe lack of instruments, the principal
can (and will) foster some collaboration.

Exogenous shocks. We assume that the shocks governing the projects’ evolution are
exogenous. This assumption is appropriate for settings in which effort is mainly instru-
mental. For instance, employees working on developing a new technology can affect
their chances of success by devoting more or less effort. However, such an effort will not
affect industry-level shocks that might affect the feasibility of said technology. Essen-
tially, this assumption abstracts away from the potential information-generating role of
effort. As mentioned in Section 1.1, the literature on experimentation focuses on this

11Gee (March (1962), Gibbons (2020)) for the notion of “the executive . .. [as] a political broker who cannot
solve the problem of conflict by simple payments to the participants and agreement on a superordinate
goal.”.



1188 Deb, Kuvalear, and Lipnowski Theoretical Economics 20 (2025)

role and models an exploitation—exploration trade-off that is technological: exploring
a risky option means giving up the myopic gains from exploiting the safe option. Our
modeling choice enables us to make the different point that even if information arrives
exogenously, which means a single decision-maker would face no trade-off between ex-
ploration (competition) and exploitation (collaboration), using this information to in-
form future choices can still entail costly distortions because of agent incentives.
Continuous time. A finite-horizon continuous-time model allows us to simplify the
optimization problem and derive qualitative features of the optimal policy. In particular,
in our proofs, working with a Brownian shock process enables us to use time-change
methods to cleanly compare selection rules with alternative timing of collaboration.

3. BENCHMARKS

We start with two benchmark settings. First, we characterize a first-best solution, max-
imizing the principal’s ex ante expected profit in the absence of agent incentive con-
straints. Next, we describe the equilibrium of the three-player game in which the prin-
cipal cannot commit to a decision rule and must make a static project choice when the
deadline arrives.

3.1 First-best solution: Ignoring agent incentives

Toward defining the principal’s first-best problem, let .A denote the set of agent strategy
profiles (a}, at_1 )+, and let ) denote the set of project selection rules, i.e., {—1, 1}-valued
random variables on F. We want to solve the planner problem

1
sup  EX)=-E[yAX7]
acA,ye) 2
subject to de =iAa, dt + dBf, X& = x(l), XO_1 = xal.
The proposition below shows the first-best solution is for the principal to choose the
project with the higher output at the deadline and, at every instant before the deadline,
have both agents collaborate on the current leader. One part is obvious: the principal
will clearly choose the better project ex post. We also show that at any instant before the
deadline, it is optimal to have the agents collaborate on the current best guess of which

project will be ultimately chosen, so that the effort is productive. Formally, we observe
that it is optimal to set Aa; = 1 when AX; > 0 and Aa; = —1 when AX; < 0.

ProrosiTioN 1. The following policy attains the principal’s first-best profit:
e The principal chooses project y*® = (7, the leader as of time T.
e Each agent works on the current leader, that is,

(1) = (1,00: X} =x.!
! 0, 1): X' <x;
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The intuition for this result is straightforward. Because the principal will optimally
choose the ex post best project, her objective can be rewritten as E|AX7|/2, an increas-
ing transformation of (AX)2. However, then the given control increases the drift of
(AX)? more than any other control does, at any given level of (AX)?. A classic compar-
ison theorem from the theory of stochastic differential equations (Ikeda and Watanabe
(1977)) says this control yields a stochastically maximal distribution of (AX7)?.

3.2 No principal commitment

It is immediate that if the principal could not commit, she would (as in the above first-
best solution) choose the leading project when the deadline arrives. In other words, the
principal’s behavior will be ex post optimal: y = £7. This observation in turn implies no
collaboration will occur, with each agent finding it dominant to devote all his effort to his
own project to maximize the chance that it is the eventual winner. Indeed, consider any
effort decision of agent —i and any hypothetical effort choice a’ for agent i. Raising a’ to
1 (i.e., never collaborating) increases agent i's payoff weakly in every state, and strictly
with positive probability if he were not already almost surely making the latter choice at
almost every time.

ProrosITION 2. Ifthe principal cannot commit, any equilibrium is as follows:
e The principal chooses project y'® = (7, the leader as of time T.

e Each agent works on his own project; that is, (a}, at’l) =(1,1).

3.3 Can commitment be useful?

The first-best solution has the agents collaborating at every instant, whereas in the equi-
librium with no principal commitment, getting any collaboration off the ground is not
possible. The natural question is whether a principal with some commitment power
can foster some collaboration to get better equilibrium outcomes. In this section, we
demonstrate informally that if the principal could commit to a decision rule ex ante, she
may be able to improve her payoff. Such a principal could, for example, offer any of the
following contracts.

Principal’s pet project. Consider a project selection rule where the principal simply com-
mits to picking her pet project i, and has agents collaborate on the pet project.
This rule maximizes the benefits of collaboration on the favored project for length of
time 7, completely forgoing the benefits of choosing the correct project. It is easy
to see that this contract can indeed outperform the no-commitment outcome for a
range of parameter values.

Unassailable lead. Another project selection rule for the principal has the agents start
out competing and commits to picking a project irreversibly if it is the first to take on
a lead of at least L. The agents then collaborate on this chosen project. If no project
ever reaches the lead threshold L, the principal chooses the leader at time T'.
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Note that this contract can also improve upon the no-commitment outcome, again
by curtailing competition and allowing some collaboration on a favored project. This
time, the favored project is the early leader who “wins” the initial competition by over-
taking by a specified lead threshold.

Early-lead advantage. Finally, consider the following more elaborate selection rule that

gives an early leader an advantage, though the advantage is not unassailable. If no
project ever attains a lead L, then the principal chooses the leader at time 7. If a
project i is the first to take on a lead of L and project —i never catches up, the prin-
cipal chooses this early leader i with probability p > 1/2 at the deadline. If project —i
subsequently catches up so that agent i’s lead is reduced to 0 and agent —i remains
ahead at the deadline, project i is chosen only with probability 2p — 1. However, if
project i is again ahead at the deadline, i is chosen with probability 1. Under this rule,
agents start out competing. When an early leader i emerges, both agents start collab-
orating on the early-leader project and start competing again if and when the early
lead disappears.
This selection rule is incentive compatible; in particular, agents willingly collaborate
when an early leader emerges because the probability of the early leader being chosen
at the deadline, conditional on the lead disappearing, is still (1/2) + [(2p — 1)/2] = p.
Moreover, such a rule can dominate the outcomes under both the no-commitment
and the unassailable-lead contracts.

These examples offer two key takeaways. (i) They demonstrate that commitment
power can indeed help the principal improve upon the non-commitment outcome by
inducing some collaboration. (ii) Because agent interests are directly opposed, one
might have conjectured that the only way to make agent i collaborate is to commit to
abandoning project i once and for all. The early-lead-advantage contract demonstrates
this reasonable conjecture is actually false: an agent can be willing to collaborate even
when he knows that, with sufficient improvement, his project can be chosen in the fu-
ture.

Indeed, the space of all history-dependent contracts is large and rich, and the sub-
stance of our main result is to identify the uniquely optimal one.

4. AGENT INCENTIVES AND THE PRINCIPAL'S PROBLEM

Recall that the principal can choose an arbitrary {—1, 1}-valued random variable y on
(Q, F,P), and her expected payoff E[X’ ;] depends on the resulting agent behavior. So
we begin by expressing agent incentives more concretely. An agent’s strategy is incen-
tive compatible if it maximizes the agent’s expected utility (continuation value), given
the principal’s selection rule. Recall that agent 1’s continuation value at time ¢ is g, and
agent —1’sis —q,;, where g, := E[y|F;] describes the interim expected project choice. No-
tice that {q;}; is an {¥;}; martingale. Since {F;}; is the filtration generated by the two
independent Brownian motions AX; — fot 2Aa; d = AB; and 2 X, = 2B, (see footnote 9),
we can apply the martingale representation theorem (Karatzas and Shreve (1998, The-
orem 3.4.15)). Specifically, we can represent g as a stochastic integral against these two
processes. More precisely, a progressively measurable R?-valued process {C; = (c2, c,z)} ¢
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on filtration {¥;}, exists whose time-¢ quadratic variation has finite expectation for every
¢ > 0 and such that!?

dg; = [¢(dAX, — 2Aa, dr) + ¢ d3X,], (LoM)

where Aq, ¢ is the equilibrium-anticipated Aa,, and the law of motion dAX; is influenced
by the chosen Aa,. Intuitively, we can think of ¢ and c? as project sensitivities that
describe how the interim expected project choice responds to relative and aggregate
shocks of the two projects. Because agents’ contemporaneous choices influence dA X,
but not d% X;, agent incentive compatibility requires

Aa,=0 whenever ¢ #0. (IC)

Indeed, given ¢ > 0 (resp. c®* < 0), both agents would have a strict incentive to choose
ai =1 (resp. aﬁ = 0). Further, we can rewrite the principal’s profit, 11, as

1 1
1= EED’AXT] = EE[CITAXT]-

Applying Ito’s formula on the product process g - AX and using the independence of
the two processes AB and 3B, direct computation shows

1 1 T T
0 0

T

1
= quAXO —i—E/ ( tha, + CtA ) dt,
0 " ~~——
ex ante collaboration  adaptivity

where the last equality comes from the standard formula for quadratic covariation of
stochastic integrals. Writing down the objective in this way clarifies that, apart from
making an appropriate ex ante project choice (choosing qp), the principal has two levers
to increase profit: (i) adapting the project choice to relative productivity shocks, which
will (by (IC)) induce agents to compete on their respective projects; and (ii) eliminating
the efficiency loss of competition by having agents collaborate.

Whenever ¢ is 0 (and so Aa, € [—1, 1] is not restricted by agent incentives), changing
Aa, to signg; € {—1, 0, 1} raises the principal’s objective.!> Moreover, this change does
not alter feasibility of (g, A, ¢*). Therefore, we can solve out this choice variable and
write the principal’s objective as

1 T
= quAXoJrEf (Teaglal +cr) dr.
0

Recall that ¢, is the interim expected project choice. The choice of Aa; being 1 (resp. —1)
when ¢; is positive (resp. negative) corresponds to the principal choosing collaboration

12Thatis, g, = qo + fO’[cSA(dAXS —2Aa, ds) + ¢> d3 X,] almost surely.
13Moreover, it strictly raises the objective if, with positive probability for a positive measure of times ¢,
we have ¢; # 0 and Aa; # 0.
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on the “current favorite” at time ¢: the project with a higher likelihood of being chosen
eventually given history up to ¢. Note that the current favorite may not be the project
that is currently ahead, because the former is endogenous to the principal’s chosen con-
tract. Determining what the current favorite is at any time is an essential part of the
characterization of the optimal contract. We can write the principal’s problem as

1 T
sup {_QOAXo-HE/ (Leaolael + ) dt}, 0)
(qec e 0
subjectto ¢;€[—1,1]and dg; = ctA dAB; + c,2 d>B,. (P)

5. THE OPTIMAL SELECTION RULE

Our main result describes the form of the uniquely optimal project selection rule.

THEOREM 1. An optimal contract exists and is unique.14 A bounded, continuous, non-
decreasing function z : Ry — Ry with zo =0 and z; > 0 for every t > 0 exists, such that
(whatever is the duration T until the deadline) the following behavior is optimal:

e The principal chooses project y* = £+, the leader as of time'®
™ :i=inf{t € [0, T]: [AX,| > Z7_}.
e Each agent works on his own project before 7*.

e Both agents work on project y* from time ™ onward.

Figures 1 and 2 show realized paths of projects’ relative performance in which
projects 1 and —1 are chosen, respectively. Consistent with the theorem, a winner is
chosen and permanent collaboration begins the first time one project’s lead exceeds the
threshold. Figure 3 demonstrates a realization in which the project choice (project 1)
turns out to be ex post inefficient.

Recall that the theorem is stated with the normalizations ¢ = u =1, 8 = —1, and
> Xo = 0. However, it is easy to deduce the optimal contract for general parameter val-
ues. In particular, the initial aggregate state (2Xp) and baseline development rate (8)
are irrelevant, for the same reasons that aggregate performance is optimally ignored.
Because each quantity enters the threshold rule in two places, comparative statics with
respect to the marginal product of effort (1) and the project volatility (o)) are more deli-
cate, depending on detailed features of the function z. However, some features are easy;
for instance, raising u while holding the ratio n/o fixed raises the lead threshold at ev-
ery time. Finally, extending the deadline (7') leads to a larger lead threshold at every
time, whereas changing the initial project asymmetry (AXp) in favor of one project has
no effect on the standards and, hence, makes that project more likely to be chosen.

14 Any two optimal incentive-compatible selection rules almost surely have the same chosen project and
the same agent choices at almost every time.
151n the zero-probability event that 7* = T and X } =X; !, the principal may choose arbitrarily.
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FIGURE 2. Project —1 is selected.

The remainder of the section is dedicated to proving the theorem. A common ap-
proach to solving a stochastic control problem like the one in (O) is to heuristically de-
rive the HJB equation, establish the existence of a smooth solution to it, and appeal to
a verification theorem. However, this approach has two limitations. First, given a finite
horizon, the HJB equation would be a partial differential equation, and so explicit char-
acterization of its solutions is not straightforward. Second, note that (O) is a volatility
control problem. Discontinuous flow payoffs and the possibility of degenerate volatility
(which happens when ¢* and ¢ are 0) mean that the HJB equation need not be uni-
formly elliptical. Moreover, the associated stochastic differential equation (SDE) for
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g: in (P) may not have a strong solution.'® So we adopt a different route. It turns out
that time-change methods for analyzing weak controls can simplify our volatility con-
trol problem. Because the argument is not typical of the optimal contracting literature,
we first summarize our approach and then proceed to formal analysis.

5.1 Approach to characterizing the optimal selection rule

Our first technical step is to consider relaxations of the principal’s problem that allow
for weak solutions. Recall that in the control problem (O), the principal has to choose
interim expected project choice ¢ and project sensitivities C. Allowing weak solutions
means we now allow the principal to additionally choose the underlying Brownian mo-
tions that drive projects’ random evolution (while still respecting the law governing this
evolution as stated in the model section).!” In a typical discrete-time model, such a re-
laxation would be irrelevant, but in the present setting, it is a useful tool for the analyst.
Given this broader definition of a control, we then proceed to show that restricting at-
tention to controls that have various economically intuitive features is without loss of
optimality.

The first step toward establishing the result is Lemma 1. In a quantitative argument,
we establish that ||(c?, ¢*)|| > 1. Intuitively, the principal can back-load collaboration
by continuously speeding up decision-making whenever ||(c2, ¢*)|| is too small, thus
creating residual time at the end for more collaboration.

Using this, in Lemma 2, we show that the principal ignores aggregate shocks. To
this end, notice that ¢* does not affect the principal’s objective function or the agent

16We thank an anonymous referee for crystallizing these specific issues with the HJB approach.

170Other papers on continuous-time optimal contracting and elsewhere in the optimal control literature
appeal to weak solutions of stochastic differential equations (e.g., Sannikov (2008)). We believe our specific
use of weak solutions is novel. Namely, we solve a relaxed program entailing weak solutions as a solution
method to characterize principal-optimal incentive-compatible (IC) strong solutions.
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incentives, and that aggregate shocks are not an informative signal of agents’ choices.
Therefore, it is intuitive that the principal should set ¢* = 0. A consequence of these
two lemmas is that |c2| > 1 until q: € {—1, 1}. That is, if an optimal contract exists, it will
back-load all the collaboration (¢ = 0) and front-load all the competition.

In Lemma 3, we show that we can reduce the principal’s problem to an optimal stop-
ping problem in which the principal chooses a time when she stops competition and
switches the agents to collaboration on the current leader as of that moment, until the
deadline. In particular, it is optimal for the principal to have the agents stop competing
at some time, make a constrained-efficient choice with the partial information she has,
and switch to collaboration on the chosen project thereafter.

Once we have established competition is ended once and for all, showing that the
threshold for doing so should decline over time is straightforward. We formalize this
fact in Lemma 4 by showing that the stopping rule is a decreasing threshold: the prin-
cipal switches to collaboration on a project as soon as its lead over the other project
is sufficiently large, with this lead standard becoming less demanding as the deadline
approaches.!®

In the final step, we show that even though the above qualitative features are derived
for relaxations of the principal’s problem, these relaxations are payoff-irrelevant: The
constructed optimal control from the relaxed problem can be implemented in the orig-
inal problem through strong solutions, i.e., with the principal choosing simply ¢ and C
as in the original problem.

5.2 Mathematical preliminaries

We start by defining a permissive notion of a weak control that will be convenient.

DEFINITION 1. A weak control is a tuple C = (Q, F, {F:}s>0, P, B, C, q) such that the fol-
lowing definitions hold:

(i) Theterm (Q), F, {F:}s>0, P) is a filtered probability space satisfying the usual con-
ditions.

(ii) Theterm B = (AB, 3B) = {B;};>0 isan R?-valued stochastic process on its natural
filtration {F;},>0, such that B/+/2 is a standard Brownian motion.

(iii) The term C = (c&, ¢*) = {C}} />0 is a progressively measurable R?-valued process
on {F;};>0 whose time-¢ quadratic variation has finite expectation for every ¢ > 0.

(iv) The term g = {q;},;>0 is a [—1, 1]-valued martingale on {F;};>o.

(v) The term q; = qo + fot C - dB almost surely while |¢,| < 1.

Defining the notion of a Brownian base is also convenient. A Brownian base is any
tuple (Q, F, {Fi}i>0, P, B) satisfying properties (i) and (ii) above.

18Studying costly sequential sampling problems that a single decision-maker faces, Fudenberg, Strack,
and Strzalecki (2018) show that decreasing threshold rules can arise even without a deadline.
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Note that if a principal chooses a weak control as defined above, she also chooses
the underlying stochastic process and probability space. Of course, in our princi-
pal’s problem in (O), she has no such choice. She must take a particular Brownian
base (), F, {F}1>0, P, B) as given. However, considering this relaxation of the principal’s
problem is convenient.

Given a weak control C = (Q), F, {Fi}r>0, P, B, C, q), we define

TC = T/\inf{t el0,T):|q: = 1}»

1 e
J(C) = quAXo +E|:/ (La_olgel + ctA) de+T — ’TC].
0 t
Intuitively, given a weak control, 7¢ is the stopping time associated with that control
when ¢, hits a boundary, or when the principal has no choice left to make, and J(C) is
the payoff that the principal would get if the control were followed until 7 and then
agents collaborated on the choice at 7.

5.3 Decide quickly

We first establish a quantitative claim about optimal selection rules. For the principal
to resolve uncertainty somewhat quickly is without loss of optimality. Specifically, if the
principal is deciding which project to choose slowly enough that its flow benefits are
smaller than those from collaboration on a chosen project, she can improve her payoff
by speeding up her decision-making (higher ||C||) and defer any saved time toward end-
game collaboration on her chosen project. Formally, this claim amounts to showing that
restricting attention to weak controls such that || C || > 1is without loss of optimality.

LEMMA 1. For any weak control C, a weak control C exists whose Euclidean norm satisfies
IC|l > 1 and such that J(C) > J(C). Moreover, ] (C) > J(C) unless, almost surely, |C;|| > 1
for almost every t € [0, T') with |q;| < 1.

In addition to telling us uncertainty is resolved quickly, Lemma 1 is a key ingredient
to Lemma 2, which proves that ¢ = 0, i.e., the principal does not update her choice in
response to aggregate performance of the two projects. The interested reader can refer
to the Appendix for the proof, but we summarize the logic here.

The proof of Lemma 1 is constructive, modifying a weak control without this prop-
erty to a superior one with this property. Specifically, the fractal property of Brownian
motion allows us to construct a superior weak control by replacing the underlying Brow-
nian motion with a law-equivalent time change of the same, and replacing our sensitiv-
ity coefficient C with one that is scaled up whenever the original one had ||C| < 1, in
such a way that the expected project choice ¢ follows the same trajectory. Intuitively,
this argument is akin to “slowing down the clock” without changing the trajectory of the
expected project choice, thus simply speeding up the original decision-making process
and creating some residual time at the end. The benefit of rescaling time in this way
is that this “extra” residual time can be utilized for efficient collaboration on a chosen
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project for a flow benefit of 1. Of course, the cost of this speeding up is that the dura-
tion for collecting flow payoffs is reduced. Note that holding an expected project choice
qo fixed, the principal’s payoff in (O) can be interpreted as the sum of the total accrued
value of collaboration ( fOT HC[A:OV]tl d#) and the total net value of competition ( fOT ¢ dp),

since agents compete whenever ¢ # 0. Thus, the foregone flow payoff is either ¢ (if
from competition) or 1 _a_|q;| (if from collaboration), both of which are bounded above
by 1. Thus, the cost of lost flow payoff as a result of speeding up decision-making is
always less than the benefit of the extra collaboration time.

5.4 Respond only to relative performance

We next establish that for the principal to respond to the relative performance of
projects, and not to aggregate shocks, is without loss of optimality. Absent an agency
problem, such a choice is, of course, allocatively efficient; we show that this property
remains optimal even when respecting agent incentives.

LeMmwMmA 2. For any weak control C, a weak control C exists that satisfies A >1landé® =0,
and such that J(C) > J(C). Moreover, J(C) > J(C) unless, almost surely, A>1land =0
for almost every t € [0, T') with |q,| < 1.

We show constructively that restricting attention to weak controls that ignore aggre-
gate shocks and respond to relative shocks (i.e., set ¢ =0insucha way that ||é' I=ICl,
which leaves ¢* > 1 > 0) is without loss of optimality. By responding solely to contempo-
raneous relative shocks while maintaining the degree to which she resolves uncertainty
based on current shocks, the principal can better capitalize on the gains of competition
today while keeping the law of ¢; fixed, and so without affecting her ability to respond
optimally in the future. Such a change will still entail a potential cost of foregone current
collaboration, but if the principal is resolving uncertainty sufficiently quickly (which she
optimally does by Lemma 1), these costs are smaller than the gains to more effective
competition.

For the interested reader, the proof of this lemma is a good example of why weak

solutions are especially useful. The conclusion of Lemma 2—that c,2 is almost surely

0—is a natural conjecture because ctE neither affects players’ incentives nor enters the
objective function. However, establishing this conjecture formally (by standard meth-
ods) would require us to write down the HJB equation corresponding to (O) and prove
both the existence of a solution and concavity. The difficulty is that with a discontinu-
ous flow payoff, our HJB equation does not belong to a class of well understood partial
differential equations. Reasoning through weak solutions circumvents this challenge.
To see the basic idea, suppose that, on some paths, we have c,2 > 1 and ctA =0. Then we
would conjecture that swapping ctE and c2 on those histories would lead to a payoff im-
provement (flow payoff being |¢;| <1 < c,z) while keeping the law unchanged. However,
such a swapping operation changes the path of g;. Permitting weak solutions enables
us to construct new Brownian motions using the original ones and to work with these
alternate weak controls that deliver a payoff improvement while preserving the law of
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motion. Although swapping arguments of this kind have been commonly used in study-
ing dynamic incentive problems in discrete time, we hope our approach can facilitate
similar arguments in continuous-time models.

5.5 First compete and then collaborate on the winner

Next we show we can bound the payoff attainable in the present optimal control prob-
lem by an optimal stopping problem. The principal’s problem reduces to one in which
she picks a stopping time at which she switches from pure competition to permanent
collaboration on the chosen project until the deadline.

LEMMA 3. For any weak control C such that ¢® > 1 and ¢ = 0, the stopping time  := 7¢
hasJ(C) < T+ E[(1/2)|AXo + AB;| — 7]. Moreover, J(C) < T +E[(1/2)|AX¢ + AB;| — 7]
unless, almost surely, q. is equal to the sign of AXo + AB; if AXo + AB; #0.

The lemma follows from a direct computation of J(C), given properties of C. The
details are provided in the Appendix. This lemma reduces our principal’s problem to a
nonstrategic optimal stopping problem. To see why, notice that {Y; = (AXy + AB;)/2};
is an exogenous Brownian motion. Subtracting the constant term 7 from the principal’s
objective, the lemma says her modified objective is no greater than

sup E[|Y:| -],

stopping times 7<T

which is exactly the value of an optimal stopping problem with constant flow cost, ter-
minal value | Y|, and deadline T'. As with our other lemmas, we eventually show that this
upper bound is attained, and so the two problems are equivalent.

5.6 The winner is the first to take a large enough lead

The final building block is to show the optimal stopping rule takes an intuitive form,
permanently switching to collaboration on the leading project when it first takes a large
enough lead, where the standard for “large enough” becomes less demanding as the
deadline approaches.

LemwMmaA 4. A function z : Ry — Ry exists, such that for any Brownian base B and any
(T,2) eRy xR, 7% pi=inf{r € [0, T]: |z + AB;| > zr_} isa (B, T) stopping time,'® and
every Brownian base B and (B, T) stopping time # have

E[(1/2)lz +ABys | — 75, 5] =2 E[(1/2)|z + AB;| - 7],

TT,2,B
with equality if and only if 7 is almost surely equal to 7; 5 Moreover, z is bounded,

yZy
continuous, and nondecreasing, with zyo = 0 and zr > 0 for every T > 0.

19A (B, T) stopping time is a stopping time on the filtration underlying B that respects deadline 7. See
Definition 2 in the Appendix.
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The proofis provided in the Appendix, but we sketch the argument here. We have an
optimal stopping problem in which a decision-maker observes a driftless Brownian mo-
tion at a constant flow cost and can stop at any time before a deadline, where stopping
yields a payoff equal to the Brownian motion’s absolute value. The finite deadline makes
the problem nonstationary, and so we do not attempt to derive a closed-form solution
for the optimal stopping rule, but instead derive qualitative features of it. Classic results
from the optimal stopping literature imply that in our problem, the earliest optimal pol-
icy is to stop as soon as the optimal and stopping values coincide, and we can, in fact,
show that this stopping time is uniquely optimal. Thus we analyze the (continuous) op-
timal value function, taking as arguments the time remaining and the current state of the
Brownian motion, and show that the set of values of the Brownian motion at which the
optimal value function strictly exceeds the absolute value (stopping value) is a bounded,
symmetric, nonempty interval that shrinks as the deadline approaches. Boundedness
obtains by considering a relaxed problem with no deadline and using existing results for
problems with an infinite horizon. The set shrinks as the deadline approaches, because
the decision-maker’s objective is unchanged but is subject to a tighter constraint. A limit
argument shows that it contains 0 when near enough to the deadline, and, hence (given
monotonicity), contains 0 at every time. It is symmetric about 0 because the objective
and the law of motion are. Finally, it is an interval around 0 because the value function
is convex, whereas the terminal value is affine on either side of 0.

5.7 Characterizing the optimal selection rule

We next show that the qualitative features we derived for the solution to the relaxed
principal’s problem (permitting weak solutions) also apply to the optimal rule in our
original problem. Accordingly, the unique optimal selection rule takes the simple form
described in our main theorem.

Proor oF THEOREM 1. Taking z to be the function delivered by Lemma 4, let IT* be
the principal value generated by the behavior named in the theorem. Note that the
described agent behavior is incentive compatible given this selection rule: agents are
indifferent from 7* until the deadline, and they increase their probability of being the
time-7* leader by working on their own projects.

Consider now an arbitrary selection rule by the principal, together with incentive-
compatible agent behavior, and let II be the principal’s value from adopting it. As we
have shown in Section 4, it generates some weak control C such that J(C) =1I.

Now let us apply the lemmas referenced above. Lemma 2 delivers some weak control
C such that é* > ¢* = 0 and such that J(C) > II, the latter inequality being strict unless,
almost surely, A > ¢* = 0 for almost every t € [0, T) with |¢;| < 1 (in which case, we
can take C =C without loss). Lemma 3 then tells us the stopping time 7 := 7 has T' +
E[(1/2)|]AXo + AB;| — 7] > 1, strictly so unless g is almost surely equal to the sign of
AXo+ @; ifAXo+ ﬂ?; # 0. Finally, Lemma 4 tells us that 7* (as defined in the statement
ofthe theorem) has T+E[(1/2)|AXo+AB«| —7*] > 11, strictly so unless 7 is almost surely

equal to 7* ..
q T,z,C
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The above arguments directly deliver the theorem. First, they show that the princi-
pal’s optimal value is I1* = T+ E[(1/2)|AX¢ + AB«| — 7*], making the described behavior
principal-optimal. Second, they establish that Il < [I* (making the given selection rule
and agent behavior suboptimal) unless, almost surely, the selected project is the same
and agent choices are the same at almost every time. O

6. DISCUSSION
6.1 Duration of collaboration and ex post inefficiency

An implication of our characterization of the optimal contract is that the length of the
competition phase is probabilistically bounded in two senses. First, for any deadline T,
a phase of collaboration always exists, because the threshold collapses as the deadline
approaches. Second, if we increased the time horizon 7, although the duration of the
competition phase would increase (in the sense of first-order stochastic dominance),
the duration of competition would remain uniformly bounded.?? Put differently, not
only is the collaboration phase reached with probability 1 for any 7', but also, when the
project is of a very long-term nature, most of its development is spent collaborating.

Fostering collaboration increases the value of the principal’s chosen project, but the
inefficiency caused by picking the “wrong” project on-path can be arbitrarily large; that
is, given any M > 0, the probability that X + M < X,” is strictly positive.?! Neverthe-
less, because collaboration starts early in expectation, the probability of an error ap-
proaches 0 as the project horizon grows long.

6.2 Cancellation of projects before the deadline

In our setting, the principal chooses an optimal stopping time at which she makes a
choice and then has both agents collaborate on the chosen project. An alternative in-
terpretation is one in which the principal chooses when to irreversibly cancel one of
the projects, after which both agents must work on the remaining project. A richer con-
tracting environment in which the principal can choose to irreversibly cancel is arguably
more consistent with our motivating application and is indeed equivalent to our current
model. On the one hand, the principal cannot be worse off in the richer environment,
because she can always abstain from cancelling projects. Conversely, the principal can
always simulate cancellation through a selection rule by deciding on a project in ad-
vance and having the agents collaborate on the chosen project. Moreover, in the richer
model allowing irreversible termination, our optimal selection rule from Theorem 1 can

20That is, some finite-mean random variable 7, exists such that the duration of the competition phase
is first-order-stochastically dominated by 7. Indeed, one could take 7, to be the optimal stopping time
from an analogous stopping problem with no deadline, which is known to exhibit a constant lead threshold:
the proof of Lemma 4 notes that it is % The constant threshold is finite because the option value of
continuing vanishes with the probability of the Brownian motion revisiting zero, and a finite |AX | threshold
is surpassed in finite expected time because the constant volatility is nonzero.

21This observation is a consequence of the projects’ evolution being a Brownian motion and, thus, hav-
ing unbounded supports.
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be implemented in equilibrium, without commitment. The principal could simply ter-
minate the project that is lagging behind by the current lead threshold, with each agent
working on his own project unless it is cancelled.

6.3 Agent indifference in the collaboration phase

Under our optimal rule, when agents collaborate, they are indifferent between compet-
ing and collaborating. Such indifference is common in many standard contracting envi-
ronments, but constructing a similar contract with strict incentives is typically possible
using a small monetary perturbation.?? In our setting with no transfers, no obvious way
exists to turn weak incentives into strict ones. Indeed, the best that the principal can
achieve in any strict equilibrium is simply the no-commitment solution.?3

However, following the spirit of classical contract theory arguments, we ask what
would happen if the principal could provide monetary incentives up to a fixed budget of
€ > 0 (assuming for simplicity that agents have separable preferences over money and
project choice). Observe that, in this case, implementing the optimum from Theorem
1 in a strict equilibrium would be easy.>* For example, letting 7* and y* be as defined
in the statement of Theorem 1, the principal could augment the given selection rule by
further giving both agents a prize of €/2 if and only if the collaboration phase goes better
than expected, that is,

Xy > En[X7 =X+ (B+2p)(T - 7).

This contract clearly gives agents strict incentives to collaborate on the chosen project,
and it does not distort incentives in the initial phase of competition, because an agent’s
monetary prize of /2 will be earned with probability 1/2 conditional on any outcome
of the initial competition. Moreover, one can show that the principal’s optimal value
converges to ours as € — 0. One can also similarly modify the model with small-scale
monetary incentives to accommodate a small effort cost or a small preference for an
agent to work on his own project.

Hence, our model is perhaps best interpreted as a parsimonious version of the e ~ 0
model (in which strict incentives are without loss), wherein agents’ empire-building mo-
tives overwhelm monetary incentives of a realistic scale. The contribution of this paper
is to show that, somewhat surprisingly, fostering a degree of collaboration in equilibrium
is still possible and optimal despite the paucity of powerful incentivizing instruments.

22For example, optimally inducing high effort in a textbook binary-action moral hazard model with con-
tractible transfers will leave the agent indifferent, but modifying the contract to provide slightly higher-
powered incentives will approximate the same principal value under strict incentive compatibility.

Z3Given that agents’ interests are directly opposed, every strict equilibrium has the agents always work-
ing on opposite projects. The best the principal can do subject to this constraint, then, is to choose the best
project ex post.

24We focus here on perturbing the model by allowing small-scale monetary transfers, but other pertur-
bations would similarly enable strict incentives. For example, essentially identical reasoning would apply
if the principal could instead choose to adopt neither project with some small probability.
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APPENDIX: OMITTED PROOFS

In this appendix, we provide proofs that we omitted from the main text of the paper.

A.1 Proofof Proposition 1

First, because the ex post efficient rule y = {7 maximizes the principal’s objective state-
wise, we may recast her problem as

1
sup —E|AXT|
acA 2

subjectto dX!=(al —a;") dt+dB!, X}, X,

Now, before showing that the described agent behavior is optimal, observe that our
posited optimal weak control is indeed well defined: Following Example 1.2 of Yamada
(1973), the stochastic differential equation

dAXt = 2Slgn(AXt) dt + dABt

admits a unique strong solution. Optimality then follows readily from a comparison
theorem. Indeed, following identically the proof of Theorem 2.1 in Ikeda and Watanabe
(1977), any alternative weak control has a (weakly) first-order-stochastically dominated
distribution of [AX7|.25 O

A.2 Proofof Lemma 1

Let  := r¢, and assume without loss that ¢ = 1 and ¢;' = 0 whenever ¢ > 7. Moreover,
assume without loss (changing C on a measure zero set) that C is 0 on any time interval
where itis a.e. 0.

We now proceed to define our candidate C. Define

v: := 1 A ||C;|| (where | - || is the Euclidean norm on R?),
t
(= / y? ds (nondecreasing and 1-Lipschitz, with slope 1 after 7),
0

Ay :=inf{t > 0:¢; > u},

A

Fui=Fr, ={E€Fo i EN{A(w) <t} € F, ¥t >0},
A )\u
Bu ::/ Yt dBtr

0

1
R —Cy,: Gy, #(0,0),
Cy:=1 Y\

(]-) 0). C)\u:(oy 0),

Z5That result shows that a control Aa, = —sign(AX,) minimizes |AX7|—in fact, minimizes each of
{|AX¢|}se[0,j—in a first-order stochastic differential (FOSD) sense. However, reproducing the proof nearly
verbatim establishes that control Aa; = sign(AX,) maximizes |[AX7|.
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A

qu = q)\u’
é = (Q) —F, {fu}uZOr ]:P)r é» é; é)
First, we observe that A, is a {¥;},>¢ stopping time for each u > 0 and that the tuple
(Q, F, {Fulu=0, P, B) is a Brownian base. These facts follow directly from applying the

Dambis-Dubins-Schwarz theorem (Karatzas and Shreve (1998, Theorem 3.4.6)) to M =

\/%I?, with the observation that (applying the formula for quadratic variation of an It6

process)
At
<M>t=/ y2ds={), =t
0
To see that C is a weak control, all that remains is to check that qu = qo + fou C-dB o1,
equivalently, that f;'C - dB = [} C - dB. This formula follows directly from Proposi-

tion 3.4.8 of Karatzas and Shreve (1998).
Let us now show that J(C) > J(C). To this end, first observe that

/()§7(153=0|‘}u|+63) d”2A7(152:o|@§t| +&d) dg
Z/()T(]legt:d%l +e2)ve di
= /OT(]lctA:OWtWt—f-C,A)y; ds,

so that
&r -
T—§T+/0 (Lea—olqul +¢4) du_fo (Los _olaul + ) dr

B /OT[I =77+ (Leaolgilyve+ )y = (Lpoplail + )] de

- /OT[(I N yfz) —(1- Vtz)]lc?:o|fh| —(1- y,)ctA] ds

— /07(1 — [+ ) (1= 1 a_glgil) - ] dr.

Finally, that ¢2 = 1 for every ¢ > £, implies

T

A {T A A
J(C)—J(C):E[/ (163:0|QM|+C3) du+T—§t}—E[/ (La_olgel +c?) dl+T—Ti|
0 0 !
& R "
=E|:T—§z+/ (1@3:0|qu|+cu) du—/o
0

=5 [ "=yl (- 1) — ] .

T

(Lea_oldrl + ) dt]
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The value ranking will then follow if we establish that (1 — y,)[(1 + v;)(1 — ]lCtA:0|q,|) —

2] is nonnegative for any ¢ € [0, 7], and is strictly positive if [|C,|| < 1 and |¢;| < 1. We

observe this inequality in three exhaustive cases:
(i) If y; =1, then ||C;|| > 1 and the term is 0.

(i) If ctA =0 and vy; # 1, then the term is (1 — y;)(1 + v;)(1 — |¢/|), which is strictly
positive if |g;| < 1 and is 0 if |g/| = 1.

(i) Ifc® # 0 and y, # 1, then ¢® < ||C;|| = vy, so that the term is
(1—y)[A+7y) —c*]= 1 —y)l>0.

The lemma follows. O

A.3 Proofof Lemma 2

Following Lemma 1, we may assume without loss that || C | > 1. Let us define our candi-
date C. Define

¢ = ||C;|| (the Euclidean norm),

étz =0,

AB, :=/1<i dAB+i dEB) =/Ii dg,
o \IICll (& 0o A
SB, = /l(ﬁ dAB+_—CA dEB),
o \IC] ICIl
C:=(Q, F, (Fli=0, B, B, C, q).

From It6 isometry, it is straightforward to see that %IES[(Bt — Bg)(B; — By)'1 = (s — )1,

where I, € R>*? is the identity matrix. That %B is a standard Brownian then follows

from Lévy’s characterization of the same. It follows readily that C is a weak control.
Moreover, that 7 = 7¢ implies

~ Tc R
J(C)—J(C) = E/ [(Lpglael + &) — (La_glgqel + )] de
0 t t
TC A
=E/O (Gl = (La_larl + )] dr.
To see the value ranking, observe that the integrand has
ICell = (Laaglgel + ) = min{ICell = ¢, ICel = gel},

which is always nonnegative, and is strictly positive if ¢> # 0 and |g;| < 1. O
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A.4 Proofof Lemma 3

The diffusion process (g, AB) has zero drift and volatility process (c®,1). Apply-
ing Dynkin’s formula to the function (g, AB) + q,AB; therefore yields %]E[qTABT] =
Efy c¢® dt. Moreover, Doob's optional stopping theorem tells us E[q,] = go. Therefore,

T

1
0

1 T
=04+T-ET+ EqOAXo-i-E/ CtA det
0
1 1
1
=T—-Er+ 5]E[qT(AXO +AB;)]

1
<T-Er+ §]E|AX0 + AB,|,

where the inequality is strict unless g-(AXo + AB;) = |AX( + AB;| almost surely. d

A.5 Proof of Lemma 4

The arguments supporting Lemma 4 concern features of a particular optimal stopping
problem.

DEerINITION 2. Given a Brownian base B = (Q, F, {F;};>0, P, B) and a horizon T €
[0, oc], a (B, T') stopping time is a [0, T]-valued {F;};>0 stopping time.

Say a (B, T') stopping time is optimal (given (B, T)) if it maximizes ]E[%|z +AB;| — 7]
over all (B, T') stopping times .

We start by proving two technical claims. The first result is that a reflected Brownian
motion grows slowly enough in expectation to enable the use of various machinery from
the optimal stopping literature.

CraiMm 1. Any Brownian base B, any z € R, and any k > 0 has

E sup (|z + ABy| — kt) < 0.

IER+

Proor. Observe that

E sup (|z + ABi| — ki) = EmaX{ sup (z + AB, — kt), sup (—z — AB, — Kt)]

teRy teRy teRy

<Esup(z+ AB; — kt) + E sup (—z — AB; — kt),

teRy teRy

but the latter expectations are finite. Indeed, result IV.32 from Borodin and Salminen
(2012) implies a Brownian motion with strictly negative drift has a global maximum that
is exponentially distributed and, hence, of finite mean. O
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The following claim adapts standard reasoning about the structure of optimal stop-
ping problems to our specific problem. It says that the associated optimal value function
is well behaved, that an optimal stopping rule exists and can be read from the optimal
value function, and that the above depend only on the law governing the state rather
than the specific source of randomness driving the state.

CraiM 2. A continuous function v: Ry x R — R exists, such that for any Brownian base
Bandany (T, z) e Ry xR, the (B, T) stopping time

1
TT,z0,8:=1 A inf{t €el0, T]:v(T —t,z+ABy) = §|z + ABA}
is optimal and generates

1
E[Elz + ABTT,Z”),B| - TT,Z,U,B] = U(T) Z)-
Moreover, every optimal (B, T) stopping time is almost surely > 77 , , B.

Proor. First, fix any Brownian base 5 and let vz : R4 x R — R be the associated opti-
mal value function. That is, for any (7, z) € Ry x R, let v3(T, z) be the supremum of
E[ % |z+AB;| — 7] over all (B, T) stopping times 7. This function is real-valued (i.e., never
takes value oo) by Claim 1. Moreover, Proposition 4.7 from Touzi (2012) implies vg is
continuous.?6

Given Claim 1 and continuity of vg, Corollary 2.9 from Peskir and Shiryaev (2006) im-
plies 77, .5, 5 is optimal, thereby generating E[% |z + ABTT’MB,B| — 77, 2,05,8l = v8(T, 2).
Moreover, Theorem 2.4 from Peskir and Shiryaev (2006) implies that any other optimal
(B, T) stopping time is almost surely > 77, ,,;, 5.

However, now given any (7, z) € R} x R, consider any other Brownian base B. That

L isa (B, T) stopping time implies

1 —~
UB,(T, z) > EI:E|Z + ABTT‘“}B’B| - TT'Z'UB'B]

1
= E[§|Z + ABTT,z,vB,B| - TT,Z,UB,B:|
= UB(T! z),

where the first equality holds because B and B have identical laws.
Because both 55 and 5 were arbitrary, it follows that vy is the same for every Brownian
base B5. O

With the above two claims in place, we now proceed to prove the lemma.

26That proposition refers to optimal stopping problems in which the payoff does not include a flow cost.
However, the linear flow cost can be incorporated into that model by using a two-dimensional state, the
second dimension tracking accrued flow cost.
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ProoFr OF LEMMA 4. Letv:R; x R — R be as delivered by Lemma 2, and define the set
G:={T,z)eRy xR:v(T,z2) > %|z|}, which is relatively open in R; x R because v is
continuous. Foreach T e R, let G7:={z e R: (T, z) € G}, which is open because G is.
Let us make some easy starting observations about this family of sets. First, clearly, Go =
@. Next, the set Gr is weakly increasing (with respect to set containment) in 7 € R;.
Indeed, v is nondecreasing in its first argument, because, for any Brownian base 5 and
pairoftimes ¢, T € R with t < T, every (B, t) stopping timeis a (8, T) stopping time too.
Finally, each Gt is symmetric about 0. Indeed, v is even in its second argument because,
forany (7, z) € Ry x R and Brownian base B = (Q}, F, {F/};>0, P, B), any (B, T) stopping
time 7 is also a ((Q, F, {Fi}s=0, P, —B), T) stopping time, and E[3|(—z) + (—AB).| — 7] =
E(3|z + AB;| — 7l.

Now we observe that every T € (0, o) has Gt 5 0. Indeed, because T is always a
(B, T) stopping time for any Brownian base 53, we have

1 |T
v(T,0)—|0|> =E(ABy)—T=,/—-T,
2 T

which is strictly positive for T < % Therefore, 0 € G forevery T € (0, %), which implies
(given monotonicity of T +— G7) that 0 € G for every T € (0, 00).

Next let us see that (J;cg, Gr is a bounded set. To see this, we consider the
relaxation of our optimal stopping problem without a deadline and apply a previ-
ously obtained solution to that time-stationary problem. Specifically, fix a Brownian
base B = (Q, F, {F}i>0, P, B) and let v* : R — R take any z € R to the supremum of
E[%|z + AB;| — 7] over all finite-mean (B, co) stopping times 7. Clearly, v* > v(T, -) for
every T € Ry, and so G C Ry x G*, where G* ;= {z e R:v*(2) > %|z|}. However, The-
orem 16.1 from Peskir and Shiryaev (2006) explicitly computes the continuation region
for this problem (G* in our notation) as the set (—%, %).

Finally, let us observe that Gt is convex for every T € (0, o0). Because Gt > 0 and
R\ G7 2 (—00, —%] U [%, 00), the property would follow if we knew both R, \ Gr and

R_ \ Gt were convex. However, because %| -| is affine on R; and on R_, the property
would, in fact, follow if we knew v were (weakly) convex in its second argument. Let us
now establish that fact. For any Brownian base B, time T € R, weight 6 € [0, 1], and
states zp, z1 € R, each (B, T') stopping time 7 has

1
E[§|(1 — 0)zo + 6z1 + AB;| — T]
1
< E[E(l — 0)|20 + AB;| 4 60|z1 + AB;| — T]

1 1
—(1- 0)1E|:§|zo +AB,| — T] + B]E[Em +AB,| — Ti|
<(1—=0)u(T, z9) + Ov(T, z1).

Taking the supremum over all such 7 then implies v(T, (1—0)zo+6z1) < (1—0)v(T, z0)+
0v(T, z1), as desired.
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We are now ready to define z: Ry — R,. First, let zp := 0. Then, for each T € (0, c0),
we have established that G is a convex open neighborhood of 0 that is symmetric about
0. Thatis, Gt = (—zr, zr), where zr :=sup Gt > 0. Then the openset G = {(T, z) € Ry x
R: z < |zr|}. Moreover, our above arguments establish that zr > 0 for T > 0 (because
0 € G7), that z is nondecreasing (because T +— G7 is weakly increasing with respect
to set containment), and that z is bounded (because Gy € G* = (—%, %) for every
T € R;). The only remaining property of z to show is continuity.

Assume for a contradiction that z is discontinuous at some T € R,. Because Z is
nondecreasing, both lim, 7 z; and, if T > 0, lim, »7 z, exist; interpret the latter limit as
zo = 0inthe case that T =0. Thenlet z := % limy~ 7 2/ + % lim; 7z, and € := % lim; »7 z; —
% lim 7 z,. S00 < € < zand z, is below z — € (resp. above z + €) forany t e R, witht < T
(resp. t > T). Fixing a Brownian base B, let 7 := inf{t > 0: |AB;| > €}. Now let v be as
delivered by Claim 2 and let v := maxv([T, T 4+ 1] x {z —€, z+ €}) € R. Then any s € (0, 1]
has

1
2|:v(T+s,z)—§|z|:| =2E[v(T+5—5AT, 2+ ABsp;) —SAT|]— 2

=E{lr=[z+ ABs — 25]} + 2E{1,s[v(T +s— 7,2+ AB;) — 7]} — z
<E{1rs5[z 4+ ABy — 251} + P{r < s}(20) — 2
=P{r<s}(2s+20—2)—2s + E[AB; — 1,._,ABy]

=P{r <s}(2s+ 20— z) — 25 + 0 — E{1,,E[AB| F;]}

=P{t <s}(25+20—2) — 25 — E[1,,AB;]

< P{r < s}[2s + 2V — €] — 2s.

Observe now that 7 < s if and only if the absolute value of the Wiener process W := %AB

exceeds % at some time in [0, s]. However, the probability of this event is no more than
twice the probability that |W;| > -%,2” which is ZQD(J—Z%) because ¢ is even and W, ~

ﬁv
N(O, JEZ). Therefore,

1 1
(T +s,z)— §|z| < EP{’T<S}[2S+21_)—€] —s

< 2®<J—2is>[2s+2{) —el—s,

but 'Hopital’s rule tells us

—€ —€
. N . € . —€ € . _p2
lim — VY257 _ |im “/52 = lim ¢ —L)L3= —— lim e~ 7L L3 =0.
s—0 s L—oo L~ Zﬁ L—oo ﬁ 4./ L—>oco
2Indeed, letting 7 be the first time || takes value iz. the probability that |[W;| > \sz is at least the

probability that 7 < s, and W; lies between 0 and W;, which is equal to half the probability of 7 < s.
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Therefore, v(T +5, z) < %|z| for sufficiently small s > 0, in contradiction to the definition
of v.

Finally, we turn to establishing the uniqueness property of the optimal stopping
time. Fix any Brownian base 5, any (7, z) € Ry x R, and any (B, T') stopping time 7
with E[% |z+ AB;| — 7]. Letting 7* := 7’}, LB Claim 2 establishes that + > * almost surely.
Assume now, for a contradiction, that 7 is not almost surely equal to 7*. Let us observe
thatsome (5, T') stopping time 7 < 7 exists such that, with positive probability, 7 > 7 and
|z + ABz| > z7_3.28 Now define the alternative (3, T) stopping times

7=

, 7! |z+AB;| <ZzZr_5,
T: |z4+ABz|>ZzZr_;

and 7:=r Ainf{t € [7, T]: |z + AB;| < |zr_|}. Optimality of 7 implies
1 / 1
0=E|Z|z+ABy| —7'| —E| S|z +AB:| -7
1
> E[§|Z+ABT/| - T’} —E{E[v(T - 7, 2+ AB;) — 7| 7]}
1
= E(7 =) + 5E[lz + ABy| — |z + AB:|]

_ 1
=E(7—-7)+ EE{]]'T>?,Z+AB;>ZT,;E[AB% — AB;|F51)

1
+ EE{17>%,Z+AB;<—ET_;E[ABﬂF — AB;| F;]}

=E(7—7)+0+0
=E[1:27, 24485175 (T — T)]

>0,

a contradiction. This establishes the unique optimality of 7* (up to almost sure equality)
and, hence, the lemma. O
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