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Commonality of information and commonality of beliefs
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A group of agents with a common prior receive informative signals about an un-
known state repeatedly over time. If these signals were public, agents’ beliefs
would be identical and commonly known. This suggests that if signals were pri-
vate, then the more correlated they are, the greater is the commonality of beliefs.
We show that, in fact, the opposite may be true. In the long run, conditionally
independent signals may achieve greater commonality of beliefs than correlated
signals.
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1. Introduction

What kind of information increases the possibility of efficient coordination? If a group
of agents with a common prior receive public signals about an unknown state, they will
have identical, commonly known beliefs, thereby facilitating efficient coordination. This
suggests that if agents’ signals are private, then the more correlated they are, the easier
it will be for agents to coordinate on the right actions.

In this paper, we argue that this intuition may be misguided. We identify circum-
stances in which it is easier for agents to coordinate with less correlated signals than
with those that are more correlated. In fact, it may be that coordination is easier when
signals are (conditionally) independent than when they are correlated. We begin with a
simple example that illustrates this phenomenon.

Example 1. Two players simultaneously choose whether to invest or not in the face of
uncertainty. Specifically, there are two equally likely states of nature G (good) or B (bad).
The cost of investment is c > 0, and a player’s investment is successful and yields a gross
return of 1 if and only if the state is G and the other player also invests. If a player invests
and the other does not, then the gross return is 0. ◊

Yu Awaya: yuawaya@gmail.com
Vijay Krishna: vkrishna@psu.edu
The research reported here was supported by a grant from the National Science Foundation (Grant SES-
2048806). We are grateful to Paulo Barelli, Mira Frick, Kevin He, Tetsuya Hoshino, Ryota Iijima, Yuhta Ishii,
and Zeming Ma for helpful comments. The referees of this journal also provided valuable suggestions.

© 2025 The Authors. Licensed under the Creative Commons Attribution-NonCommercial License 4.0.
Available at https://econtheory.org. https://doi.org/10.3982/TE6256

https://econtheory.org/
mailto:yuawaya@gmail.com
mailto:vkrishna@psu.edu
https://creativecommons.org/licenses/by-nc/4.0/legalcode
https://econtheory.org
https://doi.org/10.3982/TE6256


1156 Awaya and Krishna Theoretical Economics 20 (2025)

Prior to making choices, players receive signals that are informative about the state
of nature. We will show that for some costs c, efficient coordination can be achieved
when these signals are independently distributed but not when they are correlated.

First, suppose that the information available to players is generated as follows. Let
X = (X1, X2 ) be a pair of binary signals each of which takes on values 0 (bad news) or 1
(good news). The signal Xi ∈ {0, 1} is privately observed by player i. In state G, X1 and
X2 are symmetrically and independently distributed with Pr[Xi = 0|G] = 1

5 . In state B,
the joint distribution of the signals is degenerate—both players receive a signal of 0 with
probability 1. This means that a 1-signal is conclusive evidence that the state is G.

Prior to making decisions, player i sees two serially independent realizations of the
signal Xi, say X1

i and X2
i (the state of nature is realized once and remains fixed). It is

routine to verify that if c ≤ 24
25 , then there is an equilibrium in which player i invests if

he gets at least one positive signal or, equivalently, the sum of his private signals, X1
i +

X2
i ≥ 1. Moreover, if c > 24

25 , the only equilibrium is one in which no investment ever
takes place.

Now consider an alternative situation in which players’ signals are positively corre-
lated. Specifically, suppose Y = (Y1, Y2 ) are signals that in state G, have the distribution

Y2 = 0 Y2 = 1

Y1 = 0 3
25

2
25

Y1 = 1 2
25

18
25

Notice that while the marginal distributions of Yi and Xi are the same, in state G, the
players’ signals Y1 and Y2 are positively correlated. In state B, the joint distribution of
(Y1, Y2 ) is again degenerate, with Pr[(Y1, Y2 ) = (0, 0)|B] = 1.

Again, there are two serially independent realizations of (Y1, Y2 ). Player i observes
Y 1
i and Y 2

i prior to making an investment decision. It is routine to verify that if c ≤ 47
50 ,

then there is an equilibrium in which player i invests if he gets at least one positive signal
or, equivalently, the sum of his private signals, Y 1

i +Y 2
i ≥ 1.

On the other hand, if c > 47
50 , then the unique equilibrium is for neither player to

invest regardless of her information. This follows from a standard infection argument.
First, if Y 1

i + Y 2
i = 0, then it is dominant to not invest because Pr[G|Y 1

i + Y 2
i = 0] =

1
26 < c. Next, if Y 1

i + Y 2
i = 1, it is iteratively dominant to not invest for j ≠ i, Pr[Y 1

j +
Y 2
j ≥ 1|Y 1

i + Y 2
i = 1] = 47

50 < c as well. Finally, it is then optimal even for a player with

Y 1
i +Y 2

i = 2 to not invest because Pr[Y 1
j +Y 2

j = 2|Y 1
i +Y 2

i = 2] = 81
100 < c.

So we obtain the following scenarios.

a. If c ≤ 47
50 , then with either conditionally independent signals X or correlated sig-

nals Y , there is an equilibrium with efficient coordination: a player invests if she
gets at least one positive signal and so knows that the state is G.

b. If 47
50 < c ≤ 48

50 , however, with conditionally independent signals X, there is an equi-
librium in which both players invest whenever they know G, while with correlated
signals Y , the unique equilibrium is that no player ever invests.

c. If c > 48
50 , the only equilibrium under either signal X or Y is to not invest.



Theoretical Economics 20 (2025) Commonality 1157

Why is this? Compared to the case of (conditionally) independent signals, with cor-
related signals, a player who gets good news is more likely to believe that the other player
also received good news and so becomes optimistic about the prospects of coordinating
on the right outcome. But the opposite is true for a player who gets bad news. With cor-
related signals, she is more likely to believe that the other player also received bad news
and so becomes pessimistic. The second effect dominates: a player with one piece of
good news and one piece of bad news is more pessimistic with correlated signals than
with independent signals, that is,

Pr
[︁
Y 1
j +Y 2

j ≥ 1|Y 1
i +Y 2

i = 1
]︁
< Pr

[︁
X1

j +X2
j ≥ 1|X1

i +X2
i = 1

]︁
.

This type’s increased pessimism then spreads to all types.
In the rest of this paper, we explore these ideas in a special case of the common learn-

ing setting of Cripps, Ely, Mailath, and Samuelson (2008; henceforth CEMS), where both
fundamental states of nature and the agents’ signals are binary.1 There is an unknown
fundamental state of nature θ ∈ {G, B} that is of concern to a group of I ≥ 2 agents. The
state of nature θ is realized in period 0 and remains fixed. There are T additional peri-
ods and in each period t, agents receive private signals Xt

i ∈ {0, 1} that are informative
about θ. The signals are independent and identically distributed across time but may
be correlated among agents. CEMS showed that in the limit as T → ∞, the true state of
nature becomes approximately commonly known with probability approaching 1.

We are interested in studying how the commonality of agents’ beliefs—that is, how
close they are to achieving common knowledge of θ—is affected by the degree of com-
monality of their information. As in CEMS, “commonality of beliefs” is formalized using
the notion of common p-belief introduced by Monderer and Samet (1989). “Common-
ality of information” is formalized using a multivariate version of “more positively cor-
related,” defined in the next section.

Fix, as in the example, two signals X or Y , such that Y exhibits greater positive (but
not perfect) correlation than X. We show that for any T large enough, there is an interval
of ps such that the state of nature can be common p-believed with the less correlated
signals X, but not with the more correlated signals Y . Thus, under the identified condi-
tions, “greater commonality of information is detrimental to commonality of beliefs.”2

We begin by considering the case when signals are conclusive, in the sense that even
one piece of “good news” reveals that the state is G (as in the example). This special case
is useful because first-order uncertainty—that is, concerning the state of nature θ—is
resolved once even a single piece of good news is received. This means that the fo-
cus is then solely on higher-order uncertainty—that is, concerning others’ knowledge
about G, their knowledge about others’ knowledge, etc.

We first show that the event that G is common p-believed exhibits a bang-bang
property: if p is below a threshold, this event is as large as possible and if p is above
a threshold, it is empty (Proposition 3.1).

1A working paper version of this paper (Awaya and Krishna (2024)) studies a more general environment
in which the number of signals may exceed two.

2This is formalized in various settings as Theorems 1 and 2.
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The relevant threshold is the belief about the event “all agents know G” of the second-
most pessimistic type, who gets only one piece of good news and T − 1 pieces of bad
news. Only the type who gets only bad news in every period is more pessimistic. We
show that whether or not G can be common p-believed depends on whether p ≤ q or
p > q. If p ≤ q, then G is common p-believed whenever everyone knows G. On the
other hand, if p > q, then it is impossible for G to be common p-believed. Why is this?
By definition, the belief of the second-most pessimistic type is too low and so this type
cannot believe that all others know G. We show that the pessimism of this type then
“infects” all other types so that no one assigns probability greater than p to the event
that everyone knows G.

The second step is to show that higher correlation decreases the threshold belief q
when T is large (Proposition 3.2). As argued above, the second-most pessimistic type is
one who receives only one piece of good news. Since this type gets a preponderance of
bad news, higher correlation makes her believe that other agents also received a prepon-
derance of bad news, thereby increasing her pessimism. These facts then lead to one of
our main results (Theorem 1). Consider two kinds of signals, one more correlated than
the other. For large enough T , there is an interval of ps (depending on T ) such that for
all p in that interval, with the more correlated signals, G cannot be common p-believed,
but with the less correlated signals, it can be.

In Section 4 we relax the assumption that signals are conclusive. In this more general
environment, first-order uncertainty also plays a role. With nonconclusive signals, the
bang-bang property requires the assumption that this first-order uncertainty is not too
large (Proposition 4.1). Because of this, when signals are nonconclusive, the main result,
Theorem 2, also requires stronger conditions than Theorem 1.

Finally, for the case of two agents and general signals, we show that our results can
be recast in the language of Blackwell informativeness. Say that Q is more informative
than P if agent i’s signal Yi from Q is more informative about agent j’s signal Yj than Xi

from P is about Xj (see Section 5 for a precise definition). In the same vein as above,
it can be shown that, in fact, more informative signals can be detrimental to common
learning.

Related literature The importance of higher-order uncertainty in game theory was
brought to the fore by Rubinstein’s (1989) E-Mail game.3 The literature on common
learning asks whether such uncertainty can be made to disappear over time. Cripps,
Ely, Mailath, and Samuelson (2008) show that if the set of signals is finite and they are
independent over time, then common learning occurs in the limit.4

In a subsequent paper, Cripps, Ely, Mailath, and Samuelson (2013) show that com-
mon learning may fail if signals are not serially independent and find some more general
sufficient conditions for common learning. Steiner and Stewart (2011) consider a ver-
sion of the common learning model in which signals, which are binary and conclusive,
arrive at random times. They ask how communication between agents affects common

3The signals in Rubinstein’s E-Mail game are also binary and conclusive.
4They also show that if the set of signals is infinite, then common learning may fail if agents’ signals are

correlated.
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learning and show that under certain conditions it prevents common learning. In our
model, common learning always occurs in the limit. We are interested in examining
agents’ beliefs away from the limit and how these are affected by correlation.

Frick, Iijima, and Ishii (2023) study how common learning is affected by the un-
derlying signal process. Consider joint distributions over states of nature and signals,
P and Q, such that P is more informative about the state θ than is Q. Frick et al. (2023)
show that when T is large enough, P results in greater commonality of beliefs than
does Q. In particular, how correlated agents’ signals are does not matter in the long run.
In our work, we compare distributions P and Q that are equally informative about θ, but
Q is more correlated than P . We show that when T is large enough, greater correlation
may, in fact, be detrimental to commonality of beliefs.

There is, of course, a close connection between common beliefs and equilibria of
games. This connection has been explored in various manners by Monderer and Samet
(1989), by Kajii and Morris (1997) and, more recently, by Oyama and Takahashi (2020).
Oyama and Takahashi (2020) study binary-action supermodular games and, as in Exam-
ple 1, our results on the effects of correlation on common learning have natural coun-
terparts when applied to this class of games.

A paper by Basak, Deb, and Kuvalekar (2024) also studies how commonality of infor-
mation can decrease the prospects of coordinated action in regime change games. Un-
like our work, the channel by which this results relies on the particular payoff structure
of the game.

There is also work on global games that studies how greater commonality—measu-
red by a decrease in the variance of private information relative to that of public
information—can, in some circumstances, lead to decreased coordination in equilib-
rium (see, for instance, Iachan and Nenov (2015)). Unlike in our work, in the global
games framework, agents’ signals are independent conditional on the state of nature θ.
The increase in commonality of the sort mentioned above affects agents’ beliefs about
each other only via the change in their beliefs about θ. In our paper, the increase in
commonality increases the correlation among agents’ signals while keeping their beliefs
about the fundamental state θ fixed.

2. Model

A group of agents i ∈ ℐ = {1, 2, � � � , I} face an uncertain fundamental state of nature θ ∈�

that can take on two possible values, G and B, with commonly known prior probabilities
ρ ∈ (0, 1) and 1−ρ, respectively. We suppose that G and B take on numerical values such
that G>B, say G = 1 and B = 0.

Time is discrete and there is a finite number of periods, denoted by t = 0, 1, 2, � � � , T .
At time t = 0, nature chooses θ ∈�= {G, B} and this choice remains fixed for all remain-
ing periods. At each time t ≥ 1, each agent i receives a private signal that is informative
about the state of nature θ.

We assume throughout that signals are binary so that 𝒳 = {0, 1}.
The signals are generated as follows.
Let P ∈ �(�×𝒳 I ) be a joint probability distribution over the set of states and signals,

one for each agent. We write a typical element of � × 𝒳 I as (θ, x) = (θ, x1, x2, � � � , xI ),
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where xi is the signal of agent i. Of course, the marginal probability of θ = G is ρ. To save
on notation, we write Pθ ∈ �(𝒳 I ) as the distribution over signal vectors conditional on
the state of nature θ. Thus, Pθ(x) = P(x|θ).

We make the following assumptions:

(i) We have PG ≠ PB so that the signals carry information about θ.

(ii) Conditional on θ, the signals are symmetrically distributed, that is, Pθ(x) =
Pθ(xπ ) for any permutation xπ of x.

(iii) The probability distribution P is affiliated, that is, for all (θ, x) and (θ′, x′ ),

P(θ, x) × P
(︁
θ′, x′)︁ ≤ P

(︁
(θ, x) ∨ (︁

θ′, x′)︁)︁ × P
(︁
(θ, x) ∧ (︁

θ′, x′)︁)︁,

where (θ, x) ∨ (θ′, x′ ) is the componentwise maximum of (θ, x) and (θ′, x′ ), and
(θ, x) ∧ (θ′, x′ ) is the componentwise minimum.

Let xt ∈ 𝒳 I be the vector of signals, one for each agent, in period t. Conditional on θ,
in any period t, the signal vectors xt ∈ 𝒳 I are independent draws from the distribution
Pθ(·) = P(·|θ). Thus, in each state of nature θ, the signal vectors are independently and
identically distributed over time.

It is convenient to consider the I + 1 dimensional random vector (˜︁θ, X ) that takes
values in �× 𝒳 I and satisfies Pr[(˜︁θ, X ) = (θ, x)] = P(θ, x).5 Similarly, for each θ, define
the I dimensional random vector Xθ that takes values in 𝒳 I and satisfies Pr[Xθ = x] =
Pθ(x) ≡ Pr[X = x|θ].6

Now let Q ∈ �(� × 𝒳 I ) be another distribution such that the marginal probability
of G is ρ. Analogously, let (˜︁θ, Y ) be the random vector such that Pr[(˜︁θ, Y ) = (θ, y)] =
Q(θ, y). Like Xθ, the random vector Yθ also takes values in 𝒳 I and satisfies Pr[Yθ = y] =
Qθ(y) ≡ Pr[Y = y|θ].

Throughout the paper we assume that X is defined as above from P and Y is defined
as above from Q.

We compare two distributions P and Q such that Q is more correlated than P or,
equivalently, the signals Y are more correlated than signals X.

Multivariate correlation When there are more than two variables, there are many ways
to measure an increase in correlation (or positive dependence). In what follows, we use
the following notion.7

Definition 1. The variable Y is more correlated than X in the positive quadrant depen-
dence (PQD) order, written Y ≽PQD X, if for any z ∈ 𝒳 I ,

Pr[X ≤ z] ≤ Pr[Y ≤ z] (1)

5Formally, if 𝒮 = 𝒳 I , then (� × 𝒮 , 2�×𝒮 , P ) is a finite probability space and (˜︁θ, X ) is the identity map
from �× 𝒮 to �× 𝒮 .

6Again, (𝒮 , 2𝒮 , Pθ ) is a probability space and Xθ is the identity map from 𝒮 to 𝒮 .
7This order was first defined by Yanagimoto and Okamoto (1969). It was then developed for I > 2 by Joe

(1990), who called it the concordance order.
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and

Pr[X ≥ z] ≤ Pr[Y ≥ z]. (2)

If Y ≽PQD X, then for any fixed vector z, Y is more likely than is X to take on higher
values than z and also more likely to take on lower values than z. In the bivariate case,
this means that a change from P to Q shifts probability weight from the northwest and
southeast quadrants to the northeast and southwest quadrants. Thus, the values that
the variables take are more likely to be closer to each other than before. The PQD or-
der is discussed in detail in Shaked and Shanthikumar (2008) and Meyer and Strulovici
(2012).8 It satisfies the following desirable properties.

First, if Y ≽PQD X, then they have identical univariate marginals, that is, for all k ∈ 𝒳 ,

Pr[Xi = k] = Pr[Yi = k].

Second, the PQD order is preserved by monotone transformations of the variables.
In other words, if the variables (Y1, Y2, � � � , YI ) are more correlated in the PQD order
than (X1, X2, � � � , XI ), then it should be that (φ1(Y1 ), φ2(Y2 ), � � � , φI(YI )) are also more
correlated than (φ1(X1 ), φ2(X2 ), � � � , φI(XI )), where each φi is an increasing function.9

This is desirable since signals have no inherent cardinal meaning; they only serve to
update beliefs.

Third, the PQD order is preserved for marginals over subsets of variables, that is, if
the variables Y are more correlated than X, then for any nonempty J ⊆ I, it should be
that the variables Y J = (Yi )i∈J are more correlated than XJ = (Xi )i∈J . If Y ≽PQD X, then
for all i and j ≠ i, the pairwise covariances satisfy Cov(Yi, Yj ) ≥ Cov(Xi, Xj ).

Finally, and perhaps most important, the PQD order is weaker than all other orders
of positive dependence discussed in the references above; for instance, it is weaker than
the supermodular order ≽SM, which requires that Y ≽SM X if EY [φ] ≥ EX[φ] for all su-
permodular functions φ (see Shaked and Shanthikumar (2008)).

In what follows, we use the following strict version of the PQD order. We say that
Y is strictly more correlated than X in the PQD order, and write Y ≻PQD X if Y ≽PQD X

and (i) the inequality (1) is strict for any z such that for at least two indices i, zi = 0; and
(ii) the inequality (2) is strict for any z such that for at least two indices i, zi = 1.10

Since the the PQD order ≽PQD is implied by other orders, its strict version, ≻PQD, will
be implied by analogous strict versions of other orders.11

8See Anderson and Smith (2024) for an application of the PQD order in matching problems.
9Note that the common (bivariate) notion of greater covariance fails this requirement. It may be that

Cov(Y1, Y2 ) > Cov(X1, X2 ) but Cov(φ1(Y1 ), φ2(Y2 )) < Cov(φ1(X1 ), φ2(X2 )). As an example, let φ1(z) =
φ2(z) = z2.

10If, for instance, z= (0, 1, 1, � � � , 1), then Pr[X ≤ z] = Pr[Y ≤ z] since both equal the marginal probability
that X1 = 0.

11To see this for the supermodular order, first let S−(z) = {x : x ≤ z} be the quadrant below z and let
S+(z) be the quadrant above z. The indicator functions, IS−(z) and IS+(z), are both supermodular. Now say
that Y ≻SM X if Y ≽SM X and (i) EY [IS−(z)] > EX[IS−(z)] for any z such that for at least two i, zi = 0; and
(ii) EY [IS+(z)] > EX[IS+(z)] for any z such that for at least two i, zi = 1. It is now clear that Y ≻SM X implies
Y ≻PQD X.
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Common beliefs A state of the world

ω = (︁
θ, x1, x2, � � � , xT

)︁
determines the state of nature θ as well as agents’ signal realizations xt ∈ 𝒳 I (bold
Italic x) in each period. Alternatively, we can write ω = (θ, x1, x2, � � � , xI ), where xi ∈ 𝒳 T

(bold Roman x) is a list of the T signals received by i. We refer to a vector xi ∈ 𝒳 T as the
type of agent i. The set of states of the world is


 =�×𝒳 I × · · · ×𝒳 I .

Following Monderer and Samet (1989), given any event E ⊆ 
 and probability p,
the event Bp

i (E) consists of states ω ∈ 
 in which E is p-believed by i, that is, i assigns
probability exceeding p to the event E given her information xi. Next, write Bp(E) =
∩iB

p
i (E) as the set of states in which E is p-believed by everyone.
Now for ℓ= 1, 2, � � �, define the operator Bp,ℓ recursively by

Bp,ℓ(E) = Bp
(︁
Bp,ℓ−1(E)

)︁
,

where Bp,0(E) = E and, finally,

Cp(E) = ∩ℓ≥1B
p,ℓ(E).

Thus, Cp(E) is the set of states of the world in which E is common p-believed. In other
words, (i) everyone assigns probability exceeding p to the event E, (ii) also assigns prob-
ability exceeding p to the event that everyone assigns probability exceeding p to the
event E, and (iii) also assigns probability exceeding p to the event that everyone assigns
probability exceeding p to the event that everyone assigns probability exceeding p to
the event E, and so on.

We are interested in the set Cp(
G ) after T periods, where 
G = {ω : θ = G}. In
other words, we are interested in the set of states of the world in which G is common
p-believed.

The common learning result of CEMS (2008) implies that for any p< 1,

lim
T→∞

Pr
[︁
Cp

(︁

G

)︁
|θ =G

]︁ = 1.

3. Conclusive signals

We begin by considering a special case of the model in which

(i) a signal Xi = 1 is conclusive about G, that is, Pr[Xi = 1|B] = 0

(ii) signals have full support in state G for all x, PG(x) > 0.

Note that signals are perfectly correlated in state B.
Since signals are binary, the fact that they are independently and identically dis-

tributed over time implies that an agent’s type can effectively be represented simply
by the total number of 1-signals received. Thus, a type xi can be represented simply
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as ni = ∑︁
t x

t
i and so types can be linearly ordered. Let Ni = ∑︁

t X
t
i denote the random

variable that equals the sum of i’s signals.
The assumption of conclusive signals allows us to focus solely on higher-order un-

certainty: an agent who gets even one signal xti = 1 knows for sure that the state of nature
is G, but remains unsure about whether others know G, whether others know that she
knows G, etc. This higher-order uncertainty is captured via agents’ beliefs about the set


+ = {ω : ∀j, nj ≥ 1},

that is, the set of states of the world in which every agent j received a signal xtj = 1 at
some time t. Since even one positive signal is conclusive about G, at any ω ∈ 
+ it must
be that θ =G. Formally, 
+ ⊆
G = {ω : θ = G}. Define

q = Pr
[︁

+|Ni = 1

]︁
(3)

to be the belief of type Ni = 1 about the event that everyone else saw at least one pos-
itive signal and so also knows G. Note that 
+ and q depend on T although we have
suppressed this dependence to reduce the notational burden.

Since signals are affiliated, for all n ≥ 1,

Pr
[︁

+|Ni = n

]︁ ≥ Pr
[︁

+|Ni = 1

]︁ = q, (4)

as established in Lemma A.2 in the Appendix. In other words, among all those that
know G, type Ni = 1 is most pessimistic about the event that everyone also knows G.
Put another way, type Ni = 1 is the second-most pessimistic type; type Ni = 0 is the
most pessimistic, of course.

3.1 First result

Consider two signal distributions P and Q with identical univariate marginals. Let
qX = PrX[
+|

∑︁
tX

t
i = 1] as in (3) and let qY = PrY [
+|

∑︁
tY

t
i = 1] be the analogous belief

derived from signals Y .12

Define

ρ0 = Pr
[︁

G|Ni = 0

]︁
(5)

to be the belief about G of an agent who receives only 0-signals in each of the T periods.
Note that ρ0 is the same for P and Q as they have the same marginals. As T increases, ρ0

goes to 0. Note also that 
, qX , and qY , as well as ρ0 all depend on T although we have
suppressed this dependence, again to avoid notational clutter.

The main result of this section follows.13

12The symbol PrX indicates that the probability is calculated using P and, similarly, PrY is calculated
using Q.

13he term C
p
X(
G ) is the set of states of the world in which 
G is common p-believed when all the

probabilities are calculated using P and C
p
Y (
G ) is the same set when they are calculated using Q. Note

also that these depend on T as well.
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Figure 1. Threshold beliefs for the two signals in Example 1.

Theorem 1. Suppose signals X and Y are conclusive.

(i) For any T , if ρ0 < qY < qX , then for p ∈ (qY , qX ),

C
p
Y

(︁

G

)︁ = ∅ and C
p
X

(︁

G

)︁ =
+,

that is, G cannot be common p-believed with Y , whereas G is common p-believed
with X whenever everyone knows G.

(ii) If YG ≻PQD XG, then for T large enough, ρ0 < qY < qX .

Theorem 1 says that when T is large enough, there is a nonempty open interval of ps,
depending on T , such that for any p in that interval, it is impossible for G to be common
p-believed with the more correlated signals Y , while it is possible with the less correlated
signals X.

A few remarks on the theorem are in order.
First, the theorem automatically implies that in the identified circumstances,

PrY [Cp
Y (
G )] < PrX[Cp

X(
G )] since the left-hand probability is 0 and the right-hand
probability is positive. In this sense, when T is large, greater commonality of infor-
mation reduces the commonality of beliefs.

Second, since we have assumed that QG has full support, the signals Y are not public;
that is, they are not perfectly correlated. If the signals Y were public, then we would have
that for all p, Cp

Y (
G ) = 
+, which would run counter to Theorem 1(i). But what if Y is
“almost” public; that is, for some small ε, for all k ∈ 𝒳 , Pr[∀j, Yj = k|Yi = k] > 1 − ε? Is
there a discontinuity at ε = 0? Here the order of quantifiers in the theorem is important.
For a fixed T , it may be that if Y is almost public, it leads to greater commonality of
beliefs than X. What the theorem says is that this cannot persist once T is large enough.
Figure 1 depicts the beliefs qX and qY as functions of T for the two signal distributions in
Example 1: the (conditionally) independent signals X and the correlated signals Y . For
the example, qX > qY , for all T ≥ 2. Of course, qX and qY converge to 1 as T increases
without bound.
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Third, the theorem does not conflict with the CEMS (2008) result that common
learning occurs in the limit regardless of the commonality of signals. Theorem 1 re-
quires T to be large enough but not infinite.

Fourth, note also that in Theorem 1(i), T must be at least 2; the conclusion cannot
hold for T = 1. This is because if YG ≻PQD XG, then with conclusive signals,

qX = Pr[∀j, Xj = 1|Xi = 1]

< Pr[∀j, Yj = 1|Yi = 1]

= qY

and so when T = 1, for all p, Cp
X(
G ) ⊆ C

p
Y (
G ).

Finally, if we define T0 as the smallest T for which qY < qX , then T0 is relatively small.
This is most easily seen when I = 2, as the condition that qY < qX is then equivalent to

L≡ PG(1, 0)

QG(1, 0)
<

(︃
QG(0, 0)

PG(0, 0)

)︃T−1

≡RT−1.

Now YG ≻PQD XG implies that both L and R are greater than 1. If 1 < L < R, then, of
course, T0 = 2, and if 1 < R < L, then since the right-hand side of the inequality above
grows exponentially, it will overtake the left-hand side very quickly; that is, for a relatively
small T0. Precisely, when L > R, T0 = 1 + ⌈lnL − lnR⌉, where ⌈z⌉ denotes the smallest
integer that exceeds z.

3.2 Proving Theorem 1

The proof of Theorem 1 has two components. We first show that with conclusive signals,
for any T , the set Cp(
G ) has a bang-bang property: it is either quite large or empty.
Precisely, if p ≤ q, then Cp(
G ) is as large as possible: any state of the world in which
everyone knows that θ = G is included. But if p > q, Cp(
G ) is empty. Thus, Cp(
G )
suddenly goes from being large to being empty as p crosses the threshold q. This is
Proposition 3.1 below.

The second step in the proof of Theorem 1 then shows that when T is large enough,
an increase in the correlation among agents’ signals leads to an increase in the pes-
simism of the pivotal type who gets only one positive signal. This is Proposition 3.2
below.

3.2.1 Bang-bang property The important bang-bang property of Cp(
G ), which may
be of independent interest, is derived in the following proposition.

Proposition 3.1. Suppose signals are conclusive. For any T ,

(i) if ρ0 <p≤ q, then

Cp
(︁

G

)︁ = 
+

(ii) if ρ0 < q <p, then

Cp
(︁

G

)︁ = ∅.
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A formal proof of the proposition is provided below, but the underlying arguments
run as follows.

Part (i) is rather intuitive. Consider the type ni = 1 that gets exactly one positive sig-
nal. Since signals are conclusive, this type knows G. Moreover, this type assigns prob-
ability q ≥ p to the event that all others also know G. Because signals are affiliated, all
types nj ≥ 1 also assign probability of at least q to the same event. The fact that G is
common p-believed now follows.

Part (ii) says that, in a strong sense, the converse is true as well. Again, consider the
type ni = 1 that gets exactly one positive signal. As above, since signals are conclusive,
this type knows that G has occurred, but assigns only probability q < p to the event that
all others also know G. So this type cannot be in Cp(
G ). Now an infection argument
takes over. Consider type ni = 2 with two positive signals. This type is only concerned
with the event that all other agents are of type nj ≥ 2 since all those with nj = 1 have
already been ruled out. We show that type ni = 2 assigns a lower probability to the event
that all others are of type nj ≥ 2 than type ni = 1 assigns to the event that all others are of
type nj ≥ 1. Why is this? There are two forces at work here. First, the event that all nj ≥ 2
is a subset of the event that all nj ≥ 1 and, all else being equal, the former has a lower
probability than the latter. On the other hand, affiliation implies that type ni = 2 assigns
a higher probability to any event of the sort nj ≥ n than does ni = 1. We show that when
signals are serially independent, the first effect is always stronger and so the probability
of the event that all nj ≥ n assigned by type ni = n decreases with n. This now means that
the type ni = 2 is also excluded from Cp(
G ). Once those types with ni = 2 are excluded,
this argument now carries over to ni = 3 and so on.

Two assumptions are crucial for the argument above. First, since signals Xi are bi-
nary, the types Ni can be linearly ordered by the number of positive signals. Second, the
types Ni are the result of T identical and independent draws of Xi.

Proof of Proposition 3.1. (i) If ρ0 < p ≤ q, then the fact that signals are conclusive
implies that all types with ni ≥ 1 assign probability 1 to the event 
G and, hence, of
course, assign at least probability q to 
G. On the other hand, type ni = 0 assigns a
probability ρ0 < q to the event 
G. Thus, Bq

i (
G ) = {ω : ni ≥ 1} and so

Bq
(︁

G

)︁ = {ω : ∀j, nj ≥ 1} =
+. (6)

Moreover, (4) implies that all types with ni ≥ 1 assign at least probability q to the
event 
+ that everyone got at least one positive signal. Formally, {ω : ni ≥ 1} ⊆ B

q
i (
+ )

and since 
+ = {ω : ∀j, nj ≥ 1} ⊂ {ω : ni ≥ 1}, we have


+ ⊆ Bq
(︁

+)︁

. (7)

We argue by induction that for all ℓ ≥ 1, 
+ ⊆ Bq,ℓ(
G ).
Now (6) implies that the statement is true for ℓ = 1. So suppose that for some ℓ > 1,


+ ⊆ Bq,ℓ−1(
G ). Operating on both sides by the monotone operator Bq, we have
Bq(
+ ) ⊆ Bq,ℓ(
G ), but from (7), 
+ ⊆ Bq,ℓ(
G ).
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Thus, for all ℓ, 
+ ⊆ Bq,ℓ(
G ) and, hence, 
+ ⊆ Cq(
G ). Finally, since p ≤ q,
Cq(
G ) ⊆ Cp(
G ).

(ii) Now suppose ρ0 < q <p. For n= 0, 1, � � � , T + 1, define


(n) = {ω : ∀j, nj ≥ n}

as the set of states of the world ω in which every agent gets at least n signals Xt
i = 1.

Clearly, for any n, 
(n+1) ⊂ 
(n) and ∩T+1
n=0 


(n) = ∅ since 
(T+1) = ∅.
We argue by induction that for all n ≤ T + 1,

Cp
(︁

G

)︁ ⊆ 
(n). (8)

First, since 
(0) = {ω : ∀j, nj ≥ 0} =
, (8) holds for n = 0.
Now suppose that Cp(
G ) ⊆ 
(n). Let ω′ ∈ 
(n) \ 
(n+1). At any such ω′, there is an i

with ni = n, that is, i gets exactly n positive signals, and since Cp(
G ) ⊆ 
(n),

Pr
[︁
Cp

(︁

G

)︁
|Ni = n

]︁ ≤ Pr
[︁

(n)|Ni = n

]︁
.

Lemma B.1 now implies that

Pr
[︁
Cp

(︁

G

)︁
|Ni = n

]︁ ≤ Pr
[︁

(1)|Ni = 1

]︁
= q

and since p> q, ω′ /∈ B
p
i (Cp(
G )), and, hence, ω′ /∈ Cp(
G ). Thus, we have argued that

Cp(
G ) ⊆ 
(n+1) and, hence, have established (8).
Now since Cp(
G ) ⊆ 
(n) for all n and ∩T+1

n=0 

(n) = ∅, we have that Cp(
G ) = ∅.

This completes the proof of Proposition 3.1.

3.2.2 Correlation increases pessimism Proposition 3.1 establishes that with conclusive
signals, the maximum commonality of beliefs—that is, the highest p for which 
G can
be common p-believed—is exactly q, the belief of the second-most pessimistic agent.
In this section, we compare two signal distributions such that YG ≻PQD XG.14 We show
that a change from XG to YG increases the pessimism of type ni = 1.

Proposition 3.2. Suppose signals are conclusive. If YG ≻PQD XG, then for T large
enough,

qY < qX .

The proof follows from Lemma A.3 and Lemma C.1 in the Appendix.
The result is rather intuitive. Consider a type ni = 1 who gets one 1-signal in period 1

and in every subsequent period t > 1 gets signal 0. What happens if signals become
more correlated? At the end of period 1, with more correlated signals, this type is more
optimistic about the event that other agents also know G. However, when T is large, this

14Recall that Xθ is a random vector such that Pr[Xθ = x] = Pr[X = x|θ]; Yθ is similarly defined.
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initial optimism is overwhelmed by the increased pessimism resulting from a string of
T − 1 zeros. Formally, if signals Y are more correlated than X, then

Pr[Xj = 1|Xi = 1] < Pr[Yj = 1|Yi = 1],

while at the same time

Pr[Xj = 1|Xi = 0] > Pr[Yj = 1|Yi = 0].

For large enough T , the second inequality dictates the effect of greater correlation on
the beliefs of type ni = 1.

Propositions 3.1 and 3.2 together prove Theorem 1 since part (i) holds if p ∈ (qY , qX )
and when T is large enough, ρ0 = Pr[
G|Ni = 0] < qY < qX .

4. Nonconclusive signals

The sharp result in Theorem 1 was derived for the case of conclusive signals. The sharp
result obtains because with conclusive signals, one may focus solely on higher-order un-
certainty, that is, agents’ beliefs about the beliefs of other agents, etc. When signals are
not conclusive, first-order uncertainty, that is, agents’ beliefs about the state of nature θ,
also plays a role.

In this section, we assume that conditional on θ ∈ {G, B}, the distribution P has full
support. This means that a signal Xi = 1 does not provide conclusive evidence that the
state is G. Recall that since P is affiliated, it is still the case that a signal Xi = 1 is more
indicative that θ = G than a signal Xi = 0.

Let

e1 = (1, 0, � � � , 0) ∈ 𝒳 T

denote the type who receives a signal of 1 in period 1 and 0s thereafter.15 Define

qX = PrX
[︁

+|Xi = e1]︁,

where, as before, 
+ = {ω : ∀j, xj ≠ 0} is the set of states of the world in which everyone
gets a signal Xi = 1 at least once. Note that because of affiliation, type e1 is the second-
most pessimistic type about both 
G and 
+. Only type 0 is more pessimistic.

Let qY be defined in a manner analogous to qX .
As in (5), let

ρ0 = Pr
[︁

G|Xi = 0

]︁
be the belief of type 0 about G and define

ρ1 ≡ Pr
[︁

G|Xi = e1]︁

15Since conditional on the state of nature, G or B, signals are serially independent, the beliefs of type e1

are the same as those of type e2 = (0, 1, 0, � � � , 0), etc. So it is enough to consider e1 as representing all types
who got one 1-signal and T − 1 signals of 0.
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to be the belief of type e1 about G. Note that if a 1-signal is conclusive, as in last sec-
tion, then ρ1 = 1. Note that if X and Y are such that conditional on θ, they have the
same univariate marginal distribution μθ, then both ρ0 and ρ1 are the same for X and Y .
Moreover, the prior probability ρ of G is the same.

4.1 Second result

Let X and Y be such that conditional on θ, they have the same univariate marginal dis-
tribution μθ. Then we have the following theorem.

Theorem 2. Suppose signals X and Y are nonconclusive.

(i) For any T , if ρ0 < qY < qX < ρ1, then for p ∈ (qY , qX ),

C
p
Y

(︁

G

)︁ = ∅ and C
p
X

(︁

G

)︁ =
+,

that is, G cannot be common p-believed with Y , whereas G is common p-believed
with X whenever everyone gets at least one signal Xi = 1.

(ii) If Yθ ≻PQD Xθ for θ =G, B, then for T large enough, ρ0 < qY < qX .

Again, Theorem 2 automatically implies that when p ∈ (qY , qX ), PrY [C
p
Y (
G )] <

PrX[Cp
X(
G )] since the left-hand probability is 0 and the right-hand probability is posi-

tive. Like Theorem 1, Theorem 2 says that, under the identified circumstances, greater
commonality of information reduces the commonality of beliefs.

With nonconclusive signals, it is possible that even when qY < qX , it is the case that
ρ1 ≤ qY . This, of course, is impossible in the conclusive-signal model of Section 3 where
ρ1 = 1.

4.2 Proving Theorem 2

Like Theorem 1, the proof of Theorem 2 is given in two steps.
We first prove, for nonconclusive signals, an analog of Proposition 3.1.
The second step again shows that when T is large enough, an increase in the cor-

relation among agents’ signals again increases the pessimism of the second-most pes-
simistic type e1. This is Proposition 4.2 below.

4.2.1 Threshold beliefs Recall that ρ0 = Pr[
G|Xi = 0] and ρ1 = Pr[
G|Xi = e1]. The
following proposition derives the bang-bang property when signals are not conclusive.
Because now first-order uncertainty also plays a role, an additional condition that ρ1 is
not too small is needed.

Proposition 4.1. Suppose signals are nonconclusive. For any T ,

(i) if ρ0 <p≤ q ≤ ρ1, then

Cp
(︁

G

)︁ = 
+,
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(ii) if ρ0 < q <p, then

Cp
(︁

G

)︁ = ∅.

Proof. First, in both (i) and (ii), ρ0 <p and we claim that

Cp
(︁

G

)︁ ⊆
+. (9)

To see this, note that if ω /∈ 
+, then there exists an agent, say i, such that xi = 0 and
since Pr[
G|Xi = 0] = ρ0 <p,

ω /∈ B
p
i

(︁

G

)︁
and so

ω /∈ Cp
(︁

G

)︁
.

Part (i). We now argue that if p ≤ q, 
+ ⊆ Cp(
G ) and together with (9), this im-
plies (i),

By assumption, p ≤ q < ρ1 = Pr[
G|Xi = e1]. Since X1, X2, � � � , XI are affiliated
(Lemma A.1), this implies that for any xi ≠ 0, Pr[
G|Xi = e1] ≤ Pr[
G|Xi = xi] and so
for any xi ≠ 0, p ≤ Pr[
G|Xi = xi] as well. Thus, for all i,

{ω : xi ≠ 0} ⊆ B
p
i

(︁

G

)︁
.

Taking the intersection over i, we have


+ ⊆ Bp
(︁

G

)︁
.

In a similar manner, affiliation implies that for any xi ≠ 0, it is also the case that
Pr[
+|Xi = e1] ≤ Pr[
+|Xi = xi] and so p ≤ Pr[
+|Xi = xi] as well. Thus,

{ω : xi ≠ 0} ⊆ B
p
i

(︁

+)︁

.

Taking intersections over i, we have that


+ ⊆ Bp
(︁

+)︁

.

In the language of Monderer and Samet (1989), this says that 
+ is evident p-belief (p-
evident, for short). Proposition 3 in Monderer and Samet (1989) now implies that 
+ is
common p-believed at any ω ∈
+. Formally,


+ ⊆ Cp
(︁

+)︁

.

Since 
+ ⊆ Bp(
G ), we have that Cp(
+ ) ⊆ Cp(Bp(
G )) = Cp(
G ) and so


+ ⊆ Cp
(︁

G

)︁
.

Part (ii). The proof here is identical to that of part (ii) of Proposition 3.1 since the fact that
signals were conclusive was not used in proving this. In particular, Lemma B.1 requires
only that signals are binary.
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4.2.2 Correlation increases pessimism Theorem 1 showed that with conclusive signals,
an increase in correlation (as measured by the PQD order) made the second-most pes-
simistic type even more pessimistic. The same is true with nonconclusive signals, that
is, when both P and Q have full support.

Lemmas A.3 and C.2 in the Appendix imply the following result.

Proposition 4.2. Suppose signals are nonconclusive. If for θ = G, B, Yθ ≻PQD Xθ, then
for T large enough,

qY < qX .

The proof of Theorem 2 is completed by noting that as T increases, ρ0 goes to 0. Now
for large enough T , ρ0 < qY and part (i) of Proposition 4.1 applies to C

p
X(
G ) and part

(ii) to C
p
Y (
G ).

One may rightly wonder whether condition ρ0 < p ≤ ρ1, required in Theorem 2,
holds only when signals are nearly conclusive. This is not the case as the following ex-
ample shows.

Example 2. Suppose that the set of signals 𝒳 = {0, 1}. There are two agents and the
prior probability ρ= 3

4 . ◊

Consider signals Y with the following joint distributions conditional on θ:

QG =
Y2 = 0 Y2 = 1

Y1 = 0 0.12 0.08
Y1 = 1 0.08 0.72

and QB =
Y2 = 0 Y2 = 1

Y1 = 0 0.84 0.075
Y1 = 1 0.075 0.01

.

The two marginal distributions are μG = (0.2, 0.8) and μB = (0.915, 0.085).
Let signals X be generated from P such that for each θ, Pθ(x1, x2 ) = μθ(x1 )μθ(x2 ),

that is, Pθ is the product of the marginal distributions in each state.
Note that QB(0, 0) = 0.84 < 1 and so (θ, Y ) is not conclusive (perhaps even far from

conclusive). It is routine to verify that when T = 2, this example satisfies ρ0 < qY < qX <

ρ1 and so for p ∈ (qY , qX ), Cp
Y (
G ) = ∅ while C

p
X(
G ) =
+.

5. Blackwell informativeness

When there are only two agents (I = 2), our main result can be reinterpreted in the lan-
guage of Blackwell’s (1951) informativeness notion. Blackwell’s setting, of course, is that
of a single agent facing a decision whose payoff is influenced by an unknown state of
nature. In what follows, signals need not be conclusive.

In the two-agent case, we first adopt the perspective of agent 1, say. As above, sup-
pose P is a joint distribution over states of nature and signals, and let Pθ be the joint
distribution of signals conditional on θ. For fixed θ, from agent 1’s perspective, the sig-
nal X2 of agent 2 can be interpreted as a state of nature and X1 can be interpreted as
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agent 1’s informative signal about X2. The conditional distribution Pθ(X1|X2 ) is then a
Blackwell experiment. The same is true if we adopt the perspective of agent 2 and treat
X1 as a state of nature and treat X2 as agent 2’s signal about X1.16

Now consider another distribution Q of states of nature and signals, and again let Qθ

be the joint distribution of signals conditional on θ. As above, for fixed θ, Qθ(Y1|Y2 ) is
also a Blackwell experiment. When I = 2, we use the following concept.

Definition 2. The signals Y are mutually more informative than X if for all θ and j ≠ i,
Qθ(Yj|Yi ) is Blackwell more informative than Pθ(Xj|Xi ).

Note that this definition focuses on how informative one agent’s signals are about
the other agent’s signals. Also, this guarantees that conditional on θ, X and Y have the
same univariate marginal distributions.

Lemma 5.1. Suppose that P and Q are both affiliated. If the signals Y are mutually more
informative than X, then

Pr[X1 = 0, X2 = 0|θ] ≤ Pr[Y1 = 0, Y2 = 0|θ]. (10)

Proof. Fix θ. From Blackwell (1951), we know that if Qθ(Y1|Y2 ) is more informative
than Pθ(X1|X2 ), then the posteriors from Y are a mean-preserving spread of those
from X.

Formally, define for every k and l in 𝒳 ,

pk
l = Pθ(X2 = l|X1 = k),

and define

pk = (︁
pk

0 , pk
1

)︁ ∈ �(𝒳 )

to be the vector of posterior beliefs of agent 1 with signal X1 = k about the signals X2 of
agent 2. Similarly, define

qk ∈ �(𝒳 )

to be the vector of posterior beliefs of agent 1 with signal Y1 = k about the signals Y2 of
agent 2.

Now Blackwell’s theorem implies that for all k,

pk ∈ co
{︁
q0, q1}︁,

the convex hull of the set of posterior vectors qm from Y .

16This reinterpretation cannot work when there are more than two agents. For instance, suppose signals
are binary and I = 3. Now from agent 1’s perspective, the state of nature is (X2, X3 ). Blackwell’s informa-
tiveness criterion would require that if Y is another signal structure, then for all i, the distribution of the
state of nature (X2, X3 ) would be the same as the distribution of the state of nature (Y2, Y3 ). Together with
symmetry, this can hold only if the distribution of Y is the same as the distribution of X.
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Moreover, since (X1, X2 ) are affiliated, for any k > 0, the distribution p1 ∈ �(𝒳 )
(first-order) stochastically dominates the distribution p0 ∈ �(𝒳 ). Similarly, the distri-
bution q1 ∈ �(𝒳 ) stochastically dominates q0 ∈ �(𝒳 ).

Since p0 ∈ co{q0, q1}, we can write

p0 = α0q
0 + (1 − α0 )q1,

where α0 ∈ [0, 1].
Now note that

p0
0 = α0q

0
0 + (1 − α0 )q1

0

≤ q0
0

because the distribution q1 stochastically dominates q0, that is, q1
0 ≤ q0

0.
By definition, the inequality p0

0 ≤ q0
0 is equivalent to

Pθ(X2 = 0|X1 = 0) ≤Qθ(Y2 = 0|Y1 = 0)

and since Pθ(X1 = 0) = Qθ(Y1 = 0), the result follows.

Lemma 5.1 implies that when there are two agents, in all of the results of the earlier
sections, the condition “Y ≻PQD X” can be replaced with “Y is mutually more informa-
tive than X”, provided that the inequality in (10) is strict. This is because Lemmas C.1
and C.2 only require (the strict version) of the inequality.

Appendix A: Affiliation and the PQD order

Recall that the probability distribution P ∈ �(𝒳 I ) is said to be affiliated if for all x and x′
in 𝒳 I , P(x) × P(x′ ) ≤ P(x∨ x′ ) × P(x∧ x′ ). Also recall the notation that if x = (xti )i∈I,t∈T
is a realization of all I signals in all T periods, then xt = (xti )i∈I (bold Italic) is the I vector
of all I signal realizations in period t, while xi = (xti )t∈T (bold Roman) is the T vector of
i’s signals over the T periods.

Lemma A.1. Suppose that the I variables X = (X1, X2, � � � , XI ) are affiliated with distri-
bution P . If X1, X2, � � � , XT are independently and identically distributed according to P ,
then the I × T variables (X1, X2, � � � , XI ) also have an affiliated joint distribution.

Proof. Suppose x = (x1, x2, � � � , xI ) and x′ = (x′
1, x′

2, � � � , x′
I ) are both in (𝒳 I )T . Because

the Xts are independently distributed over time,

Pr[x] =
T∏︂
t=1

P
(︁
xt

)︁
and Pr

[︁
x′]︁ =

T∏︂
t=1

P
(︁
x′t)︁.
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Thus,

Pr[x] Pr
[︁
x′]︁ =

T∏︂
t=1

P
(︁
xt

)︁ T∏︂
t=1

P
(︁
x′t)︁

=
T∏︂
t=1

P
(︁
xt

)︁
P

(︁
x′t)︁

≤
T∏︂
t=1

P
(︁
xt ∨ x′t)︁P(︁

xt ∧ x′t)︁

=
T∏︂
t=1

P
(︁
xt ∨ x′t)︁ T∏︂

t=1

P
(︁
xt ∧ x′t)︁

= Pr
[︁
x ∨ x′]︁Pr

[︁
x ∧ x′]︁.

Lemma A.2. Let e1 = (1, 0, � � � , 0) ∈ 𝒳 T . Suppose that the variables X are affiliated. For
any xi ≠ 0,

Pr
[︁

+|Xi = xi

]︁ ≥ Pr
[︁

+|Xi = e1]︁.

Proof. Clearly, the indicator function ℐ
+ : (𝒳 T )I → {0, 1} of the set 
+ = {ω : ∀j, xj ≠
0} is nondecreasing. For any xi ≠ 0, there is a permutation xπi of xi such that xπi ≥ e1.
Since the set 
+ is permutation invariant,

Pr
[︁

+|Xi = xi

]︁ = Pr
[︁

+|Xi = xπi

]︁
= E

[︁ℐ
+(X)|Xi = xπi
]︁

≥E
[︁ℐ
+(X)|Xi = e1]︁

= Pr
[︁

+|Xi = e1]︁.

The inequality in the third line is the result of the following argument. First, since the
variables X = (Xt

i ) are affiliated (Lemma A.1), the probability distribution of X−i condi-
tional on Xi = xπi dominates the distribution of X−i conditional on Xi = e1 in the multi-
variate likelihood order, as defined in Section 6.E of Shaked and Shanthikumar (2008).
Their Theorem 6.E.8 now implies that the two distributions are also ranked by the usual
stochastic order.

Lemma A.3. Suppose that Yθ ≻PQD Xθ. Then

Pr[Xi = 0, Xj = 0|θ] < Pr[Yi = 0, Yj = 0|θ].

Proof. Recall that Yθ ≻PQD Xθ implies that for any z such that for at least two indices l,
zl = 0, then

Pr[X ≤ z|θ] < Pr[Y ≤ z|θ].

If z is such that zi = zj = 0 and zl = 1 for all l ≠ i, j, then the conclusion follows.
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Appendix B: Posterior monotonicity

Consider an agent with n signals Xi = 1. His belief that all other agents also received at
least n signals Xj = 1 decreases with n.

Lemma B.1. For any n ≥ 1,

Pr[∀j, Nj ≥ n+ 1|Ni = n+ 1] ≤ Pr[∀j, Nj ≥ n|Ni = n].

Proof. Without loss of generality, suppose that the conditioning events are such that∑︁T−1
t=1 Xt

i = n and then on the left-hand side, XT
i = 1, whereas on the right-hand side,

XT
i = 0. In other words, the additional 1-signal received by i occurs in period T . This is

without loss of generality because the signals Xt
i are serially independent.

For j = 1, 2, � � � , I, define Mj = ∑︁T−1
t=1 Xt

j to be the sum of the first T − 1 signals re-
ceived by j and let M−i = (Mj )j≠i denote the vector of sums of the first T − 1 signals
received by agents other than i. Then Nj = Mj +XT

j .
We argue that for all m−i,

Pr
[︁∀Nj ≥ n+ 1, M−i = m−i|Mi = n, XT

i = 1
]︁

≤ Pr
[︁∀Nj ≥ n, M−i = m−i|Mi = n, XT

i = 0
]︁
. (11)

This is because if the left-hand side of (11) is positive, then it must be that after T − 1
periods, everyone has already received at least n positive signals, that is, for all j, mj ≥ n.
But then the right-hand side of (11) is 1.

Thus, for all m−i, the probability that Nj ≥ n + 1 occurs conditional on Mi = n and
XT

i = 1 is no greater than the probability that Nj ≥ n occurs conditional on Mi = n and
XT

i = 0.
Finally, since, conditional on θ, the random variable M−i = ∑︁T−1

t=1 Xt
−i is indepen-

dent of XT
i , summing both sides of the inequality over all the m−i, we have

Pr
[︁∀j, Mj +XT

j ≥ n+ 1|Mi = n, XT
i = 1

]︁
≤ Pr

[︁∀j, Mj +XT
j ≥ n|Mi = n, XT

i = 0
]︁
,

which establishes the result.

Appendix C: Effect of correlation

How does correlation affect the probability Pr[
+|X1 = e1] that type e1 = (1, 0, � � � , 0) ∈
𝒳 T assigns to the event that all j get at least one Xj = 1?

We begin by developing a formula for the joint probability:

Pr
[︁
X1 = e1, 
+]︁ = Pr

[︁
X1 = e1, ∀j, Xj ≠ 0

]︁
= Pr

[︁
X1 = e1]︁ − Pr

[︁
X1 = e1, ∃j, Xj = 0

]︁
.
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If we define Aj = {ω : x1 = e1, xj = 0} as the set of states of the world in which 1’s type is
e1 and j’s type is 0, then

Pr
[︁
X1 = e1, ∃j, Xj = 0

]︁ = P(∪j≠1Aj ),

where P ∈ �(�×𝒳 I ) is the joint distribution of states of nature and signals.
By the inclusion–exclusion principle,

P(∪j≠1Aj ) =
∑︂
1<j

P(Aj ) −
∑︂

1<j<k

P(Aj ∩Ak ) +
∑︂

1<j<k<l

P(Aj ∩Ak ∩Al ) − · · · .

But since agents are symmetric, we have

P[∪j≠1Aj ] =
(︄
I − 1

1

)︄
P(A2 ) −

(︄
I − 1

2

)︄
P(A2 ∩A3 ) +

(︄
I − 1

3

)︄
P(A2 ∩A3 ∩A4 ) − · · ·

=
I∑︂

l=2

(−1)l
(︄
I − 1
l − 1

)︄
P(A2 ∩A3 ∩ · · · ∩Al ). (12)

Now, since conditional on θ, the signals are independent over time,

P(A2 ) = Pr
[︁
X1 = e1, X2 = 0

]︁
= ρPG

(︁
(X1, X2 ) = (1, 0)

)︁ × (︁
PG

(︁
(X1, X2 ) = (0, 0)

)︁)︁T−1

+ (1 − ρ)
(︁
PB

(︁
(X1, X2 ) = (1, 0)

)︁ × (︁
P(X1, X2 ) = (0, 0)

)︁T−1)︁
.

In general, for all l = 2, 3, � � � , I,

P[A2 ∩A3 ∩ · · · ∩Al] = Pr
[︁
X1 = e1, X2 = X3 = · · · = Xl = 0

]︁
= ρ

(︁
P

[︁
(X1, X2, � � � , Xl ) = (1, 0, � � � , 0)|G

]︁
× (︁

P
[︁
(X1, X2, � � � , Xl ) = (0, 0, � � � , 0)|G

]︁)︁T−1)︁
+ (1 − ρ)

(︁
P

[︁
(X1, X2, � � � , Xl ) = (1, 0, � � � , 0)|B

]︁
× (︁

P
[︁
(X1, X2, � � � , Xl ) = (0, 0, � � � , 0)|B

]︁)︁T−1)︁
.

It is convenient to define, for l = 2, 3, � � � , I and θ = G, B,

αθ
l = P

[︁
(X1, X2, � � � , Xl ) = (1, 0, � � � , 0)|θ

]︁
and

βθ
l = P

[︁
(X1, X2, � � � , Xl ) = (0, 0, � � � , 0)|θ

]︁
.

So we can rewrite (12) more compactly as

P[∪j≠1Aj ] =
I∑︂

l=2

(−1)l
(︄
I − 1
l − 1

)︄(︁
ραG

l

(︁
βG
l

)︁T−1 + (1 − ρ)αB
l

(︁
βB
l

)︁T−1)︁
. (13)
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Note that for θ = G, B, both αθ
l and βθ

l are nonincreasing sequences since the event
that X2 = X2 = · · · = Xl = 0 includes the event that X2 = X2 = · · · = Xl = Xl+1 = 0.
Moreover, conditional on θ, if signals have full support, then αθ

l and βθ
l are strictly de-

creasing.
Analogously, if (θ, Y ) are distributed according to Q, then we have

Q[∪j≠1Aj ] =
I∑︂

l=2

(−1)l
(︄
I − 1
l − 1

)︄(︁
ραG

l

(︁
β
G
l

)︁T−1 + (1 − ρ)αB
l

(︁
β
B
l

)︁T−1)︁
, (14)

where αθ
l and β

θ
l are defined in the same manner as αθ

l and βθ
l but for the probability

distribution Q of Y . As above, both αθ
l and β

θ
l are nonincreasing sequences.

Lemma C.1. Suppose that both signals X and Y are conclusive. If

Pr[Yi = 0, Yj = 0|G] > Pr[Xi = 0, Xj = 0|G], (15)

then there exists a T0 such that for all T > T0,

qY = PrY
[︁

+|Yi = e1]︁< PrX

[︁

+|Xi = e1]︁ = qX .

Proof. First, since the signals X and Y are conclusive, then for all l,

αB
l = Pr

[︁
(X1, X2, � � � , Xl ) = (1, 0, � � � , 0)|B

]︁ = 0

and αB
l = 0 as well. Then from (13) and (14)„ we have that the ratio

P(∪j≠1Aj )
Q(∪j≠1Aj )

=

I∑︂
l=2

(−1)l
(︄
I − 1
l − 1

)︄
αG
l

(︁
βG
l

)︁T−1

I∑︂
l=2

(−1)l
(︄
I − 1
l − 1

)︄
αG
l

(︁
β
G
l

)︁T−1

.

Dividing the numerator and denominator by (β
G
2 )T−1 > 0, we obtain

P(∪j≠1Aj )
Q(∪j≠1Aj )

=
(I − 1)αG

2

(︃
βG

2

β
G
2

)︃T−1

+
I∑︂

l=3

(−1)l
(︄
I − 1
l − 1

)︄
αG
l

(︃
βG
l

β
G
2

)︃T−1

(I − 1)αG
2 +

I∑︂
l=3

(−1)l
(︄
I − 1
l − 1

)︄
αG
l

(︃
β
G
l

β
G
2

)︃T−1
.

Now note that since β
G
l is a strictly decreasing sequence, each of the terms of the

form (β
G
l /β

G
2 ) is less than 1. Moreover, (15) is the same as βG

2 <β
G
2 ,

βG
l

β
G
2

<
βG

2

β
G
2

< 1,
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and so we have that when T is large enough,

Pr
[︁
X1 = e1, ∃j, Xj = 0

]︁
Pr

[︁
Y1 = e1, ∃j, Yj = 0

]︁ = P(∪j≠1Aj )
Q(∪j≠1Aj )

< 1. (16)

Now since X and Y have the same univariate marginals, Pr[X1 = e1] = Pr[Y1 = e1]
and so from (16),

Pr
[︁∀j, Yj ≠ 0|Y1 = e1]︁ < Pr

[︁∀j, Xj ≠ 0|X1 = e1]︁.

Lemma C.2. Suppose X and Y have full-support distributions. If for θ =G, B, and i ≠ j,

Pr[Yi = 0, Yj = 0|θ] > Pr[Xi = 0, Xj = 0|θ], (17)

then there exists a T0 such that for all T > T0,

qY = PrY
[︁

+|Yi = e1]︁< PrX

[︁

+|Xi = e1]︁ = qX .

Proof. From (13) and (14) we have that the ratio

P(∪j≠1Aj )
Q(∪j≠1Aj )

=

I∑︂
l=2

(−1)l
(︄
I − 1
l − 1

)︄(︁
ραG

l

(︁
βG
l

)︁T−1 + (1 − ρ)αB
l

(︁
βB
l

)︁T−1)︁
I∑︂

l=2

(−1)l
(︄
I − 1
l − 1

)︄(︁
ραG

l

(︁
β
G
l

)︁T−1 + (1 − ρ)αB
l

(︁
β
B
l

)︁T−1)︁ .

Dividing the numerator and denominator by (β
B
2 )T−1 > 0, we obtain

P(∪j≠1Aj )
Q(∪j≠1Aj )

=

I∑︂
l=2

(−1)l
(︄
I − 1
l − 1

)︄(︃
ραG

l

(︃
βG
l

β
B
2

)︃T−1

+ (1 − ρ)αB
l

(︃
βB
l

β
B
2

)︃T−1)︃
I∑︂

l=2

(−1)l
(︄
I − 1
l − 1

)︄(︃
ραG

l

(︃
β
G
l

β
B
2

)︃T−1

+ (1 − ρ)αB
l

(︃
β
B
l

β
B
2

)︃T−1)︃ . (18)

Observe that since both (θ, X ) and (θ, Y ) are affiliated,

βG
2 = PG

(︁
(X1, X2 ) = (0, 0)

)︁ ≤ PB
(︁
(X1, X2 ) = (0, 0)

)︁ = βB
2

β
G
2 = PG

(︁
(Y1, Y2 ) = (0, 0)

)︁ ≤ PB
(︁
(Y1, Y2 ) = (0, 0)

)︁ = β
B
2 .

Moreover, (17) implies that

βB
2 = PB

(︁
(X1, X2 ) = (0, 0)

)︁
<PB

(︁
(Y1, Y2 ) = (0, 0)

)︁ = β
B
2

βG
2 = PG

(︁
(X1, X2 ) = (0, 0)

)︁
<PG

(︁
(Y1, Y2 ) = (0, 0)

)︁ = β
G
2 .

Thus, for all l,

βG
l ≤ βG

2 <β
G
2 ≤ β

B
2 ,
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and since βB
l is a strictly decreasing sequence, for l > 2,

βB
l < βB

2 <β
B
2 .

These inequalities in turn imply that in the numerator of (18), for all l,

βG
l

β
B
2

< 1 and
βB
l

β
B
2

< 1,

and so as T → ∞, the numerator goes to 0.
Moreover, for all l > 2,

β
G
l

β
B
2

<
β
G
2

β
B
2

≤ 1 and
β
B
l

β
B
2

< 1,

and so as T → ∞, all the terms with l > 2 in the denominator of the right-hand side of
(18) go to 0. The l = 2 term in the denominator, however, stays positive (it is at least
(1 − ρ)αB

l > 0).
So we have that when T is large enough,

Pr
[︁
X1 = e1, ∃j, Xj = 0

]︁
Pr

[︁
Y1 = e1, ∃j, Yj = 0

]︁ = P(∪j≠1Aj )

Q(∪j≠1Aj )
< 1.

Now since X and Y have the same univariate marginals, Pr[X1 = e1] = Pr[Y1 = e1]
and so from (16),

Pr
[︁∀j, Yj ≠ 0|Y1 = e1]︁< Pr

[︁∀j, Xj ≠ 0|X1 = e1]︁.
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