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Competitive and revenue-optimal pricing with budgets
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In markets with budget-constrained buyers, competitive equilibria need not be ef-
ficient in the utilitarian sense or maximize the seller’s revenue. We consider a set-
ting with multiple divisible goods. Competitive equilibrium outcomes, and only
those, are constrained utilitarian efficient, a notion of utilitarian efficiency that
respects buyers’ demands and budgets. Our main contribution establishes that
when buyers have linear valuations, competitive equilibrium prices are unique
and revenue-optimal for a zero-cost seller.

Keyworbps. Competitive equilibrium, revenue maximization, efficiency, market
design, budget constraints, Fisher markets, product-mix auction, Arctic auction.
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1. INTRODUCTION

The standard model of a seller is that of revenue maximization. But client satisfaction
and participation may lead sellers to also prioritize social welfare and consider compet-
itive pricing. In many settings, these are conflicting objectives; e.g., when agents have
concave values, competitive pricing leads to lower revenue for the seller than revenue-
optimal pricing (as we demonstrate in Section 2). In markets with budget constraints,
there is an additional trade-off: It is well known in classic economic theory that com-
petitive equilibria need not achieve utilitarian efficiency. Still, it is natural to consider a
notion of the best “achievable” social welfare in the presence of budgets. For instance,
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Che, Gale, and Kim (2013) develop a mechanism for a simple market! that maximizes ex-
pected social welfare, but respects the agents’ (private) budget constraints, using a ran-
dom assignment of supply and/or cash subsidies. Similarly, seller-optimal mechanisms
are described in Che and Gale (2000) and Pai and Vohra (2014) with implementations as
nonlinear pricing schemes and modified all-pay auctions, respectively.

Two important applications of our model are the digital advertising economy and
markets for the exchange of financial assets. In these multiproduct environments, the
mechanisms described above are not immediately applicable. Moreover, given the fast-
paced and large-scale nature of online ad auctions, which occur within fractions of a
second, their implementation appears to be too complex. In exchanges for financial
assets (Klemperer (2018); see also Section 6), the seller may have limited control over
resale, so randomized allocations and cash transfers may attract speculators. Instead,
we consider a seller who is restricted to a price-only mechanism.

In our market, the seller supplies multiple divisible goods in finite quantities at zero
cost to multiple buyers. Each buyer has monotone and concave, possibly linear, val-
uations and quasi-linear utility, and is endowed with a finite budget of money. In our
price-only mechanism, the seller chooses uniform prices that, anticipating the buyers’
demand correspondences, respect budgets and market supply. The seller may choose
competitive prices that clear the market, or she may retain some of her supply and raise
prices to maximize revenue.

We consider the notion of constrained social welfare, i.e., social welfare among all
allocations and prices? that respect the buyers’ demands, budgets, and market supply.
When buyers have quasi-linear preferences, constrained social welfare is maximized in
a competitive equilibrium and in a competitive equilibrium only (Proposition 4).3 We
also say that a competitive equilibrium is constrained utilitarian efficient or simply con-
strained efficient. As is standard, a competitive equilibrium is Pareto efficient, but not
necessarily utilitarian efficient (see also Section 2).

Our main result establishes that when buyers have linear valuations, the unique
competitive equilibrium also maximizes the seller’s revenue in a price-only mechanism
(Theorem 1). The unique market-clearing prices are buyer-optimal among all revenue-
maximizing prices, as they maximize the quantities allocated to each buyer. However,
there exist revenue-maximizing outcomes that are not the competitive equilibrium and,
therefore, are not constrained utilitarian efficient. We prove our result by studying the
feasible region, defined as the set of prices at which, for every good, either the market
clears (respecting buyers’ budgets and demands) or there is excess supply. We show that
this non-convex region has elementwise-smallest prices and that these prices clear the
market as well as maximize the seller’s revenue.

1Che, Gale, and Kim (2013) characterize the socially optimal mechanism that achieves an efficient as-
signment of a homogeneous supply of a single good to a finite mass of budget-constrained agents.

2Any feasible allocation is inherently tied to prices in our market, as feasibility must respect the buyers’
budgets.

3This theorem continues to hold if the seller has quasi-linear utility with nonzero costs.
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The notion of constrained utilitarian efficiency provides a compelling and practical
benchmark for social optimality in markets with budgets, where competitive equilib-
rium allocations need not be classically utilitarian efficient. While competitive equilib-
ria in our market remain Pareto efficient, welfare considerations require the stronger
criterion of utilitarian efficiency. Studying the constrained social optimum is especially
important in settings in which it would be hard to accept breaking or circumventing
budget constraints for the sake of efficiency. This is the case in our two motivating ex-
amples: digital advertising and financial asset exchanges. In an ad auction, although a
small business may derive a high value from an ad placement, only their ability to pay
can be relevant to a for-profit digital platform. Similarly, in the exchange of financial as-
sets, the budget of a buyer represents the limit on the nominal value of their asset that is
to be exchanged, and thus the seller would not want to grant an allocation of substitute
assets exceeding this limit.*

Our market has been studied as a simple model of many ad auctions as they occur on
digital market platforms (CKPS+ (2022)), and is also called a mixed Fisher or quasi-Fisher
market (Chen, Ye, and Zhang (2007), Murray, Kroer, Peysakhovich, and Shah (2020)).
When businesses compete for digital advertising space, the decision of which publisher
(product) to bid for is nontrivial. It is intuitive to choose an advertising budget and state
demand in terms of “limit market prices” for multiple, distinct products. The seller or
platform assigns to each buyer those products that yield the highest value for money to
them. Our main result suggests that the platform can set prices that are both revenue
maximizing and socially optimal within the feasibility constraints of advertiser budgets.
However, it does not imply that the seller always sets socially optimal prices.

Budget-constrained buyers also appear in exchanges for financial assets. For exam-
ple, Klemperer (2018) introduces the “Arctic auction,” originally developed for the gov-
ernment of Iceland, who planned to use this auction to exchange blocked accounts for
other financial assets such as cash or bonds. Buyers could submit a budget and their
trade-offs between different assets, and the auction was solved to maximize the seller’s
revenue. Quasi-Fisher markets can be interpreted as a special case of this auction, as we
discuss in Section 6. Further applications include debt restructuring and the (re-)divi-
sion of firms between shareholders (see also Klemperer (2018), Baldwin, Klemperer, and
Lock (2024)).

1.1 Related literature

The practical relevance of our market is highlighted in CKPS+ (2022), whose setting is
particularly inspired by online ad auctions. The basic properties of the market and
budget-constrained buyers are identical to ours, although they consider only linear val-
uations. Contrasting our setting, each divisible good is sold in an independent, single-
unit first-price auction, in which only the highest bidders can win a positive quantity.
CKPS+ (2022) introduce the solution concept of first-price pacing equilibria (FPPE), in

4In general, the analysis of social welfare that transcends buyers’ budget constraints may be more rele-
vant when these budget constraints are linked to individuals with unequal endowments or socially indis-
pensable businesses with unequal access to capital markets.
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which the submitted bids correspond to the buyers’ values scaled (uniformly for each
buyer) by a pacing multiplier.® Interestingly, this at first sight unrelated auction proce-
dure can also be solved using the modified Eisenberg-Gale convex program of Chen, Ye,
and Zhang (2007) that was proposed for mixed Fisher markets. Moreover, CKPS+ (2022)
show that the unique FPPE corresponds to a competitive equilibrium in the sense of our
setting; that is, in the overarching market for all goods with budget-constrained, quasi-
linear buyers. While they show that the FPPE is revenue-maximal among all budget-
feasible pacing multipliers and corresponding allocations, our work implies that the
FPPE is indeed revenue-maximizing in the entire market.

Several papers have studied optimal mechanism and auction design in the presence
of budget constraints. A crucial distinction between those mechanisms and ours is the
focus on incentives that arise from the presence and extent of private information. For
example, Laffont and Robert (1996) characterize the optimal auction, and Maskin (2000)
designed the constrained-efficient mechanism when budgets are known. The optimal
and constrained-efficient mechanism in different settings with private budgets and val-
ues, including a single buyer, multiple buyers, or a population of buyers, are developed,
for example, in Che and Gale (2000), Che, Gale, and Kim (2013), Pai and Vohra (2014),
Richter (2019). In contrast to this literature, our approach is more practical, focusing
on a market with a supply of differentiated goods in which the seller is restricted to a
price-only mechanism (see also the discussion in Section 1), and buyers behave non-
strategically.

The market with budget-constrained buyers with quasi-linear utilities and linear val-
uations is also known as a quasi-Fisher market (Murray, Kroer, Peysakhovich, and Shah
(2020)), as it can be considered a generalization of standard Fisher markets (Brainard
and Scarf (2005)). Quasi-Fisher markets have appeared in various guises, mainly in a
computational context. The first results on quasi-linear Fisher markets were developed
by Chen, Ye, and Zhang (2007), who showed that competitive equilibria can be com-
puted in polynomial time, with several others to follow.® In standard, linear Fisher mar-
kets, buyers spend their entire budget at any market prices, and so revenue is constant
at all prices. In contrast, buyers with quasi-linear utility and budget constraints spend
nothing when prices are unacceptably high. Hence, the notion of maximizing revenue
becomes a viable objective for the seller to pursue. Contrasting the literature on quasi-
Fisher markets, our paper considers not only competitive equilibrium, but also maxi-
mizing revenue. Our unifying result on constrained utilitarian efficiency, competitive
equilibrium, and revenue demonstrates the importance of the quasi-linear setting from
a theoretical perspective as well as in applications.

Our market is also equivalent to a version of the Arctic product-mix auction (PMA)
(Klemperer (2018)) in which the seller’s costs are zero. The Arctic PMA was originally

5An FPPE is defined as a set of pacing multipliers (one for each buyer) and allocations that satisfy the
allocation and pricing rule of standard first-price auctions, as well as budget feasibility, supply feasibility,
market clearing for demanded goods, and “no unnecessary pacing,” i.e., a buyer’s multiplier equals 1 if she
has unspent budget.

6A more comprehensive overview of computational contributions on linear and quasi-linear Fisher mar-
kets is given in our preliminary working paper (Finster, Goldberg, and Lock (2023)).
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designed for the government of Iceland in order to allow exchanging offshore accounts
for other financial assets. Fichtl (2022) studies this auction from the perspective of com-
puting revenue-maximizing prices.

Organization The remainder of the paper is structured as follows. In Section 2, we mo-
tivate the research with several examples in which buyers’ values are not linear, and the
coincidence of revenue optimality and constrained utilitarian efficiency fails. Section 3
describes the model, and Section 3.1 defines market outcomes and their properties. In
Section 4, we prove the constrained efficiency of competitive equilibrium, and in Sec-
tion 5, we show the coincidence of constrained efficiency and revenue optimality in the
linear case. Section 6 establishes the connection between our market and the Arctic
auction, and Section 7 concludes.

Notation For any two vectors v, w € R”, we write v - w for their dot product, and
v < w when the inequality holds elementwise. For any j € {1, ..., n}, ¢/ denotes the n-
dimensional indicator vector with ej. =1and ¢} = 0 for all k # j. We also define ¢° := 0.

2. EXAMPLES: EFFICIENCY, CONSTRAINED EFFICIENCY, AND REVENUE

We illustrate the objectives of maximizing social welfare, constrained social welfare, and
the seller’s revenue. Example 1 shows that competitive equilibrium with budget con-
straints, which is Pareto efficient, is also constrained utilitarian efficient, but not neces-
sarily fully utilitarian efficient. In Example 2, we show that with diminishing marginal
values, the seller’s revenue is not maximized in a constrained-efficient allocation. Exam-
ple 3 illustrates our main result (Theorem 1), the coincidence of competitive equilibrium
and revenue optimality, in a setting with two goods and constant marginal values. Note
that allocations are nonnegative throughout the paper.

ExampLE 1. Consider a market with two buyers and a seller with one good in unit supply
and zero costs. The buyers’ per-unit values are v! > v> and their budgets are 8! > 2,
and we assume 1y Bz < v2. The fully efficient (social welfare maximizing) allocation
gives the entire unit to the first buyer. However, due to their budgets, for any price p < v?,
each buyer i demands quantity b’/ p. To clear the market, the price must satisfy 8!/ p +

B%/p=1,i.e., p=B' + B2. The allocation to buyer 1 is, therefore, 81 /(B! + %) <1. ¢

The competitive equilibrium in Example 1 is not fully efficient, but it maximizes con-
strained social welfare that respects the buyers’ budgets. Budgets intrinsically link con-
strained welfare considerations to prices. We say that an outcome, consisting of an allo-
cation and prices, is feasible if it respects the buyers’ demands, budgets, and the supply
constraint. The constrained-efficient outcome is defined as maximizing social welfare
among all feasible outcomes. In the example, social welfare is maximized by assigning
as much as possible to buyer 1. However, if we cannot violate buyers’ budgets, increas-
ing the quantity allocated to the first buyer beyond g'/(8' + 82) requires decreasing the
price. This would again increase the demand of the second buyer and violate the supply
constraint, tipping the market out of equilibrium. Thus, the competitive equilibrium is
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constrained utilitarian efficient. The seller’s revenue in the competitive equilibrium is
B! + 2. This is clearly optimal, as the seller cannot hope to obtain more money than is
available in the market.

Although competitive equilibrium is always constrained efficient, with any number
of goods, buyers, and irrespective of the valuation, the coincidence of revenue optimal-
ity and constrained efficiency is more fragile. The following example shows that, with
diminishing marginal values, it may fail.

ExamPLE 2. The seller provides a single good with supply s € R, at zero costs. There
is one buyer with a continuous valuation v : R — R for the good and quasi-linear utility
u(p, x) =v(x) — px, where p denotes the unit price of the good, and a budget 8 e Ry U
{oo}. We aim to find outcomes ( p, x) that maximize either constrained efficiency or the
seller’s revenue in a price-only mechanism, respectively. O

Maximizing revenue with a price-only mechanism, the seller sets a price in anticipa-
tion of the buyer’s demand. The buyer demands the quantity x at price p that maximizes
v(x) — px subject to not exceeding the budget, px < B. Thus, the seller’s revenue is max-
imized at price p and allocation x < s that maximize px, and the buyer demands x at
p. Social welfare, on the other hand, is highest at price p and an allocation x < s that
maximizes v(x) among all (p, x) for which the buyer demands x at p.

To derive allocations and prices, we first have to make some assumptions on the
buyer’s valuation. A typical assumption is diminishing marginal values. In that case, the
buyer always demands a quantity such that their marginal utility at this quantity is zero.
Assuming v'(s) - s < B, social welfare is maximized if v'(x) = p and x = 5, and markets
clear. However, if the seller were allowed to adjust the price, anticipating the buyer’s
demand, she might be able to extract more revenue (and not sell the entire supply). The
following proposition demonstrates that this is indeed the case for all strongly concave
value functions if the buyer’s budget is large.

ProposiTiON 1. Let v be differentiable and strongly concave with parameter m for some
m > 0, and let B = co. Then there exists some supply s € R so that revenue is not maxi-
mized at the market-clearing price.

When the buyer has a finite budget, we assume that supply lies in the finite interval
X :=[0, max{x | xv/(x) < B}]. We define ¥ implicitly by ¥v'(X) = B.

PROPOSITION 2. Suppose the buyer has a strongly concave valuation v with parameter m
and a finite budget B. If supply s is contained in X with v'(s) < ms orifm > v'(X)/X, then
revenue is not maximized at the market-clearing price.

In other words, for any strongly concave valuation, we can find a combination of
budget and supply such that the maximizers of the constrained social welfare and the
revenue maximization problem do not coincide. For example, we may require the valua-
tion to be sufficiently concave relative to the budget. The arguments of the above propo-
sitions are standard in monopoly theory, but for completeness we provide the proofs in
the Appendix. Example 4 in the Appendix further illustrates the case with large budgets.
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In light of the above propositions, we consider the class of constant marginal values,
i.e., v(x) = vx for some scalar per-unit valuation v.

ProprosITION 3. Suppose the buyer has valuation v(x) = vx and budget B. Then the
seller’s revenue is maximized at market-clearing prices.

The above proposition is straightforward. Constrained social welfare is maximized
at p = min{v, B/s} and x = s. We argue that the constrained efficient allocation and price
are also revenue-optimal, because the seller extracts the maximum possible revenue at
p- Suppose first that p = v < B/s. At prices strictly above v, the buyer demands noth-
ing, so the seller gets a revenue of zero. Prices strictly below v are not feasible, as the
buyer demands more than one unit of the good. In the case that p = B/s < v, the buyer
exhausts their entire budget demanding x = s, so the seller cannot extract more revenue.

An immediate question to ask is whether this reasoning extends to more general
environments and preferences. The answer we present in this paper is affirmative: if any
number of buyers have quasi-linear, budget-constrained utility and linear values for any
number of goods, then seller-optimal revenue and constrained efficiency are attained at
the unique set of elementwise-minimal prices. This result, however, is not immediate.
In the following, we illustrate the difficulty in another simple example with two goods.

ExaMPLE 3. Two goods, 4 and B, are for sale with a supply of s4 = 3 and sg = 2. There
are three buyers 1, 2, and 3 with marginal values v! = (v, v}) = (2, 3), v* = (1%, v}) =
(2,2), and v3 = (3, v3) = (4, 2). Utilities are quasi-linear, i.e., u'(x, p) = Zj(v;. — pj)X;
for buyer i. Each buyer has a budget of 8! = g2 =3 =1. O

In this example market, we can allocate the three units of 4 and two units of B
among the three buyers to maximize either revenue or social welfare, but need to re-
spect individual demand. It is not hard to check that at given prices (p 4, pp) each buyer
i will demand a good j € argmax;_ , vj./pj if vj. > pj. Any good k with vf{ < pj will never
be demanded by buyer i. This kind of individual demand can be easily represented in
price space (more detail in Section 6). At some prices, aggregate demand is too large
to be satisfied by supply. Prices at which aggregate demand does not exceed supply are
called feasible. The set of feasible prices makes up the feasible region. The bids (black
dots) and the feasible region (in grey) for Example 3 are illustrated in Figure 1. Note that
the feasible region also includes a short line segment between p* := (3/5, 3/5) (red dot)
and p’ :=(2/3, 2/3) (blue dot). The feasible region has the key property that for any pair
of feasible price vectors, their elementwise minimum also belongs to the region (Propo-
sition 5).

At prices (3/5, 3/5), buyer 1 demands 5/3 of B, buyer 3 demands 5/3 of 4, and buyer
2 demands x% € [0, 5/3] copies of A and 5/3 — x? of B. With supply (s, sg) = (3, 2), we
set x2, = 4/3 to clear the market. It is easy to check that any prices on the line segment
[p*, p'] induce a feasible allocation. All prices [p*, p’] are revenue-maximizing. How-
ever, only p* clears the market.
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Ficure 1. The feasible region in price space corresponding to Example 3.

3. THE MARKET

We have m buyers [m] := {1, ..., m}, n divisible goods [n] := {1, ..., n}, and a (divisible)
numeraire, denoted 0, that we call money. Let [n]o = {0, ..., n} be the goods together
with money. A bundle, typically denoted x or y, is an n-dimensional vector of nonneg-
ative reals whose entry x; > 0 for each j € [n] denotes the quantity of good j. The seller
(she) is endowed with a supply bundle s € R’} that she wishes to sell, partially or com-
pletely, by setting uniform, nonnegative market prices p € R’} for the goods. She has
zero costs and no utility for leftover supply,” so her quasi-linear utility for selling bundle
x at prices p is given by p - x.

Each buyer i € [m] (he) has a budget g’ and a valuation v mapping every bundle x
to a value v(x) € R,. We assume that v’ is concave and monotone increasing. Buyers
have quasi-linear utility ul(x, p) :=vi(x) + ' — p - x from receiving bundle x at prices
p, where B/ — p - x is their leftover money. A buyer’s demand at prices p consists of the
bundles x that maximize his utility «/(-, p), subject to not exceeding his budget. The lat-
ter is expressed by the budget constraint p - x < 8. This leads to the budget-constrained
demand correspondence

Di(p):= argmax (vi(x) —p-x),

xeR!, p-x<pi

omitting the constant 8. In Sections 5 and 6, we consider the setting in which buy-
ers have linear valuations v'(x) = v’ - x given by a vector v’ € R”. This market is also
called a mixed Fisher or quasi-Fisher market (Chen, Ye, and Zhang (2007), Murray, Kroer,
Peysakhovich, and Shah (2020)).2

"This assumption is valid, e.g., in ad auctions. Unsold advertising slots generally have no utility to the
seller (unless it was using the slots for advertising their own products). Some of our results extend to
nonzero seller costs.

8Quasi-Fisher markets differ from classical linear Fisher markets in that buyers in the latter market
have linear (as opposed to quasilinear) utilities u’(x) = v - x. Their demand correspondences are given
by D'(p) = Argmax,cpn p p<pi v -x.
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3.1 Market outcomes

The seller solves the auction by determining a market outcome (p, (xi)ie[m] ), which con-
sists of market prices p and an allocation bundle x’ to each buyer i € [m]. For brevity, we
drop the subscript i € [m] when denoting an allocation (x’) to buyers, as buyers are fixed
throughout. When determining a market outcome, the seller wishes not to exceed sup-
ply. Allocations are also restricted to bundles that reflect buyers’ demands and budgets
at the chosen market prices. In particular, each buyer i receives a bundle x’ that maxi-
mizes his utility u/(y, p) among all bundles y that do not cause him to spend an amount
p - y exceeding his budget 8. We call such outcomes feasible.

DEFINITION 1. A market outcome (p, (x%)) is feasible if
(i) the aggregate allocation of each good j does not exceed its supply, s0 Y ;c(, X' < s

(ii) each buyer demands his allocation at p, so x! € Di(p) for all i € [m].

Prices are feasible if they can be extended to a feasible outcome with some alloca-
tion. In Section 5, we will study the geometry of the feasible region, which consists of
the set of all feasible prices. Conversely, we say that an allocation (x') is supported by
some prices p if (p, (x)) form a feasible outcome. This means that the allocation can be
implemented by some prices p at which each buyer i demands bundle x'.

DEFINITION 2. We say that prices p are feasible if there exists an allocation (x’) so that
(p, (x")) is a feasible outcome. The feasible region consists of all feasible prices.

The seller’s revenue from an outcome (p, (x')) is given by >_;.(,,, p - x'. In order to
maximize revenue, the seller may set prices at which her supply is not cleared.

However, long-term considerations such as client satisfaction and participation may
also lead the seller to consider competitive pricing. A competitive equilibrium consists
of a feasible outcome that clears the market. The existence of competitive equilibrium
is guaranteed in our market, as it can be seen as an Arrow—Debreu exchange economy
(Arrow and Debreu (1954), Chen, Ye, and Zhang (2007)).

DEFINITION 3. A market outcome (p, (x)) is a competitive equilibrium if it is feasible
and clears the market for all positively priced goods, $0 ;.1 x; = s; for all goods j with
pJ > 0.

4. CONSTRAINED EFFICIENCY

The social welfare of an allocation (x') is _ ietm] vi(x?), and the social welfare of an out-
come is the welfare of its allocation. In markets with unlimited spending power, com-
petitive equilibrium allocations are Pareto efficient and utilitarian efficient, i.e., maxi-
mize social welfare. In markets with budgets, however, competitive equilibrium allo-
cations need not be utilitarian efficient, as welfare-maximizing allocations may not be
supported by any market prices. Example 1 in Section 2 illustrates.
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Instead, we consider the maximum social welfare attainable by an allocation that
is supported by some market prices, i.e., the maximum social welfare achievable by a
market outcome. We call a feasible outcome constrained (utilitarian) efficient if it maxi-
mizes social welfare among all feasible outcomes.® Our notion of constrained efficiency
can thus be considered a variation of efficiency in the presence of budgets.

DEFINITION 4. A market outcome (p, (x')) is constrained (utilitarian) efficient if it is
feasible and maximizes social welfare, 3", v'(x), among all feasible outcomes.

First, we establish that competitive equilibrium maximizes constrained efficiency,
and any feasible outcome maximizing constrained efficiency constitutes a competitive
equilibrium.!9 This classic result is well known for markets with indivisible goods with-
out budgets (see, e.g., Sun and Yang (2014)), and we extend this to our market in which
outcomes must respect budgets, demand, and supply.

ProposiTION 4. A market outcome is a competitive equilibrium if and only if it is con-
strained efficient.

Prookr. Fix a competitive equilibrium (p, (x)) and let (g, (y)) be any feasible out-
come. For convenience, we define the aggregately allocated bundles x = ;. x!
and y = Zie[m] y'. As (p, (x")) is feasible, the quasi-linearity of utilities tells us that
Vi(xH) + B —p-xt = v'(y) + B — p -y for every buyer i, so

V)=V = Y e ) =p(x-). M

ie[m] ie[m] ie[m]

As (p, (x')) is a competitive equilibrium, we have xj = s; for all goods j with p; > 0.
The feasibility of (g, (y')) implies yj <sj=xj forall j with p; >0,s0 p-(x —y)>0.
As (g, (y')) was an arbitrary feasible outcome, (1) thus implies that (p, (x')) maximizes
social welfare among all feasible outcomes.

We now show that a constrained efficient outcome must also be a competitive equi-
librium. Suppose that (g, (y')) maximizes social welfare among all feasible outcomes,

SO Y iepmy V' (0 =Y icim v (). By (1), we have

0= v(x) =Y v()zp-(x—y. 2)

ie[m] i€[m]

If (¢, (")) is not a competitive equilibrium, we have yj < xj for all goods j for which
pj > 0, with strict inequality y; < x; for at least one such good. Thus, p- (x —y) >0, a
contradiction. O

9The term “constrained efficiency” is motivated by the fact that the allocations we consider must be
supported by a price to form a feasible outcome (cf. Definition 1), and feasibility is constrained by budgets.

10This is reminiscent of the fundamental welfare theorems, but we consider utilitarian efficiency in-
stead of Pareto efficiency. The standard welfare theorems are known to hold in the Arrow-Debreu exchange
economy, which embeds our market.
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We note that Proposition 4 continues to hold if the seller has nonzero costs. Costs for
sold supply or, equivalently, utility for retained supply may be relevant in the application
of financial asset exchanges. In most cases, leftover assets have value to the seller or the
issuance of financial instruments comes at a cost.

5. THE REVENUE—WELFARE COINCIDENCE

We now assume that each buyer has a linear valuation. In this linear market setting,
we establish that competitive equilibrium prices are unique and maximize not just con-
strained social welfare (Proposition 4), but also revenue. However, while Proposition 4
tells us that constrained social welfare is maximized only at these prices, maximum rev-
enue may also be attained at higher prices, at which the seller only sells a subset of her

supply.

THEOREM 1. In the market with linear valuations, competitive equilibrium prices are
unique. Moreover, all competitive equilibrium outcomes maximize revenue.

The linear valuation v(x) = v’ - x of each buyer i is expressed by a valuation vector
v’ that represents his linear per-unit values v;. > 0 for each good j. The per-unit value of

money is v} = 1 for each buyer. Each buyer’s utility function is then u/(x, p) = v’ - x+ g’ —
p - x, and his demand correspondence is D'(p) = argmaxxeRn’x,psﬁi(vi — p) - x. Figure 2
illustrates the demand that arises from linear valuations.

We assume that every good is valued positively by at least one buyer (otherwise we
simply remove the good from the market). This guarantees that any feasible prices are
strictly positive.

To prove Theorem 1, we first consider the feasible region, which consists of the set
of all feasible prices (cf. Definition 2). A key property of the feasible region is that it
forms a lower semi-lattice. That is, there exists an elementwise-minimal price vector p*

pPB PB
<ﬁ1;52701> (% ) (0,0)
(£70> (0,0) °| ’ - L
m 52 o)
3| 3|
0:2) (o, 2527)
: PA : : PA
5 3 6

F1GURE 2. The demand of buyers with quasi-linear utilities, linear valuations, and budget con-
straints, which divides price space into convex regions. In each region, we specify the bundle
demanded, which depends on prices p. Left: The demand of a single buyer with linear values
v = (5, 3) and budget B leads to three regions. Right: The aggregate demand of two buyers, one
with values v!' = (3, 6) and budget 8', and the other with values v?> = (6, 3) and budget 2.
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that is dominated by all other feasible prices. This is illustrated in Figure 1. We develop
these geometric insights in Section 5.1. We then prove, in Section 5.2, that revenue is
maximized, and the market is cleared, at these prices p*.

For these proofs, we also make use of an alternative characterization of the demand
correspondence of a buyer with a linear valuation. Formally, we fix the price of the
money at pg = 1. At any given prices p, let J/(p) := argmax;e vj./pj be the set of
goods that maximize buyer i’s “bang per buck.” Note that v, = po = 1 by definition,
so Ji(p) contains the money good 0 if max;ejny, vj./pj =1, and we have Ji(p) = {0} if
maxjey) vj/ pj < 1.

Lemma 1 makes the observation that demanded bundles only contain quantities of
goods that maximize a buyer’s bang per buck; in other words, if x is a bundle demanded
by buyer i at p, then x; > 0 implies j € J/(p). Moreover, any demanded bundle is the
convex combination of the “extremal” bundles that arise when the entire budget is spent
on a single demanded good in J(p). In particular, 0 € J/(p) means that the buyer can
maximize his utility by not spending his entire budget.

The convex hull of §, i.e., the set of all convex combinations of elements in S, is
written as convS.

LEMMA 1. For any buyer i with linear valuation v\ and budget B!, we have D'(p) =
conv{B'/pje’ | jeJ'(p)}.

ProoF. Recall that the buyer’s demand is D(p) = argMaX,cpn r p<

Bi(vi — p) - x. The
space {x e R} |x-p < B'} of all bundles that the buyer can afford at prices p is a closed
polyhedron spanned by vertices y° := 0 and y/ := p/p;e/ for each good j € [n]. The
fundamental theorem of linear algebra tells us that any bundle x € D!(p) demanded at
p is the convex combination of the vertices y/ that maximize f(x) := (v’ — p) - x. As
fOH) =W —p) B/pje = Bi(vj./pj — 1) for each j € [n]o, we see that y/ maximizes f(y)

ifand only if j € J(p). O

In Section 6, we will also see that the Arctic product-mix auction introduces a bid-
ding language that starts from this definition of demand to characterize a more general
class of preferences.

5.1 Elementwise-minimal feasible prices

Recall from Definition 2 that prices p are feasible if they can be extended with an allo-
cation (x!) to a feasible outcome (p, (x')). We now show that the set of feasible prices
forms a lower semi-lattice. In particular, there exists a price vector p* that is elementwise
smaller than all other feasible prices (so that p* < p for all feasible p).

ProrosiTION 5. The feasible region has a unique elementwise-minimal price vector p*.

To develop the proof of Proposition 5, we first define the elementwise minimum p A ¢
of two prices p, g by (p A q); = min{pj, q;} for all goods j € [n]. The following lemma is
central to our proof of Proposition 5.

LeMmwMmA 2. If p and q are feasible, then so is their elementwise minimum p A q.
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Fix feasible prices p and ¢ with elementwise minimum r := p A ¢, and let (x’) and
(»"), respectively, denote allocations that extend p and ¢ to feasible outcomes (p, (x'))
and (g, (»")). In order to prove Lemma 2, we construct a third allocation (z') and show
that (r, (z')) is a feasible outcome. We first define the set of goods 4 in which p is strictly
dominated by ¢, and its complement B, so A= {j € [n] | pj < q;} and B={j € [n] | p; >
g;}. Then our allocation (z') is given by

i 3)

i y' if buyer i demands some good j € Bat r
x' otherwise.

In order to prove that (r, (z')) is feasible, we first state a technical lemma that estab-
lishes the connection between a buyer’s demand at p, ¢, and r.

LEMMA 3. Suppose buyer i demands good j € A atr. Then she also demands j at p and
Ji(p) C Ji(r). Similarly, suppose buyer i demands j € B at r. Then she also demands j at q
and J(q) € Ji(r). Moreover, we have J'(q) C B.

Proor. Fix a buyer i who demands good j € 4 at r. As p; =rj, this implies v;/pj =
vj./rj > vf(/rk > vf(/pk for all goods k € [n]p. The first inequality holds due to Lemma 1
and the second inequality follows from the fact that r; < p; for all k € [n]o. Hence, the
buyer demands good j at p. For the second claim that J(p) C Ji(r), fixa good k € Ji(p).
Then we have vfc/rk > UZ/Pk > v;'./pj = vll"./rj > vf/rl for all goods / € [n]p. The first in-
equality holds due to r; < pg, and the second and third inequalities follow from the fact
that the buyer i demands k at p and j at r. Hence, if the buyer demands good k& at p,
then they demand k at r.

Now suppose that the buyer demands j € B at r. The proof of the first claim is
identical to the case j € A. We prove the last claim that J/(¢) € B. Suppose, for con-
tradiction, that buyer i/ demands a good k € A4 at ¢ and good j € B at r. This implies
v /g < vk /pk =i/ < vj. rj= vj. /q;, in contradiction to Lemma 1 and the fact that & is
demanded at q. O

We can now prove Lemma 2.

Proor oF LEMMA 2. Let p and ¢ be two feasible prices and let r := p A ¢ denote their
elementwise minimum. As above, (x') and (y') are allocations that extend p and ¢ to
feasible outcomes, and (z!) is defined as in (3). We now prove that (r, (z))) is a feasible
outcome and that it satisfies the two criteria in Definition 1. We can partition buyers into
two sets: the set B C [m] of buyers who demand a good in B at r and the set A := [m] \ B
of buyers who do not. Note that, by Lemma 3, the buyers in B demand only goods in B
at g and, by definition, the buyers in .4 demand only goods in A4 at p. We thus observe
that in outcome (p, (x)), each buyer i € A is only allocated quantities of goods in A4 (so
YicA x; > 0 only if j € A); similarly, in outcome (g, (y')), every buyer i € B only receives
quantities of goods in B (so } ;. yJ’: > 0 onlyif j € B).

First we show that (z’) satisfies condition (i) of feasibility in Definition 1, i.e., that
> ieim] z; < s; for all goods j € [n]. Fix some good j € A. Then, by definition of (z),
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we have 3 ., z; =) icA xj. + Y ieB y]‘ Recalling that )", y]L: =0 (as j € A) and that
(p, (x)) is feasible, we get Y., zj. <Y ietm) x§ < sj. This implies that (r, (z')) does not
over-allocate any goods j € A. Analogously, we can show that (z') does not over-allocate
any goods j € B by recalling that ) ;_ 4 xj. =0 for any good j € B. As AU B = [n], we have
shown that (r, z') satisfies condition (i) in Definition 1.

Next we argue that (r, (z))) satisfies condition (ii) of feasibility in Definition 1. Con-
sider first a buyer i € A. By definition of A, this buyer demands only goods in A4 at r,
and so by Lemma 3, we have J/(p) C J/(r) € A. Moreover, by (3), each buyer i € A is
allocated bundle 7/ = x/, and x;'. > 0 implies j € A. The prices of goods in A are the same
at p and r, by construction of r, so each buyer i € A spends the same in outcome (r, (z1))
as they do in outcome (p, (x')). As the latter outcome is feasible, we have z' € Di(r).
Similarly, as the buyers in B only demand goods in B, we apply the same argument to
see that z/ = y' € Di(r) for every i € B. O

ProoOF oF ProPOSITION 5. Suppose there exists no elementwise-minimal price vector.
This means that, for all feasible p, there exists some feasible g with g; < p; for at least
one good j € [n]. Fix some feasible prices p with the property that p cannot be reduced
any further in any direction without breaking feasibility. Such a point must exist, as
the feasible region is closed and restricted to R’} . By assumption, there exists a feasible
price vector g with g; < p; for some j € [n]. Now consider r = p A q. By Lemma 2, r
is feasible, but as r < p with r; < p;, this contradicts our assumption that p cannot be
reduced further. O

5.2 Maximizing revenue and welfare

In Section 5.1, we established that the set of feasible prices contains a unique element-
wise-minimal price vector p*. We now show that revenue is maximized at these prices
and that the market is cleared at, and only at, p*. Note that we do not assume p* to
be the only prices at which revenue is maximized; indeed, there can be many revenue-
maximizing prices. However, a revenue-maximizing outcome at p* clears the market,
and is thus optimal for buyers among all revenue-maximizing outcomes.

PRrROPOSITION 6. The elementwise-minimal feasible prices p* maximize revenue.

Proor. We show that, for any feasible p < ¢, the maximum revenue obtainable at p is
weakly greater than the revenue obtainable at ¢g. It then follows immediately that rev-
enue is maximized at p*.

Let (x) and (y') be allocations that revenue-maximally extend p and q to feasible
outcomes (p, (x')) and (g, (¥*)). Our goal is to determine an allocation (z') so that
(p, (z1)) is a feasible outcome with a revenue that is weakly greater than the revenue
of (¢, (¥)). As the revenue of (p, (x')) is weakly greater than the revenue of (p, (z')), the
result then follows by transitivity.

If p = g, there is nothing to prove. Hence, we assume that S := {j € [n] | p; < q;}, the
set of goods that are priced strictly lower at p than at ¢, is nonempty. Fix a buyer i € [m].
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In order to define the new allocation z’ to buyer i at p, we distinguish between the two
cases that J'(p) is and is not a subset of S.

Case 1. Suppose buyer i demands a subset of S at p, so Ji(p) € S. In this case, we set
7l :=x'. As (p, (x")) is a feasible outcome, we see that z' € D’(p). Moreover, as 0 ¢ S by
definition of S, the buyer spends his entire budget on x’ at prices p.

Case 2. Suppose Ji(p) ¢ S. We note that Ji(@)NS =¢and buyer i demands all goods in
Ji(g) at p, so J'(q) € J'(p). In this case, we set z' := y'. As the buyer is only allocated
goods notin S and as p; = g; for all goods j € [n]o \ S, it follows that the buyer spends
the same at p and ¢, and so z' € D'(p).

Note that, in both cases, the buyer is only allocated goods that they demand. To sum-
marize, we define (z’) as

z = .
i

. |x it cs
y' otherwise.

We now prove that (p, (z))) is a feasible outcome. We have already argued above that
condition (ii) of Definition 1 is satisfied. It remains to show that aggregate demand does
not exceed supply s; for any goods j € [n]o. Note that the outcome (p, (z))) allocates a
positive quantity of a good j € S to a buyer if and only if the buyer satisfies Case 1 above.
Indeed, in this case, we set zj. = x; Hence, for any j € S, we have Zie[m] Z;- < Zie[m] x§ <
sj, as (p, (x")) is feasible. Similarly, for any j ¢ S, the buyer will satisfy Case 2 and we get
Yicim 22 < Xicpm) Vi < 5j> as (g, (v")) is feasible.

Finally, we see that (p, (z')) achieves weakly greater revenue than (g, ( ¥)). Each
buyer satisfying Case 1 spends his entire budget and thus contributes a weakly greater
amount to overall revenue in outcome (p, (z')) than in outcome (q, (y)). A buyer satis-
fying Case 2 contributes the same amount in both outcomes. O

ProrosITION 7. The elementwise-minimal feasible prices p* uniquely clear the market.

PrOOF. We know that a competitive equilibrium (g, (y')) exists, as our market can be
considered as an Arrow-Debreu exchange market (Arrow and Debreu (1954), Chen, Ye,
and Zhang (2007)). As this equilibrium is a feasible outcome and p* is the elementwise-
minimal feasible price vector, we have ¢ > p*. Suppose, for the sake of contradiction,
that ¢ > p*. We let (x) be an allocation that revenue-maximally extends p* to a feasible
outcome. For convenience, letx:=3 ;i x' be the aggregate demand of this outcome.
As (g, (»")) clears the market, the respective revenues achieved by outcomes (¢q, (y')) and
(p*, (x)) are Yjeim 45 and X¢ Pixj. As 0 < x < s due to the feasibility of (p*, (x1))
and revenue is maximized at p* by Proposition 6, we arrive at the contradiction

DS D IS D Pisi< Y 4
J€ln] Jj€ln] J€ln] Jj€ln]

Here we use the fact that ¢ > p* for the strict inequality. The contradiction thus implies
that p* are the unique market-clearing prices. d

Theorem 1 now follows immediately from Propositions 6 and 7.



1150 Finster, Goldberg, and Lock Theoretical Economics 20 (2025)

6. ARCTIC AUCTIONS

The market we consider can be interpreted as an important special case of the Arc-
tic product-mix auction (Arctic PMA). This auction was designed by Klemperer (2018)
for the government of Iceland, who wished to provide a mechanism for holders to ex-
change “blocked” offshore funds for alternative financial instruments. International
Monetary Fund (IMF) staff has more recently proposed using a version of the Arctic
PMA for sovereign debt restructuring, allowing creditors to exchange their claims for
alternative debt instruments (Baldwin, Klemperer, and Lock (2024)).

When the sellers’ costs are zero, the Arctic PMA can be understood as a quasi-Fisher
market, where money is priced at 1. As in our market, the seller in the Arctic PMA has
a fixed supply s € R’} of n divisible goods (financial assets) and wishes to find a feasible
allocation of some subset of this supply among a finite set of buyers with the goal of
maximizing revenue. In the general Arctic PMA, the seller can additionally choose cost
functions for their supply, while in our model, we assume the seller’s costs to be zero.!!

Each buyer is constrained to a budget that corresponds to the quantity of blocked
offshore funds she holds. The buyers express their demand by submitting a collection of
“Arctic bids,” each of which consists of an n-dimensional vector b € R’, and a monetary
budget B(b). Each bid is associated with a demand correspondence, and the demands
of a buyer’s bids are then aggregated to yield the buyer’s demand.

At a market price above the stated bid price, an Arctic bid rejects the good. At market
prices below the stated bid prices, the seller assigns the corresponding bid’s budget to
goods that yield the highest bang per buck; i.e., the highest ratio of value to price b;/p;.
When multiple goods maximize the bid’s bang per buck, the seller can arbitrarily divide
the bid’s budget between these goods. Moreover, if the maximal bang per buck is 1, then
the seller can choose not to use some of the bid’s budget (which we interpret as spending
on the money good). Hence, Lemma 1 implies that each Arctic bid b, interpreted in
isolation, induces a quasi-linear demand with linear valuation v(x) = b - x and budget
B(b) as defined in Section 3. We denote the demand correspondence of each bid b by Dj.

The demand correspondence of a collection B of bids is defined by the Minkowski
sum of demands Dg(p) :=1{> 4 x? | x? € Dy(p)}. Equivalently, Dy can be understood
as the aggregate demand of | B| buyers with quasi-linear demand, linear valuations b € B,
and budgets B(b). By submitting multiple Arctic bids, buyers can express richer prefer-
ences. Nevertheless, it is straightforward to see from the definition of Dy that, for the
purposes of solving the auction (for welfare or for revenue), the seller can treat each bid
independently, and we can assume without loss of generality that each buyer submits
a single bid. Our results for quasi-Fisher markets on the coincidence of constrained
efficiency and optimal revenue thus hold also for the Arctic auction we describe above.

7. CONCLUSION

In this article, we explore whether price-only mechanisms—common in the digital
economy and financial asset exchanges—can achieve a form of efficiency that is attain-

1'The Arctic product-mix auction is a variant of the original product-mix auction developed for the Bank
of England by Klemperer (Klemperer (2008, 2010, 2018)). See also (Fichtl (2022)) for some discussion of the
general case with nonzero costs.
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able under budget constraints. We find that a unique set of prices is constrained util-
itarian efficient, respecting buyers’ budgets, and simultaneously revenue-optimal for
the seller. This coincidence of revenue optimality and constrained efficiency makes our
market compelling in theory and highly attractive to sellers, buyers, and market plat-
forms in practice. Our results contribute to the policy debate on the regulation of digital
monopolies. They suggest that a regulatory framework that requires digital advertising
platforms to set the market-clearing price vector might unify the interests of the seller
and the social planner (subject to the assumptions of our market setup), promoting
competition and constrained social welfare.

Our approach is based on a geometric understanding of the structure underlying
feasible market prices, which may be of independent interest. Future work includes ad-
dressing the open question of whether the revenue-welfare equivalence holds for other
classes of preferences and markets with multiple buyers and sellers.

APPENDIX: OMITTED PROOFS AND EXAMPLES

Proor oF PropPosiTION 1. Recall that at any price p, the buyer demands the bundle
x that maximizes v(x) — px subject to his budget constraint px < 8. Given valuation
v(x), revenue is maximized at (x, p) € argmax, , px such that v'(x) = p and x < s. Thus,
maximal revenue given v and s is v'(x)x for some x < s. Social welfare is maximized
at (x, p) € argmax, ,v(x) — px such that x <, i.e,, revenue at the social optimum is
v'(s)s. We show that there exists x and s with x < s and v'(x)x > v/(s)s. Recall that a
differentiable function f : R — R is strongly concave if it satisfies | f'(x) — f/(y)| = m|x —
y| for all distinct x, y € R (f does not need to be twice differentiable).

First, note that there exists X < oo such that v/(x) < mx for all x > X, due to strict
concavity of v. Fix some supply s > ¥ and let ¢ = (ms — v/(s))/2. As v is strongly concave,
we also have v'(s— &) > v/(s) + me for any . Hence, v'(s— &) (s —&) > (V' (s) +me)(s—¢&) =
V(8)s + e(ms — V' (s) — me) > V' (s)s. O

Proor oF ProposITION 2. If there exists supply s € X with v'(s) < ms, then the result
follows analogously to the proof of Proposition 1. We now prove the second part of
the statement. The budget constraint is given by px < 8. At the demanded quantity,
v/(x) = p holds. Thus, for all feasible x, it must hold that v'(x) < 8/x, so x < X¥. Now we
demonstrate that v'(X — &) < m(X — &) for some small €. Then the result follows from
Proposition 2. For some 6 > 0, we have

e e S (% —
(i 8) > (v ;x) N 5)(;2 e (V(® + ~x)(x 9 o)
The last inequality holds for £ — 0 and some & > 0. O

ExampLE 4. Consider an auction with a single good available in s = 3 units that has
a single buyer. The buyer has valuation v : R — R given by v(x) = (1 — 27%)4/log,(2)
and budget 2. Then revenue is not maximized at market-clearing prices. Indeed, note
that the utility of the buyer for quantity ¢ at price p is u(x, p) = v(x) — px, so the buyer’s
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demand D(p) at p is found by solving v'(x) = p, which yields x = —log,(p/4). At p = 0.5,
we have demand x = 3, so p clears the market. Revenue at p is px = 1.5. At price g =1,
we have demand y = 2, so g does not clear the market, but revenue is gy = 2, which is
greater. Revenue is maximized at p = 4/e with a demanded quantity of 1/log,(2) and a
revenue of 4/(elog(2)). O
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