
Theoretical Economics 8 (2013), 503–534 1555-7561/20130503

Contingent preference for flexibility:
Eliciting beliefs from behavior

Philipp Sadowski
Department of Economics, Duke University

Following Kreps (1979), I consider a decision maker who is uncertain about her
future taste. This uncertainty leaves the decision maker with a preference for flex-
ibility: When choosing among menus that contain alternatives for future choice,
she weakly prefers menus with additional alternatives. Standard representations
that accommodate this choice pattern cannot distinguish tastes (indexed by a
subjective state space) and beliefs (a probability measure over the subjective
states) as different concepts. I allow choice between menus to depend on ob-
jective states. My axioms provide a representation that uniquely identifies beliefs,
provided objective states are sufficiently relevant for choice. I suggest that this re-
sult can provide choice theoretic substance to the assumption, commonly made
in the (incomplete) contracting literature, that contracting parties who know each
others’ ranking of contracts also share beliefs about each others’ future tastes in
the face of unforeseen contingencies.

Keywords. Preference for flexibility, unique beliefs, unforeseen contingencies,
incomplete contracts.
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1. Introduction

The expected utility model of von Neumann and Morgenstern (1944, henceforth vNM)
explains choice under risk by considering probabilities and taste (a ranking of out-
comes) separately. In the context of choice under subjective uncertainty, the corre-
sponding separation of beliefs and tastes is a central concern. For the extreme case
where all subjective uncertainty can be captured by objective states of the world, the
works of Savage (1954) and Anscombe and Aumann (1963, henceforth AA) achieve this
separation. In the opposing extreme, where none of the subjective uncertainty can be
captured by objective states, uncertainty can be modeled with a subjective state space.
Kreps (1979, henceforth Kreps) and Dekel et al. (2001, henceforth DLR; a relevant cor-
rigendum is Dekel et al. 2007; henceforth DLRS)1 find that the separation is not possi-
ble in this case. This is the standard indeterminacy of state-dependent expected utility
models.
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In the general case, some, but potentially not all, subjective uncertainty can be cap-
tured by objective states. This paper analyzes a model of choice under such general
subjective uncertainty, which features the AA and DLR models as special cases.2 The
model separately identifies tastes and beliefs over those tastes, provided that objective
states are “relevant enough.” The main identification result provides a tight behavioral
characterization of relevant enough.

The timing of choice is as follows: In period 1, the decision maker (DM) chooses an
opportunity act. An opportunity act specifies a menu of alternatives for future choice
contingent on the objective state. Between periods 1 and 2, an objective state realizes.
In period 2, the act is evaluated and DM gets to choose from the resulting menu. Only
period 1 choice is observed. If objective states do not account for all subjective uncer-
tainty that resolves between periods 1 and 2, then DM has contingent uncertainty about
her future taste. In that case, commitment to a plan of period 2 choice contingent only
on the objective state is costly, and one should observe contingent preference for flex-
ibility: All else being equal, DM prefers an act that assigns a menu that contains more
alternatives in any particular state.

This paper provides a representation of such preferences, labeled a representation of
contingent preference for flexibility (CPF). Subjective uncertainty that is not captured by
the objective state is modeled, as in DLR, via a subjective state space, which collects all
possible tastes that might govern DM’s choice in period 2. I call it the taste space. The de-
cision maker behaves as if the objective state may be informative about her future tastes,
and so conditions her beliefs about future tastes on the objective state. Contingent on
the state, choice over menus has a subjective expected utility representation, as in DLR.
I show that a central new axiom, Relevant Objective States (Axiom 1), is equivalent to the
unique identification of utilities and conditional beliefs in this representation.

To be more specific, let I be the objective state space. An opportunity act, g, assigns
a contingent menu of lotteries over prizes, g(i), to every objective state, i in I. The taste
space, S, collects all possible vNM rankings of lotteries over prizes. In the case of finite
I, choice over acts has a CPF representation if it can be represented by

V (g) =
∑
i∈I

φ(i)

[∫
S

(
max
α∈g(i)

Us(α)
)
dμi(s)

]
�

where φ is a probability measure on I, the realized vNM utility function Us represents
taste s in S, and μi(s) is a probability measure on S. The representation suggests that
while the menu of alternatives DM expects to choose from in stage 2 is determined by
the objective state i, she anticipates her utility function to be fully determined by her
taste s. She also expects to learn s and i prior to choosing an alternative. The measure
φ is interpreted as DM’s beliefs over I and μi(s) is interpreted as the belief that taste s

occurs, contingent on i.

2In the Savage and Kreps models there are no objective probabilities, while AA, DLR, and the present
paper consider a combination of subjective and objective probabilities.
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Theorem 1 takes the CPF representation and the distribution φ as given.3 It estab-
lishes that conditional beliefs μi(s) are unique and utilities Us are unique in an appropri-
ate sense if and only if choice between opportunity acts satisfies the Relevant Objective
States axiom. The axiom is formulated in terms of DM’s ranking of menus contingent on
the objective state. This ranking is derived from her choice over acts. Say that two menus
are equivalent for DM if for every contingent ranking, the union of those menus is in-
different to each of the menus individually. Objective states are relevant if for any two
menus that are not equivalent for DM, there is an objective state contingent on which
one is strictly preferred over the other.

Theorem 2 states that choice over opportunity acts has a CPF representation if and
only if it satisfies the immediate extensions of the state-dependent AA and DLR axioms.
These axioms are necessary for a more general representation, where both beliefs and
utilities depend on objective states. Given the more general representation, Theorem 2
therefore implies that the assumption that only beliefs condition on objective states
does not constrain period 1 choice.

Even though the model does not capture period 2 choice from a menu explicitly, a
researcher may want to forecast period 2 choice behavior. The CPF representation de-
scribes choice over menus in period 1, as if the DM held beliefs about the tastes that
might govern her period 2 choice. Theorem 1 uniquely identifies those beliefs, which
are parameters of the representation, from period 1 choice. Therefore, the natural in-
ductive step is to employ the DM’s beliefs about future tastes to forecast period 2 choice
behavior. There are good arguments against this inductive step. For example, one could
instead make period 2 choice part of the domain, leaving less room for erroneous mod-
eling assumptions.4 However, an essential reason for the use of scientific models is to
make predictions about the world based on limited data. Choice theory is well posi-
tioned to supply such models for economic applications: Axiomatization translates lim-
ited data (here period 1 choice data) to a model, and identification establishes those
parameters of the model (here the beliefs) one which one might base inferences.

Being able to forecast behavior can also be important in strategic situations, for ex-
ample, when one party’s valuation of a contract depends on future actions taken by the
other party. As an example that illustrates how the CPF representation can apply to the
evaluation of contracts, consider a retailer who writes a contract with her supplier to-
day about tomorrow’s order. The demand, s, facing the retailer tomorrow is either high
(h) or low (l). Today s is unknown to both parties; tomorrow it is the private knowledge
of the retailer. (While demand is observable in many situations, unobservable demand
levels here simply serve as convenient labels for the different unobservable profit func-
tions the retailer can conceive of.) The only relevant public information that becomes
available tomorrow is consumer confidence, i, a general market indicator, which also is
either high (H) or low (L). Thus, a contract, g, can only condition on consumer confi-
dence, not on demand. The most efficient contract might give the retailer some choice

3The probability measure φ may be objective. If φ is subjective as suggested above, it must also be
elicited from choice. I address this case in Theorem 3.

4Ahn and Sarver (2013) provide a model that connects preference for flexibility in period 1 to choice
frequencies in period 2.
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of supply quantities, q, contingent on consumer confidence. Consider this type of con-
tract. From the retailer’s perspective, the contract is an act in the terminology of this
paper. Routinely one can write down the following objective function for the retailer’s
choice between contracts:

V (g) =
∑

i∈{H�L}
φ(i)

[ ∑
s∈{h�l}

μi(s) max
q∈g(i)

(Us(q))

]
�

First, take consumer confidence, i ∈ {H�L}, as given. The retailer can then order any
quantity in g(i). If she faces demand s ∈ {h� l} tomorrow, she will choose the quantity
q that maximizes her profits, Us(q). Today she does not know tomorrow’s demand, but
she can assign probabilities conditional on consumer confidence, μi(s). She values the
menu g(i) at its expected value,

∑
s∈{h�l} μi(s)maxq∈g(i)(Us(q)). Second, she takes an

expectation over different levels of consumer confidence according to a probability dis-
tribution φ. This is an example of a CPF representation.5

Section 2 investigates conditions under which beliefs are identified in the example
above. In the body of the paper, the objective state space, I, is assumed to be finite.
Section 3 lays out the model and establishes Theorems 1 and 2. Section 4 contains The-
orem 3, which combines the two results and elicits beliefs φ on I from choice. Section 5
discusses related literature. Section 6 comments in more detail on possible implications
for contracting. Appendix A provides existence and identification results for the case of
a general measurable objective state space. Most proofs of the theorems are relegated to
Appendix B.

2. Illustration of identification of beliefs

In this section, I consider three cases of a CPF representation: when none of the subjec-
tive uncertainty can be captured by objective states (irrelevant objective states), when all
of the subjective uncertainty can be captured by objective states (no preference for flex-
ibility), and the general case, where some, but not all, of the subjective uncertainty can
be captured by objective states (preference for flexibility and relevant objective states).
To illustrate these cases, I use the setup of the above example, except the final outcomes
are lotteries, α, over quantities.

• Irrelevant objective states: Suppose that the retailer’s beliefs are independent of
consumer confidence; that is, μH(h) = μL(h) = μ(h) and

V (g)=
∑

i∈{H�L}
φ(i)

[ ∑
s∈{h�l}

μ(s) max
q∈g(i)

(Us(q))

]
�6

In this case, her induced ranking of menus is independent of consumer con-
fidence. Hence, for the purpose of identifying beliefs μ, it is without loss of

5The CPF representation also evaluates more general contracts, where, contingent on consumer confi-
dence, the retailer is given some choice between lotteries over different quantities. For example, the con-
tract might specify an action that has probabilistic consequences.

6Ozdenoren (2002) provides a model that generalizes this example, as discussed in Section 5.
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generality to consider only contracts with g(H) = g(L). If g is such a noncon-
tingent contract, then

V (g) =
∑

s∈{h�l}
μ(s) max

α∈g(H)
(Us(α))�

This is an example of DLR’s representation. To see that beliefs are not identified,
consider a different probability distribution μ̂(s) on S = {h� l} and rescaled utilities
Ûs(x) = Us(x)(μ(s)/μ̂(s)). Then

∑
s∈{h�l}

μ(s)
(

max
α∈g(H)

Us(α)
)

≡
∑

s∈{h�l}
μ̂(s)

(
max

α∈g(H)
Ûs(α)

)
�

This is the fundamental indeterminacy in the Kreps and DLR models and varia-
tions of those models.

• No preference for flexibility: Suppose that μH(h) = 1 and μL(h) = 0. This is the
unique (up to relabeling) specification of beliefs where subjective uncertainty is
perfectly captured by the objective states and none of the contingent rankings ex-
hibits preference for flexibility. In this case, it is without loss of generality to iden-
tify h with H and l with L, and one can confine attention to contracts with lotter-
ies, instead of menus, as outcomes. If g(i) = αi is such a fully specified contract,
then

V (g) =
∑

i∈{H�L}
φ(i)Ui(αi)�

This is an example of AA’s state-dependent representation.

• Preference for flexibility and relevant objective states: Last, suppose the retailer
believes that the probability of high demand is increasing with consumer confi-
dence; that is, 1 > μH(h) > μL(h) > 0. Further suppose that there is another rep-
resentation of the same ranking of contracts based on beliefs over objective states,
φ̂, conditional beliefs, μ̂i(s), and tastes, Ûs :

V̂ (g) =
∑

i∈{H�L}
φ̂(i)

[ ∑
s∈{h�l}

μ̂i(s) max
α∈g(i)

(Ûs(α))

]
�

Choices V and V̂ have to generate the same ranking of contracts.

Consider two quantities (or degenerate lotteries), qh and ql, such that the retailer
prefers to receive qh if demand is high and ql if demand is low, that is, Uh(qh)−Uh(ql) >

0 and Ul(qh)−Ul(ql) < 0. Slightly abusing notation, I denote a lottery that gives qh with
probability α and ql with probability 1−α by α. I denote the menu that contains lotteries
α and β by {α�β}. Suppose for some β< α and δ�ε ∈ (0�1 − α) the retailer is indifferent
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between the two contracts

g =
(

{α+ δ�β} if i =H

{α�β} if i =L

)

g′ =
(

{α�β} if i = H

{α+ ε�β} if i = L

)
�

That β < α implies that α is relevant for the value of these contracts only under taste h.
Hence, g ∼ g′ implies that

φ(H)μH(h)δ(Uh(qh)−Uh(ql)) =φ(L)μL(h)ε(Uh(qh)−Uh(ql))�

An analogous equality must hold for the parameters of Û . Therefore,

μH(h)

μL(h)
= εφ(L)

δφ(H)
and

μ̂H(h)

μ̂L(h)
= εφ̂(L)

δφ̂(H)
�

If probabilities of objective states are objective, that is, φ̂= φ, then

μH(h)

μL(h)
= μ̂H(h)

μ̂L(h)
�

and similarly

μH(l)

μL(l)
= μ̂H(l)

μ̂L(l)
�

Since μ and μ̂ are both probability measures, μH(h)/μL(h) �= 1 immediately implies that
μ ≡ μ̂. Standard arguments, applied to the comparison of contracts that disagree only
under state i, imply that the expected utility functions Ûh and Ûl can only differ from
their respective counterparts Uh and Ul by a common linear transformation and the
addition of constants. This argument illustrates how identification relies crucially on the
fact that beliefs φ over objective states are held fixed. More generally, it makes clear why
it is necessary to observe the retailer’s choice between contracts (opportunity acts), and
not just her ranking of menus contingent on each objective state: the willingness to trade
off payoffs across objective states (captured by the indifference between contracts g and
g′) determines the relative weight assigned to taste h under objective state H versus L.7

The above reasoning can be generalized to any finite state space, I. If a CPF repre-
sentation has the feature that there are at least as many linearly independent probability
measures over the taste space, indexed by i ∈ I, as there are relevant tastes, then beliefs
are uniquely identified and the scaling of utilities is uniquely identified up to a common
linear transformation. The next section develops a general model of choice between
opportunity acts and characterizes, in terms of behavior, all preferences that have a CPF
representation with this feature.

7More specifically, my identification strategy relies on the linear aggregation of objective states.
Ozdenoren (2002) provides a representation of preferences over opportunity acts that can accommodate
ambiguity aversion with respect to objective states.
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3. A model with unique beliefs

Consider a two-stage choice problem, where an objective state realizes between the two
stages. In period 2, DM chooses a lottery over prizes. In period 1, DM chooses an op-
portunity act. Such an act is a state contingent specification of a set of lotteries (a menu)
that contains the feasible alternatives for period 2 choice.

Let Z be a finite prize space with cardinality k and typical elements x, y, z, and let
	(Z) be the space of all lotteries over Z with typical elements α, β, γ. When there is
no risk of confusion, x also denotes the degenerate lottery that assigns unit weight to x.
Let A be the collection of all compact subsets of 	(Z) with menus A, B, C as typical
elements.8 Further, let I be a finite objective state space with typical elements i, j. Let F
be the σ-algebra generated by the power set of I, where i� j ∈ I also denote elementary
events.9

Let G be the set of all opportunity acts with typical elements g, h. An opportunity act
is a measurable function g : I → A. If state i realizes, DM gets to choose an alternative
from the menu g(i) ∈ A. This choice is not modeled explicitly. Instead, � is a binary
relation on G×G; � and ∼ are defined in the usual way.

The following concepts are important throughout the paper.

Definition 1. The convex combination of menus is defined as

pA+ (1 −p)B := {pα+ (1 −p)β | α ∈ A�β ∈ B}�
The convex combination of opportunity acts is defined such that

(pg + (1 −p)h)(i) := pg(i)+ (1 −p)h(i)�

To define DM’s induced ranking of menus A and B contingent on state i ∈ I, consider
acts gAi and gBi that give menu A and B, respectively, in state i and some arbitrary but
fixed default menu, A∗, in every other state. Comparing gAi and gBi induces a ranking �i

over menus. In the context of the model below, �i is independent of A∗.

Definition 2. Fix an arbitrary menu A∗ ∈ A. For i ∈ I and A ∈ A, define gAi by

gAi (j) :=
{
A for j = i

A∗ otherwise�

Let the contingent ranking �i be the induced binary relation on A × A, A �i B if and
only if gAi � gBi ; �i and ∼i are defined in the usual way. A state i ∈ I is nonnull if there
are A�B ∈ A with A�i B.

In period 2, objects of choice are lotteries over the prize space. The taste space (the
collection of all conceivable period 2 tastes) is the collection of all vNM rankings of lot-
teries. The following definition is due to DLRS.

8Compactness is not essential. If menus were not compact, maximum and minimum would have to be
replaced by supremum and infimum, respectively, in all that follows.

9The case of a general measurable space (I� F) is relegated to Appendix A.
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Definition 3. The set

S =
{
s ∈ R

k
∣∣∣ ∑

t

st = 0 and
∑
t

s2
t = 1

}

is the taste space.10 Let B be the Borel σ-algebra on S.

The set S collects all possible realized vNM utilities, twice normalized. Every taste in
S is a vector with k components, where each entry can be thought of as specifying the
relative utility associated with the corresponding prize.11

Definition 4. Call (φ�μ�U) a contingent preference for flexibility (CPF) representation
of the preference relation � if φ is a probability measure on I, μ = {μi}i∈I is a collection
of probability measures on (S� B), and U = {Us}s∈S is a family of vNM utilities on 	(Z),
integrable in s, where Us represents taste s and the objective function

V (g) =
∑
i∈I

φ(i)

[∫
S

(
max
α∈g(i)

Us(α)
)
dμi(s)

]
represents �.

If Us is a vNM representation of taste s, then it must have the form Us(α) =
l(s)(s · α) + bs, where s · α is the dot product of state s and lottery α, l(s) is the “inten-
sity” of taste s, and bs is a constant. The relative intensity of utilities together with beliefs
determines how DM trades off gains across tastes. The constants bs have no behavioral
content. This motivates the next definition.

Definition 5. Let (φ�μ�U) be a CPF representation of �.

(i) The space of relevant objective states, I∗ ⊆ I, is the minimal set with φ(I∗)= 1. The
space of relevant tastes is S∗ := ⋃

i∈I∗ supp(μi).12

(ii) Beliefs μ and tastes U are unique given φ, if for any other CPF representation
(φ� μ̂� Û) of �, there are a > 0 and {bs}s∈S∗ ⊂ R such that for all i ∈ I∗ and all S′ ⊆ S∗,
μ̂i(S

′) = μi(S
′) and Ûs = aUs + bs holds μi-almost everywhere.

The set S∗ can be thought of as the set of tastes DM considers possible. An axiomati-
zation of the CPF representation is given in Theorem 2. The distribution φ is identified
from behavior in Theorem 3. The main concern, however, is to separately identify be-
liefs μ and tastes U , provided that DM’s choice over acts has a CPF representation for a
given distribution φ.

10DLRS refer to S as the universal state space.
11In the context of the representation theorem in DLRS, as in the theorems that follow, there is clearly

always a larger taste space, also allowing a representation of �i, in which multiple tastes represent the same
ranking of lotteries.

12The support of a measure is the closure of the collection of points for which every neighborhood in B
has positive measure.
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The main new axiom of this paper can be paraphrased as follows: if two menus are
not equivalent for DM, in the sense that they provide her with the same utility under
every relevant taste, then there exists an objective state contingent on which one is pre-
ferred over the other.

Axiom 1 (Relevant objective states). If A ∪ B �i B for some i ∈ I, then there is j ∈ I with
A �j B.

Two menus that are distinct elements of A might still be equivalent for DM. If A and
B are equivalent for DM, then she should be willing to choose from A ∪ B by simply
ignoring A.13 This cannot be the case if A ∪ B �i B for some i ∈ I. If also A �i B, then
Axiom 1 is empty. If A ∼i B, then A ∪ B �i B implies that, contingent on i, the item
chosen from A∪B must sometimes be in A and sometimes in B. Axiom 1 requires that
there exists a contingent ranking for which either one or the other case becomes more
important, namely that there is j ∈ I with A �j B.14

Axiom 1 is not a strong assumption in the sense that it is local; it requires only break-
ing indifference. For comparison, AA require that there is no relevant subjective uncer-
tainty, contingent on the state of the world. That is, choice between menus would have
to satisfy state contingent strategic rationality: If A∪B �i B, then A∼i A∪B.15 In terms
of the example from the Introduction, consumer confidence (the objective state) may be
relevant for the retailer’s beliefs about her desire to order a large or a small quantity, but
it is conceivable that the retailer prefers a large quantity even when confidence is low
and vice versa. This notion is weaker than the assumption of state contingent strate-
gic rationality, according to which the retailer always prefers the large quantity when
confidence is high and the small quantity when confidence is low.

Theorem 1. If � has a CPF representation (φ�μ�U), then the following statements are
equivalent.

(i) The binary relation � satisfies Axiom 1.

(ii) Beliefs μ and tastes U are unique given φ.

(iii) The cardinality of S∗ equals the number of linearly independent elements in
{μi}i∈I∗ .

If a decision maker behaves as if she has preference for flexibility because of uncer-
tainty about her future taste, updates her beliefs over tastes when learning the objective
state, and maximizes her expected utility according to objective probabilities over those
states, then her preferences satisfy Axiom 1 if and only if her beliefs over future tastes are

13Implicit in the interpretation is that, ultimately, only the chosen item matters for the value of a menu.
14To see the content of the axiom in terms of the representation, suppose for simplicity that there are

only two subjective states, sA and sB , where in state sA the best element of A ∪ B lies in A, and in state sB
it lies in B. Suppose both states are supported by μi . This immediately implies A ∪ B �i B. If A ∼i B, then
the axiom requires that there is j ∈ I with μj(sA) �= μi(sA).

15Axiom 1 is immediately satisfied: A∪B �i B implies A �i B.
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determined uniquely. This identification gives meaning to the description of beliefs and
tastes as distinct concepts. Lack of this distinction is the central drawback of previous
work on preference for flexibility, starting with Kreps.

Another difficulty in the application and interpretation of models of preference for
flexibility is the infinite subjective state space. Theorem 1(iii) conveniently constrains
the space of relevant tastes, S∗, to be smaller than I, which is finite. Axiom 1 implies
this finiteness, because I must be rich enough to distinguish between any two menus
for which DM might have preference for flexibility. This implies that only finitely many
lotteries can be appreciated in any menu. Theorem 1′ in the Appendix A generalizes
the result and considers I to be a general topological space, lifting the constraint on the
cardinality of S∗.

Finally, given a particular CPF representation of �, Theorem 1(iii) provides a crite-
rion to check whether � satisfies Axiom 1. This criterion is illustrated in the example in
Section 2.

To see how relevant objective states imply unique beliefs and utilities, fix the distri-
bution of objective states, φ, and suppose there are two CPF representations of the same
preference relation, (φ�μ�U) and (φ� μ̂� Û) with corresponding value functions V (g) =∑

i∈I φ(i)Vi(g(i)) and V̂ (g) = ∑
i∈I φ(i)V̂i(g(i)), where Vi(A) = ∫

S maxα∈A(Us(α))dμi(s)

and analogously for V̂i(A). Neglecting additive constants, additive separability of the
representations implies that φ(i)Vi(·) = λφ(i)V̂i(·) for all i ∈ I∗ and for some λ > 0. Sup-
pose further that for the contingent ranking �i, one could construct menus K ∼i K̂ such
that K generates constant utility payoffs across tastes according to (φ�μ�U) and K̂ does
so according to (φ� μ̂� Û). On the one hand, K ∼i K̂ implies Vi(K)= Vi(K̂) = λV̂i(K̂). On
the other hand, changing the objective state from i to j changes only DM’s beliefs about
her future tastes. If a menu generates the same utility payoff for every taste, then the
conditional value of the menu is independent of the objective state: Vj(K) = Vi(K) and
V̂j(K̂) = V̂i(K̂) for all j ∈ I∗. Hence, Vj(K) = λV̂j(K̂) or K ∼j K̂ would have to hold for
all j ∈ I∗. At the same time, if (φ�μ�U) and (φ� μ̂� Û) were distinct, K̂ would not gener-
ate constant utility payoffs across tastes according to (φ�μ�U), because utility payoffs
depend on the intensities of U and Û , respectively. Therefore, K ∪ K̂ �j′ K for some
j′ ∈ I. Axiom Relevant Objective States then implies that there is j ∈ I with K �j K̂, a
contradiction. This rough intuition does not quite work, because the construction of
menus that generate the same utility payoff for every taste is not always possible. Be-
cause S∗ ⊂ S is finite, however, one can construct pairs of menus (A, B for (φ�μ�U) and
Â, B̂ for (φ� μ̂� Û)) for which the difference in utility payoffs is constant across tastes. Let
K be the convex combination of menus (1/2)A + (1/2)B̂ and let K̂ = (1/2)Â + (1/2)B.
Then K ∼i K̂ implies that K ∼j K̂ for all j ∈ I. By the type of argument laid out above,
K ∪ K̂ �j′ K for some j′ ∈ I. This contradicts Axiom 1.

Ozdenoren (2002) analyzes the case where Axiom 1 fails completely, in the sense
that objective states are irrelevant to the decision maker. Then only the support of the
probability measures μi that allow a representation can be identified. This is the same
indeterminacy encountered in DLR.

In addition to the key role that objective states play in Axiom 1, the fact that menus
consist of lotteries is also important for the identification of beliefs. Nehring (1999) finds
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that acts with menus of prizes as outcomes do not allow the separate identification of
tastes and beliefs in the axiomatic setup developed by Savage (1954). To establish the
uniqueness result, the payoff generated by a menu must be varied independently for
different tastes. This is possible only because DM can be offered lotteries over prizes.

Remark. A remark on the interpretation of tastes, or subjective states, is in order. Sup-
pose for a moment that there is an underlying state space 
, that provides a complete
description of all relevant aspects of the world. That is, ω ∈ 
 even determines DM’s
taste, s ∈ S. In that case, S generates a sub-σ-algebra on 
. The question is the extent to
which 
 is observable. Let I be the collection of observable events i ⊂ 
, where I gen-
erates another sub-σ-algebra on 
. Now consider a probability measure μ on 
 that
represents DM’s beliefs. If there is no correlation between events in I and events in S,
then the induced marginal distribution μi(s) is independent of i, and the objective state
space 
 can be dropped from the description of the model, as in DLR. For example, 

could be the product space I × S and μ could be a product measure. If, to the other ex-
treme, there is perfect correlation between events in I and events in S, then I itself can
play the role of the complete objective state space in (the state-dependent version of)
the AA model. Theorem 1 is concerned with the general case of some, but not perfect,
correlation. The examples in Section 2 illustrate the three cases.

I now establish existence of a CPF representation. As mentioned above, the axioms
are direct extensions of familiar assumptions.

Axiom 2 (Preference). The binary relation � is asymmetric and negatively transitive.

Axiom 3 (vNM Continuity). If g � h � g′, then there exist p�q ∈ (0�1) such that pg +
(1 −p)g′ � h� qg + (1 − q)g′.

Axiom 4 (Independence). If g � g′ for g�g′ ∈G and if p ∈ (0�1), then

pg + (1 −p)h� pg′ + (1 −p)h

for all h ∈G.

If a convex combination of menus were defined as a lottery over menus, then the
motivation of Independence in my setup would be the same as in more familiar con-
texts. Uncertainty would resolve before DM consumes an item from one of the menus.
However, following DLR and Gul and Pesendorfer (2001), I define the convex combina-
tion of menus as the menu that contains all the convex combinations of their elements.
The uncertainty generated by the convex combination is only resolved after DM chooses
an item from this new menu. Gul and Pesendorfer term the additional assumption
needed to motivate Independence in this setup “indifference as to when uncertainty
is resolved.”

Axiom 5 (Nontriviality). There are g�h ∈G such that g � h.
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The next axiom considers DM’s contingent ranking of menus, �i. As long as some
subjective uncertainty is not captured by objective states, �i should exhibit preference
for flexibility. This is captured by the central axiom in Kreps, which states that larger
menus are weakly better than smaller menus.

Axiom 6 (Monotonicity). For all A�B ∈ A and all i ∈ I, A∪B �i A.

Lemma 1. If � satisfies Axioms 2–6, then �i is a preference relation and satisfies the ap-
propriate variants of vNM Continuity, Independence, and Monotonicity for all i ∈ I. Fur-
thermore, there is a nonnull event i ∈ I.

The proof is immediate.

Theorem DLRS (Theorem 2 in DLRS). For i ∈ I nonnull, �i is a preference that satisfies
the appropriate variants of vNM Continuity, Independence, and Monotonicity if and only
if there is a subjective state space Si, a positive countably additive measure μi on Si, and a
set of nonconstant and continuous expected utility functions Us�i :	(Z) → R such that

Vi(A) =
∫
Si

max
α∈A

Us�i(α)dμi(s)

represents �i and every vNM ranking of lotteries in 	(Z) corresponds to at most one state
in Si.16

Because Us�i(α) are realized vNM utility functions, the subjective state space Si can
be replaced by the taste space S for all i ∈ I. Note that the taste space does not include
the taste where DM is indifferent between all prizes, implicitly assuming nontriviality of
the ex post preferences over prizes.

Theorem 2. The binary relation � satisfies Axioms 2–6 if and only if it has a CPF
representation.

The proof first employs the mixture space theorem (Kreps 1988, Theorem 5.11) to
establish an additively separable representation of �. That is,

∑
i∈I vi(g(i)) represents �

for some family of utility functions, {vi}i∈I , on A, where vi are unique up to a common
positive linear transformation and the addition of constants.17 Now consider some lin-
ear representation, v̂i, of �i on A. Since vi also represents �i, the mixture space theorem
implies that vi agrees with v̂i up to scaling. The scaling is absorbed by φ(i), which is then
normalized to be a probability distribution. Thus,

V (g) =
∑
i∈I

φ(i)̂vi(g(i))

16See footnotes 3 and 5 in DLRS.
17The result is first established for convex valued acts, defined in the Appendix A, and then extended to

all acts.
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represents �. Note that this is AA’s state-dependent representation, with the exception
that opportunity acts have menus as outcomes, while AA acts have lotteries as out-
comes. Indeed, Axioms 2–4 imply AA’s axioms. Furthermore, Axioms 2–6 imply DLRS’
axioms, as shown in Lemma 1. According to Theorem DLRS, �i can then be represented
by

V̂i(A) =
∫
S

max
α∈A

(Ûs�i(α))dμ̂i(s)�

where μ̂i is a probability measure on S and Ûs�i is a vNM utility function that represents
taste s ∈ S, that is, Ûs�i and Ûs�j are identical up to a positive affine transformation. Pick
any j ∈ I and define Us := Ûs�j . The lack of identification in DLRS implies that there is a
measure μi on S, such that μi(s)Us ∝ μ̂i(s)Ûs�i. Therefore, �i can be represented by

Vi(A) =
∫
S

max
α∈A

Us(α)dμi(s)

for all i ∈ I. Since Vi is linear, there is a CPF representation (φ�μ�U); that is,

V (g) =
∑
i∈I

φ(i)

[∫
S

max
α∈g(i)

Us(α)dμi(s)

]
represents �. The intensity of each taste is endogenous, but it is fixed across objective
states.

Clearly Axioms 2–6 are also necessary for the generic combination of the AA and the
DLRS representations,

V̂ (g)=
∑
i∈I

φ(i)V̂i(g(i)) =
∑
i∈I

φ(i)

[∫
S

max
α∈g(i)

(Us�i(α))dμi(s)

]
�

where objective states impact not only probabilities, μi, but also the intensities of tastes.
Theorem 2 implies that there is a CPF representation of � whenever the more general
representation V̂ exists. Therefore, the assumption that only beliefs condition on objec-
tive states does not constrain period 1 choice.

4. Probabilities over objective states

Theorem 1 takes the distribution φ on I and a CPF representation (φ�μ�U) as given,
and establishes that μ and U are unique in the appropriate sense if and only if objec-
tive states are relevant. The distribution φ might be objective in the sense that it corre-
sponds to observed frequencies of objective states, or it might be subjective, in which
case it must also be elicited from behavior. The unique identification of φ is analogous
to the classical problem addressed by AA. There, the unique identification of probabili-
ties of observable states is based on the assumption of state independence of the ranking
of outcomes. The difference is that they consider acts with lotteries (instead of menus
of lotteries) as outcomes, so there is no room for preference for flexibility in their setup.
In my setup, the combination of objective state independence and Axiom 1 rules out any
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preference for flexibility. Thus, the state independence assumption has to be confined to
a proper subset � ⊂ A to be useful here. Having assumed state-independent rankings,
AA consider only cardinally state-independent rankings (or state-independent utilities).
This cannot be assumed in terms of an axiom. Instead it is a constraint on the class of
representations for which they establish their uniqueness result. For the CPF represen-
tation, it would amount to requiring that

∫
S maxα∈AUs(α)dμi(s) is independent of i ∈ I∗

for all A ∈ �. But if � ⊂ A is a generic collection of menus, then this might not be con-
sistent with �, which applies to all of G.18 Thus, the requirement must be confined to a
particular collection of menus.

Definition 6. Let X ⊆ Z denote a set of prizes and let 	(X) denote the set of all lot-
teries with support in X . Let �(	(X)) ⊆ A be the set of all menus of lotteries that have
support in X .

Definition 7. A CPF representation, (φ�μ�U), is state-independent with respect to
X ⊆ Z if

∫
S maxα∈AUs(α)dμi(s) = ∫

S maxα∈AUs(α)dμj(s) for all A ∈ �(	(X)) and all
i� j ∈ I∗. Further, (φ�μ�U) is the unique CPF representation that is state-independent
with respect to X if for any other CPF representation (φ̂� μ̂� Û) that is state-independent
with respect to X , φ̂ ≡ φ, μ̂i ≡ μi for all i ∈ I∗, and there are a > 0 and {bs}s∈S∗ ⊂ R such
that Ûs ≡ aUs + bs for all s ∈ S∗.

Axiom 7 (Partial objective state independence). There is a nondegenerate X ⊆ Z such
that for A�B ∈�(	(X)), A �i B for some i ∈ I implies A�j B for all nonnull j ∈ I.

To illustrate Axiom 7, consider X = {$1�$0} to consist of the prizes “1 dollar” and
“nothing.” The first part of Axiom 7 then requires that the ranking of menus that consist
only of lotteries that pay out either $1 or nothing must be state-independent. To mo-
tivate the requirement, it is sufficient to assume that the value of $1 (versus nothing) is
state-independent. The assumption does not require that DM is certain about his taste,
but only that the objective state is uninformative about this uncertainty.19

Theorem 3. The binary relation � satisfies Axioms 1–7 if and only if there exists
some nondegenerate X ⊆ Z such that � has a unique CPF representation that is state-
independent with respect to X , (φ�μ�U). In this representation, Us(x) is constant across
S∗ for all x ∈X .20

Proof. For a CPF representation where
∫
S maxα∈AUs(α)dμi(s) does not depend on i ∈ I

for any A ∈ �(	(X)), the uniqueness of φ follows in complete analogy to the corre-
sponding result in AA. Given this unique φ, Theorem 1 implies uniqueness of μ and

18For a simple example of such inconsistency, consider � = {{α}� {β}� {γ}}, but for some p ∈ (0�1) and
i� j ∈ I, {pα + (1 − p)γ} �i {β} �j {pα + (1 − p)γ}. Since

∫
S maxα∈AUs(α)dμi(s) is linear, it cannot be inde-

pendent of i ∈ I.
19Naturally, certainty about (some aspects of) tastes also identifies beliefs, as DLR observe. For a brief

discussion, see Section 5.
20In the case where φ is objective, it is possible to strengthen Axiom 7 such that the unique CPF repre-

sentation in Theorem 3 is based on φ.



Theoretical Economics 8 (2013) Contingent preference for flexibility 517

uniqueness of Us up to a common rescaling and the addition of constants. The exis-
tence of a representation where Us(x) is constant across S for all x ∈ X is established in
Appendix B. Hence, the unique representation must have this feature. �

Since Us(x) is constant across S∗ for all x ∈ X , it follows immediately that there is
no preference for flexibility with respect to alternatives in 	(X). To see why this must
be the case, consider menus A�B ∈ �(	(X)) with A ∼i B for some i ∈ I. By Axiom 7,
A ∼j B for all j ∈ I. Now suppose that there is preference for flexibility with respect to
those menus, A ∪ B �i′ A for some i′ ∈ I. By Axiom 1, A �j B for some j ∈ I, which is a
contradiction.21

5. Related literature

Ozdenoren (2002) also considers preference for flexibility in the presence of objective
states of the world. Instead of Relevant Objective States (Axiom 1), which ensures that
contingent rankings are sufficiently different, he assumes that all contingent rankings
are the same. Consequently, beliefs over tastes are not identified in his model.

I know of three other identification results that deliver unique beliefs over future
tastes for consumption in models of preference for flexibility. First, note that AA’s identi-
fication of unique beliefs over objective states does not require full state independence
of preferences.22 In analogy to AA’s argument, beliefs over tastes in the DLR model can
be identified uniquely, as long as DM has no preference for flexibility with respect to part
of the prize space. As an example, DLR suggest to consider a DM without preference for
flexibility on one dimension of a product prize space (Shenone 2010 provides details.)
Second, Ahn and Sarver (2013) provide a model that requires both choice between as
well as random choice from menus to be observable. Their model restricts the beliefs
that feature in the representation of choice between menus to correspond to the choice
frequencies that describe choice from menus. Finally, in a dynamic model of prefer-
ence for flexibility, Krishna and Sadowski (2013) show that the DM’s attitude toward in-
tertemporal trade-off can also uniquely identify beliefs. They proceed to characterize
a behavioral comparison of “greater preference for flexibility” in terms of a stochastic

Axiom 7∗ (Objective probabilities). There is X ⊆ Z such that for A�B ∈ �(	(X)), and nontrivial D and
D′ ∈ F ,

φ(D′)
φ(D)+φ(D′)

hA
D + φ(D)

φ(D)+φ(D′)
hB
D′ ∼ φ(D)

φ(D)+φ(D′)
hA
D′ + φ(D′)

φ(D)+φ(D′)
hB
D�

This implies Axiom 8. It also implies that V (gAD) − V (gBD) = (V (gAD′) − V (gBD′))(φ(D)/φ(D′)) for A�B ∈
�(	(X)).

21Once AA restrict attention to representations with state-independent utilities, there is no arbitrariness
in their model. In contrast, strict preference for flexibility implies that X is a proper subset of Z. Hence, �
could satisfy Axiom 7 for some X and Y with X �= Y , but not for X ∪Y . Either those menus with support in
X or those with support in Y could then be assigned a cardinal ranking, which is state-independent. The
two assumptions clearly lead to different representations. The following assumption would rule out this
scenario: If � satisfies Axiom 7 for X ⊆ Z and for Y ⊆ Z, then it also satisfies the condition for X ∪Y .

22This insight also underlies the elicitation of beliefs, φ, over objective states in Section 4 of this paper.
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dominance condition on the beliefs. Without identification of beliefs, such a compari-
son is not possible.23

The domain of opportunity acts is first analyzed by Nehring (1999), and the notion
of contingent menus appears in Epstein (2006). Following Nehring (1996), a companion
paper to Nehring (1999), Epstein and Seo (2009) consider a domain of random menus,
which are lotteries with menus as outcomes. On this domain they establish unique in-
duced probability distributions over ex post upper contour sets as the strongest possible
uniqueness statement.

Theorem 1 does not only provide unique beliefs, but also establishes the finiteness
of the collection of relevant tastes, S∗. Dekel et al. (2009) and Kopylov (2009) generate
finiteness of S∗ in the absence of objective states by basically assuming that the number
of lotteries DM can appreciate in any given menu is limited.

Finally, note that the state-independent version of AA’s representation can be viewed
as a special case of a unique CPF representation, where there is only one taste and the
intensity of this one taste is independent of the objective state. Karni and coauthors, for
example, Grant and Karni (2005), Karni (2008, 2011a, 2011b), elaborate the point that
interpreting AA’s or Savage’s (1954) unique subjective probabilities of observable states
as DM’s true beliefs may be misleading, in case the true intensity of her only taste is
actually not state-independent. The CPF model is not immune to this concern: Even
if choice has a CPF representation, DM’s true intensities of tastes might not actually be
state-independent. Similarly, the DM might not actually use the expected utility crite-
rion to evaluate uncertain prospects, or alternatives other than the one that is ultimately
chosen might also generate utility. None of those modeling assumptions remains in-
nocuous, once beliefs are used to forecast period 2 choice.

6. Asymmetric information and contracts

The CPF model interprets choice between acts in terms of unique state contingent be-
liefs over future tastes. As I discuss in the Introduction, considering those beliefs as
predictors of future choice is an additional assumption.24 Suppose in a particular situ-
ation that it is commonly assumed that the DM’s beliefs over tastes provide an accurate
forecast of future choice. Conceptually, an observer could agree on those beliefs, as the
DM’s future choice is potentially observable. The identification of beliefs from behavior
is necessary to render such agreement behaviorally meaningful. In this sense, my model
makes it possible to talk about “common priors over tastes,” just as the identification of
beliefs in the work of Savage (1954) makes it possible to talk about common priors over
objective states.

The (incomplete) contracting literature routinely assumes that both players have
common priors over each other’s future tastes.25 This allows each player to rank all

23Limited by the lack of identification in their model, DLR suggest an alternative notion that can be
characterized in terms of the support of the beliefs.

24That is, beliefs correspond to choice frequencies. The assumption that beliefs are meaningful beyond
their role in the representation of individual choice also underlies the notion of “objective probabilities” on
which all agents can agree, even if they behave differently.

25Section 3 in Maskin and Tirole (1999) elaborates this point.
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contracts even if his or her valuation of a contract depends on the other player’s future
choice. It follows immediately that both players also know each other’s ranking of con-
tracts. However, the assumption of commonly known rankings neither implies common
beliefs over future tastes nor implies that players know each other’s beliefs.

The weaker assumption of commonly known rankings is usually justified by some
informal story of learning from past observations. This assumption is not my focus, and
I adopt it without doing justice to the game theoretic complexity of the contracting prob-
lem. Instead, I address the stronger assumption of common beliefs. This assumption
is particularly troubling in the context of indescribable or unforeseen contingencies,26

where it seems natural that each party has an informational advantage with regard to
their own future taste. In a survey on incomplete contracts, Tirole (1999) speculates that

“. . . there may be interesting interaction between ‘unforeseen contingencies’ and asym-
metric information. There is a serious issue as to how parties [. . . ] end up having common
beliefs ex ante.”

My domain is well suited to describe the type of (incomplete) contracts illustrated in
the Introduction, where player 1 is given some control rights contingent on observable
states, I. For those contracts, the CPF representation gives choice theoretic substance
to the assumption of common beliefs27 and even suggests a possible mechanism for
their convergence: If player 1 (the controlling party) is more knowledgeable about her
own future taste and if her beliefs can be deduced from her commonly known ranking
of contracts, then player 2 should view those beliefs as the true probability distribution
of player 1’s future taste, and adopt them as his own beliefs when evaluating contracts.

For instance, in the example in the Introduction, suppose the supplier prefers to
supply the large quantity to the retailer. He then assigns a higher value to a contract
that gives control over the supplied quantity to the retailer if he expects the retailer to
order the large quantity more frequently. Further, suppose the retailer is better informed
about her own future profit function (or taste) and, hence, the probability with which she
will order the large quantity. The supplier would want to learn this information from the
retailer before agreeing to a contracts. In contrast, the supplier does not care about the
intensity of the retailer’s taste. In my axiomatic setup, these two are distinct concepts,
and the supplier can elicit the probability distribution over the retailer’s future tastes
from her ranking of contracts.

Appendix A: Measurable objective state space

If the objective state space I is finite as in the body of the paper, then Axiom 1 limits
the cardinality of the space of relevant tastes, S∗. In many standard models, the state

26Kreps (1992) points out that a subjective taste space naturally accounts for contingencies that are not
just unobservable or indescribable, but unforeseen, at least by the observer.

27Dekel et al. (1998) note that

“. . . there are very significant problems to be solved before we can generate interesting conclusions

for contracting [. . . ] while the Kreps model (and its modifications) seems appropriate for unforeseen

contingencies, [. . . ] there are no meaningful subjective probabilities. A refinement of the model that

pins down probabilities would be useful.”
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space is infinite; for example, the objective state space in Savage (1954) and possibly
also the space of relevant subjective states in DLR. In most applications, this is a disad-
vantage, as a finite subjective state space is interpretationally appealing and analytically
convenient. However, for those applications where an infinite subjective state space is
necessary, my results can be extended to the case when I is infinite, thereby removing
the constraint on the cardinality of S∗.

Let F be a σ-algebra on I. In this context, let G be the collection of simple opportu-
nity acts with typical elements g, h. A simple opportunity act is a measurable function
g : I → A such that there exists a finite and measurable partition {Dt | t ∈ {1� � � � �T }} of I
with g(i) = g(j) if there is D ∈ {Dt | t ∈ {1� � � � �T }} with i� j ∈D. The operator � is a binary
relation on G × G.28 The definition of �D for D ∈ F is analogous to the definition of
�i, Definition 2. Definition 4 of the CPF representation remains valid, where the value
function now takes the form

V (g)=
∫
I

[∫
S

(
max

α∈g(Dt)
Us(α)

)
dμi(s)

]
dφ(i)�

where φ is a countably additive probability measure on (I� F), and where μ is a well de-
fined stochastic kernel between (I� F) and (S� B). Definitions and results that generalize
those in Section 3 are distinguished by a prime on their label.

Definition 5′ . Let (φ�μ�U) be a CPF representation of �.

(i) Let I∗ := supp(φ) and let F ∗ be the σ-algebra on I∗ that corresponds to F . The
space of relevant tastes is S∗ := ⋃

D∈F ∗ supp(μD) with Borel σ-algebra B∗.

(ii) Beliefs μ and tastes U are unique given φ if for any other CPF representation
(φ� μ̂� Û) of �, the functions μ̂ and μ induce the same kernel between the mea-
surable spaces (I∗� F ∗) and (S� B), and there is a > 0 and an integrable function
b :S∗ → R such that

∫
S′ Ûs dμD(s) = ∫

S′(aUs + b(s))dμD(s) for all D ∈ F ∗ and all
S′ ∈ B∗.

The next definition provides a measure of how much set A is preferred over set B in
terms of how much the menu corresponding to the entire prize space, Z, is preferred
over the worst prize.

Definition 9. Given D ∈ F , let z be the worst prize: A �D {z} for all A ∈ A. For
A�B ∈A, define pA�B(D) ∈ (−1�1) such that the following conditions hold.

(i) For A�D B, p = pA�B(D) solves

1
1 +p

A+ p

1 +p
{z} ∼D

1
1 +p

B + p

1 +p
Z�

28One could, instead, consider any measurable function g : I → A as an opportunity act. Analyzing
choice on this larger domain is technically more involved. In particular, it requires a strengthening of Ax-
iom 3 (Continuity). I focus on the smaller domain of simple opportunity acts, as it is sufficient to identify
beliefs over tastes with arbitrary support.
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(ii) For B �D A, pA�B(D) = −pB�A(D).

Call pA�B(D) the cost of choosing from B instead of A under event D.

If � can be represented by a CPF representation, then the prize z must exist because
Z is finite and because �D must obviously satisfy Monotonicity. Note that pA�B(D) �= 0
implies that D is nonnull. Endow A with the topology generated by the Hausdorff metric

dh(A�B)= max
{

max
α∈A

min
β∈B

‖α−β‖�max
β∈B

min
α∈A

‖α−β‖
}
�

If two sequences of menus, 〈An〉 and 〈Bn〉, converge to the same limit in the Haus-
dorff topology, then the cost of choosing from Bn instead of An vanishes under every
event. However, the ratio of such costs may have a well defined limit.

Axiom 1′ (Relevance and tightness of objective states). If 〈An〉� 〈Bn〉� 〈Cn〉 ⊆ A converge
in the Hausdorff topology, then

pCn�An∪Bn(D)

pCn�Bn(D)
� 1

for some D ∈ F implies that there is D′ ∈ F such that

pCn�An(D
′)

pCn�Bn(D
′)

� 1�

Axiom 1′ implies Axiom 1, where i is substituted by D. To see this, note that Axiom 1
holds trivially unless there is D ∈ F such that A ∪ B �D B and A ∼D B. This implies
pC�B(D) = pC�A(D) and pC�A∪B(D) �= pC�B(D). Define the constant sequences An := A

and Bn := B, and let Cn := C �D A. Then pCn�An∪Bn(D)/pCn�Bn(D) � 1. Thus, according
to Axiom 1′, there is D′ ∈ F with pCn�An(D

′)/pCn�Bn(D
′) � 1. Hence A �D′ B and Axiom 1

is satisfied. If pCn�Bn(D) � 0, then Axiom 1 also trivially implies Axiom 1′. Thus, Axiom 1′
is only stronger than Axiom 1 for pCn�Bn(D) → 0.

Theorem 1′ . If � has the CPF representation (φ�μ�U), then μ and U are unique given
φ if and only if � satisfies Axiom 1′.

The discussion of the equivalence between (i) and (ii) in Theorem 1 applies here. The
intuition for the proof of this equivalence involves identifying taste s ∈ S∗ via two menus,
where one is preferred over the other under taste s, but they generate the same payoff
under every other relevant taste. If S is continuous, however, then making a menu less
preferred by a finite amount under one taste invariably makes it worse under similar
tastes (where tastes are viewed as vectors in R

k+), too. Therefore, individual tastes can
only be identified in the limit where the less preferred and the more preferred menu
approach each other. In this limit, the cost of choosing from the less preferred menu
instead of the more preferred menu tends to zero. Axiom 1′ allows statements about the
limit of the ratio of these costs for two different pairs of menus.

In addition to Axioms 2–6, an axiomatization of the CPF representation requires that
“small” events do not matter too much for the ranking of acts.
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Definition 10. For f�g ∈G and D ∈ F , let fDg be the act, such that

fDg(i) :=
{
f (i) for i ∈D

g(i) otherwise�

Axiom 8 (Event continuity). For any three acts f�g�h ∈ G with h � g, and any sequence
{Dt} in F with Dt+1 ⊂Dt and

⋂
t Dt = ∅, there exists T such that h� fDtg for all t > T .

Theorem 2′ . The binary relation � satisfies Axioms 2–6 and 8 if and only if it has a CPF
representation.

I do not provide a generalization of Theorem 3 here. It would have to be based
on a theory that generalizes AA’s results to the case of an infinite objective state space.
Fishburn (1970, Section 13.3) provides such a generalization.

Appendix B

After collecting some useful properties of support functions,29 results are established in
the order they appear in the text.

B.1 Support functions

Definition 11. Call σA :S → R with σA(s) := maxα∈A(α · s) the support function of A.

Support functions have the properties that

(i) A⊆ B if and only if σA ≤ σB

(ii) σλA+(1−λ)B = λσA + (1 − λ)σB whenever 0 ≤ λ ≤ 1

(iii) σA∩B = σA ∧ σB and σ(A∪B) = σA ∨ σB

(iv) σA = σconv(A), where conv(A) is the convex hull of A.

Denote by Aσ the maximal menu supported by σ , Aσ = ⋂
s∈S{α ∈ 	(Z)|α · s ≤ σ(s)}.

Let A be the collection of all convex subsets of 	(Z). Note that A ∈ A if and only if A
is maximal with respect to some support function. Let �i simultaneously denote the
induced ranking of support functions: σ �i ξ if and only if Aσ �i Aξ.

Lemma 2. For ε ≥ 0 small enough, σε := ε is a support function.

Proof. The k − 1 dimensional hyperplane in R
k that contains S is HS =

{x ∈ R
k | x · 1 = 0}. The hyperplane that contains the k − 1 dimensional simplex of lot-

teries, 	(Z), is H	(Z) = {x ∈ R
k | x · 1 = 1}. These two hyperplanes are parallel. Choose ε

29The introduction of support functions to the analysis of choice over menus is a major contribution
of DLR. For a comprehensive treatment of support functions in this context, see Chatterjee and Krishna
(2011).
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small enough such that the k− 1 dimensional ball Bε ⊂ H	(Z) with radius ε around the
center of the simplex is itself inside the simplex, Bε ⊂ 	(Z). Then σBε ≡ ε. In particular,
the degenerate menu B0 that contains only the center of the simplex (the lottery that
assigns weight 1/k to every prize) has support function 0. �

B.2 Proof of Theorem 1

Proof of (i) ⇒ (iii). Let Iμ ⊆ I∗ be a largest (in terms of cardinality) subset of linearly
independent elements in {μi}i∈I∗ . Then #S∗ ≥ #Iμ must trivially hold. It has to be shown
that #S∗ = #Iμ. Suppose, to the contrary, that #S∗ > #Iμ. The definition of S∗ implies
that one can find at least #Iμ + 1 distinct Borel sets with non-empty interior, {St}#Iμ+1

t=1 ,
such that for all t ≤ #Iμ + 1, there exists i ∈ Iμ with μi(int(St)) > 0. Since μi can have
at most countably many atoms, one can further guarantee μi(Cl(St)∩ Cl(St ′)) = 0 for all
t� t ′ ≤ #Iμ + 1 and all i ∈ Iμ.

Up to a constant, the vNM expected utility Us(α) in Definition 4 can be written as
l(s)(s · α) with l(s) > 0. Then maxα∈AUs(α) = l(s)σA(s). As in the text, l(s) captures the
“intensity” of taste s.

Claim 1. Given St , there is ε small enough and a support function ξt such that ξt = ε on
S \ St , ξt ≥ ε on St , and xt(i) := ∫

S l(s)[ξt(s)− ε]dμi(s) > 0 for some i ∈ I∗.

Proof. Remember that σε supports a ball, Bε, with radius ε around the center of the
simplex. The maximal menu B with σB ≤ σε on S \ St includes all lotteries with α · s ≤ ε

for all s ∈ S \ St . This implies maxα∈B(α · s) > ε for all s in the nonempty interior of St .
Hence, σB > σε must hold on int(St). Let ξt := σB. �

For xt as defined in Claim 1,

#Iμ+1∑
t=1

xt(i)pt = 0 for all i ∈ Iμ

is a system of #Iμ independent linear equations with #Iμ + 1 variables {pt}t∈{1�#Iμ+1};
therefore, it has a nonzero solution,

∑ |pt |> 0. Dividing each pt by
∑ |pt | yields another

solution with
∑ |pt | = 1. The convex combination of finitely many menus is well de-

fined, and by property (ii) in the previous subsection, the convex combination of finitely
many support functions is too. Thus one can define two support functions,

ξ :=
#Iμ+1∑
t=1

|pt |(1pt>0ξt + 1pt<0ε)

σ :=
#Iμ+1∑
t=1

|pt |(1pt>0ε+ 1pt<0ξt)�

where ξt and ε are as in Claim 1. Then
∑#Iμ+1

t=1 xt(i)pt = 0 for all i ∈ Iμ immediately
implies that Aξ ∼i Aσ for all i ∈ Iμ. Since Iμ indexes a largest (in terms of cardinality)
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subset of linearly independent elements in {μi}i∈I∗ , the same must hold for all i ∈ I∗. For
i ∈ I \ I∗, Aξ ∼i Aσ trivially holds. At the same time, pt ′ �= 0 implies that Aξ ∪Aσ �i Aξ

for some i ∈ Iμ, which contradicts Axiom 1. �

Proof of (ii) ⇒ (i). It has to be established that Axiom 1 is also necessary. Suppose,
to the contrary, that the representation exists with the stated uniqueness, but Axiom 1 is
violated. Then there are two menusA�B ∈A, such thatA∼j B for all j ∈ I and A∪B �i B

for some i ∈ I.

Definition 12. The cost of choosing from B ∈ A instead of A ∈ A under taste s ∈ S is

cA�B(s) := max
α∈A

Us(α)− max
β∈B

Us(β)�

The approximation A ∼j B for all j ∈ I implies
∑

S∗ cA�B(s)μj(s) = 0 for all j ∈ I. At
the same time, A ∪ B �i B implies that cA�B(s) cannot be zero under all tastes, so it
must be positive under some tastes and negative under others. For the proof, it is im-
portant that it is not constant across tastes. Define μ̂(s|i) := (1 + ηcA�B(s))μi(s), where
η �= 0 is small enough, such that 1 + ηcA�B(s) > 0 for all s ∈ S∗. Accordingly define
l̂(s) := l(s)/(1 +ηcA�B(s)). The value function V̂ that corresponds to (φ� μ̂� Û) is nu-
merically identical to V and, therefore, (φ� μ̂� Û) also represents �. This contradicts the
uniqueness statement in Theorem 1(ii). Thus, Axiom 1 is necessary for this uniqueness
statement. �

Proof of (iii) ⇒ (ii). Suppose (φ�μ�U) and (φ� μ̂� Û) both represent �. Given the
finiteness of S∗, the argument from the third example in Section 2 trivially general-
izes to imply that μi(s)/μj(s) = μ̂i(s)/μ̂j(s) for all i� j ∈ I∗ and s ∈ S∗. In particular,
μ̂i(s) = (μ̂1(s)/μ1(s))μi(s) for all i ∈ I∗ and s ∈ S∗. Since μ̂i is a probability measure on
S∗ for all i ∈ I∗, then ∑

s∈S∗

μ̂1(s)

μ1(s)
μi(s) = 1 for all i ∈ I∗�

By (iii), this system has #S∗ linearly independent equations in the #S∗ variables
{μ̂1(s)/μ1(s)}s∈S∗ . Hence, the obvious solution μ̂1(s)/μ1(s) = 1 for all s ∈ S∗ is unique.
This establishes the uniqueness of μ.

Given the uniqueness of μ, the uniqueness of U up to a common rescaling and the
addition of constants follows from the identification result in DLR. �

B.3 Proof of Theorem 2

Definition 13. As in the proof of Theorem 1, let A be the collection of all convex sub-
sets of 	(Z). Let G be the collection of all acts, g : I → A. Call g ∈ G a convex valued
act.
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The proof proceeds to establish that for every act g, there is a convex valued g such
that g(i) ∼i g(i) for all i ∈ I and, thus, by Independence, g ∼ g. Additive separability
across I is established for convex valued acts. Thus, the act g can be evaluated by finding
the act g and calculating its value state by state. Finally, Theorem DLRS provides a rep-
resentation of �i that allows replacing the value of g(i) with the subjective expectation
of the value of g(i).

Lemma 3. The binary relation � constrained to G satisfies Axioms 2–4 if and only if there
is a family of continuous linear functions {vi}i∈I , vi : A → R, such that v :G → R with
v(g) = ∑

i∈I vi(g(i)) represents � on G. Moreover, if there is another family of continuous
linear functions {v′

i}i∈I , v′
i : A → R, such that v′(g) = ∑

i∈I v′
i(g(i)) represents � on G, then

there are constants a > 0 and {bi | i ∈ I} such that v′
i = bi + avi for each i ∈ I.

Proof. The collection of convex valued acts G together with the convex combination
of acts as a mixture operation is a mixture space. Lemma 3 is an application of the mix-
ture space theorem (Theorem 5.11 in Kreps 1988), where additive separability across I

follows from the usual induction argument and the continuity of vi is a consequence of
Axiom 2. �

According to Theorem DLRS, �i can be represented by

V̂i(A) =
∫
S

max
α∈A

(Us�i(α))dμ̂i(s)

for all i ∈ I∗, where Us�i is a vNM utility function that represents taste s, that is, for
any i ∈ I∗ there is a μ̂i(s)-measurable function λi :S → R+ such that maxα∈AUs�i(α) =
λi(s)σA(s). Defining μi(s) := λi(s)μ̂i(s)/

∫
S λi(s)dμ̂i(s) allows �i to be represented by

Vi(A) =
∫
S
σA(s)dμi(s)�

Corollary 1. If i ∈ I is nonnull, then Vi(A) and vi(A) agree on A up to positive affine
transformations.

Proof. Evaluating v(gAi ) implies that vi represents �i on A; vi is linear. The mixture
space theorem states that any other linear representation of �i agrees with vi up to a
positive affine transformation. According to Theorem DLRS, Vi(A) is linear and repre-
sents �i on A. �

Consequently, there is an event-dependent, positive scaling factor π(i) such that,
up to a constant, vi(A) = π(i)Vi(A) for all A ∈ A, where π(i) = 0 if and only if i /∈ I∗.
For every g ∈ G, define g ∈ G such that g(i) := conv(g(i)) for all i ∈ I∗. Property (iv) of
support functions (Appendix B.1) implies Vi(g(i)) = Vi(g(i)) for all i ∈ I∗. Independence
immediately implies that g ∼ g. Let V ′ represent � on G and let V ′ ≡ v on G. Then
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V ′(g) = V ′(g) = ∑
i∈I vi(g(i)) = ∑

i∈I π(i)Vi(g(i)) = ∑
i∈I π(i)Vi(g(i)). Hence, g � h if

and only if
∑

i∈I π(i)Vi(g(i)) >
∑

i∈I π(i)Vi(h(i)). Therefore,

V ′(g) =
∑
i∈I

π(i)

[∫
S
σg(i)(s)dμi(s)

]

represents �. Since v is unique only up to positive affine transformations, π(i) can be
normalized to be a probability measure, φ(i). This establishes the sufficiency statement
in Theorem 2. In this particular CPF representation, the nonuniqueness of the repre-
sentation is exploited to normalize the state-independent utilities, Us , as suggested in
DLRS.

That Axioms 2–6 are necessary for the existence of the representation is straightfor-
ward to verify.

B.4 Proof of Theorem 3 (existence)

If � has a CPF representation, then Axiom 7 implies that there is no preference for flexi-
bility on 	(X∗). That is, A �i B implies A ∼i A ∪ B for all A�B ∈ 	(X∗) and for all i ∈ I.
To see this, suppose, to the contrary, that there is preference for flexibility on 	(X∗), that
is, there are menus A�B ⊂ 	(X∗) with A ∪ B �i A and A ∼i B for some i ∈ I. But then
Axiom 1 implies that there exists j ∈ I such that A �j B, which contradicts Axiom 7.

Consider the CPF representation from Theorem 2:

V̂ (g) =
∑
i∈I

φ̂(i)

[∫
S

(
max
α∈g(i)

Ûs(α)
)
dμ̂i(s)

]
�

Fix s′ ∈ S∗. The fact that there is no preference for flexibility on 	(X∗) implies that for
any s ∈ S∗, there is λ(s) such that Ûs(x) = λ(s)Ûs′(x) on X∗, as otherwise one could easily
construct A�B ⊂ 	(X∗) with A ∪ B � A. Let Us(·) := Ûs(·)/λ(s) to ensure that indeed
Us(x) is constant across S for all x ∈ X∗. Finally, let μi(s) := λ(s)μ̂i(s)/

∫
S λ(s)dμ̂i(s) and

φ(i) := φ̂(i)
∫
S λ(s)dμ̂i(s)/(

∑
i∈I φ̂(i)[

∫
S λ(s)dμ̂i(s)]) to ensure that

V (g) =
∑
i∈I

φ(i)

[∫
S

(
max
α∈g(i)

Us(α)
)
dμi(s)

]

agrees with V̂ up to a positive affine transformation. �

B.5 Proof of Theorem 1′

I first show that Axiom 1′ is sufficient for the uniqueness statement. The definition of
support functions (Definition 11) and all related notation remain relevant here. For no-
tational convenience, I omit the dependence of functions from S to R on s ∈ S when
there is no risk of confusion.
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Consider the uninformative event I ∈ F . Note that ν(S′) := ∫
S′ l dμI(s) is itself a

positive measure30: It exists for any measurable S′ ⊂ S, as it is bounded above by∫
S l dμI(s), which is finite because the value of the menu supported by σε in Lemma 2

is
∫
S σεl dμI(s) = ε

∫
S l dμI(s). It is positive, because the intensity of tastes l :S → R

+ is a
strictly positive function.31

Lemma 4. There are support functions ξ and σ , and a number α > 0 such that μI(S
′) −∫

S′ α(ξ − σ)l dμI(s) < ε. For α′ > α, there are also support functions ξ′ and σ ′ such that
μI(S

′)− ∫
S′ α′(ξ′ − σ ′)l dμI(s) < ε.

Proof.

Claim 2. If f is positive and integrable under ν, then for any ε > 0, there is a continuous,
bounded, positive function g :S → R such that

∫
S |f − g|dν(s) < ε.

Proof. As f and ν are both weakly positive,
∫
S |fν|ds exists. Thus, for every ε > 0, there

exists a continuous function g :S → R such that
∫
S |g − f |dν(s) < ε. See, for example,

Billingsley (1995, Theorem 17.1). Since f is positive, g can be chosen to be positive. �

Note that 1/l :S → R+ is strictly positive because l is. It is integrable under ν be-
cause

∫
S 1/l dν(s) = ∫

S dμI(s) = 1. Given ε > 0, Claim 2 implies that there is a continu-
ous, bounded, positive function g such that∫

S′

∣∣∣∣1
l

− g

∣∣∣∣dν(s) < 1
2ε�

Claim 3 (Lemma 1.7.9 in Schneider 1993). The functions that are the difference of two
support functions span a cone that is dense in C(S), the space of continuous functions on
S, the unit sphere in R

k.

Claim 3 implies that for every ε > 0, there are two support functions ξ and σ , and a
number α> 0 such that ∫

S′
|g − α(ξ − σ)|dν(s) < 1

2ε

for every measurable set S′ ⊆ S.
Hence,

μI(S
′)−

∫
S′
α(ξ − σ)l dμI(s) ≤

∫
S′

∣∣∣∣1
l

− α(ξ − σ)

∣∣∣∣l dμI(s)

≤
∫
S′

∣∣∣∣1
l

− g

∣∣∣∣dν(s)+
∫
S′

|g − α(ξ − σ)|dν(s) < ε�

30If information is ignored, in the sense that DM only gets to choose between degenerate acts that do
not condition on information, then preferences can be represented as in DLRS. The measure ν corresponds
to the measure featured in this representation. It is dominated by the measure μ(s|I), and the Radon–
Nikodym derivative of ν with respect to μ(·|I) evaluated in s is l(s), the intensity of taste s.

31The equality l(s) = 0 corresponds to the trivial state, which is not part of the CPF representation.
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This establishes the first part of the lemma. To show the second part, consider α′ = cα

with c > 1. Let σ ′ = σ and ξ′ = (1/c)ξ+ (1 − 1/c)σ . The variable ξ′ is a convex combina-
tion of support functions and, therefore, is a support function, and α′(ξ′−σ ′) ≡ α(ξ−σ).
This concludes the proof of Lemma 4. �

Suppose (φ�μ�U) is a CPF representations of �. Following Lemma 4, one can define
a sequence of support functions 〈ξn〉 and 〈σn〉, and a sequence of numbers 〈αn〉 with
αn → ∞, such that

μI(S
′)−

∫
S′
αn(ξn − σn)l dμI(s) <

1
n

for every measurable set S′ ⊆ S and for all n > 0. In particular,
∫
S(ξn − σn)l dμI(s) → 0.

Now consider another CPF representation of �, (φ� μ̂� Û), and define corresponding
sequences 〈̂ξn〉, 〈σ̂n〉, and 〈̂αn〉. Obviously, also

∫
S(̂ξn − σ̂n)̂l dμ̂I(s) → 0. It follows im-

mediately from the uniqueness statements in Theorems 3 and 4 in DLR that μD and μ̂D

share the same support, and that l(s)μD(s) differs from l̂(s)dμ̂D(s) at most by scaling for
any D ∈ F . In particular, l(s)μI(s) ∝ l̂(s)dμ̂D(s) and, therefore,

∫
S(̂ξn − σ̂n)l dμI(s) → 0.

Continuity of the integral implies that it is possible to choose 〈ξn〉, 〈σn〉, 〈̂ξn〉, and 〈σ̂n〉
such that ∫

S
(ξn − σn)l dμI(s) =

∫
S
(̂ξn − σ̂n)l dμI(s)

for all n > 0 and, hence, (1/2)ξn + (1/2)σ̂n ∼I (1/2)̂ξn + (1/2)σn according to (φ�μ�U)

for all n > 0.
Rewriting pA�B(D) as defined in Definition 9 in terms of support functions yields

pA�B(D) ∝ ∫
S(σA − σB)l dμD(s). For the remainder of the proof, let An, Bn, and Cn be

defined such that σAn = (1/2)ξn + (1/2)σ̂n, σBn = (1/2)̂ξn + (1/2)σn, and σCn = (1/2)σn +
(1/2)σ̂n.

Claim 4. We have pCn�An(D)/pCn�Bn(D) → 1 for all D ∈ F .

Proof. First note that

pCn�An(D)

pCn�Bn(D)
=

∫
S

1
2(σn + σ̂n − ξn − σ̂n)l dμD(s)∫

S
1
2(σn + σ̂n − ξ̂n − σn)l dμD(s)

=
∫
S(ξn − σn)l dμD(s)∫
S(̂ξn − σ̂n)l dμD(s)

�

By definition, μI(S
′) − αn

∫
S′(ξn − σn)l dμI(s) < 1/n for every measurable set S′ ⊆ S and

for all n > 0 implies that (i) limn→∞[αn

∫
S(ξn −σn)l dμI(s)] = 1, because μ is a probability

measure, and (ii) αn(ξn − σn)l → 1 almost everywhere according to μI(s). The same
observations can be made for 〈̂ξn〉, 〈σ̂n〉, 〈̂αn〉, and (φ� μ̂� Û).
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For every D ∈ F , the measure μD is dominated by μI , and S′ ⊆ S is μD-measurable if
and only if it is μI-measurable. Hence,

lim
n→∞

[
αn

∫
S
(ξn − σn)l dμD(s)

]
= 1

for all D ∈ F . Analogously

lim
n→∞

[
α̂n

∫
S
(̂ξn − σ̂n)̂l dμ̂D(s)

]
= 1

for all D ∈ F . As in the case of finite I, it is easy to verify that the fact that the limits
are independent of D is meaningful in terms of �.32 That is, since (φ�μ�U) and
(φ� μ̂� Û) both represent �, there is also a sequence of numbers 〈βn〉 such that
limn→∞[βn

∫
S(̂ξn − σ̂n)l dμD(s)] = 1 for all D ∈ F . Since (1/2)ξn + (1/2)σ̂n ∼I (1/2)̂ξn +

(1/2)σn for all n > 0, it must be that αn/βn → 1. Together with observation (ii) above,
this implies that

∫
S(ξn − σn)l dμD(s)/

∫
S(̂ξn − σ̂n)l dμD(s) → 1 for all D ∈ F . �

Claim 5. If (φ�μ�U) and (φ� μ̂� Û) are two CPF representations of � that are dis-
tinct beyond the changes permitted in the uniqueness statement of Theorem 1′, then
pCn�An∪Bn(I)/pCn�Bn(I) � 1.

Proof. First note that

pCn�An∪Bn(I)

pCn�Bn(I)
=

∫
S

1
2(σn + σ̂n − max{ξn + σ̂n� ξ̂n + σn})l dμI(s)∫

S
1
2(σn + σ̂n − ξ̂n − σn)l dμI(s)

=
∫
S max{ξn − σn� ξ̂n − σ̂n}l dμI(s)∫

S(̂ξn − σ̂n)l dμI(s)
�

Second, note that limn→∞[̂αn
∫
S′ (̂ξn − σ̂n)l dμI(s)] = ∫

S′(l/̂l)dμI(s). Hence, on the
one hand, limn→∞[̂αn

∫
S(̂ξn − σ̂n)l dμI(s)] = ∫

S(l/̂l)dμI(s) and, on the other hand,
limn→∞[αn

∫
S(̂ξn − σ̂n)l dμI(s)] = 1, as established in the proof of Claim 4. It follows

that limn→∞(̂αn/αn) = ∫
S(l/̂l)dμI(s). Recall that μD(s) and μ̂D(s) share the same sup-

port, and that l(s)μD(s) differs from l̂(s)dμ̂D(s) at most by scaling for any D ∈ F .
Therefore, if (φ�μ�U) and (φ� μ̂� Û) are distinct in the sense of the claim, then the
corresponding functions l and l̂ have to be distinct in the sense that there is S′ ⊂ S

such that
∫
S′(l/̂l)dμI(s) �= μI(S

′)
∫
S(l/̂l)dμI(s). Without loss of generality, suppose that∫

S′(l/̂l)dμI(s) > μI(S
′)

∫
S(l/̂l)dμI(s). Taking all this together gives

lim
n→∞

[
α̂n

∫
S′
(̂ξn − σ̂n)l dμI(s)

]
=

∫
S′
l

l̂
dμI(s) > μI(S

′)
∫
S

l

l̂
dμI(s) = μI(S

′) lim
n→∞

α̂n

αn

or

lim
n→∞

[
αn

∫
S′
(̂ξn − σ̂n)l dμI(s)

]
>μI(S

′)�

32See observation 3 in the proof that item (i) of Theorem 1 implies item (ii).
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Therefore, limn→∞[αn
∫
S max{ξn − σn� ξ̂n − σ̂n}l dμI(s)] > 1, which implies∫

S max{ξn − σn� ξ̂n − σ̂n}l dμI(s)∫
S(̂ξn − σ̂n)l dμI(s)

� 1� �

The combination of Claims 4 and 5 provides a direct violation of Axiom 1′. Hence,
Axiom 1′ implies that (φ�μ�U) is unique in the sense of Theorem 1′.

It remains to show that Axiom 1′ is also necessary. The argument requires only
slight changes compared to the finite case: Suppose, to the contrary, that the rep-
resentation holds with the stated uniqueness, but Axiom 1′ is violated. Then there
are sequences 〈An〉� 〈Bn〉� 〈Cn〉 ⊆ A, which converge in the Hausdorff topology, with
pCn�An∪Bn(D)/pCn�Bn(D) � 1 for some D ∈ F and pCn�An(D

′)/pCn�Bn(D
′) → 1 for all

D′ ∈ F . That pCn�An(D
′)/pCn�Bn(D

′)→ 1 for all D′ ∈ F implies that∫
S cAn�Bn(s)dμD′(s)∫
S cCn�Bn(s)dμD′(s)

→ 0

for all D′ ∈ F . That pCn�An∪Bn(D)/pCn�Bn(D) � 1 implies that there is a set S′ ⊆ S with
μD(S

′) > 0 and ∫
S′ cAn�Bn(s)dμD(s)∫
S cCn�Bn(s)dμD(s)

� 0�

In complete analogy to the finite case, define

μ̂(s|D) :=
(

1 +η
cAn�Bn(s)∫

S cCn�Bn(s)μD(s)

)
μD(s)�

where η is small enough such that 1 + η(cAn�Bn(s)/
∫
S cCn�Bn(s)μD(s)) > 0 for all s ∈ S.

Another CPF representation (φ� μ̂� Û) can then be defined in complete analogy to the
finite case. Thus, Axiom 1′ must hold.

B.6 Proof of Theorem 2′

In analogy to Definition 13, let G be the collection of all simple convex valued acts. Let
G{Dt } ⊂ G be the collection of all acts that are measurable with respect to the partition
{Dt} of I in F .

Lemma 3′ . The binary relation � constrained to G satisfies Axioms 2–4 if and only if there
are continuous linear functions vD : A → R, indexed by D ∈ F , that satisfy the following
statements.

(i) The function v :G → R with v(g)= ∑T
t=1 vDt (g(Dt)) for g ∈G∩G{Dt } represents �.

(ii) If {Dt}Tt=1 is a partition of I, τ ⊆ {1� � � � �T }, and D = ⋃
t∈τ Dt , then vD(A) =∑

t∈τ vDt (A) for all A ∈ A.
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Moreover, another collection of continuous linear functions, v′
D : A → R, satisfies (i)

and (ii) if and only if there are constants a > 0 and a finitely additive function b : F → R

such that v′
D = b(D)+ avD for each D ∈ F .

Proof. That v(g) = ∑T
t=1 vDt (g(Dt)) for g ∈ G ∩ G{Dt } represents � constrained to G ∩

G{Dt } is implied by Lemma 3. If the simple act g is constant on each element of {Dt}Tt=1,
then it is also constant on each element of a finer partition {D′

t}T ′
t=1. Let τ ⊆ {1� � � � �T ′} be

such that Dt = ⋃
t∈τ D′

t and let �τ be the number of elements in τ. The usual induction
argument yields

1
�τ

(g∗(D1)� � � � � g
∗(Dt−1)�A�g∗(Dt+1)� � � � � g

∗(DT ))+ �τ − 1
�τ

g∗

=
∑
t∈τ

1
�τ

(g∗(D′
1)� � � � � g

∗(D′
t−1)�A�g∗(D′

t+1)� � � � � g
∗(D′

T ′))�

and thus vDt (A) = ∑
t∈τ vD′

t
(A), which is item (ii) of the lemma. This implies that v(g) =∑T

t=1 vDt (g(Dt)) for g ∈G∩G{Dt } represents � on G, which is item (i).
The uniqueness statement follows immediately from the uniqueness in Lemma 3,

where finite additivity of b is implied by property (ii). That the representation implies
continuity and linearity of v, and thus the axioms, is obvious. �

As in the proof of Lemma 2, let B0 denote the degenerate menu that contains only
the center of the simplex 	(Z). Given a collection of functions v′

D as in Lemma 3′, let
b(D) := −v′

D(B0) to find a collection of functions vD = b(D)+ v′
D that satisfy (i), (ii), and

vD(B0) = 0 for all D. Next I establish that Axiom 8 implies that the functions vD are
countably additive in D.

Claim 6. Suppose � constrained to G satisfies Axioms 2–4 and 8, and that the functions
vD with vD(B0) = 0 for all D satisfy (i) and (ii) in Lemma 3′. For a countable collection of
disjoint sets in F , {Dt}t≥1, let D := ⋃

t≥1 Dt . Then vD(A) = ∑
t≥1 vDt (A) for all A ∈ A.

Proof. Given a set A ∈ A, let f (i) =A and g(i) = B0 for all i ∈ I. Given ε > 0, choose an
act h such that ε > v(h) − v(g) > 0 (this is possible by continuity of the value function).
Axiom 8 implies that for any nested sequence {Dt} in F with

⋂
Dt = ∅, there exists T

such that h � fDtg for all t > T . It follows immediately from Lemma 3′ that vDt (A) −
vDt (B0) = vDt (A) < ε for all t > T . A symmetrical argument establishes that −vDt (A) < ε

for all t > T and, hence, vDt (A) → 0, which implies countable additivity as claimed (see,
for example, Theorem 3.1.1 in Dudley 2002). �

Corollary 1 in the proof of Theorem 2 still holds, where i is replaced with D. That is,
on A and up to a positive affine transformation, vD agrees with the representation VD of
�D as provided by Theorem DLRS:

VD(A) =
∫
S
σA(s)dμD(s)�
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In complete analogy to the proof of Theorem 2, it can be established that there is an
event-dependent, positive scaling factor π(D) such that

V (g) =
T∑
t=1

π(Dt)

∫
S
σg(Dt)(s)dμDt (s)

for g ∈ G{Dt }, where V represents �, and π(D) = 0 if and only if D is trivial. For D ∈ F
and S′ ∈ B, define the measure

η(D× S′) := π(D)
∫
S′ dμD(s)

π(I)
∫
S dμI(s)

�

Claim 7. The measure η is a countably additive probability measure on {D × S′ |
D ∈ F� S′ ∈ B}.

Proof. Countable additivity with respect to F follows immediately from the expression
for V above, when choosing g such that σg(D)(s) = ε for all s ∈ S∗ and all D ∈ F , which is
possible by Lemma 2. Fixing D ∈ F , countable additivity with respect to B follows from
Theorem DLRS, which implies that μD is a countably additive measure (not necessarily
a probability measure). �

Claim 7 states that η is countably additive on {D×S′ | D ∈ F� S′ ∈ B}, which is a semi-
ring of sets. It can, therefore, be extended to a countably additive probability measure
on the product σ-algebra F ⊗ B. See, for example, Proposition 3.2.4 in Dudley (2002).
Then

V (g)=
∫
I×S

σg(i)(s)dη(i� s)�

The measure η(i� s) can be decomposed into a countably additive marginal distribution
φ(i) := η(i�S) on I and a countably additive conditional distribution μi(s) on S given i.
The existence of the conditional distribution, μi(s), is implied by, for example, Theo-
rem 10.2.8 in Dudley (2002), after observing that (I × S� F ⊗ B�η) is a probability space
and S is a Polish space with the standard metric on R

k. Theorem 10.2.1 in Dudley (2002)
establishes that

V (g) =
∫
I

∫
S
σg(i)(s)dμi(s)dφ(i)�

as desired.33

This completes the proof of the sufficiency statement in Theorem 2′. That Axioms
1–6 are also necessary for the existence of the representation follows as in the case of
finite I. The necessity of Axiom 8 follows immediately from the countable additivity of
the measure φ.

33As in the case of finite I, the nonuniqueness of the representation is exploited to normalize all utility
functions as suggested in DLRS.
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