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Implementation in multidimensional dichotomous domains
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Souvik Roy
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We consider deterministic dominant strategy implementation in multidimen-
sional dichotomous domains in a private values and quasilinear utility setting. In
such multidimensional domains, an agent’s type is characterized by a single num-
ber, the value of the agent, and a nonempty set of acceptable alternatives. Each ac-
ceptable alternative gives the agent utility equal to his value and other alternatives
give him zero utility. We identify a new condition, which we call generation mono-
tonicity, that is necessary and sufficient for implementability in any dichotomous
domain. If such a domain satisfies a richness condition, then a weaker version of
generation monotonicity, which we call 2-generation monotonicity (equivalent to
3-cycle monotonicity), is necessary and sufficient for implementation. We use this
result to derive the optimal mechanism in a one-sided matching problem with
agents who have dichotomous types.

Keywords. Dominant strategy implementation, cycle monotonicity, dichoto-
mous preferences, generation monotonicity.

JEL classification. C78, C79, D02, D44.

1. Introduction

We study multidimensional mechanism design in private value and quasilinear environ-
ments, e.g., auction domains, matching problems with transfers, and choosing a public
good among multiple public goods with transfers. We restrict attention to determinis-
tic implementation in dominant strategies. Our focus is on domains where agents have
dichotomous preferences over alternatives. A dichotomous type of any agent is charac-
terized by a positive real number, which we call the value of the agent at this type, and
a nonempty subset of alternatives, which we call the acceptable alternatives. The inter-
pretation is that an agent of dichotomous type gets (the same) utility equal to his value
from each alternative in his acceptable set, but gets zero utility on any alternative that
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is not acceptable. Note that both the value and the set of acceptable alternatives are
private information of the agent. This makes such type spaces multidimensional.

We call a type space a dichotomous domain if every type belonging to it is a dichoto-
mous type. We characterize the set of implementable allocation rules in dichotomous
domains using a condition called generation monotonicity. Generation monotonicity
is a new (nontrivial) simplification of the cycle monotonicity condition of Rochet (1987)
in dichotomous domains. Our most striking result comes in a particular class of di-
chotomous domains. We show that for a large class of dichotomous domains, which
we refer to as rich dichotomous domains, a significantly weaker condition than genera-
tion monotonicity characterizes implementability. We refer to this weaker condition as
2-generation monotonicity and show it to be equivalent to 3-cycle monotonicity. Three-
cycle monotonicity is significantly weaker than cycle monotonicity but stronger than
2-cycle monotonicity, a condition used to characterize implementability in convex do-
mains (Bikhchandani et al. 2006, Saks and Yu 2005, Ashlagi et al. 2010). A dichotomous
domain is not convex, but is still multidimensional. While most of the earlier results
in the literature found domains where 2-cycle monotonicity is necessary and sufficient
for implementability, to our knowledge, this paper is the first to identify multidimen-
sional domains where we see that K-cycle monotonicity (K �= 2) is necessary and suf-
ficient for implementation. We show, by way of an example, that 2-cycle monotonicity
is not sufficient for implementability in rich dichotomous domains. We demonstrate
the usefulness of our characterizations by deriving a revenue maximizing mechanism
for the one-sided matching problem where agents have dichotomous preferences over
alternatives.

Although dichotomous types seem like a restrictive preference over alternatives,
it is natural in many settings. Such preferences are studied in social choice theory
and matching theory in models without monetary transfers: Bogomolnaia and Moulin
(2004) and Roth et al. (2005) study it in the context of matching; Bogomolnaia et al.
(2005) study it in a collective choice problem; Vorsatz (2007, 2008) studies it in the con-
text of a voting model. Allowing for transfers in some of these models is very natural. Di-
chotomous domains were first studied with monetary transfers and quasilinear utility in
Babaioff et al. (2005). We discuss two broad settings with transfers where it is plausible
to assume that agents have dichotomous types.

Collective choice. In collective choice problems, agents want to collectively choose
an alternative, e.g., joint hiring of a staff member/expert by several departments in a uni-
versity/firm, joint installation of software for employees in an organization, and choos-
ing a communication or transportation network to build for joint use. In each of these
problems, it is plausible to think that agents have dichotomous preferences over alter-
natives: in the staff hiring example, a department gets a value from a staff member if and
only if he has the skills required by the department; in the software installation problem,
an employee gets a value from software if and only if it is compatible with his laptop;
in the network selection problem, if each agent uses the network to send data from a
source node to a destination node, then he gets a value from the network if and only if it
connects his source and destination nodes. Allowing for transfers in these problems is
natural: in the staff hiring problem, each department contributes to the expert’s salary;
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in the network building problem, each user pays a price to use the network; in the soft-
ware installation problem, an organization may charge the employees whose software
is compatible and compensate the employees whose software is not compatible.

Private good allocation. In private good allocation problems, each agent receives a
different alternative and there is usually some feasibility constraint linking the alloca-
tions of all the agents. For example, in scheduling problems, each agent has a task (a
journey) that can be completed by a machine (airline). The tasks (journeys) of different
agents need to be assigned to different time periods because the machine (airline) has
a capacity constraint in each time period. But an agent may not be available in some
time periods, and he gets a value if and only if the task (journey) is assigned to a time pe-
riod when he is available. Related to this example is the general model of matching with
transfers in dichotomous domains, for example, in matching firms to job candidates
(where transfers are salaries of the candidates), a firm may get a value from a candidate
if and only if the candidate has the required skills. Transfers are usually permitted in
such job matching problems; see Crawford and Knoer (1981). The single-minded com-
binatorial auctions domain (Lehmann et al. 2002) is another example of a dichotomous
domain. Here, a set of objects is sold to a set of bidders. Each bidder is interested only
in a particular subset of objects, called his favorite bundle. A bidder gets a value from an
alternative (a subset of objects) if and only if it includes his favorite bundle.

Our general characterization using generation monotonicity applies to all these do-
mains. Our specific characterization using 2-generation monotonicity (3-cycle mono-
tonicity) applies to all the above domains except the single-minded combinatorial auc-
tion domain.

1.1 Past literature and our results

The study of implementable allocation rules in quasilinear utility settings with private
values began in the seminal paper of Myerson (1981), who studies Bayes–Nash random-
ized implementation for the one-dimensional model of the single object auction. For
deterministic allocation rules and dominant strategy implementation, Myerson’s result
can be easily adapted as follows. He defines the notion of monotone allocation rules,
which states that given the type profile of other agents, if an agent gets the object at a
type, then he must get the object at a type with higher value. Myerson shows that an al-
location rule is implementable if and only if it is monotone in this sense; see extensions
of this result for various other one-dimensional problems in Archer and Tardos (2001),
Archer et al. (2003), Goldberg and Hartline (2005), Aggarwal and Hartline (2006), and
Dhangwatnotai et al. (2008).

For a general multidimensional type space model, Rochet (1987) shows that imple-
mentability is equivalent to cycle monotonicity, which requires that for every agent and
for every type profile of other agents, certain type graphs should have no cycles of nega-
tive length.1

1This interpretation of cycle monotonicity is due to Gui et al. (2004) and Heydenreich et al. (2009). The
cycle monotonicity characterization of implementability is related to the characterization of subgradients
of convex functions using cycle monotonicity by Rockafellar (1970).
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While the cycle monotonicity characterization is very general, it is not an easy condi-
tion to verify or interpret; see extensions and different interpretations in Rahman (2011)
and Kos and Messner (2013). Researchers have since tried to identify domains where a
simpler condition than cycle monotonicity is necessary and sufficient for (determinis-
tic) implementability. Bikhchandani et al. (2006) show that 2-cycle monotonicity, which
requires cycles that have two nodes in the type graph to have nonnegative length, is
necessary and sufficient for implementability in a variety of convex domains, includ-
ing the unrestricted domain and some auction domains. Saks and Yu (2005) general-
ize this result to show that 2-cycle monotonicity is necessary and sufficient for imple-
mentability if the type space of every agent is a convex subset of R

|A|, where A is the set
of alternatives. Ashlagi et al. (2010, supplementary material) extend this result to show
that 2-cycle monotonicity is necessary and sufficient for implementability if the closure
of type space of every agent is a convex subset of R

|A|. Vohra (2011) has an excellent
survey of these results.2 Note that the 2-cycle monotonicity condition is equivalent to
Myerson’s monotonicity condition in the single object auction model.3 Our characteri-
zation of implementability in rich dichotomous domains uses 2-generation monotonic-
ity, which is equivalent to 3-cycle monotonicity. Since 3-cycle monotonicity is slightly
stronger than 2-cycle monotonicity and since we require 3-cycle monotonicity—not
2-cycle monotonicity—to characterize implementability, our result helps to further de-
lineate the boundaries of multidimensional domains that permit a characterization that
is significantly simpler than Rochet’s cycle monotonicity.

This paper is not the first paper to study implementation in dichotomous domains.
Lehmann et al. (2002) consider the specific dichotomous domain of single-minded com-
binatorial auctions. Under an additional assumption on allocation rules, Lehmann et al.
(2002) show that 2-cycle monotonicity characterizes implementability in these domains.
Our results are more general than this in the sense that we characterize implementability
in arbitrary dichotomous domains. Further, our main characterization in rich dichoto-
mous domains does not apply to single-minded auction domains since such domains
are not rich in our sense.

A paper closely related to our work is Babaioff et al. (2005). Like us, they consider
deterministic implementation in dichotomous domains with monetary transfers. The
main difference between their characterization and our characterization is that theirs
is a characterization of “mechanisms” (allocation rules and payments), while ours is a
characterization of “allocation rules” only. Their characterization says that a mechanism
is truthful if and only if the corresponding allocation rule is value monotone, encourages

2Vohra (2011) and Heydenreich et al. (2009) discuss an alternate graph theoretic interpretation of cycle
monotonicity using allocation graphs. Cuff et al. (2012) show that if the type space is a full-dimensional
convex product space, then implementability is equivalent to every 2-cycle in the allocation graph having
zero length. Since an allocation graph is a more complicated concept than the type graph, we do not discuss
it in detail in this paper.

3There are many papers that characterize different extensions of implementability in convex domains
using 2-cycle monotonicity and additional technical conditions: for Bayes–Nash implementation, see Jehiel
et al. (1999) and Müller et al. (2007); for randomized implementation, see Archer and Kleinberg (2008); for
implementation with general value functions, see Berger et al. (2010) and Carbajal and Ely (2012).
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winning, ensures minimal payments, and the payments are by critical values.4 Our view
is that our direct characterizations of implementable allocation rules are simpler to state
and very different in spirit from the result in Babaioff et al. (2005).

Importantly, our general characterization has many nice implications on specific
dichotomous domains, but the characterization in Babaioff et al. (2005) is silent in
such domains. Our general characterization using generation monotonicity identi-
fies many specific dichotomous domains where weaker versions of cycle monotonic-
ity are necessary and sufficient for implementability. In rich dichotomous domains,
where 2-generation monotonicity characterizes implementability, it implies a cutoff-
based characterization of implementable allocation rules. This cutoff-based characteri-
zation extends the cutoff-based characterization of Myerson (1981) for single object auc-
tions, which states that for every agent and for every type profile of other agents, there
is a cutoff value above which this agent gets the object and below which he does not
get the object; see also Archer and Tardos (2001) for a generalization of this cutoff-based
characterization to general one-dimensional models. Our cutoff-based characterization
for the rich dichotomous domains is more involved.

We hope that such simple characterizations lead to identification of optimal mech-
anisms, mechanisms with fairness properties, and (almost) budget-balanced mecha-
nisms in our model. Further, efficiency is usually computationally difficult in many
dichotomous domains; for example, in single-minded combinatorial auction domains
(Blumrosen and Nisan 2007). So characterizing the entire class of implementable allo-
cation rules helps us to identify computationally tractable but approximately efficient
implementable allocation rules.

We demonstrate the usefulness of our results by deriving the optimal mechanism for
a particular setting. We consider the one-sided matching problem where agents have di-
chotomous preferences. In this problem, a set of objects (say, airline or movie tickets)
need to be assigned to a set of agents, where each agent can be assigned at most one
object. Each agent finds only a subset of the objects acceptable and derives a value if
any of these objects are assigned to him. Such a domain easily satisfies the assumptions
of a rich dichotomous domain. Among the class of dominant strategy incentive com-
patible and individually rational mechanisms, we identify a mechanism that results in
maximum expected revenue for the designer in this problem. Our optimal mechanism
extends the optimal auction for the single object case in Myerson (1981).

Our derivation of an optimal mechanism for the one-sided matching problem with
dichotomous preferences is a contribution to the optimal multidimensional mecha-
nism design literature. The multidimensional optimal mechanism design problem is
believed to be a hard problem. There is a long literature to it after Myerson’s semi-
nal work on the single object auction; see Rochet and Stole (2003) for a survey. This
literature usually considers Bayes–Nash randomized implementation. The usual ap-
proach in this literature is to consider specific multidimensional domains (sometimes
with relaxed incentive constraints) and then extend Myerson’s methodology to such set-
tings; see Armstrong (1996), Blackorby and Szalay (2007), Iyengar and Kumar (2008),

4For precise definitions of these terms, we refer the reader to Babaioff et al. (2005).
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Pai and Vohra (2010), and Manelli and Vincent (2007). Our optimal mechanism de-
sign looks at a different multidimensional domain with deterministic dominant strategy
implementation.

2. The single agent model

We consider a single agent model now. Later, we show how we can extend our results
to n agents. The interpretation of the single agent model is that the type profile of other
agents is fixed and we are looking at the image of an allocation rule where this agent’s
type is changing.

The single agent is denoted by i. There is a finite set of alternatives A. The type of
agent i is a vector in R

|A|. We denote the type of agent i as ti and denote the value of any
alternative a ∈ A at type ti as ti(a). The set of all possible types of agent i is denoted as Di

and is referred to as the domain. Agent i has quasilinear utility functions, i.e., if he pays
a monetary transfer of pi and the alternative he receives is a ∈ A, then his net utility is
given by ti(a)−pi. We also assume private values, so when we consider the model with
n agents, the net utility of every agent is completely determined by his own type and his
own monetary transfers.

An allocation rule f is a mapping f : Di → A. A payment function of agent i is a
mapping pi : Di → R.

Definition 1. An allocation rule f is implementable (in dominant strategies) if there
exists a payment function pi such that for every si� ti ∈ Di,

si(f (si))−pi(si) ≥ si(f (ti))−pi(ti)�

In such a case, we say that pi implements f .

Note that our notion of implementation is of dominant strategies. We discuss a fa-
miliar notion of monotonicity for the allocation rules and its relation to
implementability.

Definition 2. An allocation rule f is K-cycle monotone, where K ≥ 2 is a positive inte-
ger, if for every finite sequence of types (t1

i � t
2
i � � � � � t

k
i ) with k≤K, we have

k∑
j=1

[
t
j
i (f (t

j
i ))− t

j
i (f (t

j−1
i ))

] ≥ 0� (1)

where t0
i ≡ tki . An allocation rule f is cyclically monotone if it is K-cycle monotone for all

positive integers K ≥ 2.

Remark. If an allocation rule f is (K + 1)-cycle monotone, then it is also K-cycle
monotone.
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In a seminal work, Rochet (1987) shows that an allocation rule is implementable
if and only if it is cyclically monotone; also see Rockafellar (1970). The explicit graph
theoretic interpretation is due to Gui et al. (2004), who associate a type graph with every
domain Di, every set of alternatives A, and every allocation rule f : Di → A. This type
graph contains the set of types as the set of nodes and is a complete graph (i.e., a directed
edge exists from every node to every other node). The length of the edge from node si to
ti is

�(si� ti) := ti(f (ti))− ti(f (si))�

Then it is easy to notice that inequality (1) requires the length of the cycle (t1
i � � � � � t

k
i � t

1
i )

to be nonnegative.
Though mathematically elegant, this characterization of implementability involves

verifying the length of cycles that involve an arbitrary number of nodes. When the set
of alternatives is finite, as is assumed here, one needs only to verify cycles involving no
more than |A| nodes. The following result is folklore, but, to our knowledge, is not stated
explicitly in the literature.

Lemma 1. An allocation rule f is implementable if and only if it is |A|-cycle monotone,
where A is a finite set of alternatives.

The proof is given in the Appendix.
The most general result in the literature, due to Ashlagi et al. (2010, supplementary

material), shows that if the closure of a domain is convex, then 2-cycle monotonicity is
sufficient for implementation. This is a significant improvement over Lemma 1.

3. Implementation in dichotomous domains

We now introduce the domain we study in this paper. We call this domain the dichoto-
mous domain.

Definition 3. A type ti ∈ R
|A| is called a dichotomous type if there exists a positive

real number v(ti) ∈ R++ and a nonempty subset of alternatives A(ti) ⊆ A such that
ti(a) = v(ti) if a ∈A(ti) and ti(a) = 0 if a /∈A(ti).

The alternatives in A(ti) are called acceptable alternatives of agent i at ti and the
positive real number v(ti) is called the value of agent i at ti. The set A(ti) is referred to as
the acceptable set of agent i at ti.

We refer to the tuple of acceptable set and value as the type of the agent. A domain
Di ⊆ R

|A|
+ is called a dichotomous domain if every ti ∈ Di is a dichotomous type. For

simplicity, we sometimes write the dichotomous type ti as (v(ti)�A(ti)).
As an example, consider A = {a�b� c�d}. The possible acceptable sets of agent i are all

nonempty subsets of A. For instance, if {a�d} is the acceptable set with value 5, then the
type of agent i is (5� {a�d}). An allocation rule selects one of the alternatives in A, and,
in this case, agent i gets a value of 5 if a or d is selected and gets zero value otherwise.
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Note that there may be restrictions in a dichotomous domain. For example, a par-
ticular alternative in A may never be acceptable to the agent: such an alternative always
has value zero and is referred to as a worthless alternative. For example, in the single-
minded combinatorial auction setting, one alternative is to give no object to the agent.
Such an alternative always gives zero value to the agent and is worthless.

Another restriction can be that if a particular alternative is in the acceptable set, then
some other alternative also has to be in the acceptable set. Later, we give specific do-
mains where such restrictions are natural. However, our general result is not influenced
by any such restrictions.

The dichotomous domain is not convex as the following example illustrates.

Example 1. Let A = {a�b� c}. Consider a type where the acceptable set is {a�b} and the
value is 2, ti = (2�2�0), and another type where the acceptable set is {a� c} and the value
is 3, si = (3�0�3). Now (si + ti)/2 = (2�5�1�1�5), which is not a dichotomous type. ♦

As a result, the earlier results in the literature that 2-cycle monotonicity is equivalent
to implementability do not apply in dichotomous domains.

3.1 Generation monotonicity

We examine the implication of implementability in dichotomous domains. Unless
stated otherwise, Di is a dichotomous domain in this section. The outcome of an allo-
cation rule at a dichotomous type is easy to describe: an agent either gets an alternative
in his acceptable set or gets something outside his acceptable set. For every alternative
a ∈ A and for every dichotomous type ti, we define the indicator function δ(a� ti) ∈ {0�1},
where δ(a� ti) = 1 implies that a ∈ A(ti) and δ(a� ti) = 0 implies that a /∈ A(ti). Note that
in the type graph of a dichotomous domain, the length of the edge from type si to type ti
can be written as

�(si� ti) = ti(f (ti))− ti(f (si)) = v(ti)
[
δ(f (ti)� ti)− δ(f (si)� ti)

]
�

We now describe a new monotonicity property in dichotomous domains and show
it to be equivalent to implementability. For this, we need some notation. Given an allo-
cation rule f , a type ti is satisfied by si if δ(f (si)� ti) = 1. If δ(f (ti)� ti) = 1, we say that ti is
satisfied (by itself). If ti is not satisfied, then we say it is unsatisfied.

As an example, consider A = {a�b� c�d} and an allocation rule f . Let si = (2� {a�b})
and f (si) = c. In this case, si is unsatisfied. Let ti = (3� {b�d}) and f (ti) = b. In this case,
ti is satisfied. Further, si is satisfied by ti since δ(f (ti)� si)= 1.

The idea of satisfaction comes from analyzing lengths of edges in the type graph. If
�(si� ti) < 0 for some si� ti, then it must be that ti is unsatisfied and it is satisfied by si.

We now define the notion of generations of unsatisfied types. For an allocation rule
f , define the first generation types of an unsatisfied type ti ∈ Di as

G
f
1(ti) = {

si ∈ Di :δ(f (si)� ti)= 1
}
�
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So G
f
1(ti) contains all the types that satisfy ti. Of course, it does not contain ti since we

consider generations of unsatisfied types only. Also, Gf
1(ti) may be empty.

Having defined the kth-generation types of the unsatisfied type ti, we define the
(k+ 1)st generation types of ti as

G
f
k+1(ti) =

{
si ∈ Di

∖ k⋃
j=1

G
f
j (ti) :δ(f (si)� t̄i)= 1 for some t̄i ∈G

f
k(ti)

}
�

So G
f
k+1(ti) contains all the types that satisfy a kth-generation type of ti. Note that for

every unsatisfied type ti and every other type si, either si is not in any generation of
ti or si belongs to a unique generation of ti. It is possible that for an unsatisfied type

ti ∈ Di, G
f
k(ti) = ∅ for some k. Further, if ti is unsatisfied and si ∈ G

f
k(ti) for some gen-

eration k, then there is no restriction that si itself is satisfied or not. We show later
that implementability requires si to be satisfied. Finally, whenever Gf

k(ti) = ∅, we have

G
f
k+1(ti)= ∅.

We give an example to clarify the concept of generations.

Example 2. Let A = {a�b� c}. Suppose ti is a dichotomous type with v(ti) = 2 and
A(ti) = {a}. Consider an allocation rule f such that f (ti) = b. Hence, ti is not satis-
fied. Now consider a type t̄i with v(t̄i) = 3 and A(t̄i) = {a�b}, and let f (t̄i) = a. Hence,

f (t̄i) ∈ A(ti) and this implies that t̄i ∈ G
f
1(ti). Now consider another type t̂i such that

v(t̂i) = 1 and A(t̂i) = {b}, and let f (t̂i) = b. Then t̂i satisfies t̄i but it does not satisfy ti.

Since t̄i satisfies ti, we have t̂i ∈G
f
2(ti). ♦

We show that the number of generations of an unsatisfied type for any allocation
rule is finite.

Lemma 2. Suppose f : Di → A is an allocation rule. For all ti ∈ Di such that f (ti) /∈ A(ti),

if Gf
k(ti) �= ∅, then k≤ |A|.

Proof. Fix any f : Di → A, and consider ti ∈ Di such that f (ti) /∈ A(ti). Suppose

G
f
k(ti) �= ∅ and assume, to the contrary, k> |A|. Then for each positive integer j ≤ k, we

pick some t
j
i ∈G

f
j (ti). Now consider the set of types {t1

i � � � � � t
k
i }. Since |A| <k, there must

exist at least two types, say t
j
i and t

j′
i with j, j′ ∈ {1� � � � �k}, such that f (tji ) = f (t

j′
i ). Then

it must be that tji and t
j′
i belong to the same generation of ti. This is a contradiction. �

For an allocation rule f , define the generation number of an unsatisfied type ti in

f as the largest positive integer γf (ti) such that Gf

γf (ti)
(ti) �= ∅. By Lemma 2, it is well

defined. We now define a monotonicity property using generations of types and show
its connection to cycle monotonicity.

Definition 4. An allocation rule f is K-generation monotone, where K is a positive
integer, if for every unsatisfied type ti ∈ Di and for every positive integer k ≤ K, the fol-

lowing statements hold for all si ∈G
f
k(ti).
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• Generation self-satisfaction (GSS): Type si is satisfied.

• Monotonicity (MON): We have v(si) ≥ v(ti).

An allocation rule f is generation monotone if it is K-generation monotone for all posi-
tive integers K.

We strengthen the notion of generation monotonicity below.

Definition 5. An allocation rule f is strong K-generation monotone, where K is a posi-
tive integer, if it is K-generation monotone, and for every unsatisfied type ti ∈ Di and for

every positive integer k≤K, the following statement holds for all si ∈G
f
k(ti).

• No rebirth (NR): Type ti does not satisfy si.

An allocation rule f is strong generation monotone if it is strong K-generation monotone
for all positive integers K.

Consider the allocation rule in Example 2. This allocation rule fails 2-generation

monotonicity. To see this, note that t̂i ∈G
f
2(ti) but v(t̂i) = 1 < v(ti) = 2, violating MON. It

also fails strong 1-generation monotonicity because t̄i ∈G
f
1(ti) but ti satisfies t̄i, violating

NR.
Strong generation monotonicity and generation monotonicity are related in an ob-

vious way.

Lemma 3. Suppose f is (K + 1)-generation monotone. Then it is strong K-generation
monotone.

Proof. Suppose f is (K + 1)-generation monotone. Assume, to the contrary, that f is
not strong K-generation monotone. Then, for some ti such that f (ti) /∈ A(ti) and for

some si ∈ G
f
k(ti), where k ≤ K, we have that ti satisfies si (a violation of NR). Then

ti ∈ G
f
k+1(ti). Since f is (k + 1)-generation monotone, ti satisfies itself (GSS). This is

a contradiction. �

Lemmas 2 and 3 immediately establish the following corollary.

Corollary 1. An allocation rule is strong generation monotone if and only if it is gener-
ation monotone.

To understand why generation monotonicity may be linked to implementability (cy-
cle monotonicity), consider 2-cycle monotonicity. Consider two types ti and si. The
length of the 2-cycle between si and ti is

v(ti)
[
δ(f (ti)� ti)− δ(f (si)� ti)

] + v(si)
[
δ(f (si)� si)− δ(f (ti)� si)

]
�

For this cycle to have nonnegative length, we need to ensure that when one of the edges
has negative length, the other edge must have sufficiently large positive length. Suppose
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the edge length �(si� ti) < 0. Then it must be that δ(f (ti)� ti) = 0 and δ(f (si)� ti) = 1, i.e.,

si ∈ G
f
1(ti). The length of this edge is −v(ti). For the 2-cycle to have nonnegative length,

we must have δ(f (si)� si) = 1 (GSS), δ(f (ti)� si) = 0 (NR), and v(si) ≥ v(ti) (MON). This
intuition carries forward to higher generations. The following proposition establishes
the exact connection between generation monotonicity and cycle monotonicity.

Proposition 1. For any positive integer K ≥ 2, an allocation rule is K-cycle monotone
if and only if it is strong (K − 1)-generation monotone.

The long proof is given in the Appendix.
We now give a characterization of implementable allocation rules using generation

monotonicity. For this, we define certain notions. The generation number of an alloca-
tion rule f : Di → A is a positive number defined as follows. If every ti ∈ Di is satisfied or

every unsatisfied ti ∈ Di is not satisfied by any other type (i.e., Gf
1(ti) = ∅ for all ti), then

we let γf = 1; else,

γf = max
ti∈Di : f (ti)/∈A(ti)

γf (ti)�

By Lemma 2, the value of γf ≤ |A|. We are now ready to state our main characterization.

Theorem 1. Suppose f : Di → A is an allocation rule with generation number γf . Then
the statements

(i) f is implementable

(ii) f is (γf + 1)-cycle monotone

(iii) f is γf -generation monotone

are equivalent.

Proof. (i) ⇒ (ii) follows from the fact that implementability implies cycle monotonic-
ity. For (ii) ⇒ (iii), note that if f is (γf + 1)-cycle monotone, by Proposition 1, it is strong
γf -generation monotone and, hence, γf -generation monotone. Finally, for (iii) ⇒ (i),
suppose f is γf -generation monotone. Then, by definition of γf , f is generation mono-
tone (this follows from the observation that for any positive integer k > γf and for any

ti such that f (ti) /∈ A(ti), we have G
f
k(ti) = ∅). In that case, by Lemma 3, f is strong

generation monotone. By Proposition 1, f satisfies cycle monotonicity. Hence, f is
implementable. �

Theorem 1 serves as the building block for our main result in Section 4. In the work-
ing paper version of this paper (Mishra and Roy 2012), we identify specific dichotomous
domains where we can find the generation number and, using Theorem 1, we get im-
mediate characterizations in these domains.
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4. Rich dichotomous domain

We now move beyond the general characterization in Theorem 1. We impose an addi-
tional richness assumption on the domain and use Theorem 1 to get a simpler charac-
terization of implementability in these domains. Our richness condition rules out some
restrictions that may arise in dichotomous domains.

Definition 6. A dichotomous domain Di is rich if

(a) the set of possible values of a dichotomous type is an interval V = (0�β),5 where
β ∈ R++ ∪ {∞}

(b) for every alternative a ∈ A that is not worthless 6 and every possible value x ∈ V ,
there is a dichotmous type ti such that v(ti) = x and A(ti)= {a}.

Condition (a) is plausible in almost all dichotomous domains. However, condition
(b) may not be satisfied in some domains. In particular, it is clearly violated in the single-
minded combinatorial auction domain. Recall that, in the single-minded domain, an
auctioneer is selling a set of m objects and the bidder is interested only in a subset of
objects, called his favorite bundle. The set of alternatives in this problem is the set of all
subsets of objects. However, if a single-minded bidder has a particular subset of objects
S in his acceptable set, then he must have every superset of S in his acceptable set. This
is a particular restriction on this dichotomous domain, which rules out richness.

There are many interesting domains where condition (b) holds. For example, it holds
in all the collective choice problems we discussed in Section 1. It also holds in some
private good allocation problems that we discussed in Section 1, e.g., in the scheduling
problem and in the matching problem. Thus, it covers a wide variety of dichotomous
domains.

The main result of this section gives a characterization of implementable allocation
rules in rich dichotomous domains.

Theorem 2. For any allocation rule f : Di → A, where Di is a rich dichotomous domain,
the statements

(i) f is implementable

(ii) f is 3-cycle monotone

(iii) f is 2-generation monotone

are equivalent.

The proof of Theorem 2 relies on a particular type of payment function that we con-

struct. For this, we define a function κ
f
i : A → R+ for an allocation rule f as follows.

5Our results are true even if we consider intervals of the form (0�β].
6As defined earlier, an alternative is worthless if it can never be in the acceptable set at any dichotomous

type.
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If f (si) �= a for all si with A(si) = {a}, then we let κf
i (a) = 0. Also, if a is a worthless

alternative, then κ
f
i (a) = 0. Otherwise, for every other a ∈ A, let

κ
f
i (a) = inf{v(si) ∈ V : si ∈ Di� f (si) = a�A(si)= {a}}� (2)

In words, κf
i (a) is the minimum value at which any dichotomous type containing only a

in the acceptable set is satisfied. Because of our richness assumption, for all a ∈ A, κf
i (a)

is well defined. Note that κf
i (a) ≥ 0 for all a ∈ A.

Now we define a payment function p∗
i as follows. Given an allocation rule f , for

every si ∈ Di, define

p∗
i (si) = κ

f
i (f (si))δ(f (si)� si)�

Note that an agent pays zero if he is not satisfied at a type.

Proposition 2. Suppose f : Di → A is 2-generation monotone, where Di is a rich di-
chotomous domain. Then p∗

i implements f .

Proof. To show that p∗
i implements f , we consider two types ti and si in Di. We show

that

v(ti)δ(f (ti)� ti)−p∗
i (ti) ≥ v(ti)δ(f (si)� ti)−p∗

i (si)

or

[
v(ti)− κ

f
i (f (ti))

]
δ(f (ti)� ti) ≥ v(ti)δ(f (si)� ti)− κ

f
i (f (si))δ(f (si)� si)�

The left-hand side is referred to as the payoff from truth and the right-hand side is re-
ferred to as the payoff from lie.

We consider various cases.

Case 1. Suppose δ(f (ti)� ti) = 0 and δ(f (si)� ti) = 0. Then the payoff from truth is zero
and the payoff from lie is nonpositive. Hence, we are done.

Case 2. Suppose δ(f (ti)� ti) = 0 and δ(f (si)� ti) = 1. Since si ∈ G
f
1(ti), by GSS,

δ(f (si)� si)= 1. Hence, the payoff from truth is 0 and the payoff from lie is

v(ti)− κ
f
i (f (si)). Assume, to the contrary, that v(ti) > κ

f
i (f (si)). Consider a type s̄i ∈ Di

such that v(s̄i) = κ
f
i (f (si)) + ε < v(ti), where ε > 0 but arbitrarily close to zero and

A(s̄i) = {f (si)}. By definition of κf
i , there is some type ŝi with A(ŝi) = {f (si)} and v(ŝi)

arbitrarily close to κ
f
i (f (si)) such that f (ŝi) = f (si). Then 1-generation monotonicity

implies that f (s̄i) = f (ŝi) = f (si). Since f (si) ∈ A(ti), s̄i satisfies ti. But δ(f (ti)� ti) = 0
implies that s̄i ∈ G

f
1(ti). By MON, v(s̄i) ≥ v(ti). This is a contradiction. This shows that

v(ti)− κ
f
i (f (si)) ≤ 0 and, hence, we are done.
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Case 3. Suppose δ(f (ti)� ti) = 1 and δ(f (si)� ti) = 0. In such a case, the payoff from lie

is nonpositive. The payoff from truth is v(ti) − κ
f
i (f (ti)), which we show to be nonneg-

ative. Assume, to the contrary v(ti) < κ
f
i (f (ti)). Consider a type t̄i ∈ Di such that v(t̄i) =

v(ti) + ε, where ε > 0 and arbitrarily close to zero, and A(t̄i) = {f (ti)}. If f (t̄i) �= f (ti),

then ti ∈ G
f
1(t̄i). But v(t̄i) > v(ti) violates MON. Hence, f (t̄i) = f (ti). By definition of κf

i ,

v(t̄i)≥ κ
f
i (f (ti)). This is a contradiction since ε is sufficiently close to zero.

Case 4. Suppose δ(f (ti)� ti) = 1 and δ(f (si)� ti)= 1. We consider two subcases.
(a) Suppose δ(f (si)� si) = 0. Then the payoff from truth is v(ti) − κ

f
i (f (ti)) and the

payoff from lie is v(ti). We show that κ
f
i (f (ti)) = 0. Assume, to the contrary, that

κ
f
i (f (ti)) > ε > 0, where ε is arbitrarily close to zero. Consider another type t̄i ∈ Di such

that v(t̄i) = κ
f
i (f (ti)) − ε and A(t̄i) = {f (ti)}. By definition of κf

i , f (t̄i) �= f (ti). Hence,

ti ∈ G
f
1(t̄i) and si ∈ G

f
2(t̄i) (since f (si) ∈ A(ti)). By GSS, δ(f (si)� si) = 1. This is a contra-

diction. Hence, κf
i (f (ti)) = 0 and we are done.

(b) Suppose δ(f (si)� si) = 1. Then the payoff from truth is v(ti) − κ
f
i (f (ti)) and the

payoff from lie is v(ti) − κ
f
i (f (si)). We show that κf

i (f (ti)) ≤ κ
f
i (f (si)) and we are done.

If f (ti) = f (si), then obviously we are done. Else, assume, to the contrary, κf
i (f (ti)) >

κ
f
i (f (si)). Suppose κ

f
i (f (ti))− κ

f
i (f (si)) = ε > 0. Then we consider two types t̄i and s̄i as

follows:

v(t̄i) = κ
f
i (f (ti))− 1

3ε

v(s̄i) = κ
f
i (f (si))+ 1

3ε

A(t̄i) = {f (ti)}
A(s̄i) = {f (si)}�

By definition of κf
i , f (t̄i) �= f (ti) and f (s̄i) = f (si). So ti satisfies t̄i and s̄i satisfies ti (since

f (si) ∈A(ti)). Hence, s̄i ∈G
f
2(t̄i). By MON, v(s̄i) ≥ v(t̄i). This is a contradiction. �

The proof of Theorem 2 is now immediate.

Proof of Theorem 2. Implementability implies 3-cycle monotonicity. Proposition 1
shows that 3-cycle monotonicity implies strong 2-generation monotonicity, which im-
plies 2-generation monotonicity. Proposition 2 shows that 2-generation monotonicity
implies implementability. �

4.1 Two-cycle monotonicity is not sufficient

In this section, we give an example of an allocation rule in the rich dichotomous domain
that satisfies 2-cycle monotonicity but is not implementable. Let A = {a�b� c}. An allo-
cation rule f is shown in Figure 1, where all possible acceptable sets are depicted along
the top. The allocation rule f has a cutoff for each acceptable set. For any acceptable
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Figure 1. A 2-cycle monotone allocation rule that is not 3-cycle monotone.

set, a cutoff specifies a value below which the type is not satisfied and above which the
type is satisfied. For example, in Figure 1, the cutoff for acceptable set {a} is 5, for {b} is
2, for {b� c} is zero, and so on. In Figure 1, these cutoffs are indicated by horizontal dark
lines that correspond to each acceptable set. The outcomes of the allocation rule below
and above these cutoffs are shown in Figure 1. The dashed line indicates the boundary
where outcomes change (for a given acceptable set).

One can verify that f is 1-generation monotone. It is also strong 1-generation mono-
tone, i.e., it satisfies NR. To see this, note that the types that are not satisfied in f have
acceptable set {a} or {b} or {a�b}, and the outcomes at these types are c. Hence, NR is
satisfied. By Proposition 1, f is 2-cycle monotone.

But f is not 2-generation monotone and, hence, is not implementable. To see this,
consider a type t0

i such that v(t0
i ) = 5 − ε, where ε ∈ (0�3/2), and A(t0

i ) = {a}. By defini-
tion, f (t0

i ) = c. Now, consider a type t1
i such that v(t1

i ) = 5 + ε and A(t1
i ) = {a�b}. By def-

inition, f (t1
i ) = a. Hence, t1

i ∈ G
f
1(t

0
i ). Finally, consider a type t2

i such that v(t2
i ) = 5 − 2ε

and A(t2
i ) = {a�b}. By definition, f (t2

i ) = b. Hence, t2
i ∈ G

f
2(t

0
i ). By 2-generation mono-

tonicity, we must have v(t2
i ) ≥ v(t0

i ). But this is not true. Indeed, the 3-cycle involving
the nodes (t0

i � t
1
i � t

2
i � t

0
i ) has a length of −ε < 0.

In Section 4.3, we revisit this example and give some intuition on why 2-cycle mono-
tonicity is not sufficient but 3-cycle monotonicity is equivalent to implementability in
rich dichotomous domains.

4.2 A characterization using cutoffs

A remarkable feature of Myerson’s monotonicity characterization in the setting of single
object auctions is that it implies a simpler characterization using cutoffs. In particular, it
says that if an allocation rule (which is deterministic) is implementable, then there must
exist a cutoff value for the agent such that below this cutoff value, the agent does not get
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the object and above this value, he does. The aim of this section is to give such a cutoff-
based characterization in rich dichotomous domains. A cutoff-based characterization
is simple to understand.

First, we define the notion of cutoffs in rich dichotomous domains. It is similar to
the κ

f
i that we defined earlier.

Definition 7. A cutoff is a mapping κi : A → R+ ∪ {∞} such that κi(a) = 0 for all a ∈ A
that are worthless.

Note that there may be alternatives that are not worthless and still have zero cutoff.
If κi(a) = 0, then a is called a fulfilling alternative of cutoff κi. A cutoff κi is a feasible
cutoff if there is some alternative a ∈ A that is fulfilling. Feasibility is trivially satisfied if
there is a worthless alternative.

Given cutoffs on each alternative, we can define cutoffs on any acceptable set (i.e.,
any nonempty subset of alternatives). We allow for the fact that not every subset of
alternatives may be an acceptable set in certain rich dichotomous domains. Indeed, our
richness assumption requires only that singleton alternatives (which are not worthless)
can be acceptable sets. Define the set of subsets of alternatives that can be acceptable
sets as


 := {S ⊆ A :S = A(ti) for some ti ∈ Di}�
Note that if S ∈ 
, then S does not contain any worthless alternative. By our richness
assumption, if S ∈ 
, then for all possible values x, (x�S) ∈ Di. Also, if a is not a worthless
alternative, then richness implies that {a} ∈ 
.

Now fix a cutoff mapping κi. For any acceptable set S ∈ 
, define the cutoff induced
by κi on S as

Cκi(S) = min
a∈S

κi(a)� (3)

So the cutoff for an acceptable set S is the minimum over cutoffs of the alternatives in S.
Intuitively, cutoffs are like the prices of acceptable sets: prices for individual alternatives
define prices for acceptable sets.

Example 3. Let A = {a�b� c} and assume that there are no worthless alternatives. Con-
sider κi such that κi(a) = 5, κi(b) = 2, and κi(c) = 0. By (3), Cκi({a}) = 5, Cκi({b}) =
Cκi({a�b}) = 2, and Cκi(S) = 0 for all S /∈ {{a}� {b}� {a�b}}. ♦

For any acceptable set S ∈ 
, let

W κi(S) := {a ∈ S :Cκi(S) = κi(a)}�
The set W κi(S) contains all the alternatives in S that have the same cutoff as S itself.
Note that W κi(S) �= ∅. In Example 3, W κi({a�b}) = {b} and W κi({a�b� c}) = {c}. Using the
price interpretation for cutoffs, the W κi set identifies the alternatives in the acceptable
set that are the cheapest.
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Further, for every S ∈ 
, let

Lκi(S) = {a /∈ S :κi(a) = 0}�
The set Lκi(S) contains all the alternatives outside S that are fulfilling. This set can be
potentially empty. For instance, in Example 3, Lκi({b� c}) = ∅ but Lκi({a}) = {c}. In-
tuitively, using the price interpretation for cutoffs, the Lκi set identifies the zero price
alternatives outside the acceptable set. Note that by the definition of feasible cutoff κi,
for any acceptable set S ∈ 
, if Lκi(S) = ∅, then Cκi(S) = 0, and if Cκi(S) > 0, then there
is some fulfilling alternative a /∈ S such that κi(a) = 0, and this implies that Lκi(S) �= ∅.

Now we are ready to formally define a cutoff-based rule, generalizing the idea of a
cutoff-based rule in single object auction setting.

Definition 8. An allocation rule f is cutoff-based if there exists a feasible cutoff κi such
that at every dichotomous type ti ≡ (A(ti)� v(ti)),

(i) if v(ti) > Cκi(A(ti)), then f (ti) ∈A(ti), and if v(ti) < Cκi(A(ti)), then f (ti) /∈ A(ti)

(ii) if f (ti) ∈A(ti), then f (ti) ∈W κi(A(ti)), and if f (ti) /∈A(ti), then f (ti) ∈Lκi(A(ti)).

In summary, a cutoff-based allocation rule has the following features.

• It specifies cutoffs for each alternative.

• The cutoff for any acceptable set is just the minimum of cutoffs of all the alterna-
tives in that acceptable set (3).

• For any type, if the value is above the cutoff for that acceptable set, then the type
is satisfied and an alternative in the W κi set is chosen.

• For any type, if the value is below the cutoff for that acceptable set, then the type
is unsatisfied and an alternative in the Lκi set is chosen.

Note how this generalizes the idea of a cutoff-based allocation rule in the single ob-
ject auction model. This leads us to the main result of this section.

Theorem 3. Suppose Di is a rich dichotomous domain. An allocation rule f : Di → A is
implementable if and only if it is cutoff-based.

The proof exploits the characterization in Theorem 2. We prove a series of claims
that show the implications of 1-generation monotonicity and 2-generation monotonic-
ity. These small steps lead to the characterization of the cutoff-based rule.

Proof of Theorem 3. Let f : Di → A be an allocation rule, where Di is a rich dichoto-
mous domain. Suppose f is implementable. By Theorem 2, f is 2-generation monotone.
Then we can define the cutoffs as follows. For every S ∈ 
, let Ci(S) = ∞ if for all ti ∈ Di

with A(ti) = S, we have f (ti) /∈ S. Else, define

Ci(S) = inf{v(ti) : ti ∈ Di�A(ti) = S� f (ti) ∈ S}�
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Since the domain Di is rich, for every ti ∈ Di, we have that v(ti) ∈ V = (0�β) and this
ensures that Ci(S) ≥ 0. Now we make a series of claims.

Claim 1. If f is 1-generation monotone, then for every ti ∈ Di, f (ti) ∈ A(ti) implies that
v(ti)≥ Ci(A(ti)) and f (ti) /∈ A(ti) implies that v(ti) ≤ Ci(A(ti)).

Proof. The first part follows from the definition of Ci. For the second part, suppose
that f (ti) /∈ A(ti) and v(ti) > Ci(A(ti)). By definition of Ci(A(ti)), there is some type si
such that v(si) is arbitrarily close to Ci(A(ti)) and A(si) = A(ti) such that f (si) ∈ A(ti).

Hence, si ∈ G
f
1(ti). By 1-generation monotonicity, v(si) ≥ v(ti), which is a contradiction

since v(si) is arbitrarily close Ci(A(ti)). �

Claim 2. If f is 1-generation monotone, then for every S ∈ 
,

Ci(S)= min
a∈S

Ci({a})�

Proof. Consider any S ∈ 
 and let mina∈S Ci({a}) = Ci({b}). Assume, to the contrary,
that Ci(S) < Ci({b}). Then consider the type ti, where A(ti) = S and v(ti) = Ci(S) + ε <

Ci({b}) (such an ε > 0 clearly exists). By definition, f (ti) ∈ S. Let f (ti) = c. Then Ci({c}) >
v(ti) implies that there is some type si with A(si) = {c} and v(si) = Ci({c}) − ε′ > v(ti)

such that f (si) �= c. Hence, ti satisfies si and ti ∈ G
f
1(si). But 1-generation monotonicity

implies that v(ti) ≥ v(si), which is a contradiction.
Hence, Ci(S) ≥ Ci({b}). Assume, to the contrary, that Ci(S) > Ci({b}). Consider

two types si and ti such that A(si) = S and A(ti) = {b} but v(si) = Ci(S) − ε > v(ti) =
Ci({b}) + ε′ (clearly, such ε� ε′ > 0 exist). By definition, f (si) /∈ S and f (ti) = b. This im-

plies that ti ∈ G
f
1(si). But 1-generation monotonicity implies that v(ti) ≥ v(si). This is a

contradiction. �

Using these claims, we can now define the following well defined cutoff rule. For
every a ∈ A, let

κi(a) =Ci({a})

if a is not worthless and let κi(a) = 0 if a is worthless.
It remains to show that κi is a feasible cutoff. For this, we use the following claim.

Claim 3. Suppose ti is a dichotomous type such that f (ti) /∈ A(ti). If f is 1-generation
monotone, then f (ti) ∈Lκi(A(ti)).

Proof. Suppose ti is a dichotomous type such that f (ti) = a /∈ A(ti). Assume, to the
contrary, that a /∈ Lκi(A(ti)). This means κi(a) > 0 and, hence, a is not a worthless al-
ternative. Consider a dichotomous type t̄i such that A(t̄i) = {a} and v(t̄i) < κi(a). By

definition, f (t̄i) �= a. Hence, ti ∈ G
f
1(t̄i). By 1-generation monotonicity (GSS), ti must

satisfy itself. This is a contradiction. �
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Now, to see that κi is a feasible cutoff, assume, to the contrary, that it is not. Then
for every alternative a ∈ A, κi(a) > 0. Pick any a ∈ A. Since κi(a) > 0, for any dichoto-
mous type ti such that v(ti) < κi(a) and A(ti) = {a}, f (ti) �= a (by Claim 1). By Claim 3,
f (ti) ∈ Lκi({a}). But by our assumption, Lκi({a}) = ∅. This is a contradiction.

We now prove another claim.

Claim 4. Suppose ti is a dichotomous type such that f (ti) ∈ A(ti). If f is 2-generation
monotone, then κi(f (ti)) ≤ κi(a) for all a ∈A(ti).

Proof. Let ti be a dichotomous type such that A(ti) = S and f (ti) = b ∈ S. Choose
a ∈ S \ {b}. Assume, to the contrary, that κi(b) − κi(a) > ε > 0 for some ε. Consider two
dichotomous types t̄i and t̂i such that

v(t̄i) = κi(b)− 1
2ε� A(t̄i) = {b}

v(t̂i) = κi(a)+ 1
2ε� A(t̂i)= {a}�

By definition, f (t̄i) �= b and f (t̂i) = a. Hence, ti ∈ G
f
1(t̄i) and t̂i ∈ G

f
2(t̄i). By 2-generation

monotonicity, κi(a) + ε/2 ≥ κi(b) − ε/2. Hence, κi(b) − κi(a) ≤ ε, which is a
contradiction. �

Claim 4 establishes that if for any dichotomous type ti, we have f (ti) ∈ A(ti), then
κi(f (ti)) = mina∈A(ti) κi(a). Hence, f (ti) ∈ W κi(A(ti)). This establishes that if f is imple-
mentable, then it is cutoff-based.

We now show that if f is cutoff-based, then it is implementable. Let the feasible
cutoff corresponding to f be κi. We show that f is 2-generation monotone. Consider ti
such that f (ti) /∈ A(ti) and let si ∈ G

f
1(ti). Assume, to the contrary, that f (si) /∈ A(si). By

the definition of the cutoff-based rule, f (si) ∈ Lκi(A(si)). This implies that κi(f (si)) = 0.
But f (si) ∈ A(ti) implies that mina∈A(ti) κi(a) = Cκi(A(ti)) = 0. Since, f is cutoff-based,
this means that f (ti) ∈ A(ti). This is a contradiction. So f (si) ∈ A(si). Now, using the
definition of the cutoff-based rule and the definition of Cκi(·), gives

v(si) ≥Cκi(A(si)) = κi(f (si)) ≥ Cκi(A(ti)) ≥ v(ti)�

This shows that f is 1-generation monotone.

Now, consider s̄i such that s̄i ∈ G
f
2(ti). Assume, to the contrary, that f (s̄i) /∈ A(s̄i). In

that case, κi(f (s̄i)) = 0. But f (s̄i) ∈ A(si) implies that Cκi(A(si)) = 0. But we know that
si satisfies itself and, hence, κi(f (si)) = Cκi(A(si)) = 0 (by the definition of the cutoff-
based rule). Then consider any type t̄i with A(t̄i)= {f (si)} and 0 < v(t̄i) < v(ti). By defini-

tion, f (t̄i) = f (si) ∈ A(ti). Hence, t̄i ∈ G
f
1(ti). By 1-generation monotonicity, v(t̄i) ≥ v(ti).

This is a contradiction. Hence, f (s̄i) ∈ A(s̄i). By the definition of the cutoff-based rule
and the definition of Cκi(·), we have

v(s̄i)≥ κi(f (s̄i)) ≥ Cκi(A(si)) = κi(f (si)) ≥ Cκi(A(ti)) ≥ v(ti)�

This shows that f is 2-generation monotone. �
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4.3 Discussions

Why 3-cycle monotonicity? The 3-cycle monotonicity characterization critically relies on
the richness assumption of dichotomous domains. Without the richness assumption,
this need not hold.7 Richness allows us to define payments as in (2). Without richness,
the associated payments of an implementable allocation rule in a dichotomous domain
can be quite complicated.

One natural question then is, Why is 2-cycle monotonicity not sufficient in a rich di-
chotomous domain? The proof of Theorem 3 sheds some light onto this. The proof
shows what 1-generation monotonicity alone gives us and the additional implication
of 2-generation monotonicity. One-generation monotonicity shows that the allocation
rule must have cutoffs for each alternative (Claim 1) and that the cutoff for any accept-
able set is the minimum over the cutoffs of alternatives in that acceptable set (Claim 2).
Further, 1-generation monotonicity gives us that when a type is not satisfied (i.e., when
the value is below the cutoff of its acceptable set), the alternative chosen by the alloca-
tion rule must be an alternative with zero cutoff (Claim 3).

However, when a type is satisfied, 1-generation monotonicity alone does not impose
any restriction on what alternative in the acceptable set may be chosen by the allocation
rule. Strong 1-generation monotonicity (equivalently, 2-cycle monotonicity) has some
bite on which alternative must be chosen in this case. But it does not completely make
the rule cutoff-based (necessary and sufficient for implementability). This is clearly il-
lustrated in the example in Figure 1, where the allocation rule is strong 1-generation
monotone, but still not implementable: this allocation rule chooses a when the accept-
able set is {a�b} and the value is above 5 but a is not the “cheapest” alternative.

Strong 1-generation monotonicity brings in NR on top of 1-generation monotonic-
ity. In the example in Figure 1, NR imposes only some restrictions when the acceptable
set contains alternative c. But for types that do not contain c, strong 1-generation mono-
tonicity does not fix the outcome when such a type is satisfied. This makes the allocation
rule not implementable. Alternatively, 2-generation monotonicity helps to fix this prob-
lem. When a dichotomous type is satisfied, it must be satisfied only by an alternative in
the acceptable set whose cutoff value is the same as the cutoff value of the acceptable
set (Claim 4).

Fixing the allocation rule in Figure 1. Using Theorem 3, we can now fix the allo-
cation rule in Figure 1. Since this allocation rule already satisfies strong 1-generation
monotonicity, the only modification we need to do is to assign the correct outcome us-
ing Theorem 3 when a dichotomous type is satisfied—when {a�b} is the acceptable set.
This is shown in Figure 2.

Generation number. A plausible conjecture is that in rich dichotomous domains,
every implementable allocation rule has a generation number less than or equal to 2.

7In the working paper version of this paper (Mishra and Roy 2012), we discuss some dichotomous do-
mains, including the single-minded domain, that are not rich. The 3-cycle monotonicity characterization
does not hold in those domains. Further, we also identify a domain where the acceptable set of the agent
always consists of one alternative. This domain is essentially one dimensional, and we show that 2-cycle
monotonicity is sufficient in this domain.
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Figure 2. A cutoff-based allocation rule.

This conjecture is false. Consider a problem with four alternatives: A = {a�b� c�d}. Let
f be an allocation rule defined by the cutoff mapping κi: κi(a) = 5, κi(b) = 3, κi(c) = 2,
κi(d) = 0. The allocation rule f is cutoff-based using the cutoffs defined in κi and, hence,
it is implementable due to Theorem 3. However, consider the four types

s0
i = (2 − ε� {c})
s1
i = (2 + ε� {b� c})
s2
i = (3 + ε� {a�b})
s3
i = (5 + ε� {a})�

where ε ∈ (0�2). By definition of the cutoff κi, we see that f (s0
i ) = d, f (s1

i ) = c, f (s2
i ) = b,

and f (s3
i ) = a. Hence, s1

i ∈ G
f
1(s

0
i ), s2

i ∈G
f
2(s

0
i ), and s3

i ∈G
f
3(s

0
i ). So γf ≥ 3.

4.4 Revenue equivalence

In this section, we establish that revenue equivalence holds in rich dichotomous do-
mains. The seminal revenue equivalence result of Myerson (1981) has been extended
to the multidimensional setup by many authors; see, for example, Milgrom and Segal
(2002), Krishna and Maenner (2001), Chung and Olszewski (2007), and Heydenreich
et al. (2009). These papers establish that every implementable allocation rule satisfies
revenue equivalence if the domain satisfies certain assumptions. The assumptions in
these papers require that the domain be connected.

However, our domain is not connected. To see this, consider an example with three
alternatives: A = {a�b� c}. Suppose all possible acceptable sets are permissible, i.e.,

= {S :S ⊆ A� S �= ∅}. Suppose the value at any dichotomous type lies in (0�∞). Then
the type space in R

3 is as shown in Figure 3. It consists of seven open rays originating
from the origin (but not including the origin). The positive parts of the three axes con-
stitute three rays and they refer to those dichotomous types where there is a single ac-
ceptable alternative. The positive parts of the 45◦ degree rays in the xy, yz, and zx planes
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Figure 3. A rich dichotomous domain with three alternatives.

are three more rays and they refer to those dichotomous types where the acceptable set
consists of any two alternatives. Finally, the positive part of the ray from the origin and
passing through (1�1�1) consists of all dichotomous types where the acceptable set is
{a�b� c}. Note that this type space is not connected since the origin is not part of it.

Heydenreich et al. (2009) give a condition for the allocation rule (instead of domain)
such that it satisfies revenue equivalence. We use their result to prove revenue equiva-
lence in rich dichotomous domains.

Theorem 4. If f : Di → A is an implementable allocation rule, where Di is a rich dichoto-
mous domain, and if pi implements f , then

pi(ti) = κ
f
i (f (ti))δ(f (ti)� ti)+ ci ∀ti ∈ Di�

where ci is a constant and κ
f
i is as defined in (2).

The proof of Theorem 4 is given in the Appendix. We note that Theorem 4 holds even
without the (b) part of the richness assumption (Definition 6). The (a) part of the rich-
ness assumption is required since it makes the closure of the domain connected, which
allows revenue equivalence to go through using a result in Heydenreich et al. (2009).

We use this revenue equivalence result in Section 6 to determine a revenue maxi-
mizing mechanism in a one-sided matching model with agents that have dichotomous
types.

5. Extension to n agents

In this section, we show how our results can be extended to a setting with more than one
agent. Suppose N = {1� � � � � n} is the set of n agents. An allocation rule f in the dichoto-
mous domain is now a mapping f : D → An, where D = D1 × D2 ×· · ·× Dn denotes the set
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of all dichotomous type profiles. Note that the outcome of an allocation rule is in An. So
an allocation rule specifies an alternative for each agent at every type profile. We denote
the allocation of agent i at type profile t as fi(t) ∈ A. We assume absence of allocative
externality, so the value of an agent is completely determined by his own allocation.

There may be feasibility constraints that link the allocations of different agents at
each type profile. For instance, in the collective choice problems, such as the problems
of hiring a staff jointly by departments and choosing a network to build, all agents must
get the same alternative as allocation, i.e., for every type profile t, we must have fi(t) =
fj(t) for all i� j ∈ N . The richness restriction (b) in Section 4 (Definition 6) applies to the
set of alternatives A and not to An.

Alternatively, in private good problems, such as a single-minded combinatorial auc-
tion or matching with transfers, each agent i is faced with a set of alternatives A. In the
case of a single-minded combinatorial auction, A is the set of all subsets of objects. In
the case of matching with transfers in the job market, the set of alternatives for a firm
is the set of all job candidates. An allocation rule chooses an alternative in A for every
agent such that it constitutes a feasible outcome, e.g., in case of matching, it is a feasible
matching (no candidate is assigned more than one job). The richness restriction Defi-
nition 6(b) in applies to the set of alternatives A and not to An. With this interpretation,
all our definitions and results extend easily: we just need to add “for all t−i” in all the
definitions.

6. Application: Revenue maximizing matching with dichotomous

preferences

In this section, we apply our results on characterizing implementable allocation rules in
rich dichotomous domains. We derive an optimal mechanism in a one-sided matching
problem where agents have dichotomous types. We assume that the set of alternatives
is A and that this includes a worthless alternative a0. We denote the set of alternatives
without a0 as A0 ≡ A \ {a0}. The interpretation of A0 can be a set of objects (time periods
where an airline ticket is available or schools to which a student can be assigned, etc.).
The worthless alternative a0 can be interpreted as the alternative where an agent is not
assigned any object. Let N = {1� � � � � n} be the set of n agents. The acceptable set of
each agent i ∈ N is a subset of A0. Using our earlier notation, we let 
 := {A ⊆ A0 :
A �= ∅}. We assume that at any dichotomous type, the value of any agent i ∈ N lies in
the interval Vi = (0�βi), where βi ∈ R++ ∪ {∞}. This ensures that the type space of every
agent is a rich dichotomous domain. We refer to this problem as one-sided matching
with dichotomous preferences.

An allocation rule f is a mapping f : D → An. So f assigns each agent an alternative
in A: this is a private good allocation problem. There may be feasibility constraints.
For instance, there may be a finite number of units of every object. In the example of
students matching to schools, a school may have a capacity constraint on the number
of students they can take. In the example of agents assigned to different time periods
of an airline, the number of tickets available in a time period may be finite. We denote
such constraints on the outcome of f as F and we assume that there is no restriction
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on the number of agents who can be assigned the alternative a0. An outcome of an
allocation rule is an element of An that satisfies the feasibility constraints of F ; it is called
an assignment.

We assume that the type of each agent’s type is drawn independently as follows. The
probability that A ⊆ A0 is the acceptable set of agent i is given by hi(A). The value of
agent i is drawn using a distribution gi with cumulative distribution function Gi. Note
that we assume that the value of agent i is independent of his acceptable set. We assume
that the hazard rate gi(vi)/(1 −Gi(vi)) is nondecreasing in vi. Let wi :Vi → R be the
virtual valuation function of agent i, defined as

wi(vi)= vi − 1 −Gi(vi)

gi(vi)
∀vi ∈ Vi�

Since the hazard rate is nondecreasing, the virtual valuation function is increasing.
Now fix an allocation rule f . We denote the alternative assigned to agent i at any type

profile t as fi(t). Suppose f is implementable and p ≡ (p1� � � � �pn) implements f . In
such a case, we say that the mechanism (f�p) is dominant strategy incentive compatible
(DSIC). Then the expected revenue in mechanism (f�p) is given by

�(f�p) =
∑
i∈N

Et[pi(t)]�

where Et[·] denotes the expectation over all the type profiles. A mechanism (f�p) is
individually rational if at every type profile t ∈ D, we have v(ti)δ(fi(t)� ti)−pi(t) ≥ 0 for
all i ∈N .

Definition 9. A mechanism (f�p) is an optimal mechanism if it is DSIC, individually
rational, and there does not exist another mechanism (f ′�p′) such that (f ′�p′) is DSIC,
individually rational, and �(f ′�p′) > �(f�p).

Consider a DSIC mechanism (f�p) and a rich dichotomous type profile
t ≡ (t1� � � � � tn). By Theorem 4, the payment of agent i ∈ N at type profile t is given by

pi(t) = ci(t−i)+ κ
f
i�t−i

(fi(t))δ(fi(t)� ti)� (4)

where κ
f
i�t−i

is the cutoff of agent i that corresponds to the allocation rule f (as defined

in (2)) and ci : D−i → R is an arbitrary function. Using the definition of cutoff κf
i�t−i

(fi(t))

and our characterization result of Theorem 3, we know that for any dichotomous type

with A(ti) as an acceptable set, agent i is satisfied at all values above κ
f
i�t−i

(fi(t)) and is

not satisfied at all values below κ
f
i�t−i

(fi(t)). Hence, we can write the payment of agent i
at type profile t as

pi(t) = ci(t−i)+ v(ti)δ(fi(t)� ti)−
∫ v(ti)

0
δ(fi((xi�A(ti))� t−i)� (xi�A(ti)))dxi� (5)

where we write (xi�A(ti)) to denote a dichotomous type with value xi and acceptable
set A(ti). To see how (4) and (5) are equivalent, note that by our characterization in
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Theorem 3 of implementable rule using cutoffs, we can conclude that the value of the

integral in (5) is 0 if δ(fi(t)� ti)= 0 and is [v(ti)− κ
f
i�t−i

(fi(t))] if δ(fi(t)� ti) = 1.
Once we have the expression for the payment in this form, we employ the method-

ology of Myerson (1981) to express the expected revenue in terms of virtual valuations.
The expected payment of agent i in the DSIC mechanism (f�p) is given by

πi(f�p) =Et−i

[
ci(t−i)+

∑
A∈A0

[∫ βi

0
ziδ(fi((zi�A)� t−i)� (zi�A))gi(zi)dzi

−
∫ βi

0

(∫ zi

0
δ(fi((xi�A)� t−i)� (xi�A))dxi

)
gi(zi)dzi

]
hi(A)

]

=Et−i

[
ci(t−i)+

∑
A∈A0

[∫ βi

0
ziδ(fi((zi�A)� t−i)� (zi�A))gi(zi)dzi

−
∫ zi

0
(1 −Gi(zi))δ(fi((zi�A)� t−i)� (zi�A))dzi

]
hi(A)

]

(changing order of integration)

=Et−i

[
ci(t−i)

+
∑
A∈A0

[∫ βi

0

(
zi − 1 −Gi(zi)

gi(zi)

)
δ(fi((zi�A)� t−i)� (zi�A))gi(zi)dzi

]
hi(A)

]
�

Hence, the expected revenue in the DSIC mechanism (f�p) is given by

�(f�p) =
∑
i∈N

Et−i

[
ci(t−i)+

∑
A∈A0

[∫ βi

0
wi(zi)δ(fi((zi�A)� t−i)� (zi�A))gi(zi)dzi

]
hi(A)

]
�

Note that if (f�p) is individually rational, then for every i ∈ N and every t−i, we have
ci(t−i) ≤ 0. If (f�p) is individually rational and we want to maximize the expected rev-
enue, then we must have ci(t−i) = 0 for all i ∈N and for all t−i. Using this, the expression
of the expected revenue in the DISC mechanism (f�p) is reduced to

�(f�p) =
∑
i∈N

Et−i

[ ∑
A∈A0

[∫ βi

0
wi(zi)δ(fi((zi�A)� t−i)� (zi�A))gi(zi)dzi

]
hi(A)

]

= Et

[∑
i∈N

wi(v(ti))δ(fi(t)� ti)

]
�

If we sidestep the fact that f needs to be 2-generation monotone (for it to be imple-
mentable), the above expression can be maximized by doing pointwise maximization.
So at every type profile, we look at those agents whose virtual values are nonnegative.
For any agent whose virtual valuation is not positive, he is assigned the alternative a0.
Else, an alternative ai ∈ A is assigned to agent i such that (a1� � � � � an) ∈ F (i.e., a fea-
sible allocation), and the sum of virtual values of all the agents who have positive vir-
tual values is maximized from this allocation. Formally, at every type profile t ∈ D, let
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W (t) := {i ∈ N :wi(v(ti)) > 0}. The optimal allocation rule f ∗ is defined as follows. For
every type profile t, denote by An(t) ⊆ An the set of feasible assignments where each
agent i /∈W (t) is assigned the worthless alternative a0. In other words, at every type pro-
file t, if we take any a ∈ An(t), then for every i /∈ W (t), we have ai = a0, where ai is the
alternative assigned to agent i in assignment a. Then f ∗ is defined as any allocation rule
that satisfies

f ∗(t) ∈ arg max
(a1�����an)∈An(t)

[ ∑
i∈W (t)

wi(v(ti))δ(a
i�A(ti))

]
� (6)

where we assume f ∗
i (t) = a0 if δ(f ∗

i (t)� ti) = 0, i.e., if an agent is unsatisfied, then he is
assigned a0 (note that this does not influence the outcome of the maximization). We
show that f ∗ is implementable.

Proposition 3. The allocation rule f ∗ is implementable.

Proof. Using Theorem 2, we only need to show that f ∗ satisfies 2-generation mono-
tonicity. Fix an agent i and type profile t−i of other agents. Let ti be a type of agent i such
that f ∗

i (ti� t−i) = a0. Suppose si is a first generation type of ti at t−i. Then f ∗
i (si� t−i) ∈

A(ti). This implies that f ∗
i (si� t−i) �= a0. Hence, we have f ∗

i (si� t−i) ∈ A(si); if f ∗
i (si� t−i) /∈

A(si), then by definition of f ∗, f ∗
i (si� t−i) = a0, which is not possible. This establishes

GSS. Note that by definition, wi(v(si)) > 0. If wi(v(ti)) ≤ 0, then wi(v(si)) > 0 implies
that v(si) > v(ti) (since the virtual valuation function is increasing). This establishes
MON when wi(v(ti)) ≤ 0. Now, assume wi(v(ti)) > 0. Let W (t−i) := {j ∈ N :wj(v(tj) > 0}.
Denote the allocation of any agent j ∈ N at type profile (ti� t−i) as Tj and that at type
profile (si� t−i) as Sj . Using the definition of f ∗, we can write the two inequalities

wi(v(ti))δ(Ti� ti)+
∑

j∈W (t−i)

wj(v(tj))δ(Tj� tj)

≥wi(v(ti))δ(Si� ti)+
∑

j∈W (t−i)

wj(v(tj))δ(Sj� tj)

wi(v(si))δ(Si� si)+
∑

j∈W (t−i)

wj(v(tj))δ(Sj� tj)

≥wi(v(si))δ(Ti� si)+
∑

j∈W (t−i)

wj(v(tj))δ(Tj� tj)�

Adding these two inequalities, and using the fact that δ(Ti� ti) = 0, δ(Si� ti) = 1, and
δ(Si� si)= 1, we get

wi(v(si))−wi(v(si))δ(Ti� si) ≥wi(v(ti))�

Since wi(v(ti)) > 0, the above inequality is feasible only if δ(Ti� si) = 0 and v(si) ≥ v(ti).
This establishes MON. Hence, f ∗ is 1-generation monotone.

Now, for 2-generation monotonicity, consider s′i which, is a second generation type
of ti at t−i. Suppose s′i satisfies si, where si is a first generation type of ti. Note that since
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f ∗
i (s

′
i� t−i) ∈ A(si), f ∗

i (s
′
i� t−i) �= a0, and by the definition of f ∗, we have f ∗

i (s
′
i� t−i) ∈ A(s′i).

This establishes GSS.
Since f ∗

i (s
′
i� t−i) ∈ A(s′i), this means wi(v(s

′
i)) > 0. If wi(v(ti)) ≤ 0, then

v(s′i) > v(ti) (since the virtual valuation function is increasing). Consider the case where
wi(v(ti)) > 0. Suppose the allocation of any agent j ∈ N in type profile (ti� t−i) is Tj , in
type profile (si� t−i) is Sj , and in type profile (s′i� t−i) is S′

j . Using the definition of f ∗, we
get the inequalities

wi(v(ti))δ(Ti� ti)+
∑

j∈W (t−i)

wj(v(tj))δ(Tj� tj)

≥wi(v(ti))δ(Si� ti)+
∑

j∈W (t−i)

wj(v(tj))δ(Sj� tj)

wi(v(si))δ(Si� si)+
∑

j∈W (t−i)

wj(v(tj))δ(Sj� tj)

≥wi(v(si))δ(S
′
i� si)+

∑
j∈W (t−i)

wj(v(tj))δ(S
′
j� tj)

wi(v(s
′
i))δ(S

′
i� s

′
i)+

∑
j∈W (t−i)

wj(v(tj))δ(S
′
j� tj)

≥wi(v(s
′
i))δ(Ti� s

′
i)+

∑
j∈W (t−i)

wj(v(tj))δ(Tj� tj)�

Using the facts that δ(Si� si) = δ(Si� ti) = δ(S′
i� si) = δ(S′

i� s
′
i) = 1 and δ(Ti� ti) = 0, and

adding the above inequalities we get that

wi(v(s
′
i))−wi(v(s

′
i))δ(Ti� s

′
i) ≥wi(v(ti))�

Since wi(v(ti)) > 0, the above inequality is feasible only if δ(Ti� s
′
i) = 0 and v(s′i) ≥ v(ti).

This establishes MON. Hence, f ∗ is 2-generation monotone. �

This shows that f ∗ along with the cutoff payment defined in Proposition 2 is the
optimal mechanism. This is summarized in the following theorem.

Theorem 5. In the one-sided matching problem with dichotomous preferences, the opti-
mal mechanism is given by (f ∗�p∗), where f ∗ is defined as in (6), and for every t ∈ D and

every i ∈ N , p∗
i (t) = κ

f ∗
i�t−i

(f ∗
i (t))δ(f

∗
i (t)� ti), where κ

f ∗
i�t−i

is defined as in (2).

Remark. Notice that the optimal mechanism is independent of the probability distri-
bution of acceptable sets. Intuitively, the payments are determined by cutoffs of values.
Revenue maximization is, therefore, related to how values are distributed. Since we as-
sume that the value distribution is independent of the distribution of acceptable sets,
the optimal mechanism is dependent only on the distribution of values.

Remark. A special case of the optimal mechanism occurs when there is just one agent.
This problem is referred to as the revenue maximization of a multiple good monopolist
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seller and is recognized as a hard problem if the type of the buyer is multidimensional
(Manelli and Vincent 2007). Theorem 5 says that if there is one agent i, then the opti-
mal mechanism is to set a reserve price equal to r∗, which solves r∗ = (1 −Gi(r

∗))gi(r∗);
there is a unique solution to this if the hazard rate is nondecreasing. Agent i is satis-
fied by allocating any alternative in his acceptable set if his value is above r∗; he is not
satisfied by allocating a0 if his value is less than or equal to r∗.

Remark. Unlike Myerson (1981), who searched for an optimal mechanism in the sin-
gle object auction case over all Bayesian incentive compatible and randomized mech-
anisms, we are searching over all DSIC and deterministic mechanisms. Most of the lit-
erature on optimal mechanism design in multidimensional type spaces also considers
Bayes–Nash randomized implementation (for example, Iyengar and Kumar 2008, and
Pai and Vohra 2010). For single object auctions, this restriction is without loss of gener-
ality since the optimal mechanism is a DSIC and deterministic mechanism; see a more
general result for the single object auction case in Manelli and Vincent (2010). However,
we do not know if we enlarge our search to include Bayesian incentive compatible and
randomized mechanisms, whether we will improve expected revenues in this setting.

7. Conclusion

The seminal paper of Myerson (1981) contains three important results in mechanism
design in quasilinear environments for the single object auction case: (1) a characteri-
zation of implementable allocation rules; (2) an illustration of revenue equivalence; (3) a
derivation of optimal mechanism. Each of these results has been generalized to various
multidimensional settings. We contribute to this literature by extending these results to
specific dichotomous domains.

Our general methodology in this paper is to derive a simplification of cycle mono-
tonicity in specific multidimensional dichotomous domains. Whether we can derive
similar simplifications in other interesting nonconvex domains and then use them to
derive an easy characterization of implementability remains an open question. It will
also be interesting to extend our results with randomization and/or consideration of
relaxed forms of implementability like Bayes–Nash implementability.

Appendix: Omitted proofs

Proof of Lemma 1. Let K = |A|, and let f be a K-cycle monotone allocation rule. Con-
sider any cycle C ≡ (t1

i � � � � � t
k
i � t

1
i ) in the type graph. The proof is by induction on k. If

k≤K, then by definition, this cycle has nonnegative length. Suppose k>K and assume
that all cycles with less than k nodes have nonnegative length. Since k>K, there are two
types thi and t

j
i in the cycle C such that f (thi ) = f (t

j
i ). Note that the lengths of the edges

(thi � t
j
i ) and (t

j
i � t

h
i ) are both zero. Assume without loss of generality h < j. We consider

two cases.
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Case 1. If h = j − 1, then note that the length of the edge (thi � t
j+1
i ) is the same as the

length of the edge (t
j
i � t

j+1
i ). Hence, the length of the cycleC ′ ≡ (t1

i � � � � � t
h
i � t

j+1
i � � � � � tki � t

1
i )

is the same as the length of the cycle C. But C ′ has one less node than C. By our in-
duction hypothesis, the length of cycle C ′ is nonnegative. So the length of cycle C is
nonnegative.

Case 2. If h = 1 and j = k, then we repeat Case 1, but this time we consider the cycle
C ′ ≡ (t2

i � � � � � t
k
i � t

2
i ).

Case 3. In this case, there is at least one node between thi and tki , and at least one
node between tki and thi in cycle C. We can now break the cycle C into two parts,

C1 ≡ (t1
i � � � � � t

h
i � t

j
i � t

j+1
i � � � � � tki � t

1
i ) and C2 ≡ (thi � t

h+1
i � � � � � t

j
i � t

h
i ). Since f (t

j
i ) = f (f hi ), the

edges (thi � t
j
i ) and (t

j
i � t

h
i ) have zero length. Hence, the total length of both cycles C1 and

C2 combined is equal to the length of cycle C. Further, C1 and C2 have less than k num-
ber of nodes. By our induction hypothesis, both C1 and C2 have nonnegative length.
Hence, the length of the cycle C is nonnegative. �

Proof of Proposition 1. Fix a positive integer K ≥ 2 and an allocation rule f . Sup-
pose f is K-cycle monotone. To show that f is strong (K − 1)-generation monotone,
consider any type ti such that ti is not satisfied (if no such ti exists, then we are done

vacuously). Pick any tki ∈G
f
k(ti), where k≤ (K − 1). We show that f satisfies GSS, MON,

and NR by using induction on k.
For k = 1, consider the 2-cycle (ti� t

1
i � ti). The length of the edge from t1

i to ti is −v(ti).
Hence, the length of the edge from ti to t1

i is at least v(ti). But the length of the edge from
ti to t1

i is

v(t1
i )

[
δ(f (t1

i )� t
1
i )− δ(f (ti)� t

1
i )

]
�

This length is at least v(ti) only if δ(f (t1
i )� t

1
i ) = 1 (GSS), δ(f (ti)� t

1
i ) = 0 (NR), and

v(t1
i ) ≥ v(ti) (MON).
Now, assume that f satisfies GSS, MON, and NR for all k< r ≤ (K − 1). We show that

for any tri ∈ G
f
r (ti), we have that tri is satisfied, v(tri ) ≥ v(ti), and ti does not satisfy tri . We

pick t1
i � t

2
i � � � � � t

r−1
i such that tji ∈ G

f
j (ti) for all j ∈ {1� � � � � r − 1} and δ(f (t

j
i )� t

j−1
i ) = 1 for

all j ∈ {1� � � � � r − 1}, where t0
i = ti. By our induction hypothesis, δ(f (tji )� t

j
i ) = 1 (GSS) for

all j ∈ {1� � � � � r − 1}. As a result, for any j ∈ {2� � � � � r}, the length of the edge (t
j
i � t

j−1
i ) is

zero. So, the length of the cycle C ≡ (ti� t
r
i � t

r−1
i � � � � � t1

i � ti) is

v(tri )
[
δ(f (tri )� t

r
i )− δ(f (ti)� t

r
i )

] + v(ti)
[
δ(f (ti)� ti)− δ(f (t1

i )� ti)
]
�

By our assumption, δ(f (t1
i )� ti) = 1 and δ(f (ti)� ti) = 0. Hence, the length of the cycle C

is

v(tri )
[
δ(f (tri )� t

r
i )− δ(f (ti)� t

r
i )

] − v(ti)�
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By our assumption, the length of the cycle C is nonnegative. This can be made non-
negative only if v(tri ) ≥ v(ti) (MON), δ(f (tri )� t

r
i ) = 1 (GSS), and δ(f (ti)� t

r
i ) = 0 (NR). This

concludes the proof that f is strong (K − 1)-generation monotone.
Now, for the converse, suppose f is strong (K − 1)-generation monotone. We show

that f is K-cycle monotone. We do the proof in several steps.

Step 1. We show that f is 2-cycle monotone. Consider a cycle (si� ti� si), and assume, to
the contrary, that it has negative length. Then at least one of the edges in the cycle has
negative length. Without loss of generality, let the length of the edge from si to ti be neg-
ative. Then v(ti)[δ(f (ti)� ti) − δ(f (si)� ti)] = −v(ti) < 0. This implies that δ(f (ti)� ti) = 0
but δ(f (si)� ti) = 1. Hence, ti is not satisfied, but si ∈G

f
1(ti). By strong generation mono-

tonicity, si is satisfied, v(si) ≥ v(ti), and si is not satisfied by ti. This implies that the
length of the edge (ti� si) is v(si) ≥ v(ti). Hence, the length of the 2-cycle is nonnegative,
which is a contradiction.

Step 2. We consider any cycle C ≡ (t1
i � � � � � t

K
i � t1

i ) such that t
j
i is satisfied for all

j ∈ {1� � � � �K}. In that case, the length of any arbitrary edge (t
j
i � t

j+1
i ) of this cycle is

v(t
j+1
i )[δ(f (tj+1

i )� t
j+1
i )− δ(f (t

j
i )� t

j+1
i )] ≥ 0, where we denote (j + 1) ≡ 1 if j = K. Hence,

the cycle C has nonnegative length.

Step 3. We consider any cycle with K nodes where exactly one node, say ti, is not satis-
fied and all other nodes are satisfied. Denote this cycle by C ≡ (ti� t

K−1
i � tK−2

i � � � � � t1
i � ti).

Note that the length of any edge (t
j
i � t

j−1
i ) for any j ∈ {2� � � � �K}, where tKi ≡ ti, is equal to

v(t
j−1
i )

[
δ(f (t

j−1
i )� t

j−1
i )− δ(f (t

j
i )� t

j−1
i )

] = v(t
j−1
i )

[
1 − δ(f (t

j
i )� t

j−1
i )

]
�

which is equal to v(t
j−1
i ) if tj−1

i is not satisfied by t
j
i and is equal to zero if tj−1

i is satisfied

by t
j
i . Thus, all such edges have nonnegative length.
Now, consider the edge (t1

i � ti). The length of this edge is

v(ti)
[
δ(f (ti)� ti)− δ(f (t1

i )� ti)
] = −v(ti)δ(f (t

1
i )� ti)�

If δ(f (t1
i )� ti) = 0, then the length of the cycle C is nonnegative. Else, the length of the

edge (t1
i � ti) is −v(ti), and it is the only negative length edge of C. In this case, t1

i ∈G
f
1(ti).

By MON, v(t1
i ) ≥ v(ti). Now we evaluate the length of edge (t2

i � t
1
i ). If δ(f (t2

i )� t
1
i ) = 0,

then the length of the edge (t2
i � t

1
i ) is v(t1

i ) ≥ v(ti) and, hence, the length of the cycle

C is nonnegative. Else, δ(f (t2
i )� t

1
i ) = 1 implies that t2

i ∈ G
f
2(ti). By generation mono-

tonicity, v(t2
i ) ≥ v(ti). Continuing in this manner, we either find a node/type t

j
i , where

j ∈ {2� � � � �K − 1}, such that v(t
j
i ) ≥ v(ti) and δ(f (t

j
i )� t

j−1
i ) = 0 or we reach an edge

(ti� t
K−1
i ) with tK−1

i ∈G
f
K−1(ti). The length of this edge is

v(tK−1
i )

[
δ(f (tK−1

i )� tK−1
i )− δ(f (ti)� t

K−1
i )

]
�

By strong (K − 1)-generation monotonicity, v(tK−1
i ) ≥ v(ti), δ(f (tK−1

i )� tK−1
i ) = 1 and

δ(f (ti)� t
K−1
i ) = 0. Hence, the length of this edge is v(tK−1

i ) ≥ v(ti). This shows that the
length of the cycle C is nonnegative.
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Step 4. In this step, we show that for any si and ti such that si and ti are not satisfied, the
length of the edge (si� ti) is zero. Consider any 2-cycle C ≡ (si� ti� si) such that si and ti are
not satisfied. The length of C is zero. To see this, note that the length of C is nonnegative
since f is 2-cycle monotone by our induction hypothesis. Further, the length of C is

v(ti)
[
δ(f (ti)� ti)− δ(f (si)� ti)

] + v(si)
[
δ(f (si)� si)− δ(f (ti)� si)

]
= −[

v(ti)δ(f (si)� ti)+ v(si)δ(f (ti)� si)
] ≤ 0�

This shows that the length of C is zero. Hence, the length of the edges from si to ti and
from ti to si are both zero. This shows that in any cycle where all the nodes are not
satisfied, the length of the edges in this cycle must be zero.

Step 5. Now we show that the length of a particular cycle is nonnegative. A cycle
(t1
i � � � � � t

h
i � t

1
i ) is an interior cycle if h ≥ 3, t1

i and thi are not satisfied, and t
j
i is satisfied

for all j ∈ {2� � � � �h − 1}. Consider an interior cycle C ≡ (t1
i � � � � � t

K
i � t1

i ) with K > 2. We
show that its length is nonnegative. Since C is an interior cycle, assume without loss of
generality that t1

i and tKi are not satisfied, but tji is satisfied for all j ∈ {2� � � � �K− 1}. Since
f is 2-cycle monotone (by our induction hypothesis), the length of edge (tKi � t1

i ) is zero;
this follows from Step 4. The length of the edge (tK−1

i � tKi ) is

v(tKi )
[
δ(f (tKi )� tKi )− δ(f (tK−1

i )� tKi )
]
�

Since δ(f (tKi )� tKi ) = 0, the length of the edge (tK−1
i � tKi ) is nonpositive. Now, consider

any edge (t
j
i � t

j+1
i ) in cycle C such that (tji � t

j+1
i ) /∈ {(tK−1

i � tKi )� (tKi � t1
i )}, where (j + 1) ≡ 1

if j =K. By definition, δ(f (tj+1
i )� t

j+1
i ) = 1. Hence, the length of this edge is nonnegative.

Hence, the only edge in C that may have a negative length is (tK−1
i � tKi ). Suppose the

length of edge (tK−1
i � tKi ) is negative. In that case, δ(f (tK−1

i )� tKi ) = 1, and the length of

the edge is −v(tKi ). We show that some other edge in C has a length greater than or equal
to v(tKi ).

Note that tK−1
i ∈G

f
1(t

K
i ). By strong (K−1)-generation monotonicity, v(tK−1

i )≥ v(tKi )

and δ(f (tK−1
i )� tK−1

i ) = 1. The length of the edge (tK−2
i � tK−1

i ) is either zero or v(tK−1
i ).

If it is v(tK−1
i ), we are done. Else, δ(f (tK−2

i )� tK−1
i ) = 1 implies that tK−2

i ∈ G
f
2(t

K
i ). By

strong (K−1)-generation monotonicity again, v(tK−2
i ) ≥ v(tKi ). Continuing in this man-

ner, we either find an edge whose length is greater than or equal to v(tKi ) or reach the

edge (t1
i � t

2
i ) with zero edge length, and t1

i ∈ G
f
K−1(t

K
i ). In that case, strong (K − 1)-

generation monotonicity implies that δ(f (t1
i )� t

1
i ) = 1, which is a contradiction.

Step 6. In the final step, we consider a cycle C with K nodes, where K > 2. If C has
less than or equal to one unsatisfied type, then we are done by Steps 2 and 3. Else, we
break this cycle into subcycles where each cycle starts from an unsatisfied type and
ends with another unsatisfied type. So C is broken into cycles C1 = (t1

i � � � � � t
j1
i � t1

i ),

C2 = (t
j1
i � � � � � t

j2
i � t

j1
i ), . . . , C� = (t

j�−1
i � � � � � t1

i � t
j�−1
i ), and C�+1 = (t1

i � t
j1
i � t

j2
i � � � � � t

j�−1
i � t1

i ),
where the length of C�+1 is zero since all its types are unsatisfied (Step 4). Note that
the sum of the lengths of these cycles gives the length of the cycle C. Since each of
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the cycles Cp, where p ∈ {1� � � � � �}, is an interior cycle, they have nonnegative length by
Step 5. Hence, the length of C is nonnegative. �

Proof of Theorem 4. We use a result in Heydenreich et al. (2009) to prove our the-
orem. We say that an implementable allocation rule f satisfies revenue equivalence
if for any two payment rules pi and p′

i, there exists a constant ci such that for all si,
pi(si) = p′

i(si) + ci. Heydenreich et al. (2009) characterize allocation rules that satisfy
revenue equivalence. To describe and use their result, we need the following notation.

Consider the type graph that corresponds to rich dichotomous domain Di and allo-
cation rule f . For any pair of types si and ti, a path in the type graph from si to ti is a se-
quence of distinct nodes P ≡ (si� s

1
i � � � � � s

k
i � ti). Denote by l(P) the length of a path P . Let

Psi�ti be the set of all paths from si to ti. Define distf (si� ti) := infP∈Psi�ti l(P), i.e., the length
of the shortest path from si to ti in the type graph. If f is implementable, then it can be
shown that for all si� ti ∈ Di, distf (si� ti) is a real number and distf (si� ti)+ distf (ti� si)≥ 0
(Heydenreich et al. 2009).

Heydenreich et al. (2009) show that an allocation rule f satisfies revenue equivalence
if and only if for all si� ti ∈ Di, we have distf (si� ti) + distf (ti� si) = 0. We show that this
condition holds in our domain. Consider two dichotomous types si� ti ∈ Di. Assume,
to the contrary, distf (si� ti) + distf (ti� si) = ε > 0. Consider two types s̄i and t̄i such that
A(s̄i) = A(si), A(t̄i) = A(ti), v(s̄i) < v(si), v(t̄i) < v(ti), and v(s̄i) + v(t̄i) < ε. Note that
because of this,

�(s̄i� t̄i)+ �(t̄i� s̄i) < ε�

We now look at the shortest paths between si and s̄i. Note that si and s̄i have the
same acceptable set. If δ(f (si)� si) = δ(f (s̄i)� s̄i), then �(si� s̄i) + �(s̄i� si) = 0 and, hence,
distf (si� s̄i) + distf (s̄i� si) = 0. Else, since v(s̄i) < v(si), by Theorem 3, δ(f (si)� si) = 1 and
δ(f (s̄i)� s̄i) = 0. Let the cutoff corresponding to A(si) be C(A(si)). Then we have v(si) ≥
C(A(si)) ≥ v(s̄i). Consider the type s′i such that A(s′i) = A(si) and v(s′i) = C(A(si)). We
consider two cases.

Case 1. Suppose f (s′i) ∈A(si). Then v(s̄i) < C(A(si)). Choose another type s′′i such that
A(s′′i ) = A(si) and v(s′′i ) = v(s′i) − ε′ > v(s̄i). The 2-cycle between si and s′i has length
zero since A(si) = A(s′i) and δ(f (si)� si) = δ(f (s′i)� s

′
i) = 1. Further, the 2-cycle between

s′′i and s̄i has length zero since A(s̄i) = A(s′′i ) and δ(f (s′′i )� s
′′
i ) = δ(f (s̄i)� s̄i) = 0. Finally,

the 2-cycle between s′i and s′′i has length equal to

v(s′i)
[
δ(f (s′i)� s

′
i)− δ(f (s′′i )� s

′
i)

] + v(s′′i )
[
δ(f (s′′i )� s

′′
i )− δ(f (s′i)� s

′′
i )

] = v(s′i)− v(s′′i ) = ε′�

Hence, the sum of lengths of the path (si� s
′
i� s

′′
i � s̄i) and the path (s̄i� s

′′
i � s

′
i� si) is ε′.

Case 2. Suppose f (s′i) /∈ A(si). Then v(si) > C(A(si)), and we can choose s′′i to be a type
such that A(s′′i )= A(si) and v(s′′i ) = v(s′i)+ε′ < v(si). Using a similar argument to Case 1,
we can show that the length of the 2-cycle between s′i and s′′i is ε′. Further, the 2-cycles
between si and s′′i and between s′i and s̄i are zero. Hence, the sum of lengths of the path
(si� s

′′
i � s

′
i� s̄i) and the path (s̄i� s

′
i� s

′′
i � si) is ε′.
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So, we conclude that distf (si� s̄i)+ distf (s̄i� si)≤ ε′. Since ε′ can be chosen arbitrarily
close to zero, we conclude that distf (si� s̄i) + distf (s̄i� si) = 0. Because of this, there is a
path P from si to s̄i and another path P ′ from s′i to si such that l(P) + l(P ′) is arbitrarily
close to zero.

Using a similar argument, we can show that distf (ti� t̄i)+ distf (t̄i� ti) = 0. Because of
this, there is a path Q from ti to t̄i and another path Q′ from t̄i to ti such that l(Q)+ l(Q′)
is arbitrarily close to zero.

Hence, the total length of l(P) + �(s̄i� t̄i) + l(Q′) + l(Q) + �(t̄i� s̄i) + l(P ′) is less
than ε. This contradicts the fact that distf (si� ti) + distf (ti� si) = ε. The proof now con-
cludes by observing from Proposition 2 that one payment rule p∗ that implements f is

p∗
i (ti)= κ

f
i (f (ti))δ(f (ti)� ti) for all ti. �
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