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This appendix contains some results not included in Heifetz and Kets [2017]. Unless stated

otherwise, all references to sections, results, etcetera, are to Heifetz and Kets [2017].

I Universal type space

We show that the type space T ∗ is universal, in the sense that it generates all belief

hierarchies. We show this by proving that every type space can be mapped into T ∗ using a

belief-preserving mapping, which we define next.

Let T := 〈(Ti)i=1,2, (βi)i=1,2, (χ
T
i )i=1,2〉 and Q := 〈(Qi)i=1,2, (λi)i=1,2, (χ

Q
i )i=1,2〉 be type

spaces. Let ITi be the set of indices k ≤ ∞ such that the set T ki of types with index k is

nonempty, and let IQi be defined analogously. For each player i = 1, 2 and k ∈ ITi , let ϕki be

a measurable function from T ki to Qk
i . Define ϕi := (ϕki )k∈ITi , and let ϕ := (ϕi)i=1,2. Also, for

i = 1, 2 and k <∞, if T ki is nonempty, then define

ϕ<k−i : T≤k−1
−i → Q≤k−1

−i

by

ϕ<k−i
(
(t
m−i

−i )
)

:=
(
ϕ
m−i

−i (t
m−i

−i )
)

where t
m−i

−i ∈ T
m−i

−i , m−i < k. Note that the function ϕ<k−i is well-defined. Let IdΘ be the

identity function on Θ.

The function ϕ is a type morphism from T to Q if for each player i = 1, 2, IQi ⊇ ITi , and

(i) for each k = 1, 2, . . ., type ti ∈ T ki , and E ∈ B(Θ)⊗ (Q≤k−1
−i ),

λki
(
ϕki (ti)

)
(E) = βki (ti)

(
(IdΘ, ϕ

<k
−i )
−1(E)

)
; (I.1)
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(ii) for ti ∈ T∞i , E ∈ B(Θ)⊗B(Q−i),

λ∞i (ϕ∞i (ti)) (E) = β∞i (ti)
(
(IdΘ, ϕ

∞
−i)
−1(E)

)
; (I.2)

(iii) for ti ∈ T ki , k = 1, 2, . . . ,∞, we have χQi (ϕki (ti)) = χTi (ti).

The mapping ϕ is a type isomorphism if ITi ⊇ IQi , the inverse of ϕi is measurable for each

i = 1, 2, and the inverse satisfies (i)–(ii).

Conditions (i)–(iii) are the analogues of the standard condition that a type morphism

preserves beliefs for the case where players can have any depth of reasoning. If a type space

only consists of types of infinite depth, the current definition of a type morphism reduces to

the standard one. Lemma II.3 below shows that type morphisms preserve belief hierarchies

[cf. Heifetz and Samet, 1998, Prop. 5.1].

Using the concept of a type morphism, we next show that modeling belief hierarchies by

types is without loss of generality in the sense that every (coherent) belief hierarchy can be

modeled in this way. Say that a type space Q is universal if every nonredundant1 type space

T can be mapped into Q by a unique type morphism, and its image is a model [Mertens and

Zamir, 1985].

We show that T ∗ is universal. We prove this by showing that there is a unique type

morphism from any type space to T ∗.

Lemma I.1. For every type space T , there is a unique type morphism from T to T ∗.

The proof shows that each type ti ∈ T ki with index k in T can be mapped into a belief

hierarchy in Hk
i of depth k using a so-called hierarchy map hT,ki . This implies that every

type with index k generates a belief hierarchy of depth k = 0, 1, . . . ,∞. With some abuse of

terminology, we say that a type has depth (of reasoning) k if it generates a belief hierarchy of

depth k. A type space T is nonredundant if for all i = 1, 2 and k such that T ki is nonempty,

the hierarchy map hT,ki : T ki → Hk
i is one-to-one.

Proposition I.2. The type space T ∗ is universal, and the universal space is unique (up to type

isomorphism).

Thus, the type space T ∗ contains all type spaces. The proof shows that the converse is also

true: every model corresponds to a type space. Proposition I.2 implies that T ∗ generates all

belief hierarchies.

1A type space is nonredundant if no two types generate the same belief hierarchy [Mertens and Zamir, 1985];

see below for a formal definition in our setting.
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I.1 Common belief in infinite depth of reasoning

We show that the universal Harsanyi space, constructed by Mertens and Zamir [1985] and

others, is a model (contained in the universal space T ∗) that is characterized by the event

that players have an infinite depth of reasoning, and commonly believe that all players have

an infinite depth of reasoning.

The universal type space for the class of Harsanyi type spaces can be constructed in a

similar way as the universal type space T ∗ for type spaces that allow for finite-order reasoning.

Let Ẑ0
i := Xi × {ẑ0

i }, where ẑ0
i is an arbitrary singleton, and define

Ω̂0
i := Θ× Ẑ0

−i,

and

Ẑ1
i := Ẑ0

i ×∆(Ω̂0
i ).

For k = 1, 2, . . ., assume, inductively, that we have already defined Ẑ`
i for each player i = 1, 2

and all ` ≤ k. Define

Ω̂k
i := Θ× Ẑk

−i,

and let

Ẑk+1
i :=

{
(xi, µ

0
i , . . . , µ

k
i , µ

k+1
i ) ∈ Ẑk

i ×∆(Ω̂k
i ) : margΩ̂k−1

i
µk+1
i = µki

}
.

The space Ẑi for player i is the set of all (xi, µ
0
i , µ

1
i , . . .) such that (xi, µ

0
i , µ

1
i . . . , µ

k
i ) ∈ Ẑk

i

for all k. By standard arguments, the analogue of Lemma B.1 holds. Moreover, there is a

Borel measurable function ζ̂i that assigns to each belief hierarchy zi ∈ Ẑi a Borel probability

measure ζ̂i(zi) ∈ ∆(Θ×Ẑ−i) [cf. Heifetz, 1993]. If we define χ̂MZ
i : Ẑi → Xi to be the projection

function, we can view T̂ MZ := 〈(Ẑi)i=1,2, (ζ̂i)i=1,2, (χ̂
MZ
i )i=1,2〉 as a Harsanyi type space. As is

well-known, the Harsanyi type space T̂ MZ is universal with respect to the class of Harsanyi

type spaces, in the sense that every Harsanyi type space can be embedded into T̂ MZ via a

unique type morphism for Harsanyi type spaces.

The Harsanyi type space T̂ MZ corresponds to a type space T MZ = 〈(Zi)i=1,2, (ζ
∞
i )i=1,2, (χ

∞
i )i=1,2〉

in our sense if we take the type set for player i = 1, 2 to be Zi = Z∞i ∪
⋃∞
k=0 Z

k
i , where Z∞i := Ẑi

and Zk
i = ∅ for k <∞, and the belief map given by ζ∞i := ζ̂i. Also, let χ∞i (zi) := χ̂MZ

i (zi) for

i = 1, 2 and zi ∈ Zi. It then follows from Proposition I.2 that T MZ can be embedded in the

universal type space T ∗ via a unique type morphism. The converse clearly does not hold, as

T ∗ contains types that have a finite depth of reasoning, types that assign a positive probability

to types with a finite depth of reasoning, types that assign a positive probability to types that

assign a positive probability to types with a finite depth of reasoning, and so on. Moreover,

because the space T MZ is nonredundant by construction, the type space T MZ corresponds to

a model in the universal type space T ∗.
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We now characterize this model in terms of players’ higher-order beliefs. More specifically,

we show that the the model corresponding to T MZ is characterized by the event that there is

correct common belief in the event that players have an infinite depth of reasoning, that is,

all players have an infinite depth of reasoning, believe that others have an infinite depth of

reasoning, believe that others believe that, and so on, ad infinitum.

To state the result, we define the event that a player believes an event that concerns other

players’ signals and beliefs.2 An assumption Ei about player i is a measurable subset of Hi. A

joint assumption is a set of the form E =
∏

i=1,2Ei, where Ei is an assumption about player i.

Let i = 1, 2 and let E = E1 × E2 be a joint assumption. Then, define3

Bi(E) :=
{
hi ∈ Hi \H0

i : ψi(hi)(Θ× E−i) = 1
}
.

Thus, Bi(E) consists of the types that believe E−i (with probability 1). Let B(E) := B1(E)×
B2(E). The following result is immediate:

Lemma I.3. For each player i = 1, 2 and joint assumption E, we have that Bi(E) ∈ B(Hi).

So, Bi(E) is an assumption about player i.

Then, we say that the joint assumption E is (correct) common belief at h ∈ H if

h ∈ CB(E) := E ∩
∞⋂
`=0

[
B
]`

(E),

where [B]1(E) := B(E), and [B]`(E) := B1([B]`−1(E)) × B2([B]`−1(E)) for ` > 1. It follows

from Lemma I.3 that B(E) and CB(E) are measurable for any joint assumption E. Finally,

let E∞i := H∞i be the assumption that player i has an infinite depth of reasoning, so that E∞

is the joint assumption that players have an infinite depth of reasoning. We can now formally

state Proposition 3.2:

Proposition 3.2. Let ϕ be the unique type morphism from T MZ to the universal type space

T ∗. Then,

ϕ∞1 (Z1)× ϕ∞2 (Z2) = CB(E∞).

2We thus do not consider players’ beliefs about the state of nature directly, and we implicitly assume that

players know their own signal. We could consider the more general case, but the current definition is simpler,

and suffices for our purposes.
3We define the belief operator for the universal space T ∗, but the definition can clearly be extended to

arbitrary type spaces.
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II Proofs

II.1 Proof of Lemma I.1

Let T = 〈(Ti)i=1,2, (β
k
i )i=1,2,k∈ITi , (χi)i=1,2〉 be a type space. Given a collection of functions

fλ : Vλ → Wλ, we define the induced functions f : V → W and f−λ : V−λ → W−λ, λ ∈ Λ, by

f(v) := (fλ(vλ))λ∈Λ and f−λ(v−λ) := (fλ(v`))`∈Λ\{λ}.

To construct a type morphism from the types in T to the types in the space T ∗, we first

construct a collection of functions that maps each type into the associated hierarchy of beliefs

(Step 1). Step 2 establishes that these mappings define a type morphism from T to T ∗. Step

3 then shows that this type morphism is unique.

Step 1: From types to belief hierarchies

Each type induces a belief hierarchy, as we show now. The mapping from types to belief

hierarchies is standard [e.g., Mertens and Zamir, 1985], except that we take into account that

hierarchies may have a finite depth.

We define a collection of mappings. Lemma II.1 below shows that these functions are

well-defined. For i = 1, 2, if T 0
i 6= ∅, let hT,0,0i : T 0

i → H0
i be defined by

hT,0,0i (ti) = (χi(ti), h
∗,0
i ).

Clearly, hT,0,0i (T 0
i ) ⊆ H0

i . Also, hT,0,0i is measurable.

Similarly, if T 1
i is nonempty, define hT,1,0i : T 1

i → H̃0
i by

hT,1,0i (ti) = (χi(ti), µ̃
0
i ).

Again, it is easy to see that hT,1,0i (T 1
i ) ⊆ H̃0

i , and that hT,1,0i is measurable. If T 0
i is nonempty,

define the function hT,<1,0
i : T 0

i → H0
i by

hT,<1,0
i (ti) := hT,0,0i (ti).

Again, hT,<1,0
i (T 0

i ) ⊆ H0
i , and hT,<1,0

i is measurable. Finally, define the function hT,1,1i : T 1
i →

H1
i by

hT,1,1i (ti) :=
(
hT,1,0i (ti), β

1
i (ti) ◦

(
IdΘ, h

T,<1,0
−i

)−1)
,

where IdΘ is the identity function on Θ. It is easy to verify that hT,1,1i (T ii ) ⊆ H1
i . Since an

image measure µ ◦ f−1 induced by a Borel probability measure µ and a measurable function f

from a metrizable space into a metrizable space is measurable, the function hT,1,1i is measurable.

Fix k = 1, 2, . . ., and let ` = 0, . . . , k − 1. Suppose, inductively, that the mappings hT,m,`i

have been defined for m = 0, 1 . . . , k whenever the relevant domain is nonempty. If T≤ki =⋃k
m=0 T

m
i is nonempty, then define

hT,<k+1,`
i : T≤ki → H̃≤`i
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by

∀m = 0, 1, . . . , k, ti ∈ Tmi : hT,<k+1,`
i (ti) :=

{
hT,m,`i (ti) if m > `;

hT,m,mi (ti) if m ≤ `.

Also, for k > 0, let

hT,<k+1,k
i : T≤ki → H≤ki

be defined by

∀m = 0, 1, . . . , k, ti ∈ Tmi : hT,<k+1,k
i (ti) := hT,m,mi (ti).

Then, if T k+1
i 6= ∅, let hT,k+1,0

i : T k+1
i → H̃0

i be defined by

hT,k+1,0
i (ti) := (χi(ti), t

∗,0
i ),

as before, and for ` = 1, . . . , k, define hT,k+1,`
i : T k+1

i → H̃`
i by

hT,k+1,`
i (ti) :=

(
hT,k+1,`−1
i (ti), β

k+1
i (ti) ◦

(
IdΘ, h

T,<k+1,`−1
−i

)−1
)
.

Finally, define hT,k+1,k+1
i : T k+1

i → Hk+1
i by

hT,k+1,k+1
i (ti) :=

(
hT,k+1,k
i (ti), β

k+1
i (ti) ◦

(
IdΘ, h

T,<k+1,k
−i

)−1
)
.

The next lemma states that these functions are well-defined:

Lemma II.1. Let i = 1, 2 and k = 0, 1, . . ..

(a) If T ki is nonempty, then hT,k,`i is well-defined and measurable for ` = 0, 1, . . . , k.

(b) If T≤ki is nonempty, then hT,<k+1,`
i is well-defined and measurable for ` = 0, 1, . . . , k.

Proof. We start with some preliminary observations. Let Y =
⋃
λ∈Λ Y

λ be a countable union

of topological spaces, endowed with the sum topology. By standard results, for B ∈ B(Y ) and

λ ∈ Λ, we have that B ∩ Y λ ∈ B(Y λ). Also, for Bλ ∈ B(Y λ), λ ∈ Λ, we have Bλ ∈ B(Y ).

Finally, if Y and W are Polish, then B(Y ×W ) = B(Y )⊗B(W ). We will make use of these

results without mention.

We are now ready to prove Lemma II.1. The proof is by induction. As noted above,

the functions hT,0,0i , hT,1,0i , and hT,1,1i are well-defined and measurable (as is hT,<1,0
i ) for every

player i (whenever the respective domains are nonempty). Let k = 1, 2, . . .. Suppose that the

functions hT,k,`i and hT,k,ki are well-defined and measurable whenever T ki is nonempty. It suffices

to show that:

(i) The function hT,<k+1,`
i is well-defined and measurable for ` = 0, 1, . . . , k.
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(ii) The function hT,k+1,`
i is well-defined and measurable for ` = 0, 1, . . . , k + 1.

To prove (i), first note that T≤ki is nonempty whenever T ki is nonempty. It follows directly

from the induction hypothesis that hT,<k+1,`
i and hT,<k+1,k

i are well-defined for ` = 0, 1, . . . , k−1,

i.e.,

hT,<k+1,`
i

(
T≤ki

)
⊆ H̃≤`i , and hT,<k+1,k

i

(
T≤ki

)
⊆ H≤ki .

To show that hT,<k+1,k
i is measurable, let B ∈ B(H≤ki ). Then,(
hT,<k+1,k
i

)−1
(B) =

{
ti ∈ T≤ki : hT,<k+1,k

i (ti) ∈ B
}

=
k⋃

m=0

{
ti ∈ Tmi : hT,m,mi (ti) ∈ B ∩Hm

i

}
.

Hence, it suffices to show that for all ` = 0, . . . k,{
ti ∈ T `i : hT,`,`i (ti) ∈ B ∩H`

i

}
∈ B

(
T≤ki

)
. (II.1)

By our earlier observations, we have that B ∩H`
i ∈ B(H`

i ). It then follows from the measura-

bility of hT,`,`i that {
ti ∈ T `i : hT,`,`i (ti) ∈ B ∩H`

i

}
∈ B

(
T `i
)
,

and (II.1) follows. The proof that hT,<k+1,`
i is measurable for ` = 0, . . . , k − 1 is similar and

thus omitted.

The proof of (ii) consists of two parts. We first show that hT,k+1,`
i and hT,k+1,k+1

i are well-

defined for ` = 0, 1, . . . , k whenever T k+1
i is nonempty. That is, suppose T k+1

i is nonempty.

Then,

hT,k+1,`
i

(
T k+1
i

)
⊆ H̃`

i and hT,k+1,k+1
i

(
T k+1
i

)
⊆ Hk+1

i .

Clearly, hT,k+1,0
i (T k+1

i ) ⊆ H̃0
i . Let ` = 1, . . . , k − 1, and suppose hT,k+1,`−1

i

(
T k+1
i

)
⊆ H̃`−1

i .

We show that hT,k+1,`
i

(
T k+1
i

)
⊆ H̃`

i . From the induction hypothesis and (i) it follows that

hT,<k+1,`−1
−i is well-defined and measurable (recall condition (d) in the definition of a type

space). Using the induction hypothesis, we have that for all ti ∈ T k+1
i ,

hT,k+1,`
i (ti) =

(
hT,k+1,`−1
i (ti), β

k+1
i (ti) ◦

(
IdΘ, h

T,<k+1,`−1
−i

)−1) ∈ H̃`
i ×∆(Θ× H̃≤`−1

−i ).

If ` = 1, then we are done. If ` = 2, 3, . . . , k, we need to show that a player’s higher-order

beliefs are coherent, i.e., for each ti ∈ T k+1
i ,

margΩ̃`−2
i
βk+1
i (ti) ◦

(
IdΘ, h

T,<k+1,`−1
−i

)−1
= βk+1

i (ti) ◦
(
IdΘ, h

T,<k+1,`−2
−i

)−1
.
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Fix E ∈ B(Ω̃`−2
i ). Then, using the extended definition of the marginal,

margΩ̃`−2
i
βk+1
i (ti) ◦

(
IdΘ, h

T,<k+1,`−1
−i

)−1
(E)

= βk+1
i (ti) ◦

(
IdΘ, h

T,<k+1,`−1
−i

)−1({
(θ, x−i, µ

0
−i, . . . , µ

`−2
−i , µ

`−1
−i ) ∈ Θ× H̃≤`−1

−i :

(θ, x−i, µ
0
−i, . . . , µ

`−2
−i ) ∈ E

})
+ βk+1

i (ti) ◦
(
IdΘ, h

T,<k+1,`−1
−i

)−1(
E ∩ Ω̃`−2

i

)
= βk+1

i (ti) ◦
(
IdΘ, h

T,<k+1,`−2
−i

)−1
(E),

so that hT,k+1,`
i (ti) ∈ H̃`

i for ` = 2, 3, . . . , k. A similar argument shows that hT,k+1,k+1
i (ti) ∈

Hk+1
i .

Next, we show that hT,k+1,`
i is measurable, where ` = 0, 1, . . . , k + 1. For ` = 0, this is

immediate. So let ` = 1, 2, . . . , k + 1, and suppose the claim is true for ` − 1. It then follows

directly from the induction hypothesis and (i) that the claim is true for ` (recall that the image

measure induced by a measurable function from a metrizable space into a metrizable space is

measurable). �

For future reference, it will be convenient to define Gk
i := Hk

i ∪ H̃k
i to be the set of kth-order

belief hierarchies. Then, the functions hT,n,ki , n ≥ k, together define a map gT,ki that maps each

type into a kth-order belief hierarchy (i.e., gT,ki (ti) = hT,n,ki (ti) for ti ∈ T ni .

For i = 1, 2 and k <∞ such that T ki is nonempty, define hT,ki : T ki → Hk
i by:

hT,ki (ti) :=
(
hT,k,0i (ti), β

k
i (ti) ◦

(
IdΘ, h

T,<k,0
−i

)−1
, βki (ti) ◦

(
IdΘ, h

T,<k,1
−i

)−1
, . . . ,

βki (ti) ◦
(
IdΘ, h

T,<k,k−1
−i

)−1
)
,

i.e., hT,ki (ti) is the belief hierarchy (of depth k) induced by ti. It follows directly from the above

that hT,ki is well-defined and measurable.

We next define a collection of functions that will be used to obtain the belief hierarchies

of infinite depth. For i = 1, 2, if T∞i is nonempty, let hT,∞,0i : T∞i → H̃0
i be defined as before.

For ` = 1, 2, . . ., assume that the function hT,∞,`−1
i : T∞i → H̃`−1

i has been defined and is

measurable. Define the function hT,≤∞,`−1
i : T∞i ∪

⋃∞
m=0 T

m
i → H̃≤`−1

i by

∀m =∞, 0, 1, . . . , ti ∈ Tmi : hT,≤∞,`−1
i (ti) =

{
hT,m,`−1
i (ti) if m > `− 1;

hT,m,mi (ti) if m ≤ `− 1;

Also, define hT,∞,`i : T∞i → H̃`
i by

hT,∞,`i (ti) :=
(
hT,∞,`−1
i (ti), β

∞
i (ti) ◦

(
IdΘ, h

T,≤∞,`−1
−i

)−1
)
.

Again, these functions are well-defined:

Lemma II.2. Let i = 1, 2.
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(a) If T∞i is nonempty, then hT,∞,`i is well-defined and measurable for ` = 0, 1, . . ..

(b) The function hT,≤∞,`i is well-defined and measurable for ` = 0, 1, . . ..

The proof is similar to that of Lemma II.1, and thus omitted. Define hT,∞i : T∞i → H∞i by:

hT,∞i (ti) :=
(
hT,∞,0i (ti), β

∞
i (ti) ◦

(
IdΘ, h

T,≤∞,0
−i

)−1
, β∞i (ti) ◦

(
IdΘ, h

T,≤∞,1
−i

)−1
, . . .

)
.

That is, hT,∞i (ti) is the belief hierarchy (of infinite depth) induced by ti. By the above, hT,∞i
is well-defined and measurable.

Each type generates a well-defined belief hierarchy, and a type with index k corresponds

to a belief hierarchy of depth k. Define hTi : Ti → Hi to be the mapping that maps each type

into a belief hierarchy (i.e., hTi (ti) = hT,ki (ti) if ti ∈ T ki , k ≤ ∞).

We next define a type morphism from an arbitrary type space T to T ∗, using the mappings

defined in Step 1.

Step 2: Constructing a type morphism

Recall that ITi is the set of indices k = 0, 1, . . . ,∞ such that T ki is nonempty. For i = 1, 2,

define ϕi := (ϕki )k∈ITi as follows. If k ∈ ITi is finite, then define ϕki : T ki → Hk
i by:

ϕki (ti) := hT,ki (ti).

If T∞i is nonempty, then define ϕ∞i : T∞i → H∞i by:

ϕ∞i (ti) := hT,∞i (ti).

We show that ϕ = (ϕi)i=1,2 is a type morphism. By Lemmas II.1 and II.2, the functions

ϕki , i = 1, 2, k ∈ ITi , are well-defined and measurable. Also, for each ti ∈ Hk
i , we have that

χ∗i (ϕ
k
i (ti)) = χi(ti), that is, signals are preserved.

It remains to show that the mappings preserve higher-order beliefs. To show this, let i = 1, 2

and suppose there is k < ∞ such that T ki 6= ∅. We need to show that for each ti ∈ T ki and

E ∈ B(Θ)⊗B(H≤k−1
−i ),

ψki
(
ϕki (ti)

)
(E) = βki (ti)

((
IdΘ, ϕ

<k
−i
)−1

(E)
)
.

Let ti ∈ T ki . Using that T ∗ is canonical, we obtain

ψki
(
ϕki (ti)

)
(E) = ψki

(
hT,k,0i (ti), β

k
i ◦ (IdΘ, h

T,<k,0
−i )−1, . . . , βki ◦ (IdΘ, h

T,<k,k−1
−i )−1

)
(E)

= βki (ti)
(
(IdΘ, h

T,<k,k−1
−i )−1(E)

)
.
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Next suppose that T∞i 6= ∅, and let ti ∈ T∞i . We need to show that for each E ∈ B(Θ) ⊗
B(H−i),

ψ∞i (ϕ∞i (ti)) (E) = β∞i (ti)
((

IdΘ, ϕ
∞
−i
)−1

(E)
)
.

Let ti ∈ T∞i . Again using that the belief maps in T ∗ are canonical, we have

ψ∞i (ϕ∞i (ti)) (E) = ψ∞i

(
hT,∞,0i (ti), β

∞
i ◦ (IdΘ, h

T,≤∞,0
−i )−1, . . .

)
(E)

= β∞i (ti)
(
(IdΘ, h

T,∞
−i )−1(E)

)
.

It follows that ϕ is a type morphism.

Step 3: There is a unique type morphism from any type space to T ∗

We show that for any type space T , there is a unique type morphism from T to T ∗. The proof

uses the following lemmas. Lemma II.3 shows that type morphisms preserve belief hierarchies

[cf. Heifetz and Samet, 1998, Prop. 5.1]:

Lemma II.3. Fix arbitrary type spaces T and Q, and let ϕ be a type morphism from T to Q.

Then, for each i = 1, 2,

(a) if T ki is nonempty, where k <∞, then hQ,ki (ϕki (ti)) = hT,ki (ti);

(b) if T∞i is nonempty, then hQ,∞i (ϕ∞i (ti)) = hT,∞i (ti).

Proof. Here we show (a); the proof that (b) holds is similar and is thus omitted. The claim

clearly holds for k = 0. Let k = 1, 2, . . ., and suppose the claim is true for m = 0, 1, . . . , k − 1.

Again, for each i = 1, 2 such that T ki 6= ∅, it is easy to see that hQ,k,0i (ϕki (ti)) = hT,k,0i (ti) for

every ti ∈ T ki , where hQ,k,0i is defined analogously to hT,k,0i (recall that IQi ⊇ ITi , so that hQ,k,0i

is well-defined). Let ` = 1, . . . , k and suppose that

hQ,k,mi

(
ϕki (ti)

)
= hT,k,mi (ti)

for every ti ∈ T ki and m ≤ ` − 1. Denoting the belief maps for player i in Q by λki , where

k ∈ IQi , we can use condition (I.1) to obtain

λki
(
ϕki (ti)

)
◦
(
IdΘ, h

Q,<k,`−1
−i

)−1
= βki (ti) ◦

(
IdΘ, ϕ

<k
−i
)−1 ◦

(
IdΘ, h

Q,<k,`−1
−i

)−1

= βki (ti) ◦
(
IdΘ, h

Q,<k,`−1
−i ◦ ϕ<k−i

)−1

= βki (ti) ◦
(
IdΘ, h

T,<k,`−1
−i

)−1
,

where the last line uses the induction hypothesis. Again using the induction hypothesis, we

obtain

hQ,k,`i

(
ϕki (ti)

)
=

(
hQ,k−1,`
i

(
ϕki (ti)

)
, λki
(
ϕki (ti)

)
◦
(
IdΘ, h

Q,<k,`−1
−i

)−1)
=

(
hT,k,`−1
i (ti), β

k
i (ti) ◦

(
IdΘ, h

T,<k,`−1
−i

)−1)
= hT,k,`i (ti),
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for every ti ∈ T ki . �

Lemma II.4. Let i = 1, 2 and k = 0, 1, . . . or k = ∞. Then hT
∗,k

i : Hk
i → Hk

i is the identity

function.

The proof of Lemma II.4 follows directly from Lemma B.2 and Proposition B.3.

To show that ϕ is the unique type morphism from T to T ∗, suppose that ϕ̃ is a type

morphism from T to T ∗. Then, it follows from Lemma II.3 that for every i = 1, 2 and k ∈ ITi ,

hT,ki
(
ϕ̃ki (ti)

)
= hT,ki (ti).

But by Lemma II.4,

hT,ki
(
ϕ̃ki (ti)

)
= ϕ̃ki (ti),

so that ϕ̃ki (ti) = hT,ki (ti). The result then follows by noting that ϕki = hki .

To summarize: Step 2 shows that for any type space T , there is a type morphism from T
to T ∗, using the functions defined in Step 1. Step 3 shows that this type morphism is unique.

Hence, T ∗ is universal. By a similar argument as in the proof of Proposition 3.5 of Heifetz and

Samet [1998], there is at most one universal space, up to type isomorphism. �

II.2 Proof of Proposition I.2

The proof follows directly from the following lemma:

Lemma II.5. Suppose T is a type space, and suppose ϕ is a type morphism from T to T ∗. If

T is nonredundant, then, for all i = 1, 2 and ti ∈ Ti \ T 0
i ,

ψi
(
ϕ
κ(ti)
i (ti)

)(
Θ×

{
h−i ∈ H−i : h−i = ϕ

κ(t−i)
−i (t−i) for some t−i ∈ T−i

})
= 1,

where κ(t−i) = k for t−i ∈ T k−i. Conversely, if H ′i ⊆ Hi, i = 1, 2, is such that

suppψi(hi) ⊆ Θ×H ′−i

for all i = 1, 2 and hi ∈ H ′i \H0
i , then there is a type space T and a type morphism ϕ from T

to T ∗ such that for all players i,

H ′i = {hi ∈ Hi : hi = ϕ
κ(ti)
i (ti) for some ti ∈ Ti}.

Proof. Let T be a type space. We first prove the first claim. Let i = 1, 2. We need to show

that the subset
{
h−i ∈ H−i : h−i = ϕ

κ(t−i)
−i (t−i) for some t−i ∈ T−i

}
is measurable. Because T

11



is nonredundant, the function ϕ−i is injective, and it follows from the results of Purves [1966]

that

{h−i ∈ H−i : h−i = ϕ
κ(t−i)
−i (t−i) for some t−i ∈ T−i} =

⋃
k∈IT−i

ϕk−i(T
k
−i) ∈ B(H−i).

Hence, Θ × {h−i ∈ H−i : h−i = ϕ
κ(t−i)
−i (t−i) for some t−i ∈ T−i} is indeed an event in B(Θ) ⊗

B(H−i). The result now follows directly from the definition of a type morphism.

The proof of the second claim is immediate: for each i = 1, 2, define Ti := H ′i; and for each

hi ∈ H ′i of depth k, k = 0, 1, . . . ,∞, define βki (hi) := ψki (hi), and let χi(hi) be the projection

of hi on Xi. �

II.3 Proof of Proposition 3.2

Clearly, ϕ∞i (zi) ∈ H∞i for all i = 1, 2 and zi ∈ Zi. Hence,{
h−i ∈ H−i : h−i = ϕ

κ(z−i)
−i (z−i) for some z−i ∈ Z−i

}
⊆ E∞.

The type structure T MZ is nonredundant by construction, so that for i = 1, 2 and zi ∈ Zi,

ψi
(
ϕ∞i (zi)

)(
Θ×

{
h−i ∈ H−i : h−i = ϕ

κ(z−i)
−i (z−i) for some z−i ∈ Z−i

})
= 1

and it follows that{
h−i ∈ H−i : h−i = ϕ

κ(z−i)
−i (z−i) for some z−i ∈ Z−i

}
⊆ CB(E∞).

To prove the reverse inclusion, it is sufficient to show that for each i = 1, 2, there is

Y ∞i ⊆ Z∞i such that

ϕ∞i (Y ∞i ) = projHi

(
CB(E∞)

)
,

where projV is the projection function into a space V . To show this, we construct a map f̂ from

CB(E∞) to Ẑ−i. First note that CB(E∞) ⊆ H∞−i. For a hierarchy profile h ∈ CB(E∞) (where

hj = (xj, µ
0
j , µ

1
j , . . .))and player i = 1, 2, let f̂ 0

i (xi, µ
0
i ) := (xi, ẑ

0
i ). For k = 1, 2, . . ., suppose

f̂k−1
−i : projH̃k−1

−i
(CB(E∞)) → Ẑk−1

−i has been defined for all j = 1, 2. For (xj, µ
0
j , µ

1
j , . . .)j=1,2 ∈

CB(E∞) and i = 1, 2, define

f̂ki (xi, µ
0
i , . . . , µ

k
i ) :=

(
f̂k−1
i (xi, µ

0
i , . . . , µ

k−1
i ), µki ◦

(
IdΘ, f̂

k−1
−i
)−1)

.

It is easy to check that f̂ki is well-defined, given that the beliefs specified by the belief hierarchies

in CB(E∞) are coherent. Then, for each xj, µ
0
j , µ

1
j , . . .)j=1,2 ∈ CB(E∞), define

f̂((hi)i=1,2) := (xi, ẑ
0
i , µ

1
i ◦ (IdΘ, f̂

0
−i)
−1, . . .)i=1,2.
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Again, it is easy to verify that f̂(CB(E∞)) ⊆
∏

i=1,2 Ẑi, so that the set projẐi
f̂(CB(E∞))

corresponds to a subset Y ∞i of Z∞i = Ẑi. Given that there is a unique type morphism ϕ from

T MZ to T ∗, we have that ϕ∞i (Y ∞i ) = projHi
(CB(E∞)), and the result follows. �
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