
Supplement to “Improving matching under hard distributional

constraints”

Daniel Fragiadakis

Texas A&M University

Peter Troyan

University of Virginia

In this supplementary appendix, we relax one of the key features of the DQDA mechanism: that

the reduction sequence be exogenous to the submitted preferences. We define a new mechanism, the

endogenous-reduction DQDA (EDQDA) mechanism that allows the reduction sequence to change

depending on what preferences are submitted. Intuitively, this should allow the mechanism to respond

more to changes in demand, and thus allocate seats even more flexibly than DQDA. There are two costs

associated with this approach. First, EDQDA loses the important strategyproofness property satisfied

by ACDA and DQDA (and standard DA) with no floor constraints; and second, EDQDA will no longer

Pareto dominate ACDA. However, we are able to show that EDQDA will be approximately strategyproof

in large markets (in a formal sense defined below). In addition, we use simulations to study the magnitude

of the welfare gains from our dynamic quotas mechanisms. While some students may be worse off under

EDQDA, EDQDA tends to make students better off “on average”, in the sense that in the simulations,

the rank distribution of EDQDA will first-order stochastically dominate that of ACDA.

To define EDQDA, we use a slightly different definition of a reduction sequence. A reduction sequence

is now written as ρ = {(s1, θ1), . . . , (sK , θK)}, where each (sk, θk) ∈ S × Θ. ρ is a baseline order for

reducing the ceilings, but, unlike for DQDA, an entry will be skipped if all floors for the corresponding

type have already been met. In addition, we will only reduce the type-specific ceilings, and not the

capacities. The same entry may appear multiple times in ρ.1

Endogenous-reduction DQDA (EDQDA)

Set U1 = U .

Stage 1 Starting with the empty matching, run DA under (U1, Q), and set µ1 = DA(U1,Q)(PI).

(a) If µ1 is a feasible matching, end the algorithm and output this matching.

(b) Otherwise, let Θ̄ = {θ ∈ Θ : |µ1
θ(s)| < Ls,θ for some s ∈ S} be the set of types for which at

least one floor constraint is not yet satisfied, and let Y = {(s, θ) ∈ S × Θ̄ : |µ1
θ(s)| > Ls,θ}

be the set of schools that have an excess of these types of students. Let (s, θ) be the element

of Y that occurs earliest in ρ (if there is no such element, then choose the first element of ρ).

1Note that it is possible to describe any minimal reduction sequence η from the definition of DQDA by listing the
school-type pair whose capacity and ceiling are reduced at each step.
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Set U2
s,θ = U1

s,θ − 1 and U2
s′,θ′ = U1

s′,θ′ for all other (s′, θ′), and delete the earliest occurrence of

(s, θ) from ρ. Proceed to stage 2.

In general,

Stage k Starting with the empty matching, run DA under (Uk, Q) and set µk = DA(Uk,Q)(PI).

(a) If µk is a feasible matching, end the algorithm and output this matching.

(b) Otherwise, let Θ̄ = {θ ∈ Θ : |µkθ(s)| < Ls,θ for some s ∈ S} be the set of types for which at

least one floor constraint is not yet satisfied, and let Y = {(s, θ) ∈ S × Θ̄ : |µkθ(s)| > Ls,θ} be

the set of schools that have an excess of these types of students. Let (s, θ) be the element of

Y that occurs earliest in ρ (if there is no such element, then choose the first element of ρ). Set

Uk+1
s,θ = Uks,θ − 1 and Uk+1

s′,θ′ = Uks′,θ′ for all other (s′, θ′), and delete the earliest occurrence of

(s, θ) from ρ. Proceed to stage k + 1.

EDQDA functions similarly to DQDA, except instead of following the reduction sequence in order from

start to finish, we find the earliest entry (sk, θk) for which sk has an excess of type θk students and not

all type θk floors have been met. We then reduce the θk ceiling at sk by one and leave everything else

fixed. We thus may skip entries if the types corresponding to those entries have already met all floor

constraints, which does not occur in DQDA. In addition, we only lower the type-specific ceilings, and not

the capacities, so if a type θ ceiling is lowered in order to satisfy a floor elsewhere, that student’s seat

is not “wasted”, and can be taken by a student of a different type. To ensure that EDQDA produces a

feasible matching, ρ must be chosen in such a way that (UK , Q) ensures a feasible match, where UK is

defined as UKs,θ = Us,θ −
∑K

k=1 1{(sk, θk) = (s, θ)}, where 1{·} is an indicator function that takes on a

value of 1 if the kth entry of ρ is (s, θ).

These modifications intuitively make EDQDA a more efficient mechanism. While it turns out that

EDQDA will not be more efficient in a Pareto sense (for reasons related to the discussion following Theorem

??), the simulations performed below show that on average, the students will prefer EDQDA to both

ACDA and DQDA. The cost of these welfare gains is that EDQDA is no longer strategyproof. However,

EDQDA may still be a successful mechanism in practice, provided that the potential manipulations are

not too easy to enact. This is formalized in the next section.

Remark 1. The final matching produced by EDQDA is again equivalent to DA under some ceilings and

capacities (U ′, Q′), and so EDQDA will eliminate justified envy among same types (the argument is

equivalent to the one used to prove the analogous statement in Theorem ??).

Large markets

In this section, we show formally that EDQDA has good incentive properties if the market is large. There

are many ways to formalize the notion of a large market limit. We will use the concept of strate-

gyproofness in the large (SPL) proposed by Azevedo and Budish (2013).2 We choose this particular

2For other large market incentive compatibility notions that are closely related to SPL, see Immorlica and Mahdian (2005),
Kojima and Pathak (2009), and Kojima et al. (2013), who study the large market properties of DA, or Che and Kojima
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formalization because it is very broadly applicable (beyond matching algorithms), and whether a mecha-

nism is SPL or not turns out to be a good predictor of whether it is a successful mechanism in practical

applications.3

To show that our mechanism is SPL, we must expand the formal model. We consider a sequence of

markets, indexed by n ∈ N (which will grow large), where n is the number of agents, and In = {i1, . . . , in}
is the set of agents in market n. Θ is a finite set of quota types, and each student is of exactly one type

in Θ. As previously, it may be useful to think of each θ ∈ Θ as a different socioeconomic tier, though the

practical meaning of this set may vary across applications. The set Θ is fixed for all n, but the number of

students of each type θ, |Inθ |, grows according to some fixed sequence. The set of schools S = {s1, . . . , sm}
is also fixed for all n, but the capacities and quotas of the schools increase with n. Specifically, for each

market n ∈ N, school s has a capacity of Qns , and type-specific floors and ceilings of Lns,θ and Uns,θ. As in

the original model, we collect these quotas into matrices Ln, Un, and Qn. We assume that the sequence

(Ln, Un, Qn)n∈N is such that at least one feasible matching exists for every market n.

Strategyproofness in the large is a cardinal concept. There is a finite set of payoff (utility) types T .

Corresponding to each ti ∈ T is a von Neumann-Morgenstern expected utility function uti : ∆S → [0, 1],

where ∆S is the set of lotteries over schools. Preferences are private, in that an agent’s payoff depends

only on her payoff type ti and outcome (lottery). Each utility type ti also has an associated ordinal

preference relation over schools, which we denote Pti .

Each school has a finite number of priority classes Zs = {1, . . . , |Zs|}. Each student i is assigned to

one priority class at each school. Each s has a primitive (strict) ranking of priority classes �̂s, and ranks

all students in a higher priority class above all students in a lower. Ties within a priority class will be

broken using a random lottery (see below). For each i, zi ∈ Z = ×ms=1Zs is a list that denotes i’s priority

class at each school. One practical interpretation of priority classes is that each class corresponds to a

certain zone, with students living within a certain radius of a school receiving higher priority for their

neighborhood school than those living farther away. All students in each zone have equal priority, up to

the random lottery used to break ties. Consistent with this interpretation, we will sometimes refer to Z

as a set of zones for concreteness, but we emphasize that the priority classes can be based on factors

other than geography.4

To summarize, let Λ = Θ × Z × T . A student’s overall type is then an element λi ∈ Λ. For each

market n, define n(θ,z) as the number of students of quota-zone type (θ, z). We assume that n(θ,z) → ∞
for all (θ, z), so that the number of agents of each type (θ, z) grows large according to some fixed sequence.

Definition 1. A (direct) mechanism {(ψn)n∈N,Λ} is a sequence of allocation functions ψn : Λn →
∆(Sn) such that every allocation in the support of ψn(λ) is feasible for all n and all λ ∈ Λn.

Note that a mechanism as defined here produces a random allocation. For notational purposes, the

(2010) and Kojima and Manea (2010), who do the same for the probabilistic serial mechanism. One of the main advantages
of SPL is that it is not tailored to a specific mechanism, and so can be applied more broadly.

3Azevedo and Budish (2013) show that non-SPL mechanisms (e.g., pay-as-bid auctions for Treasury bills, priority matching
algorithms in hospital-residency markets) tend to perform poorly in the field and are eventually abandoned, while their SPL
counterparts (uniform price auctions, DA) are successful and in continued use.

4Formally, it is necessary to divide the students into a fixed number of priority classes to ensure semi-anonymity of the
mechanisms, in the sense of Kalai (2004).
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inputs are vectors of types λ ∈ Λn, but each student i is restricted to reporting θi and zi truthfully; the

only private information is her payoff type ti.

Given a distribution of payoff types π ∈ ∆T , define for a student i of quota-zone type (θi, zi) the

following quantity:

φn(θi,zi)(t
′
i, π) =

∑
λ−i∈Λn−1

ψni (λ′i, λ−i)Pr(λ−i|t−i ∼ iid(π)).

where λ′i = (θi, zi, t
′
i) and Pr(λ−i|t−i ∼ iid(π)) gives the probability that the realized type profile of the

n−1 other agents is λ−i = (θ−i, z−i, t−i), given that the payoff types are drawn iid from some distribution

π (recall that θ−i and z−i are fixed). In words, φn(θi,zi) gives the outcome an agent of type (θi, zi) receives

when she reports her payoff type as t′i and the payoff type reports of the other students are drawn according

to π.

We are now ready to formally define strategyproofness in the large. Given a finite set X, let ∆̄X

denote the set of full-support probability distributions over X.

Definition 2. (Azevedo and Budish, 2013) Mechanism {(ψn)n∈N,Λ} is strategyproof in the large

(SPL) if for any ε > 0 and any π ∈ ∆̄T, there exists an n0 such that for all n ≥ n0, (θ, z) ∈ Θ× Z, and

all ti, t
′
i ∈ T :

uti(φ
n
(θ,z)(ti, π)) ≥ uti(φn(θ,z)(t

′
i, π))− ε.

Last, we must define the EDQDA mechanism in this setting. Given some collection of reduction

sequences {ρn}n∈N defined as above, the mechanism proceeds as follows. First, draw a vector of lottery

numbers ` ∈ [0, 1]n uniformly at random, where `i denotes the lottery number of student i. Then, create

a strict priority relation for each school s, �ns , as follows:

i �ns j ⇐⇒ zi,s�̂szj,s or [zi,s = zj,s and `i > `j ],

where zi,s is student i’s priority class (zone) at s. Let µn(λ, `) be the matching produced by the EDQDA

algorithm (as defined the previous section) using type-specific floors Ln, type-specific ceilings Un, ca-

pacities Qn, priorities �ns , reduction sequence ρn, and (ordinal) preferences (Pti)i∈In . Then, define En

as:

En(λ) =

∫
`∈[0,1]n

µn(λ, `)d`.

Theorem 1. The mechanism {(En)n∈N,Λ} is strategyproof in the large.

Intuitively, in a large enough market, it is unlikely that student i’s report will have an effect on the

final stage of the algorithm, and thus it is unlikely that she will be able to profitably manipulate. At a

formal level, we prove the result by showing that EDQDA satisfies an envy-freeness condition identified

by Azevedo and Budish (2013) as sufficient for strategyproofness in the large. The proof can be found at

the end of this appendix.
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Simulations

We have thus far argued from a theoretical perspective that our new mechanisms should lead to improved

performance of matching markets with floor constraints, as they increase efficiency while still satisfying

good incentive and fairness properties. However, the theoretical results do not say anything about the

number of students who are made better off by the use of our mechanisms. To answer this question, we

turn to simulations.

The purpose of these simulations is two-fold: first, to approximate an actual school choice market

and obtain a sense of the magnitude of the potential gains from our mechanisms; second, to conduct

comparative statics with respect to important market parameters. With these dual goals in mind, we use

the details of kindergarten assignment in Cambridge, MA (for which limited data is publicly available) as

an anchor to set the number of students, schools, and student types, but also structure the simulations

with enough flexibility to allow us to conduct comparative statics with respect to preference correlation,

quotas, and capacities.5

Simulation parameters

There are n = 750 students, m = 12 schools, and two possible types Θ = {`, h}. There are 250 students

of type ` (“low SES”) and 500 students of type h (“high SES”).

Student preferences are determined as follows. Student i’s utility for school s is ui(s) = αvc(s) + (1−
α)vpi (s), where vc(s) is a common utility component that is the same across students, and vpi (s) is i’s

private, idiosyncratic utility for school s. The common component vc(s) and all private components vpi (s)

are drawn iid uniformly from [0,1].6 Ordinal preferences are then created from these cardinal preferences.

Note that it is only the ordinal preferences that matter. The cardinal utility draws are used solely as a

simplie way to vary the correlation in the ordinal preferences. The measures of welfare we will use to

compare the mechanisms will be ordinal measures.

By varying α, we can study how mechanism performance varies as a function of preference correlation.

A value of α = 0 corresponds to uncorrelated preferences, while α = 1 corresponds to common preferences.

To get a sense of the degree of preference correlation in a real market, we use the Cambridge data, which

lists for each school the number of students who rank it as their first choice. The value of α corresponding

to the data is α = 0.13.7

School priority relations are drawn uniformly at random, independently across schools. For the school

floors, ceilings, and capacities, we consider two cases: low flexibility and high flexibility. Table 1 gives

the type-specific floors, ceilings, and capacities for the two cases. For simplicity, we treat all schools

5The Cambridge data can be accessed at http://www3.cpsd.us/department/frc/FRC.
6This method of drawing preferences is common in the literature; see, for example, Hafalir et al. (2013) and Miralles

(2009). Using other distributions (e.g., normal) leads to similar results.
7This value was obtained by finding the α that minimized the distance between 1000 simulated distributions of first

choices and the empirical distribution from the Cambridge data. While indicative of student preferences, care should be
taken in interpreting this number, because Cambridge uses a non-strategyproof mechanism (immediate acceptance), and so
it is unknown if the reported preferences are truthful (which is one of the common arguments made in support of switching
to a strategyproof mechanism). However, because our proposed mechanisms are strategyproof, by varying α we are able to
get a sense of how our mechanisms would perform if implemented, even if the true α were different from that implied by the
current data.
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symmetrically, and so the numbers in the table correspond to the floors, ceilings, and capacities for each

school. In the high flexibility case, the floors are lower and the ceilings are higher (compared to the low

flexibility case), meaning there is a wider range of possible final assignments in the high flexibility case.

Given the primitive floors, ceilings, and capacities (L,U,Q), the artificial capacities (Ū , Q̄) are chosen as

the highest symmetric values that ensure a feasible matching.

Floors Ceilings Capacities

Low flexibility
Primitive (14,36) (39,69) 90
Artificial - (21,42) 63

High flexibility
Primitive (14,14) (76,76) 90
Artificial - (21,44) 65

Table 1: The floors, ceilings, and capacities at each school for the low and high flexibility cases. For
entries (x, y), x corresponds to the low type ` and y corresponds to the high type h.

We last must discuss how to construct η (for DQDA) and ρ (for EDQDA). As noted before, there are

many possible ways to do this. Since it is not obvious ex-ante which should be chosen, we do so randomly

and symmetrically. That is, at each stage we randomly choose which quota to reduce, subject to the

constraint that all (s, θ) must be reduced once before any is reduced for a second time (and all must be

reduced twice before any is reduced a third time, etc.). For η, we also reduce the capacity of school s and

each stage, while for ρ, we do not. For more on the specification of η and ρ, see the additional simulation

details at the end of the appendix.

Simulation results

We run 150 iterations for each set of parameters. The outcome metric is the average rank distribution over

these 150 iterations. The rank distribution plots, for each x, the number of students who receive their xth

or better choice. It is one of the common metrics publicly reported by school districts when evaluating

mechanisms (for example, on its website, the Cambridge school district says that “85% of students receive

one of their top 3 choices,” which is a simplified reporting of the rank distribution).8

In Figure 1, we plot the rank distributions for our mechanisms under different choices of parameters.

To read the figures, take the top left panel as an example: it says that under ACDA, about 620 students

on average get their first choice, about 725 get their first or second choice, etc., while under EDQDA,

about 700 students get their first choice, 745 get their first or second choice, etc. For clarity, we only

plot the beginning of the rank distributions, because at higher ranks x, essentially all students are getting

their xth or better choice under all mechanisms.

The figure includes plots for six parameterizations: three values of α (α = 0, 0.13, 0.26) and two levels

of flexibility. At the end of this appendix, we report different results for other parameter values, but the

three main takeaways can be obtained from Figure 1.

1. Comparing ACDA, DQDA, and EDQDA: In every case, the average rank distribution for ACDA is

stochastically dominated by DQDA, which in turn is itself stochastically dominated by EDQDA. This

8Motivated by the fact that authorities are often concerned with rank distributions, Featherstone (2011) investigates
mechanisms that optimize the rank distribution in the context of object allocation without priorities.
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Additional simulation results

Below we present simulation results for additional parameter values. The first column corresponds

to the low flexibility case, while the second corresponds to the high flexibility case. Each row

corresponds to di↵erent values of the correlation parameter ↵. Note that for image clarity, the

vertical axes di↵er across figures.
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Figure 1: The number of students assigned to their xth or better choice for various parameter values,
averaged over 150 iterations. Higher plots correspond to better mechanisms (on average) for the students.
For clarity, we only plot the beginning of the distributions, but the first-order stochastic dominance
(FOSD) relation EDQDA >FOSD DQDA >FOSD ACDA holds for all values of x.
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confirms the Pareto dominance of DQDA over ACDA (Theorem ??). While there is no analogous

Pareto dominance of EDQDA over DQDA, the simulations show that it is the case that the students

will on average be better off under EDQDA compared to both DQDA and ACDA. The results suggest

that there are significant gains to be had from our mechanisms, with on average over 20% more

students receiving their first choice under EDQDA compared to ACDA for some parameterizations

(see the appendix).

2. Comparative statics with respect to preference correlation: Within each column, the flexibility is

fixed, but the preference correlation increases as we move from the top row to the bottom. As can be

seen in the figure, the gains from our mechanism are larger when the preference correlation is smaller.

Intuitively, this is because when preferences are uncorrleated, the floors are more likely to be filled

in the early stages of the dynamic quotas mechanisms. As the correlation increases, this becomes

less likely, and dynamic quotas is more likely to end in later stages, making it closer to artificial

caps. However, even at high correlations, there are still gains to be had from our mechanisms.

3. Comparative statics with respect to flexibility: Within each row, the preference correlation α is

fixed, but the flexibility increases as we move from the left column to the right. As can be seen

in the figure, the gains from our mechanism are larger when there is more flexibility. Intuitively,

when there is less flexibility (i.e., the floors and ceilings are “close”), dynamic quotas becomes more

similar to artificial caps. In the extreme case when all ceilings are equal to all floors and there is

no flexibility, DQDA is equivalent to ACDA (and to EDQDA). As the flexibility increases, there

is more room for our dynamic quotas mechanisms to respond to the submitted preferences of the

agents, and hence the gains obtained from using a dynamic quotas mechanism increase.

In summary, while our mechanisms will produce efficiency gains for any parametrization, the potential

gains are increasing in flexibility and decreasing in preference correlation. However, we still recommend

the use of DQDA or EDQDA even in markets with low flexibility or high preference correlation, because

they will make the students better off on average, without sacrificing fairness or incentive properties.

Proofs and additional simulation results

Proof of Theorem 1

To simplify notation, for a student of type λi = (θi, zi, ti), we define gi = (θi, zi), and refer to gi as student

i’s group. Recall that students cannot misreport their group and, as described in the text, the number

of students in each group, ng, grows according to some fixed sequence such that ng →∞ for all groups g.

We now state a no-envy condition that will be sufficient for a mechanism to be SPL, and then show

that EDQDA does indeed satisfy this condition.

Definition 3. (Azevedo and Budish, 2013) A mechanism {(ψn)n∈N,Λ} is envy-free but for tie-

breaking (EFTB) if for each n there exists a function xn : (Λ× [0, 1])n → ∆(Sn) that is symmetric over

its coordinates and such that

ψn(λ) =

∫
`∈[0,1]n

xn(λ, `)d`

8



and if `i ≥ `j and i and j belong to the same group g, then uti(x
n
i (λ, `)) ≥ uti(xnj (λ, `)).

Lemma 1. The mechanism {(En)n∈N,Λ} is envy-free but for tie-breaking.

Proof. To show this, we must exhibit a function xn that satisfies the properties of Definition 3. Such

a function is given immediately by µn(λ, `), as defined above. Recall that by definition we have

En(λ) =

∫
`∈[0,1]n

µn(λ, `)d`

for all n ∈ N. The function µn is clearly symmetric over its coordinates by construction. Thus, the last

thing we need to show is that an agent i in group g never envies another agent j in group g with a lower

lottery number. Assume that i and j belong to the same group, but `i > `j . Recall that �ns is the (post-

lottery) priority relation for school s. The fact that i and j belong to the same group and `i > `j imply

that the priority relations are such that i �ns j for all s ∈ S. Now, µn(λ, `) is equivalent to the matching

produced by standard DA under some quotas (Un,k, Qn), priorities (�ns )s∈S , and (ordinal) preferences

(Pti)i∈In . This matching eliminates all justified envy for same types with respect to the strict priorities

(�ns )s∈S , which implies that µni (λ, `)Rtiµ
n
j (λ, `), and so uti(µ

n
i (λ, `)) ≥ uti(µ

n
j (λ, `)), which proves the

lemma. �

Given this lemma, the theorem follows from Proposition 1 of Azevedo and Budish (2013), which states

that if a mechanism satisfies EFTB, it is SPL.9

Constructing η and ρ

In this section, we describe in detail how we choose η and ρ to run the simulations. Essentially, at

each stage, we randomly choose one school-type pair (s, θ) for which the ceiling/capacity will be lowered,

subject to feasibility constraints. More specifically, to construct η, we start by setting (UK , QK) = (Ū , Q̄).

Then, we randomly choose some pair (s, θ) such that UKs,θ < Us,θ and QKs < Qs and set UK−1
s,θ = UKs,θ + 1

and QK−1
s = QK + 1. For the remaining (s′, θ′), UK−1

s′,θ′ = UK−1
s,′,θ′ and QKs′ = QK−1

s′ . For (UK−2, QK−2),

we again randomly select another school-type pair different from (s, θ), and raise its ceiling and capacity

by one (again, subject to the constraint that doing so does not violate the true ceilings and capacities).

We continue in this manner until it is impossible to raise capacities any further without violating the

true (U,Q). This produces a sequence η = {(U1, Q1), . . . , {(UK , QK)} which can then be used to run

DQDA. We construct η “backwards”, starting from (UK , QK), only to simplify the coding. It can be done

“forwards” as well.

To construct ρ for use in EDQDA, we start with the η just constructed (we begin with this η in order

to make a fair comparison with DQDA). Starting from where we left off in the previous paragraph, we

choose a pair (s, θ) randomly from those that have not yet reached their true type-specific ceiling, and

raise this type-specific ceiling by 1 (note that just the ceilings are considered, not the capacities, since they

are fixed in EDQDA). We continue to do so until we can no longer raise any (s, θ) ceiling further without

9Our model is slightly different, since the number of students in each group g grows deterministically, rather than stochas-
tically. In Appendix C of their paper, Azevedo and Budish (2013) note that their results continue to hold when the number
of students in each group grows deterministically and the utility types are drawn iid within each group, which is the case
here.
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violating the true Us,θ. We then convert this sequence of ceiling-capacity vectors into the corresponding

sequence of school-type pairs ρ, as described above, which is then used to run EDQDA.
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Additional simulation results

Below we present simulation results for additional parameter values. The first column corresponds to the

low flexibility case, while the second corresponds to the high flexibility case. Each row corresponds to

different values of the correlation parameter α. Note that for image clarity, the vertical axes differ across

figures.
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