
SUPPLEMENT TO “CONDORCET MEETS ELLSBERG”

ANDREW ELLIS

Abstract. Section A contains the two extensions mentioned in the main text.
Section B provides the details of the algebra omitted from the proof.

Appendix A. Extensions

A.1. Directly updating on the pivotal event. In this subsection, I assume that
each voter directly updates her set of priors conditional on being pivotal. While this
assumption is without loss of generality for SEU voters, it implies different behavior
for MEU voters. Theorem A.1 extends Theorem 1 to this setting.

I consider games as in Section 3 except that I restrict attention to Ra = {ra} and
Rb = {rb}. Instead of updating only on her signal, each voter also updates conditional
on being pivotal. Her set of posteriors after observing signal t equals the set Π̂t,
where π̂t ∈ Π̂t if and only if there exists π ∈ Π so that π̂t(·) = π(·|ti = t, piv, σ−i). In
particular, the marginal probability of a conditional on ti = t and being pivotal is in
the range [q

t
(σ), q̄t(σ)] where

q
t
(σ) =

p
t
Pr(piv|a, σ−i)

p
t
Pr(piv|a, σ−i) + (1− p

t
)Pr(piv|b, σ−i)

and
q̄t(σ) = p̄tPr(piv|a, σ−i)

p̄tPr(piv|a, σ−i) + (1− p̄t)Pr(piv|b, σ−i)
.

After observing signal t, voter i chooses her strategy to maximize

(A.1) V̂t(σ̂, σ−i) = min
q∈[q

t
(σ),q̄t(σ)]

qσ̂(A) + (1− q)σ̂(B).

When p̄ > p, V̂t(·, σ−i) is an affine transformation of Vt(·, σ−i) if and only if θa(σ) =
θb(σ); in general, they have different maximizers. Consequently, the best response
to σ−i according Vt(·) may differ from that according V̂t(·). Any collection Γ̂ =
(I, [p, p̄], T, ra, rb) defines an ambiguous pivotal voting game if players maximize V̂t(·)
rather than Vt(·). An equilibrium for such a game is as in the main text, except
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Vt(σ̂, σ−i) is replaced by V̂t(σ̂, σ−i). Theorem 1 holds as stated when considering
ambiguous pivotal voting games rather than ambiguous voting games.

Theorem A.1. Any symmetric equilibrium to an ambiguous pivotal voting game
where voters lack confidence does not have correct expected winners.

Proof. For the sake of contradiction, suppose that σ is a symmetric equilibrium where
τA(σ|a) > 1

2 and τB(σ|a) > 1
2 . Note that V̂t(σ̂;σ−i) = Wt(σ̂(A);σ−i) where

Wt(s;σ−i) = min
p∈[p

t
,p̄t]

pPr(piv|a, σ−i)s+ (1− p)Pr(piv|b, σ−i)(1− s)
pPr(piv|a, σ−i) + (1− p)Pr(piv|b, σ−i)

.

The superdifferential of Wt equals

∂Wt(s;σ−i) =


{pt

Pr(piv|a,σ−i)−(1−p
t
)Pr(piv|b,σ−i)

p
t
Pr(piv|a,σ−i)+(1−p

t
)Pr(piv|b,σ−i)} if s > 1

2

{pPr(piv|a,σ−i)−(1−p)Pr(piv|b,σ−i)
pPr(piv|a,σ−i)+(1−p)Pr(piv|b,σ−i) : p ∈ [p

t
, p̄t]} if s = 1

2

{ p̄tPr(piv|a,σ−i)−(1−p̄t)Pr(piv|b,σ−i)
p̄tPr(piv|a,σ−i)+(1−p̄t)Pr(piv|b,σ−i)} if s < 1

2

.

This implies that s = 0 is the only optimum of Wt if and only if
p̄t

1− p̄t
<
Pr(piv|b, σ−i)
Pr(piv|a, σ−i)

,

that any s ∈ [0, 1
2 ] is an optimum of Wt if

p̄t
1− p̄t

= Pr(piv|b, σ−i)
Pr(piv|a, σ−i)

,

that s = 1
2 is the only optimum of Wt if and only if

p
t

1− p
t

<
Pr(piv|b, σ−i)
Pr(piv|a, σ−i)

<
p̄t

1− p̄t
,

that any s ∈ [1
2 , 1] is an optimum of Wt if

p
t

1− p
t

= Pr(piv|b, σ−i)
Pr(piv|a, σ−i)

,

and that s = 1 is the only optimum of Wt if and only if
p
t

1− p
t

>
Pr(piv|b, σ−i)
Pr(piv|a, σ−i)

.

Label ∩t∈T [p
t
, p̄t] = [p1, p̄2], noting that p

t
≤ p1 and p̄t ≥ p̄2 for all t ∈ T . By

symmetry, all voters perceive the same strategies of others, so fix any i and consider
β = Pr(piv|b,σ−i)

Pr(piv|a,σ−i) . If β < p̄2
1−p̄2

, then for all t ∈ T , β < p̄t

1−p̄t
, so σ(t)(A) ≥ 1

2 by the
above. Conclude τB(σ|b) ≤ 1

2 , a contradiction. Finally, if β > p1
1−p1

, then for all t ∈ T ,
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β >
p

t

1−p
t

, so σ(t)(A) ≤ 1
2 by the above. Conclude τA(σ|a) ≤ 1

2 , a contradiction.
These cases are mutually exhaustive and both result in a contradiction. Therefore, it
is impossible that τA(σ|a) > 1

2 and τB(σ|b) > 1
2 , completing the proof. �

A.2. Ambiguity about likelihoods. Voters assign a marginal probability to a be-
tween p and p̄, where 0 < p ≤ p̄ < 1. Conditional on state s, the signal that voter
i observes is distributed according to one of the distributions in the set Rs, where
each Rs is a closed, convex, non-empty set of probability distributions over T . For-
mally, π ∈ Π if and only if there exists a p ∈ [p, p̄] and an rs in the convex hull of
{⊗i∈Irs,i : rs,i ∈ Rs∀i ∈ I} for each s ∈ S so that

π(a, t) = pra(t) & π(b, t) = (1− p)rb(t)

for all (s, t) ∈ Ω.
Voters form a set of posteriors by updating each measure in Π according to Bayes

rule. Denoting the vector of signals seen by other voters as t−i, Bayes rule gives that
πt is an extreme point of Π(·|ti = t) if and only if there exists p ∈ {p

t
, p̄t} as well as

an ra,i ∈ Ra and an rb,i ∈ Rb for every i ∈ I so that

πt(a, t, t−i) = p
∏
j 6=i

ra,j(tj) & πt(b, t, t−i) = (1− p)
∏
j 6=i

rb,j(tj)

for every (s, t) ∈ Ω, where
p̄t = r̄a,tp̄

r̄a,tp̄+ rb,t(1− p̄)
and

p
t

=
ra,tp

ra,tp+ r̄b,t(1− p)
for r̄a,t = maxra∈Ra ra(t), rb,t = minrb∈Rb

rb(t), ra,t = minra∈Ra ra(t), and r̄b,t =
maxrb∈Rb

rb(t). Say that (rσa,i, rσb,i)i∈I is a minimizing likelihood for a strategy pro-
file σ if for every t ∈ T , there is a minimizer of Vt(σi, σ−i), π′t, that has the form
π′t(a, t, t−i) = p

∏
j 6=i r

σ
a,j(tj) and π′t(b, t, t−i) = (1− p)∏j 6=i r

σ
b,j(tj) for some p ∈ (0, 1).

Lemma A.2. If σ is a strategy profile, then there exists a minimizing likelihood
(rσa,i, rσb,i)i∈I for σ. If σ is symmetric, then this likelihood can be taken to be symmetric,
i.e. rσa,i = rσa,j = rσa and rσb,i = rσb,j = rσb for every i, j ∈ I.

Proof. Fix an arbitrary voter i, a signal τ ∈ T , and another voter j ∈ I\{i}. For an
arbitrary likelihood (ra,k)k∈I\{i}, voter i’s interim utility conditional on state a and
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signal τ can be written as

E[ui|a, σ, τ ] = f(σ−i,−j, (ra,k)k∈I\{i,j}) +
∑
t∈T

ra,j(t)σj(t)(A)×

×[σi(τ)(A)Pr(n− 1 voters in I\{i, j} vote for A|(ra,k)k∈I\{i,j}, σ−i−j) +

σi(τ)(B)Pr(n voters in I\{i, j} vote for A|(ra,k)k∈I\{i,j}, σ−i−j)]

where f(·) is the probability that n+1 voters in I\{i, j} vote for A, given their strate-
gies and the distribution of signals. Therefore, for all τ ∈ T , any ra,j that minimizes∑
t∈T ra,j(t)σj(t)(A) minimizes E[ui|a, σ, τ ] regardless of the other likelihoods. Similar

rewriting is possible for b, resulting in rb,j minimizing ∑t∈T rb,j(t)σj(t)(B).
For each j , pick an arbitrary

rσa,j ∈ arg min
ra∈Ra

∑
t∈T

ra(t)σj(t)(A)

and an arbitrary
rσb,j ∈ arg min

rb∈Rb

∑
t∈T

rb(t)σj(t)(B).

Given the above observation, the collection (rσa,k, rσb,k)k∈I\{i} is a minimizing likelihood.
If σ is symmetric, then it is without loss to take rσa,j = rσa,k and rσb,j = rσb,k for all
j, k ∈ I since arg minra∈Ra

∑
t∈T ra(t)σj(t)(A) = arg minra∈Ra

∑
t∈T ra(t)σk(t)(A) (and

similarly for b), completing the proof. �

Theorem A.3. If voters lack confidence and σ is a symmetric equilibrium, then for
any distribution of signal r∗a, r∗b expected winners are not correct.

Proof. Apply Lemma A.2. Follow the arguments of Theorem 1 in the main text using
the minimizing collection of likelihoods rather than ra, rb to establish that σ(t)(A) >
1
2 implies σ(t′)(A) ≥ 1

2 for all t′ ∈ T . Conclude that for any distribution r∗a, r
∗
b ,

τA(σ|a) > 1
2 implies τA(σ|b) > 1

2 where τ uses r∗a, r∗b . �

Appendix B. Algebra

B.1. Algebra for Theorem 1 Proof. Let f(m, p, n) =
(
n
m

)
pm(1− p)n−m, noting

∂f

∂p
=
(
n

m

)
[mpm−1(1− p)n−m − (n−m)pm(1− p)n−m−1

= n

(
n− 1
m− 1

)
[pm−1(1− p)n−m − pm(1− p)n−m−1]

= n[f(m− 1, p, n− 1)− f(m, p, n− 1)]



SUPPLEMENTARY MATERIAL 5

if 1 < m < n and that ∂f(n,p,n)
∂p

= npn−1 = nf(n− 1, p, n− 1). Write

θa(σ) =
2n∑

m=n+1
f(m, τA(σ|a), 2n)

and conclude that
∂θa

∂τA(σ|a) |τA(σ|a)=p = 2n{
2n−1∑
m=n+1

[f(m− 1, p, 2n− 1)− f(m, p, 2n− 1)] + f(2n− 1, p, 2n− 1)}

= 2n{[f(n, p, 2n− 1)− f(2n− 1, p, 2n− 1)] + f(2n− 1, p, 2n− 1)}

= (2n)f(n, p, 2n− 1).

Since ρs(σ) =
(

2n
n

)
τc(σ|s)n(1− τc(σ|s))n, it follows that

∂ps
∂τc(σ|s)

|τc(σ|s)=t = 2n[f(n− 1; t, 2n− 1)− f(n; t, 2n− 1)]

= 2n
(

2n− 1
n− 1

)
[pn−1(1− p)n − pn(1− p)n−1]

= (1− 2p)2n
(

2n− 1
n− 1

)
pn−1(1− p)n−1

Therefore, the ρs(σ) decreases as the vote share of the candidate with the most votes
in state s increase. Combining
∂[2θa + ρa]
∂τA(σ|a) |τA(σ|a)=p = (2n)[2f(n, p, 2n− 1) + f(n− 1; t, 2n− 1)− f(n; t, 2n− 1)]

= (2n)[2f(n, p, 2n− 1) + f(n− 1; t, 2n− 1)] > 0.

B.2. Albgebra for Theorem 3 Proof. Define fo(t,m) =
(

2m+1
m

)
tm(1 − t)m+1 +(

2m+1
m+1

)
tm+1(1− t)m and fe(t,m) =

(
2m
m

)
tm(1− t)m. Write

ρA,s + ρB,s =
n∑
i=0

f(2i; τ∅, 2n)fe(τ ∗A, i) +
n−1∑
i=0

f(2i+ 1; τ∅, 2n)1
2fo(t, i)].

Since
(

2m+1
m

)
=
(

2m+1
m+1

)
, fo(t,m) can be rewritten as fo(t,m) =

(
2m+1
m

)
tm(1− t)m.

To see that ρA,s+ρB,s decreases in |τ ∗A− 1
2 | , note that

∂fe

∂t
= (1−2t)m2

(
2m
m

)
tm−1(1−

t)m−1 and ∂fo

∂t
= (1− 2t)m2

(
2m+1
m

)
tm−1(1− t)m−1, establishing the result.
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I turn now to establishing that it increases in τ∅. I first show that every term is
increasing. To see fe(t,m) > 1

2fo(t,m):

2fe(t,m)
fo(t,m) =

2
(

2m
m

)
tm(1− t)m(

2m+1
m

)
tm(1− t)m

=
2 (2m)!
m!m!

(2m+1)!
m!m+1!

= 2m+ 2
2m+ 1 > 1

and to see 1
2fo(t,m) > fe(t,m+ 1):

fo(t,m)
2fe(t,m+ 1) =

(
2m+1
m

)
tm(1− t)m

2
(

2m+2
m+1

)
tm+1(1− t)m+1

=
(2m+1)!
m!(m+1)!

2 (2m+2)!
(m+2)!(m+1)!t(1− t)

= (m+ 1)(m+ 2)
2(2m+ 2)t(1− t)

>
(m+ 1)(m+ 2)

(2m+ 2)1
2

= m+ 2 > 1.

To conclude that ρA,s + ρB,s increases in τ ∗∅ , use the following lemma.

Lemma B.1. If f : [0, 1] → R is a weakly increasing (decreasing) simple function
and π first order stochastically dominates π′, then

´
fdπ ≥

´
fdπ′ (

´
fdπ ≤

´
fdπ′).

Proof. Consider a weakly increasing, simple function f . Proceed by induction on the
number of distinct values of f , n. If f is constant, then

´
fdπ =

´
fdπ′. Now let n ≥ 2

and suppose that
´
gdπ ≥

´
gdπ′ whenever g takes n − 1 distinct values. Suppose

f takes n distinct values, with values x1, x2, ..., xn on the intervals E1, ..., En (where
zi ∈ Ei and zi+1 ∈ Ei+1 implies zi < zi+1). Then let g take values x1, x2, ..., xn−1 on
the intervals E1, ..., En−1∪En, respectively. Then f = g+(xn−xn−1)χEn where χE(z)
equals 1 if z ∈ E and 0 otherwise. By the induction hypothesis,

´
gdπ ≥

´
gdπ′ andˆ

χEndπ = π(En) ≥ π′(En) =
ˆ
χEndπ

′

by FOSD. Sinceˆ
fdπ =

ˆ
(g + (xn − xn−1)χEn)dπ

=
ˆ
gdπ +

ˆ
(xn − xn−1)χ(en−1]dπ

≥
ˆ
gdπ′ +

ˆ
(xn − xn−1)χ(en−1]dπ

′ =
ˆ
fdπ′,
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the result holds when f takes n distinct values. Consequently, it holds for all simple
functions. Similar arguments establish the other part of the result when f is weakly
decreasing rather than weakly increasing. �

To see utility in a is larger than b if 1−p
t

p
t

< ρAa+ρBa

ρBb+ρAb
and a t-voter plays (A,α) if

and only if α ≤ 1 + θa−θb

ρA,a+ρA,b
= α∗A, note:

(1− α)ρA,a + θa ≥ θb − (1− α)ρA,b

−α ≥ θb − θa
ρA,a + ρA,b

− 1

α ≤ 1 + θa − θb
ρA,a + ρA,b

= α∗A.

To see utility in a is larger than b if 1−p̄t

p̄t
> ρAa+ρBa

ρBb+ρAb
and a t-voter plays (B,α) if and

only if α∗B = 1 + θb−θa

ρB,b+ρB,a
≤ α, note:

−(1− α)ρB,a + θa ≥ θb + (1− α)ρB,b
θa − θb ≥ (1− α)[ρB,b + ρB,a]

θa − θb
ρB,b + ρB,a

− 1 ≥ −α

α∗B = 1 + θb − θa
ρB,b + ρB,a

≤ α.

To see that U(p,m) increases in p if p ≥ 1
2 , note F (k; p,m) = (m−k)

(
m
k

) ´ 1−p
0 tm−k−1(1−

t)kdt so ∂F
∂k

= −(m − k)
(
m
k

)
(1 − p)m−kpk. This implies that 1 − F (k; p,m) in-

creases in p, immediately establishing the result if m even. Note ∂f(m/2;p,m)
∂p

=(
m
m/2

)
m2pm−1(1− p)m−1(2p− 1), which is also positive if p ≥ 1

2 .
To see U(p,m) increases in m if p > 1

2 , consider m > 0 and even. Then

U(p,m) = 1− F (m2 ; p,m) + 1
2f(m/2; p,m)

< 1− F (m2 ; p,m) + pf(m/2; p,m)

= (1− p)(1− F (m2 ; p,m)) + p(1− F (m2 − 1; p,m))

= 1− F (m− 1
2 ; p,m+ 1) = U(p,m+ 1)
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Similarly,

U(p,m) = 1− F (m2 ; p,m) + 1
2f(m/2; p,m)

= (1− p)[1− F (m2 ; p,m− 1)] + p[1− F (m2 − 1; p,m− 1)] + 1
2f(m/2; p,m)

> 1− F (m2 ; p,m− 1) = U(p,m− 1).

Hence, U(p,m) increases in m if p > 1
2 .

If expected winners are correct, applying Lemma B.1 gives that θs(σ) is increasing
in τ(∅|s, σ) and increasing in τ(cs|σ,s)

τ(A|σ,s)+τ(B|σ,s) .


