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Proof of Proposition 2

Since in a pure adverse selection model eu
tat ⌘ 0 for all t, throughout this section, we remove

a
t

from the arguments of eu
t

, that is, eu
t

: ⇥
t

⇥ Xt ! R. We first inspect the consequences
of Assumptions 1 and 2 on the orthogonalized model. Note that since ✓

t

does not depend
on x

t�1, the  
t

inference functions do not depend on the decisions either, so  
t

: E t ! ⇥
t

.
The time-separability of the agent’s payoff (part (i) of Assumption 2) is preserved in the
orthogonalized model, except that the flow utility at t, u

t

: E t⇥Xt ! R, now depends on the
history of types up to and including time t:

u
t

�

"t, xt
�

= eu
t

�

 
t

�

"t
�

, xt
�

. (1)

Part (iii) of Assumption 1 implies that the larger the type history in the orthogonalized model
up to time t, the larger is the corresponding period-t type in the original model. This, coupled
with part (ii) of Assumption 2 implies that u

t

is weakly increasing in "t�1 and strictly in "
t

.
Monotonicy in xt as well as single-crossing (part (iii) of Assumption 2) are also preserved in
the orthogonalized model. We state these properties formally in the following Lemma.

Lemma 1. (i) For all t 2 {0, ..., T} and b"t, "t 2 E t

,

b"t  "t )  
t

�

b"t
�

  
t

�

"t
�

, (2)

and the inequality is strict whenever b"
t

< "
t

.
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(ii) The flow utility, u
t

defined by (1), is weakly increasing in "t�1
and xt�1

, and strictly

increasing in x
t

and "
t

.

(iii) For all t 2 {0, ..., T}, u
t"t

�

"t, xt
�

� u
t"t

�

"t, bxt
�

whenever xt � bxt.

Proof. Part (i) "
t

= H�1
t

(✓
t

|✓
t�1), therefore  0 ("0) = H�1

0 ("0) and  
t

for t > 0 is defined
recursively by  

t

�

"t
�

= H�1
t

�

"t| t�1
�

"t�1
��

. We prove the statement of this part by induc-
tion. For t = 0, we have H�1

0 ("0) � H�1
0 (b"0) whenever "0 � b"0 and the inequality is strict if

"0 > b"0.
Suppose that (2) holds for t, that is,  

t

�

b"t
�

  
t

�

"t
�

whenever b"t  "t and the inequality
is strict whenever b"t < "

t

. Note that  
t+1 (b"t+1) = H�1

t+1

�

b"
t+1| t

�

b"t
��

and  
t+1

�

"t+1
�

=

H�1
t+1

�

"
t+1| t

�

"t
��

. Since  
t

�

b"t
�

  
t

�

"t
�

by the inductive hypothesis, part (ii) of Assump-
tion 1 implies that  

t+1
�

b"t+1
�

  
t+1

�

"t+1
�

. In addition, if "
t+1 > b"

t+1 then H�1
t+1

�

"
t+1| t

�

"t
��

>

H�1
t+1

�

"0
t+1| t

�

b"t
��

.
Part (ii): The function u

t

is strictly increasing in x
t

and weakly increasing xt�1 because
of part (ii) Assumption 2 and (1). Equalities (1) and (2) imply that u

t

is strictly increasing
in "

t

and weakly increasing in "t�1.
Part (iii): Fix a t 2 {0, ..., T} and note that by (1),

u
t"t

�

"t, xt
�

= eu
t✓t

�

 
t

�

"t
�

, xt
� @ 

t

�

"t
�

@"
t

.

The result follows from (2) and part (iii) of Assumption 2. ⇤
Another important consequence of part (i) of Assumption 1 is that for all "t+1 and b"

t

, there
exists a type �

t+1("t+1, b"
t

) 2 E
t

such that, fixing the principal’s past and future decisions as
well as the realizations of the agent’s types beyond period t+ 1, the agent’s utility flow from
period t + 1 on is the same with type history "t+1 as it is with

�

"t�1, b"
t

,�
t+1("t+1, b"

t

)
�

. We
will show below that �

t+1, interpreted in Eső and Szentes (2007) as the agent’s “correction of
a lie,” defines an optimal strategy for the agent at time t+1 after a deviation from truthtelling
in an incentive compatible direct mechanism at t. This is formally stated in the following

Lemma 2. For all t 2 {0, . . . , T � 1}, "t+1 2 E t+1
and b"

t

2 E
t

, there exists a unique

�
t+1

�

"t+1, b"
t

�

2 E
t+1 such that for all k = t+ 1, . . . , T , all b"k 2 Ek

and bxk 2 Xk

,

u
k

("t�1, "
t

, "
t+1, b"t+2, . . . , b"

k

, bxk) = u
k

("t�1, b"
t

,�
t+1, b"t+2, . . . , b"

k

, bxk). (3)

The function �
t+1 is increasing in "

t

, strictly increasing in "
t+1 and decreasing in b"

t

.

Proof. Fix a t 2 {0, . . . , T � 1}, "t+1 2 E t+1 and b"
t

2 E
t

. Let

�
t+1 = H

t+1
�

 
t+1

�

"t+1
�

| 
t

�

"t�1, b"
t

��

. (4)
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By the full support assumption in part (i) of Assumption 1, it follows that

 
t+1

�

"t+1
�

=  
t+1

�

"t�1, b"
t

,�
t+1

�

,

that is, the computed time-(t+ 1) type of the original model is the same after "t+1 and
�

"t�1, b"
t

,�
t+1

�

. Therefore the inferred type in the original model is also the same after any
future observations, that is,

 
k

�

"t�1, "
t

, "
t+1, b"t+2, . . . , b"

k

�

=  
k

("t�1, b"
t

,�
t+1, b"t+2, . . . , b"

k

),

for all k = t + 1, . . . , T , all b"k 2 Ek. This equality and (1) imply (3). Also note that
�
t+1

�

"t+1, b"
t

�

, defined by (4), is increasing in "
t

, strictly increasing in "
t+1 by part (i) of

Lemma 1 and decreasing in b"
t

by part (i) of Lemma 1 and part (iii) of Assumption 1.
It remains to show that there does not exist any other �

t+1 which satisfies (3). This follows
from part (ii) of Lemma 1, which states that u

t+1 is strictly increasing in "
t+1, which implies

that (3) with k = t+ 1 cannot hold for two different �
t+1’s. ⇤

The statement of the previous lemma might appear somewhat complicated at first glance,
but its meaning and its intuitive proof are quite straightforward. Part (i) of Assumption 1
requires the support of ✓

t

to be independent of ✓
t�1. Therefore, if the type of the agent is

 
t

�

"t�1, b"
t

�

at time t, there is a chance that the period-(t+ 1) type will be  t+1
�

"t+1
�

. The
type �

t+1
�

"t+1, b"
t

�

denotes the orthogonalized information of the agent at t+1 which induces
the transition from  

t

�

"t�1, b"
t

�

to  
t+1

�

"t+1
�

, that is,

 
t+1

�

"t�1, b"
t

,�
t+1

�

"t+1, b"
t

��

=  
t+1

�

"t+1
�

.

This means that the inferred type in the original model is the same after the histories
�

"t�1, b"
t

,�
t+1

�

"t+1, b"
t

��

and "t+1. Part (i) of Assumption 1 and part (ii) of Assumption
2 imply that, given the decisions, the flow utilities in the future only depend on current type
which, in turn, imply (3).

The decision rule in the orthogonalized model,
�

x
t

: E t ! X
t

 

T

t=0
, which corresponds to

{ex
t

}T
t=0, is defined by x

t

�

"t
�

= ex
t

�

 t

�

"t
��

for all t and "t. Note that, by (2), if {ex
t

}T
t=0 is

increasing in type (ex
t

is increasing in ✓t for all t) then the corresponding decision rule {x
t

}T
t=0

in the orthogonalized model is also increasing in type.1

In fact, the monotonicity of {ex
t

}T
t=0 implies a stronger monotonicity condition on {x

t

}T
t=0.

Consider the following two type histories, "k and
�

"1, ..., "t�1, b"t,�t+1
�

"t+1, b"
t

�

, "
t+2, ..., "

k

�

.
1To see this, note that if vt � bvt then xt

�
bvt
�
= ext

�
 

t
�
bvt
��

 ext

�
 

t
�
v

t
��

= xt

�
v

t
�
, where the inequality

follows from the monotonicity of {ext}T0 and (2).

3



Note that the inferred types in the original model are exactly the same along these histories
except at time t. At time t, the inferred type is smaller after "t if and only if "

t

 b"
t

. Since
ex
k

is increasing in ✓
t

, the decision is smaller after "k if and only if "
t

 b"
t

. Formally,

Remark 1. If {ex
t

}T
t=0 is increasing then for all k = 1, ..., T , t < k, "k 2 Ek :

xk("k)  xk
�

"t�1, b"
t

,�
t+1

�

"t+1, b"
t

�

, "
t+2, ..., "

k

�

, b"
t

� "
t

. (5)

Proof of Remark 1. Recall from the proof of Lemma 2 that for all k = t+ 1, ..., T ,

 
k

�

"t+1, "
t+2..., "

k

�

=  
k

�

"t�1, b"
t

,�
t+1

�

"t+1, b"
t

�

, "
t+2, ..., "

k

�

.

By (2),  
t

�

"t
�

  
t

�

"t�1, b"
t

�

if and only if b"
t

� "
t

. Then (5) follows from the monotinicity
of {ex

t

}T0 and the definition of {x}T0 . ⇤
To simplify the exposition, we introduce the following notation for t = 0, . . . , T , k � t:

⇣k
t

("k, y) =
�

"t�1, y, "
t+1, ..., "

k

�

,

⇢k
t

("k, y, b"
t

) =
�

"t�1, b"
t

,�
t+1

�

"t�1, y, "
t+1, b"t

�

, "
t+2, ..., "

k

�

.

The vectors ⇣k
t

("k, y) and ⇢k
t

("k, y, b"
t

) are type histories up to period k, true or reported, which
are different from "k only at t or at t and t+ 1. For k = t these are appropriately truncated,
e.g., ⇢t

t

("t, y, b"
t

) =
�

"t�1, b"
t

�

.
As we explained, the monotonicity of {ex

t

}T
t=0 implies both the monotonicity of {x

t

}T
t=0

and (5). Therefore, in order to prove Proposition 2, it is sufficient to show that any increasing
decision rule in the orthogonalized model which satisfies (5) can be implemented. In what
follows, fix a direct mechanism with an increasing decision rule {x

t

}T
t=0 that satisfies (5). Let

⇧
t

("
t

|"t�1) denote a truthful agent’s expected payoff at t conditional on "t. That is,

⇧
t

("
t

|"t�1) = E

"

T

X

k=0

u
k

⇣

"k, xk("k)
⌘

� p("T )

�

�

�

�

�

"t

#

. (6)

Define the payment function, p, such that for all t = 0, ..., T and "t 2 E t,

⇧
t

�

"
t

|"t�1
�

= ⇧
t

�

0|"t�1
�

+ E

"ˆ
"t

0

T

X

k=t

u
k"t

⇣

⇣k
t

("k, y), xk
⇣

⇣k
t

("k, y)
⌘⌘

dy

�

�

�

�

�

"t

#

. (7)

It is not hard to show that the integral on the right-hand side of (7) exists and is finite because
of part (ii) of Assumption 1, part (i) of Assumption 2 and the monotonicity of xk. It should
be clear that it is possible to define p such that (7) holds.
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In this mechanism, let ⇡
t

�

"
t

, b"
t

|"t�1
�

denote the expected payoff of the agent at time
t whose type history is "t and has reported

�

"t�1, b"
t

�

. This is the maximum payoff she
can achieve from using any reporting strategy from t + 1 conditional on the type history
"t and on the reports

�

"t�1, b"
t

�

. If the mechanism is incentive compatible then, clearly,
⇧

t

("
t

|"t�1) = ⇡
t

("
t

, "
t

|"t�1).
We call a mechanism IC after time t if, conditional on telling the truth before and at time

t � 1, it is an equilibrium strategy for the agent to tell the truth afterwards, that is, from
period t on. By Lemma 2, the continuation utilities of the agent with type "t+1 are the same
as those of the agent with type

�

"t�1, b"
t

,�
t+1

�

"t+1, b"
t

��

conditional on the reports and the
realization of types after t + 1. Therefore, if a mechanism is IC after t + 1, the agent whose
type history is "t+1 and reported

�

"t�1, b"
t

�

up to time t maximizes her continuation payoff
by reporting �

t+1
�

"t+1, b"
t

�

at time t+1 and reporting truthfully afterwards. If this were not
the case then the agent with

�

"t�1, b"
t

,�
t+1

�

"t+1, b"
t

��

would have a profitable deviation after
truthful reports up to and including t, contradicting the assumption that the mechanism is
IC after t+ 1. Therefore, in a mechanism that is IC after t+ 1, we have

⇡
t

�

"
t

, b"
t

|"t�1
�

= u
t

�

"t, xt
�

"t�1, b"
t

��

� u
t

�

"t�1, b"
t

, xt
�

"t�1, b"
t

��

(8)

+

ˆ
⇧

t+1
�

�
t+1

�

"t+1, b"
t

�

|"t�1, b"
t

�

d"
t+1.

We use (8) in the following Lemma to characterize the agent’s continuation payoff who deviates
at t in a mechanism that is IC after t.

Lemma 3. Suppose that the mechanism is IC after time t+1 and (7) is satisfied. Then, for

all "t and b"
t

,

⇡
t

�

"
t

, b"
t

|"t�1
�

� ⇡
t

�

b"
t

, b"
t

|"t�1
�

=
T

X

k=t

E

ˆ
"t

b"t
u
k"t

⇣

⇣k
t

("k, y), xk
⇣

⇢k
t

("k, y, b"
t

)
⌘⌘

dy

�

�

�

�

"t
�

. (9)

This lemma is a direct generalization of Lemma 5 of Eső and Szentes (2007).
Proof. Let �k

t

�

"k, b"
t

, y
�

denote
�

"t�1, b"
t

, y, "
t+2, ..., "

k

�

for k = t+1, ..., T . Suppose first that

5



"
t

> b"
t

. Then �
t+1

�

"t+1, b"
t

�

> "
t+1, and

⇡
t

�

"
t

, b"
t

|"t�1
�

= u
t

�

"t, xt
�

"t�1, b"
t

��

� u
t

�

"t�1, b"
t

, xt
�

"t�1, b"
t

��

+

ˆ
⇧

t+1
�

�
t+1

�

"t+1, b"
t

�

|"t�1, b"
t

�

d"
t+1

= u
t

�

"t, xt
�

"t�1, b"
t

��

� u
t

�

"t�1, b"
t

, xt
�

"t�1, b"
t

��

+⇧
t

�

b"
t

|"t�1
�

+
T

X

k=t+1

ˆ
...

ˆ ˆ
�t+1("t+1

,b"t)

"t+1

uk
"t+1

⇣

�k
t

⇣

"k, b"
t

, y
⌘

, xk
⇣

�k
t

⇣

"k, b"
t

, y
⌘⌘⌘

dyd"
t+1...d"

k

= u
t

�

"t, xt
�

"t�1, b"
t

��

� u
t

�

"t�1, b"
t

, xt
�

"t�1, b"
t

��

+ ⇡
t

�

b"
t

, b"
t

|"t�1
�

+
T

X

k=t+1

ˆ
...

ˆ ˆ
�t+1("t+1

,b"t)

"t+1

u
k"t+1

⇣

�k
t

⇣

"k, b"
t

, y
⌘

, xk
⇣

�k
t

⇣

"k, b"
t

, y
⌘⌘⌘

dyd"
t+1...d"

k

where the first equality is just (8), the second one follows from (7), and the third one from
⇧

t

�

b"
t

|"t�1
�

= ⇡
t

�

b"
t

, b"
t

|"t�1
�

. So, in order to prove (9), we only need to show that

u
t

�

"t, xt
�

"t�1, b"
t

��

� u
t

�

"t�1, b"
t

, xt
�

"t�1, b"
t

��

=

ˆ
"t

b"t
u
t"t

�

"t�t

, y, xt
�

⇢t
t

("t, b"
t

)
��

dy. (10)

and

T

X

k=t+1

ˆ
...

ˆ ˆ
�t+1("t+1

,b"t)

"t+1

u
k"t+1

⇣

�k
t

⇣

"k, b"
t

, y
⌘

, xk
⇣

�k
t

⇣

"k, b"
t

, y
⌘⌘⌘

dyd"
t+1...d"

k

=
T

X

k=t+1

ˆ
...

ˆ ˆ
"t

b"t
u
t"t

⇣

⇣k
t

("k, y), xk
⇣

⇢k
t

("k, y, b"
t

)
⌘⌘

dyd"
t+1...d"

k

. (11)

Equation (10) directly follows from the Fundamental Theorem of Calculus. We now turn our
attention to (11). By Lemma 2, �

t+1 is continuous and monotone. The image of �
t+1

�

"t+1, y
�

on y 2 [b"
t

, "
t

] is
⇥

"
t+1,�t+1

�

"t+1, b"
t

�⇤

. Hence, after changing the variables of integration, for
all k = t+ 1, ..., T :

ˆ
�t+1("t+1

,b"t)

"t+1

u
k"t+1

⇣

�k
t

⇣

"k, b"
t

, y
⌘

, xk
⇣

�k
t

⇣

"k, b"
t

, y
⌘⌘⌘

dy =

ˆ
"t

b"t
u
k"t+1

⇣

�k
t

⇣

"k, b"
t

,�
t+1

�

"t�1, y, "
t+1, b"t

�

⌘

, xk
⇣

�k
t

⇣

"k, b"
t

,�
t+1

�

"t�1, y, "
t+1, b"t

�

⌘⌘⌘

@�
t+1

�

"t�1, y, "
t+1, b"t

�

@y
dy. (12)
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Recall that by (3) the following is an identity in y:

u
k

⇣

"t�1, y, "
t+1, ..., "

k

, xk
⌘

⌘ u
k

⇣

�k
t

⇣

"k, b"
t

,�
t+1

�

"t�1, y, "
t+1, b"t

�

⌘

, xk
⌘

,

so, by the Implicit Function Theorem,

u
k"t

⇣

"t�1, y, "
t+1, ..., "

k

, xk
⌘

= u
k"t+1

⇣

"t�1, b"
t

,�
t+1

�

"t�1, y, "
t+1, b"t

�

, ..., "
k

, xk
⌘ �

t+1
�

"t�1, y, "
t+1, b"t

�

@y
. (13)

Plugging (13) into (12) and noting that �k
t

�

"k, b"
t

,�
t+1

�

"t�1, y, "
t+1, b"t

��

= ⇢k
t

�

"k, y, b"
t

�

yields
(11).

An identical argument can be used to deal with the case where b"
t

> "
t

.⇤

We are now ready to prove Proposition 2.

Proof of Proposition 2. In order to prove that the transfers defined by (7) implement
{x

t

}T
t=0, it is enough to prove that the mechanism is IC after all t = 0, ..., T � 1. We prove

this by induction. For t = T � 1 this follows from the standard result in static mechanism
design with the observation that x

T

is monotone and (7) is satisfied for T . Suppose now that
the mechanism is IC after t+1. We show that the mechanism is IC after t, that is, the agent
has no incentive to lie at t if she has told the truth before t.

Consider an agent with type history "t and report history "t�1 who is contemplating to
report b"

t

< "
t

. We have to show that ⇡
t

�

"
t

, b"
t

|"t�1
�

�⇡
t

�

"
t

, "
t

|"t�1
�

 0 which can be written
as

⇡
t

�

"
t

, b"
t

|"t�1
�

� ⇡
t

�

b"
t

, b"
t

|"t�1
�

+ ⇡
t

�

b"
t

, b"
t

|"t�1
�

� ⇡
t

�

"
t

, "
t

|"t�1
�

 0.

By (7) and (9), the previous inequality can be expressed as

T

X

k=t

E

ˆ
"t

b"t
u
k"t

⇣

⇣k
t

("k, y), xk
⇣

⇣k
t

("k, y)
⌘⌘

dy

�

�

�

�

"t
�

(14)

�
T

X

k=t

E

ˆ
"t

b"t
u
k"t

⇣

⇣k
t

("k, y), xk
⇣

⇢k
t

("k, y, b"
t

)
⌘⌘

dy

�

�

�

�

"t
�

.

In order to prove this inequality it is enough to show that the integrand on the left-hand side
is larger than the integrand on the right-hand side. By part (iii) of Lemma 1, in order to
show this, we only need that xk

�

⇢k
t

�

"k, y, b"
t

��

 xk
�

⇣k
t

("k, y)
�

on y 2 [b"
t

, "
t

], which follows
from Remark 1. An identical argument can be used to rule out deviation to b"

t

> "
t

.⇤
From the proof of Proposition 2 it is clear that in the environment satisfying Assumptions

7



1 and 2 (i.e., with Markov types and a well-behaved agent payoff function), a decision rule
{x̃

t

}T
t=0 is implemented by transfers satisfying (7) if, and only if, condition (14) holds in the

orthogonalized model.2 But (7) is also a necessary condition of implementation (differentiate
it in "

t

and compare that with the condition in Proposition 1), therefore condition (14) is
indeed the necessary and sufficient condition of implementability of a decision rule in the
regular, Markov environment. Formally, we state

Remark 2. Suppose that Assumptions 1 and 2 hold. Then a decision rule, {ex
t

}T0 , is imple-

mentable if, and only if, (14) holds in the model with orthogonalized information.

Implementability in the Benchmark Case.— Suppose that the principal can observe "1, ..., "T .
Then, using arguments in standard static mechanism design, a decision rule {x

t

}T0 can be im-
plemented if, and only if, for all b"0, "0 2 E0, b"0  "0,

E

"

T

X

k=0

ˆ
"0

b"0
u
k"0

⇣

y, "k�0, x
k

⇣

y, "k�0

⌘⌘

dy

�

�

�

�

�

"0

#

� E

"

T

X

k=0

ˆ
"0

b"0
u
k"0

⇣

y, "k�0, x
k

⇣

b"0, "
k

�0

⌘⌘

dy

�

�

�

�

�

"0

#

.

This inequality is obviously a weaker condition than (14), so the principal can implement
more allocations in the benchmark case.

Proof of Proposition 5

In order to be able to refer to the additional restrictions required by the proposition, we state
the strict single-crossing properties in the following
Assumption 6.

(i) For all t 2 {0, ..., T}, ✓
t

2 ⇥
t

, a
t

2 A
t

: eu
t✓t

�

✓
t

, a
t

, xt
�

> eu
t✓t

�

✓
t

, a
t

, bxt
�

whenever
xt > bxt.

(ii) For all t 2 {0, ..., T} , for all ✓
t

2 ⇥
t

, a
t

2 A
t

, xt 2 Xt

eu
t✓tx⌧

�

✓
t

, a
t

, xt
�

f
tat (✓t, at) >

eu
tatx⌧

�

✓
t

, a
t

, xt
�

f
t✓t (✓t, at) .

Recall that in the proof of Proposition 4 we decomposed the gain from any deviation
strategy into the sum of two parts. The first part is the difference between the payoff from
deviating and truth-telling in the hypothetical model where y is contractible. The second part
is the difference between the payoff from the misreporting strategy but matching the actions
with the misreports and the payoff from misreporting and altering the actions optimally.
Then we appealed to Proposition 2 to conclude that the first part is negative and proved
that the second part is small. The key to the proof of this proposition is to show that if

2Note that condition (14) is a joint restriction on {xt}T0 and the marginal utility of the agent’s type, and
it is implied by the monotonicity of the decision rule in the environment of Assumptions 1-2.
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the deviation strategy leads to a decision rule which is far away from
�

e

x

T , eyT

�

, then the first
part of the decomposed payoff is not only negative but also large relative to the possible
gain corresponding to the second part. In order to do so, we follow the standard argument
in static mechanism design to estimate the deviation payoffs. This estimation is based on
the single-crossing property and we have derived the key formula, (14), in the orthogonalized
model.

In what follows, we use the notation introduced in the proof of Proposition 4. Recall that
the payoff difference corresponding to the first part of the decomposition is

E
✓

T

"

T

X

t=0

w
t

�

✓
t

, ey
t

�

✓t
�

, ext

�

✓t
��

� p

�

✓T
�

|✓0

#

(15)

�E
✓

T

"

T

X

t=0

w
t

�

✓
t

, ey
t

�

⇢
t

�

✓t
��

, ext

�

⇢
t

(✓t
��

� p

�

⇢T
�

✓T
��

|✓0

#

.

Since (14) is derived in the orthogonalized model, we rewrite the previous inequality in terms
of the orthogonalized information structure. To this end, let (ex

t

, ea
t

)T
t=0 denote the allocation

corresponding to (ex
t

, ea
t

)T
t=0, that is,

�

e

x

t

�

"t
�

, ea
t

�

"t
��

⌘
�

e

x

t

�

 t

�

"t
��

, ea
t

�

 t

�

"t
���

for all t,
"t. Similarly, define e

y

t

�

"t
�

and p

t

�

"t
�

to be e

y

t

�

 t

�

"t
��

and p

�

 t

�

"t
��

, respectively, for all
t and "t. Let ⇢

t

�

"t
�

denote the deviation strategy, that is, ⇢
t

�

"t
�

= ⇢
t

�

 t

�

"t
��

. Finally, let
!
t

�

"t, y, x
�

⌘ w
t

�

 t

�

"t
�

, y, x
�

for all t = 0, ..., T . It is not hard to prove that by Assumption
6 it follows that there exists an em 2 R+, such that for all t 2 {0, ..., T}, "

t

2 ⇥
t

:

!
t"t

�

"t, y
t

, xt
�

� !
t"t

�

"t, by
t

, bxt
�

� em
�

�

�

y
t

, xt
�

�
�

by
t

, bxt
�

�

� (16)

whenever
�

y
t

, xt
�

�
�

by
t

, bxt
�

and
�

y
t

, xt
�

,
�

by
t

, bxt
�

2
n⇣

e

y

t

�

"t
�

, ext

�

"t
�

⌘

: "t 2 E t

o

.
Using these notations, we can rewrite (15) as

E
"

T

"

T

X

t=0

!
t

⇣

"
t

, ey
t

�

"t
�

, ext

�

"t
�

⌘

� p

�

"T
�

|"0

#

�E
"

T

"

T

X

t=0

!
t

⇣

"
t

, ey
t

�

⇢
t

�

"t
��

, ext

�

⇢
t

("t
�

⌘

� p

�

⇢T
�

"T
��

|"0

#

.

Observe that it is without the loss of generality to assume that there exists a K > 0 such that
�

�

�

⇣

e

y

t

�

"t
�

, ext

�

"t
�

⌘

�
⇣

e

y

t

�

"0t
�

, ext

�

"0t
�

⌘

�

�

�

 K
�

�"t � "0t
�

� (17)

for all t 2 {0, ..., T} and "t 2 E t because any increasing allocation rule can be approximated
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arbitrarily well in the L2-norm with a decision rule which satisfies the previous inequality.
Also note that the set

n⇣

e

y

t

�

"t
�

, ext

�

"t
�

⌘

: "t 2 E t

o

is bounded. For notational convenience,
we assume that

�

�

�

⇣

e

y

t

�

"t
�

, ext

�

"t
�

⌘

�

�

�

 1

2
(18)

for all t 2 {0, ..., T} and "t 2 E t.
Next, we show that for all e� > 0 and ⌧ = 0, ..., T we can construct payment rules so that

E
"

t

�

�

�

⇣

e

y

t

�

"t
�

, ex
t

�

"t
�

⌘

�
⇣

e

y

t

�

⇢
�

"t
��

⌘

, ex
t

�

⇢
�

"t
��

�

�

�

2
< e�/ (T + 1) , (19)

for all t  ⌧ . We prove this statement by induction. Consider ⌧ = 0. As we mentioned before,
we use (14) to estimate the loss from a deviation. In particular, we estimate this loss by the
difference between the first term of the summation in the left-hand side and the first term of
the summation on the right-hand side of (14). In other words, we approximate the the loss
due to a time t deviation by the instantaneous loss and ignore future losses. Hence, by (14),

E
"

T

"

T

X

t=0

!
t

⇣

"
t

, ey
t

�

"t
�

, ext

�

"t
�

⌘

� p

�

"T
�

|"0

#

�E
"

T

"

T

X

t=0

!
t

⇣

"
t

, ey
t

⇣

⇢
t

�

"t
�

⌘

, ext

⇣

⇢
t

("t
⌘⌘

� p

�

⇢T
�

"T
��

|"0

#

� E
"0

"ˆ
⇢("0)

"0

!0"0

⇣

z, ey
0
(z) , ex0 (z)

⌘

� !0"0

⇣

z, ey
0

⇣

⇢
t

("0)
⌘

, ex0
⇣

⇢
t

("0)
⌘⌘

dz

#

.

By (16), the right-hand side of the previous inequality is weakly larger than

emE
"0

"ˆ
⇢("0)

"0

�

�

�

⇣

e

y

0
("0) , ex

0 ("0)
⌘

�
⇣

e

y

0

⇣

⇢
t

("0)
⌘

, ex0
⇣

⇢
t

("0)
⌘⌘

�

�

�

dz

#

.

Furthermore, by (17), the previous expression is larger that

emE
"0

2

6

4

�

�

�

⇣

e

y

0
("0) , ex

0 ("0)
⌘

�
⇣

e

y

0

⇣

⇢
t

("0)
⌘

, ex0
⇣

⇢
t

("0)
⌘⌘

�

�

�

2

2K

3

7

5

.

Recall that in the proof of Proposition 4, we proved that for each � > 0 it is possible to
construct payments so that the second part of the decomposed gain from deviation is less

10



than �. Therefore, in order to guarantee that the deviation (⇢
t

)
t

is profitable it must be that

emE
"0

2

6

4

�

�

�

⇣

e

y

0
("0) , ex

0 ("0)
⌘

�
⇣

e

y

0

⇣

⇢
t

("0)
⌘

, ex0
⇣

⇢
t

("0)
⌘⌘

�

�

�

2

2K

3

7

5

< �,

that is,

E
"0



�

�

�

⇣

e

y

0
("0) , ex

0 ("0)
⌘

�
⇣

e

y

0

⇣

⇢
t

("0)
⌘

, ex0
⇣

⇢
t

("0)
⌘⌘

�

�

�

2
�

<
2K�

em
. (20)

So, choosing � = eme�/ (2K (T + 1)) yields the claim in (19) for ⌧ = 0.
Suppose that the claim in (19) is true for ⌧ � 0. We show that this claim is also true for

⌧ + 1. The difficulty with the inductive step is that (14) can only be used to estimate the
time-(⌧ + 1) loss due to a deviation if there were no deviations in previous periods. Let us
explain how we overcome this problem. By the inductive hypothesis, there are payments so
that the optimal deviation strategy induces a decision rule which is arbitrarily close to the
decision rule generated by truth-telling in time periods 0, 1, ..⌧ . Therefore, we can approximate
the optimal deviation by a misreporting strategy which specifies truth-telling until period ⌧

and then coincides with the optimal deviation. According to this approximating deviation
strategy, the first deviation occurs in period ⌧ +1 and hence, we can use (14) to estimate the
loss due to this deviation once again. To this end, let ⇢⌧

t

�

"t
�

be defined as follows

⇢⌧
t

�

"t
�

=

(

"t if t  ⌧

⇢
t

�

"t
�

if t > ⌧ ,

that is,
n

⇢⌧
t

o

t

is a deviation strategy which prescribes truth-telling until period t and, after

11



period t, it coincides with
n

⇢
t

o

t

. Using this notation,

E
"

T

"

T

X

t=0

!
t

⇣

"
t

, ey
t

�

"t
�

, ext

�

"t
�

⌘

� p

�

"T
�

|"0

#

�E
"

T

"

T

X

t=0

!
t

⇣

"
t

, ey
t

⇣

⇢
t

�

"t
�

⌘

, ext

⇣

⇢
t

("t
⌘⌘

� p

�

⇢T
�

"T
��

|"0

#

= E
"

T

"

T

X

t=0

!
t

⇣

"
t

, ey
t

�

"t
�

, ext

�

"t
�

⌘

� p

�

"T
�

|"0

#

�E
"

T

"

T

X

t=0

!
t

⇣

"
t

, ey
t

⇣

⇢⌧
t

�

"t
�

⌘

, ext

⇣

⇢⌧
t

("t
⌘⌘

� p

�

⇢⌧T
�

"T
��

|"0

#

+E
"

T

"

T

X

t=0

!
t

⇣

"
t

, ey
t

⇣

⇢⌧
t

�

"t
�

⌘

, ext

⇣

⇢⌧
t

("t
⌘⌘

� p

�

⇢⌧T
�

"T
��

|"0

#

�E
"

T

"

T

X

t=0

!
t

⇣

"
t

, ey
t

⇣

⇢
t

�

"t
�

⌘

, ext

⇣

⇢
t

("t
⌘⌘

� p

�

⇢T
�

"T
��

|"0

#

.

By the inductive hypothesis and the Lipschitz continuity of payoffs, for all �, e� > 0, there are
payment rules so that

|E
"

T

"

T

X

t=0

!
t

⇣

"
t

,y
t

⇣

⇢⌧
t

�

"t
�

⌘

, ext

⇣

⇢⌧
t

("t
⌘⌘

� p

�

⇢⌧T
�

"T
��

|"0

#

(21)

�E
"

T

"

T

X

t=0

!
t

⇣

"
t

,y
t

⇣

⇢
t

�

"t
�

⌘

, ext

⇣

⇢
t

("t
⌘⌘

� p

�

⇢T
�

"T
��

|"0

#

|  �,

E
"

⌧+1

2

4

�

�

�

�

�

�

⇣

e

y

⌧+1

⇣

⇢
⌧+1

�

"⌧+1
�

⌘

, ex⌧+1
⇣

⇢
⌧+1

�

"⌧+1
�

⌘⌘

�
⇣

e

y

⌧+1

⇣

⇢⌧
t

�

"⌧+1
�

⌘

, ex⌧+1
⇣

⇢⌧
⌧+1

�

"⌧+1
�

⌘⌘

�

�

�

�

�

�

�

3

5  em�

2K
(22)

12



for � = 1, 2 and (19) is satisfied for all t  ⌧ . Therefore, by (21 ),

E
"

T

"

T

X

t=0

!
t

⇣

"
t

, ey
t

�

"t
�

, ext

�

"t
�

⌘

� p

�

"T
�

|"0

#

�E
"

T

"

T

X

t=0

!
t

⇣

"
t

, ey
t

⇣

⇢
t

�

"t
�

⌘

, ext

⇣

⇢
t

("t
⌘⌘

� p

�

⇢T
�

"T
��

|"0

#

� E
"

T

"

T

X

t=0

!
t

⇣

"
t

, ey
t

�

"t
�

, ext

�

"t
�

⌘

� p

�

"T
�

|"0

#

�E
"

T

"

T

X

t=0

!
t

⇣

"
t

, ey
t

⇣

⇢⌧
t

�

"t
�

⌘

, ext

⇣

⇢⌧
t

("t
⌘⌘

� p

�

⇢⌧T
�

"T
��

|"0

#

� �.

Note that according to the deviation strategy
n

⇢⌧
t

o

t

, the first deviation occurs in period ⌧+1.
Therefore, we appeal to (14) once again and using the same arguments leading to (20) we
conclude that

E
"

T

"

T

X

t=0

!
t

⇣

"
t

, ey
t

�

"t
�

, ext

�

"t
�

⌘

� p

�

"T
�

|"0

#

�E
"

T

"

T

X

t=0

!
t

⇣

"
t

, ey
t

⇣

⇢⌧
t

�

"t
�

⌘

, ext

⇣

⇢⌧
t

("t
⌘⌘

� p

�

⇢⌧T
�

"T
��

|"0

#

� emE
"

⌧+1

2

6

4

�

�

�

⇣

e

y

⌧+1

�

"⌧+1
�

, ex⌧+1 �"⌧+1
�

⌘

�
⇣

e

y

⌧+1

⇣

⇢⌧
⌧+1

�

"⌧+1
�

⌘

, ex⌧+1
⇣

⇢⌧
⌧+1

�

"⌧+1
�

⌘⌘

�

�

�

2

2K

3

7

5

� emE
"

⌧+1

2

6

4

�

�

�

⇣

e

y

⌧+1

�

"⌧+1
�

, ex⌧+1 �"⌧+1
�

⌘

�
⇣

e

y

⌧+1

⇣

⇢
⌧+1

�

"⌧+1
�

⌘

, ex⌧+1
⇣

⇢
⌧+1

�

"⌧+1
�

⌘⌘

�

�

�

2

2K

3

7

5

� 3�,

where the last inequality follows from (22) and (18). Hence, in order to guarantee that the
deviation strategy (⇢

t

)
t

is profitable, we need that

E
"

⌧+1



�

�

�

⇣

e

y

⌧+1

�

"⌧+1
�

, ex⌧+1 �"⌧+1
�

⌘

�
⇣

e

y

⌧+1

⇣

⇢
⌧+1

�

"⌧+1
�

⌘

, ex⌧+1
⇣

⇢
⌧+1

�

"⌧+1
�

⌘⌘

�

�

�

2
�

 2K (5�)

em
.

So, choosing � = eme�/ (10K) yields the claim in (19) for ⌧ + 1.
By the proof of Proposition 4, the payment rule can be defined so that

E
"

T

T

X

t=0

�

�

�

f
t

�

⇢
t

�

 t

�

"t
��

,↵
t

�

 t

�

"t
���

� y

t

⇣

⇢
t

�

"t
�

⌘

�

�

�

�

 e�, (23)
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for � = 1, 2. Define
�

x

t

�

 
t

�

"t
��

,a
t

�

 
t

�

"t
���

⌘
⇣

e

x

t

⇣

⇢
t

�

"t
�

⌘

, ea
t

⇣

⇢
t

�

"t
�

⌘⌘

for all t =

0, ..., T. Then

�

�

�

e

y

t

�

✓t
�

, ex
t

�

✓t
��

�
�

y

t

�

✓t
�

,x
t

�

✓t
��

�

�


�

�

�

⇣

y

t

�

"t
�

, ex
t

�

"t
�

⌘

�
⇣

y
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Notice that summing up the inequalities in (19) for t = 0, ..., T yield

E
"

T

T

X

t=0

�

�

�

⇣

y

t

�

"t
�

, ex
t

�

"t
�

⌘

�
⇣

y

t

⇣

⇢
t

�

"t
�

⌘

, ex
t

⇣

⇢
t

�

"t
�

⌘⌘

�

�

�

2
< e�.

By (18), the previous inequality and (23), we conclude that

E
✓

T

T

X

t=0

�

�

�

e

y

t

�

✓t
�

, ex
t

�

✓t
��

�
�

y

t

�

✓t
�

,x
t

�

✓t
��

�

�

2  4e�.

Therefore, the allocation (x
t

,a
t

)
t

satisfy desired inequality in the statement of Proposition
5. Finally, note that (x

t

,a
t

)
t

is implementable because it results from the agent’s optimal
deviation strategy in the mechanism

�

e

x

T , eaT , ep
�

. ⇤
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