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This appendix contains the non-emptiness characterizations of the sum of the

cores of the individual issues (Z C(V;)) and of the core of the sum of individual
V;ev
issues (C(Z V;)). These characterizations use systems of multi-weights, which
1Z15%
makes them comparable to the non-emptiness characterization of the multi-core

(Theorem 2 in the paper). For this purpose two additional sets of systems of multi-
weights are presented together with the systems of multi-weights that appear in

Definition 6 in the paper.

1 Definitions

1.1 Multi-weights

A function 0 : 2V x N x V — R, that assigns a non-negative real number to
every triplet of coalition, agent, and issue is a system of multi-weights.
We concentrate on systems of multi-weights that satisfy Zero to Non-members

and Resource Exhaustion.
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Definition 1. A system of multi-weights, 0, satisfies Zero to Non-members if

YV, € V,Vi € N,VS € 2N\ 2 5(S,4,V;) = 0.

Zero to Non-members entails a system of multi-weights that assigns zero weight

to all triplets where the agent is not a member of the coalition.

Definition 2. A system of multi-weights, 5, satisfies Resource Ezhaustion if

vV € v ZieN ZS@N S(S,i, V})XS = XN-

Resource Exhaustion implies that each agent is endowed with one unit of time
per issue. When Resource Exhaustion and Zero to Non-members are imposed,
we refer to a system of multi-weights as an (unrestricted) system of balancing
multi-weights.!

The following two definitions impose across-issue restrictions on systems of
multi-weights. Definition 3 requires that the total weights (over coalitions) assigned
to triplets that include Agent ¢ be constant across issues. Definition 4 compels the
weights assigned to triplets that include Agent ¢ and Coalition S to be the same

across issues.

Definition 3. A system of multi-weights, &, satisfies Constant Shares if
Vie N YV, Vi € Ve Y 6(8,4,Vi)x® = > 6(8,4, Vi )x®.

Se2N Se2N
Definition 4. A system of multi-weights, 0, satisfies Constant Allocations if
Vi € N,VV;,Vy € V,VS € 2V 1 6(S,4,V;) = (S, i, Vy).

'To see that balancedness is imposed in each Issue Vj, set 0(S) = >, -5 0(S,4,V;). Then,
Resource Exhaustion implies that in each issue Vj, > gcon 5(8)x® = xV. Observe that the
identity of Agent i is ignored in 6(S), therefore, when restricting attention to Issue V;, several
systems of balancing multi-weights are reduced to one system of balancing weights. Conversely,
every system of balancing weights corresponds to at least one system of balancing multi-weights
(e.g. dividing 0(S) equally among the members of .S).



1.2 Systems

We concentrate on the following three families of systems of balancing multi-

weights:

Definition 5. A function d : 2N x N xV — R, that satisfies Zero to Non-members

and Resource Exhaustion s

1. a system of Unconstrained Balancing Multi-weights (Ayc is the set of all

systems of unconstrained balancing multi-weights).

2. a system of Balancing Multi-weights if it satisfies Constant Shares (A is the

set of all systems of balancing multi-weights).

3. a system of Balancing Multi-weights with Constant Allocations if it satisfies
Constant Allocations (Aca is the set of all systems of balancing multi-weights

with constant allocations).

The Constant Allocations requirement implies the Constant Shares require-
ment, but not the opposite. Therefore, Ayc 2 A D Aca. The difference between
the three definitions lies in the dependencies they impose on the weights across
issues. The elements of Ay are unrestricted across issues, so that 5(, -, V;) poses
no restriction on the values of 5(, - Vi), for every V;,V;, € V. By contrast, for
Aca, S(, -, V;) and 5(, -, Vi) must be the same for every V;,V;, € V. The set A,
that lies between these two sets, allows for some variation of 5 (+,-,V;) across issues,

so long as they obey the Constant Shares requirement.?

2Put differently, consider the set of functions that assign weights to agent-coalition pairs
restricted by two requirements— assigning zero to pairs where the agent is not an element of the
coalition and allocating a total weight of one to each agent across coalitions,

F:{f:Nx2N—>R+i§éSimplies f(i,8) =0,Vie N : > Zf(k,S)zl}

se{Tu{a}|TCN\{i} } #€S



The three sets, Ay, A and Ag g, coincide when the multi-issue problem con-
sists of only one issue V. The correspondence above between standard weights
and multi-weights, establishes that any collection of coalitions that are assigned
positive weights in some system of balancing weights can also be assigned positive
weights by any one of the three definitions above.

This observation is still true when concentrating on the weights of a specific
issue in the multi-game. However, once these weights are set, definitions 5.2 and

5.3 confine the possible weights in the other issues.

2 Example

The table below presents three examples of systems of balancing multi-weights
with &, 0 and 4, corresponding to the three definitions above in a two-issue
three-agent multi-game. A row in this table corresponds to a triplet — coalition,

3 The Constant Allocation condition is satisfied by d5 since for

agent, and issue.
every Agent i and for every Coalition S, 53(5, i, Vi) = 53(5, i, V), whereas the two
other functions do not satisfy it (e.g. Agent 1 and Coalition {1,2}). The Constant

Shares condition is satisfied by both d, and ds, but is violated by &; (Agent 1).

For a given V; € V, 5(S7i,Vj) satisfies Zero to Non-members and Resource Exhaustion if and
only if it is an element of F'.

Definition 5.1 states that Ayc is the set of systems of multi-weights where for each issue Vj,
5(S,i,V;) is some element, of F.

Definition 5.3 states that Ac4 is the set of systems of multi-weights where for each issue Vj,
5(S,4,V;) is the same element of F.

Let IT be a partition of F such that two functions f and f’ belong to the same class if for every

pair of agents ¢ and k,

Z f(i,8) = Z fl(i,S)

Se{Tu{i,k}|TCN\{i.k} } se{Tu{i,k}ITCN\{i.k} }

Definition 5.2 states that A is the set of systems of multi-weights where for each issue Vj,
3(S,14,V;) belongs to the same class of II.
3Every triplet that is not specified in the table is assigned zero weight. Notice that both Zero

to Non-members and Resource Exhaustion are satisfied by all three systems.



Issue Agent | Coalition o1 | 0o 53
{13 |ojolo
2y (44
Agent 1 j‘ i‘ le
L3y |31
{1,2,3} |0 |00
{2} |1]1]|1
{1,2} 01010
Issue V; | Agent 2
{230 |olo]o
{123} | 33|13
{38) 13|35
{1,3y |0 |0]?}
Agent 3 &
{2,3y |0 |03
{1.2,3} | 1|35
{1} 1[1]0
{1,2 |o|o0|}1
Agent 1 411
(1,34 |0 |01
{1,2,3, 10| $]0
{22 0|33
{2} |olo]o
Issue V5 | Agent 2
2,34 |L1]o]o
{1.23} 0] § |3
1 1
3} |05 |5
1,3 0| 4i]1
Agent 3 1,3} . ? f
{23t | 3|55
1 1
{1,2,3} | 0| 5| 3

Table 1: Three systems of balancing multi-weights




3 Results

Proposition 1. The sum of the cores of the individual issues of V, Z C(V;), is
V;evV
non-empty if and only if every 6 € Ayc satisfies

STV = DD 684, V) V(S)

V;eV V;eV i=1 Sea2N

Proposition 2. The core of the sum of individual issues of V, C’(Z Vi), is
VeV
non-empty if and only if every 6 € Aca satisfies

DUV Z YD D68 V)Vi(S)
VeV V;eV i=1 SeaN
Both proofs rely directly on the Bondareva-Shapley Theorem (Theorem 1 in

the paper). Theorem 2 in the paper and Proposition 1 show that if there is no
solution in the multi-core, the sum of the cores of the individual issues is empty
as well, since A C Ayec. Theorem 2 in the paper and Proposition 2 show that
if the core of the sum of individual issues is empty, so is the multi-core, since
Aca € A. These results are also established by Theorem 4 in the paper. The
advantage of Propositions 1 and 2 is that they help identify the systems of balancing
multi-weights that violate the conditions above when either Zvjef/ C(V;) =0 and
M(V) # 0, or M(V) =0 and C(3 . o V) # 0.

4 Proof - Proposition 1

Proof. First, suppose Z C(V;) # 0. For every system of unconstrained bal-
V;eV
ancing multi-weights, 0 € Apyc, let us define §;(S) = > 0(5,4,V;). For every



Issue Vj, §;(5) is a system of balancing weights since by Resource Exhaustion,

ZSEZN 5j<S)XS =xV.
Suppose there exists S(S, i, V), such that

LAY 3)BP W CRABIAE

VeV V,eV i=1 SeaN

Then, there exists V; € V such that

ZZéS,Z,VJ (S)

=1 Se2N

or,

N) < ) 6;(S)Vi(S)

Se2N
By the Bondareva-Shapley Theorem, C'(Vj) = 0 and therefore 3, ., C(V;) = 0.

Thus, every 5 € Aye satisfies

SNV =YD 684, V) V(S)

V;eV V,eV i=1 SeaN

For the other direction, suppose that every 6 € Aye satisfies

IRAIIED 55 BB SRICIAA AT

VeV V,eV i=1 Se2aN

For every V; € V and for every system of balancing weights §(5), define 5(S,4,V))

as follows,
1. If V; # V; and S # N then for every i € N, §(S,4, V) = 0.

2. If Vi # V; and S = N then for every i € N, §(N,4,V)) = L



3. If V; =V then §(S,i,V;) = (T if i € S and 0 otherwise.

y & Vg

Note that ¢ satisfies the Zero to Non-members condition. Also, for V; # V,

ZZ(SS,@,VX—Z(SNZV ZX

i€EN SeaN 1EN 1EN
and for V; =V
S S
PP BRICHANIY ZZ—| =6 =
iEN Se2N e2N ieS Se2N

Therefore, & (S,1,V}) also satisfies the Resources Exhaustion condition and therefore
it is a system of unconstrained balancing multi-weights.

Suppose, there exists an issue V; € V such that C(V;) = 0. Then, by the
Bondareva-Shapley Theorem, there exists a system of balancing weights, §;(5),
such that V;(N) < > oo 6;(S)V;(S). Consider the corresponding 5,

YD D S WVIS) =

VeV i=1 Se2N

DD D S AWMV + DD 881 V) V;(S) =

vieV\{v;} i=1 Se2N i=1 Se2N
n 1 n N .

Do D VN DY A8, V)Vi(S) =
VIEV\{V;} =1 i=1 se2N

S V)Y Y 680 V)Vi(S) =
Vv,ev\{v;} i=1 SecaN

> um+ Y S
VieV\{v;} Se2N €S

Yo VN + D SSVIS) > > VN +V(N) = Y W(N
VieV\{V;} Se2N VieV\{V;} Viev



Therefore, it must be that VV; € V : C(V;) # 0 and therefore Z c(V;)#0. O
1Z151%

5 Proof - Proposition 2

Proof. Suppose C(Z Vi) # 0. Assume by negation that there exists b€ Aca

VeV
such that
> Vi) ZZZ&S,Z,VJ (S)
VeV V€V i=1 SeaN
or,

DUV < YYD S VV(S)

VeV Se2N i=1 V;eVv

Since ¢ is a system of balancing multi weights with constant allocation, for

every agent 7, coalition S and two issues V; and Vj:

5(S,1,V;) = 0(S,4,V!) = 6(S, 1)

) ¥

and therefore,

> Vi(N) ZZ (S,4) > Vi(S)

V,eVv VeV

Define §(S) = 327, 8(S,4). Due to the Resource Exhaustion property of &, §(S)

is a system of balancing weights

SLCRED 3 PIETINES 3p SLELAESS

Se2N Se2N k=1



Therefore, the inequality above becomes,

D Vi) < Y (8) Y V()
V;eV SeaN V;EV
which by the Bondareva-Shapley Theorem implies that C'(} .oy Vi) = 0,

which is a contradiction. Thus, if C( Z V;) # 0 then every 6 € Agy satisfies
\151%

LIS 3D SPIELAAAL

V;eV VeV i=1 Se2N

For the other direction, suppose C(Z V;) = 0. Then, by the Bondareva-
Vv;ev
Shapley Theorem, there exists a system of balancing weights, §(S), whereby

> gean 0(S)x® = X such that

D Vi) < Y 6(8) D Vi(S)

V;eV SeaN VeV

Define S(S,i,Vj) = ‘TS') if © € S and 6(5,2,1/]) = 0 otherwise. Obviously, &

satisfies the Zero to Non-members condition. Also, for every V; € Vv,

>N (S Vx® ZZ X = 6(S)" =

iEN Se2N Se2N ieS Se2N

Therefore, § also satisfies the Resources Exhaustion condition. In addition, 5

does not depend on any specific issue and thus it is a system of balancing multi-

10



weights with constant allocations.

)SPIDILCIRNICED 3P p SR

V;eV i=1 Se2N Se2N v;ev ieS
= > 08) Y Vi(S)> Y V(N
SeaN VeV VeV

Thus, if C( Z V;) = 0 there exists 6 € Ag 4 such that

VeV
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