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C. ATTACHMENT KERNEL AND LINK INCENTIVE FUNCTION

Let Rt ⊆ St, |Rt| = m, be the set of agents that receive a link from the entrant at time t.
The network at time t is then given by Gt = 〈Pt−1 ∪{t}, Et−1 ∪{tj : j ∈ Rt}〉. We define the

attachment kernel as the probability that an agent j ∈ Pt−1 receives a link from the entrant

Kβ
t (j|Gt−1) ≡ Et[1Rt

(j)|Gt−1] =
∑

St⊆Pt−1

∑

Rt⊆St

1Rt
(j)Pt(St,Rt|Gt−1)

=
∑

St⊆Pt−1

∑

Rt⊆St

1Rt
(j)Pt(Rt|St, Gt−1)

︸ ︷︷ ︸

≡Kβ
t (j|St,Gt−1)

Pt(St|Gt−1),

where Kβ
t (j|St, Gt−1) is the probability, conditional on the sample St and the prevailing

network Gt−1, that an agent j receives a link after the m draws (without replacement) by
the entrant, and β is a parameter related to the distribution of the additive error term εtj
from Equation (2.2) (see below). Since the entrant forms links to the agents that maximize
his link incentive function plus a random element, we need to consider the cases where agent

j has the highest value among all agents in the sample, or the second highest, and so on.
The corresponding probability can be written as follows1

(C.1)

Kβ
t (j|St, Gt−1) =

m∑

l=1

∑

i1,i2,...,il−1

l−1∏

r=1

Pt

(

f δ
t (Gt−1, ir) + εt,ir = max

k∈St\{i1,...,ir}
f δ
t (Gt−1, k) + εt,k

)

× Pt

(

f δ
t (Gt−1, j) + εt,j = max

k∈St\{i1,...,il−1}
f δ
t (Gt−1, k) + εt,k

)

1St
(j),

with indices i1 ∈ St\{j}, i2 ∈ St\{j, i1}, i3 ∈ St\{j, i1, i2}, . . ., il−1 ∈ St\{j, i1, i2, . . . , il−2}
and 1 ≤ l ≤ m. In the following I assume that the exogenous random terms εtj are identically
and independently type I extreme value distributed (or Gumbel distributed) with parameter

1I assume that the entrant does not update the link incentive functions while forming links but evaluates
it only once after he has observed the sample. The first sum in Equation (C.1) considers the case that agent
j receives a link in the l-th round while the second sum takes into account all possible sequences of agents
i1, i2, . . . , il−1 that receive a link in the l − 1 previous rounds.
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η.2 This assumption is commonly made in random utility models in econometrics (see e.g.
McFadden, 1981). Under this distributional assumption, the probability that an entering

agent t chooses the passive agent j ∈ St for creating the link tj (in the first of the m draws
of link creation) follows a multinomial logit distribution given by (cf. Anderson et al., 1992)3

Pt

(

f δ
t (Gt−1, j) + εtj = max

k∈St

f δ
t (Gt−1, k) + εtk

)

=
eηf

δ
t (Gt−1,j)

∑

k∈St
eηf

δ
t (Gt−1,k)

=
1

∑

k∈St
e−η(fδ

t (Gt−1,j)−fδ
t (Gt−1,k))

=
1

∑

k∈St
e−ηδb(dGt−1

(j)−dGt−1
(k))+o(δb)

≈
eβdGt−1

(j)

∑

k∈St
eβdGt−1

(k)
,

where we have applied condition (LD) for the link incentive function f δ
t (Gt−1, ·), dropped

terms of the order o(δb) and denoted by β ≡ ηδb.

D. LARGE OBSERVATION RADIUS

D.1. Sampling of Agents

In the following we provide a lower bound on the observation radius ns such that with high

probability all agents in the network are observed by an entrant. Note that the probability
that an agent i ∈ Pt−1 does not enter the sample St is given by

Pt(i /∈ St|Gt−1) =

(

1−
1 + d−Gt−1

(i)

t− 1

)(

1−
1 + d−Gt−1

(i)

t− 2

)

. . .

(

1−
1 + d−Gt−1

(i)

t− 1− (ns − 1)

)

=

(

1−
1 + d−Gt−1

(i)

t

)ns

+ o

(
1

t

)

(D.1)

To see that this equality holds, note that when denoting by c ≡ 1 + d−Gt−1
(i) we can write

the above product as follows

(

1−
c

t− 1

)(

1−
c

t− 2

)

. . .

(

1−
c

t− 1− (ns − 1)

)

=
ns∏

s=1

(

1−
c

t− s

)

.

2The cumulative distribution function is given by P(ε ≤ c) = exp(− exp(−ηc − γ)), where γ ≈ 0.577 is

Euler’s constant. Mean and variance are given by E[ε] = 0 and Var(ε) = π2

6η2 .
3 Assuming instead that we have a multiplicative error term εtk which follows an inverse ex-

ponential distribution with parameter η one can show that this probability can be written as

Pt

(
f δ
t (Gt−1, j) · εtj = maxk∈St

f δ
t (Gt−1, k) · εtk

)
=

fδ
t (Gt−1,j)

η

∑
k∈St

fδ
t (Gt−1,k)η

, which corresponds to the ratio form

of the contest success function (Jia, 2008).
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Further, note that

(D.2)

(

1−
c

t− ns

)ns

≤
ns∏

s=1

(

1−
c

t− s

)

≤
(

1−
c

t

)ns

.

Now we have that
(
1− c

t

)ns

(

1− c
t−ns

)ns
=

(
(t− c)(t− ns)

t(t− c− ns)

)ns

,

and using the fact that

lim
t→∞

(t− c)(t− ns)

t(t− c− ns)
= 1,

it follows that both the lower and upper bound in Equation (D.2) converge to the same limit

as t becomes large. Hence, we can write

ns∏

s=1

(

1−
c

t− s

)

=
(

1−
c

t

)ns

+ o

(
1

t

)

.

Applying Bonferroni’s inequality and neglecting terms of the order o
(
1
t

)
in Equation (D.1),

we then find that the probability that at least one of the agents in the set Pt−1 is not

observed by the entrant is bounded by Pt(
⋃

i∈Pt−1
{i /∈ St}|Gt−1) ≤

∑t−1
i=1 Pt(i /∈ St|Gt−1) ≈

∑t−2
k=0

(
1− 1+k

t

)ns
Pt(k) ≈

∑t−2
k=0

(
1− ns

1+k
t

)
Pt(k) = 1−ns

1+m
t
, where we have assumed that

k = op(t), and used the fact that the average in-degree
∑t−2

k=0 kPt(k) equals the out-degree
m. Hence, if we require the probability of an agent not being sampled to be lower than ǫ > 0,

then we must have that ns > t 1−ǫ
1+m

.

D.2. Attachment Kernel

The probability that an agent j with in-degree d−Gt−1
(j) receives a link in the (k + 1)-st

draw, given that the agents l1, . . . , lk have received a link in the previous k draws, 1 ≤ k ≤ m,

is (cf. Equation (2.3))

e
βd−

Gt−1
(j)

∑

i∈Pt−1\{l1,...,lk}
e
βd−

Gt−1
(i)

≈
1 + βd−Gt−1

(j)
∑

i∈Pt−1\{l1,...,lk}
(1 + βd−Gt−1

(i))
=

1 + βd−Gt−1
(j)

(1 + βm)t

(

1 +O

(
1

t

))

,

where we have used the approximation eβx ≈ 1 + βx, and assumed that d−Gt−1
(i) = op(t) for

all i ∈ Pt−1. Moreover, we have used the fact that at every step t every passive agent has out-

degree equal tom. Since the average out-degree must be equal to the average in-degree, we see
that also the average in-degree must be m, and so

∑

i∈Pt−1
(1+ βdGt−1

(i)) = (1+ βm)t. This

probability is the same whether we use the in-degree d−Gt−1
(j) or the total degree dGt−1

(j),
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since they are related as dGt−1
(j) = d+Gt−1

(j) + d−Gt−1
(j) = m+ d−Gt−1

(j).

E. PAYOFF FUNCTIONS

This appendix contains a discussion of various models in the economic literature that

satisfy Assumptions 1 and 2 introduced in Section 2.1.4

E.1. Information Diffusion in Networks

Following Fafchamps et al. (2010) I consider agents that exchange information in a network

G, where information that travels longer paths is discounted by a factor δ ∈ [0, 1]. It is
assumed that information can travel both ways of a link and so I consider the (undirected)

paths in the closure G of G. The probability that an agent j transmits information along a
given path in G is independent of the probability that the same agent j transmits the same

information along another path. With this assumption, the probability that agent i receives

the information over all distances k ≥ 1, when there are ckij(G) (undirected) paths of length
k connecting i to j, becomes

P δ
ij(G) ≡ 1−

∞∏

k=1

(1− δk)c
k
ij(G).

The payoff πi : G(n) × R+ → R of agent i is defined as πi(G, δ) ≡ V
∑

j∈N P δ
ij(G) − cd+G(i)

with V > 0 and a fixed cost c ∈ [0, V δ) for each link the agent has initiated. When the decay
parameter δ is sufficiently small, we can write (1− δk)c ≈ 1− cδk. With this approximation

the payoff of agent i becomes

πi(G, δ) ≡ V
∑

j∈N

(

1−
∞∏

k=1

(1− δk)c
k
ij(G)

)

− cd+G(i)

= V
∑

j∈N

(
1− (1− c1ijδ)(1− c2ijδ

2)
)
+O(δ3)− cdG(i)

= V
∑

j∈N

(
1− 1 + c1ijδ + c2ijδ

2 − c1ijc
2
ijδ

3
)
+O(δ3)− cdG(i)

= V



δdG(i) + δ2
∑

j∈NG(i)

dG(j)



− cd+G(i) +O(δ3).

It then follows that the link incentive function is given by f δ
i (G, j) = V δ − c + V δ2dG(j) +

O(δ3). Link monotonicity (LM) holds if c < V δ and linear differences (LD) holds for g(x) =
V x and γ = 2, since f δ

i (G, j)− f δ
i (G, k) = V δ2(dG(j)− dG(k)) + O(δ3). As our measure of

4All the models discussed here (which fall into our general framework) exhibit the property that the payoff
of an agent is increasing with the number of collaborations, i.e. his degree. This characteristic has been found
in empirical studies of coauthorship networks (e.g. Abbasi et al., 2011, Ductor, 2014).
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welfare we consider aggregate payoff given by

Π(G, δ) = V δ
∑

i∈N

dG(i) + V δ2
∑

i∈N

∑

j∈NG(i)

dG(j) +O(δ3)− c
∑

i∈N

d+G(i)

= (2V δ − c)e(G) + V δ2
∑

i∈N

dG(i)
2 +O(δ3)

= (2V δ − c)e(G) +
4V δ2

n
e(G)2 + V δ2nσ2

d(G) +O(δ3),

where we have used the fact that
∑

i∈N

∑

j∈NG(i) dG(j) =
∑

i∈N dG(i)
2. The average degree

is d̄ = 1
n

∑n
i=1 dG(i) =

2e(G)
n

. The degree variance is given by σ2
d(G) = 1

n

∑

i∈N (dG(i)− d̄G) =
1
n

∑n
i=1 dG(i)

2− d̄2 = 1
n

∑n
i=1 dG(i)

2− 4e(G)2

n2 . It follows that for small δ, such that terms of the

order O(δ3) become negligible, maximizing aggregate payoff Π(G, δ) (given n and e) becomes
equivalent to maximizing the degree variance σ2

d(G), and condition (DC) holds.

E.2. Two-Way Flow Communication

The two-way flow model with decay has been introduced by Bala and Goyal (2000). In

this model links are interpreted as lines of communication between two individuals. If i wants
to communicate with j then i must first pay a fee of c ≥ 0 to open the channel. By creating

this link i does not only get access to j but also to all individuals that are approachable by j
via an (undirected) path in the closure G. Formally, the payoff function πi : G(n)×R+ → R

of agent i ∈ N is given by5

(E.1) πi(G, δ) ≡ 1 +
∑

i 6=j

δℓ(i,j,G) − cd+G(i),

for some δ ∈ [0, 1], which is interpreted as the degree of friction in communication. The

number ℓ(i, j, G) is the length of the shortest path connecting agent i with j in the graph G.
If i and j are not connected we adopt the convention that ℓ(i, j, G) = ∞. The difference to

the payoff function in Fafchamps et al. (2010) of the previous section and the one in Equation
(E.1) is that in the latter only the shortest paths matter.

In the following we assume that the network G does not contain any cycles, i.e. it is a tree

(or a forest, if the network is unconnected). Denote by T (N ) the class of (undirected) tree
graphs with vertex set N . Then a tree G ∈ T (N ) is defined by the conditions (i) that it is

connected, and (ii) |E(G)| = |N | − 1 for all G ∈ T (N ). When G ∈ T (N ), the payoff of an
agent i ∈ N can be written as

πi(G, δ) = 1 + δdG(i) + δ2
∑

j∈NG(i)

(dG(j)− 1) +O(δ3)− cd+G(i).

5See also Jackson and Wolinsky (1996) for a similar payoff structure.
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It follows that the linking incentive function of agent i takes the form

f δ
i (G, j) = δ(1− δ)− c+ δ2dG(j) +O(δ3).

The link incentive function satisfies condition (LM) for δ(1−δ) > c and condition (LD) with
g(x) = x and γ = 2, because f δ

i (G, j) − f δ
i (G, k) = δ2(dG(j) − dG(k)) + O(δ3). Aggregate

payoff Π(G, δ) =
∑

i∈N πi(G, δ) is then given by

Π(G, δ) = n+ δ(1− δ)
∑

i∈N

dG(i) + δ2
∑

i∈N

∑

j∈NG(i)

dG(j) +O(δ3)− c
∑

i∈N

d+G(i)

= n+ (2δ(1− δ)− c)(n− 1) +
4δ2

n
(n− 1)2 + nδ2σ2

d(G) +O(δ3),

where e(G) is the number of edges in G, n = |N |, and we have used the fact that for

G ∈ T (N ) the number of edges is e(G) = n− 1. It follows that for small δ such that terms
of the order O(δ3) become negligible, maximizing aggregate payoffs becomes equivalent to

maximizing the degree variance . Hence, Condition (DC) holds for aggregate payoff when

G ∈ T [N ].6

E.3. Public Goods Provision

The following network game is presented in Goyal and Joshi (2006) as an extension of

Bloch (1997). An (undirected) link between two agents represents an agreement to share
knowledge about the production of a public good. Each agent can decide how much to

invest into the public good. Denote the level of contribution of agent i ∈ N = {1, . . . , n} as

xi ∈ R+. The production technology of every agent is assumed to be ci(xi, G) = 1
2

(
xi

dG(i)+1

)2

.

The payoff function πi : R
n
+ × G(n) → R of agent i is

πi(x, G) ≡
∑

j∈N

xj −
1

2

(
xi

dG(i) + 1

)2

.

The Nash contribution of agent i is x∗
i = (dG(i)+1)2. This optimal choice of an agent induces

naturally preferences over networks by inserting the value of xi(G) into the payoff function

πi. This gives us

πi(G) ≡ πi(x
∗, G) =

1

2
(dG(i) + 1)2 +

∑

j∈N\{i}

(dG(j) + 1)2.

6We will see in the network growth model introduced in Section 2.2 that G ∈ T [N ] is always guaranteed
to hold if we allow an entering agent to form only a single link.
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With this payoff function, the linking incentive function for an agent i is given by

f δ
i (G, j) =

9

2
+ 2dG(j).

This obviously satisfies conditions (LM) and (LD) with g(x) = 2x and γ = 0. Aggregate
payoff Π(G) =

∑

i∈N πi(G) is then given by

Π(G) =
1

2

∑

i∈N

(dG(i) + 1)2 +
∑

i∈N

∑

j∈N\{i}

(dG(j) + 1)2

=
n(2n− 1)

2
+ 2(2n− 1)

(

1 +
δ2

n
e(G)

)

e(G) +
n(2n− 1)δ2

2
σ2
d(G).

We see that aggregate payoffs are increasing in the degree variance and condition (DC) holds.

E.4. A Linear-Quadratic Complementarity Game

We consider a simplified form of the game introduced by Ballester et al. (2006) where each
agent i ∈ N in the network G selects an effort level xi ≥ 0, x ∈ R

n
+ (e.g. the R&D investment

of a firm or the working hours of an inventor), and receives a payoff πi : R
n
+×G(n)×R+ → R

of the following form

(E.2) πi(x, G, δ) ≡ xi −
1

2
x2
i + δ

n∑

j=1

aijxixj ,

where δ ≥ 0 and aij ∈ {0, 1}, i, j ∈ N = {1, . . . , n} are the elements of the symmetric n× n

adjacency matrix A of G. This payoff function is additively separable in the idiosyncratic

effort component (xi−
1
2
x2
i ) and the peer effect contribution (δ

∑n
j=1 aijxixj). Payoffs display

strategic complementarities in effort levels, i.e., ∂2πi(x,G,δ)
∂xi∂xj

= δaij ≥ 0. Ballester et al. (2006)

have shown that if δ < 1/λPF(G) then the unique interior Nash equilibrium solution of

the simultaneous n–player move game with payoffs given by Equation (E.2) and strategy
space R

n
+ is given by the Bonacich centrality x∗

i = bi(G, δ) for all i ∈ N (Bonacich, 1987).7

Moreover, the payoff of agent i in equilibrium is given by

(E.3) πi(G, δ) ≡ πi(x
∗, G, δ) =

1

2
(x∗

i )
2 =

1

2
b2i (G, δ).

7Let λPF(G) be the largest real (Perron-Frobenius) eigenvalue of the adjacency matrix A of the undirected
network G. If I denotes the n×n identity matrix and u ≡ (1, . . . , 1)⊤ the n-dimensional vector of ones then
we can define the Bonacich centrality as follows: If and only if δ < 1/λPF(G) then the matrix B(G, δ) ≡

(I− δA)
−1

=
∑∞

k=0 δ
k
A

k exists, is non-negative (see e.g. Debreu and Herstein, 1953), and the vector of
Bonacich centralities is defined as b(G, δ) ≡ B(G, δ) · u. We can write the vector of Bonacich centralities
as b(G, δ) =

∑∞

k=0 δ
k
A

k · u = (I − δA)−1 · u. For the components bi(G, δ), i = 1, . . . , n, we get bi(G, δ) =
∑∞

k=0 δ
k(Ak · u)i =

∑∞

k=0 δ
k
∑n

j=1

(
A

k
)

ij
, where

(
A

k
)

ij
is the ij-th entry of Ak. Because

∑n
j=1

(
A

k
)

ij
is

the number of all (undirected) walks of length k in G starting from i, bi(G, δ) is the number of all walks in
G starting from i, where the walks of length k are weighted by their geometrically decaying factor δk.
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In the case of small complementarity effects, corresponding to small values of δ, the
Bonacich centrality of an agent i can be written as

bi(G, δ) = 1 + δdG(i) + δ2
∑

j∈NG(i)

dG(j) +O(δ3).

Note that equilibrium payoff can be written as

πi(G, δ) =
1

2
+ δdG(i) +

δ2

2
dG(i)

2 + δ2
∑

j∈NG(i)

dG(j) +O(δ3),

and the link incentive function is then given by

f δ
i (G, j) =

δ(2 + δ)

2
+

δ2

2
dG(i)(dG(i) + 1) + δ2dG(j) +O(δ3).

If we neglect terms of the order O(δ3) then the linking incentive function also satisfies
condition (LM). Further, f δ

i (G, j)− f δ
i (G, k) = δ2(dG(j)− dG(k)) +O(δ3) so that condition

(LD) holds with g(x) = x and γ = 2. Aggregate payoff Π(G, δ) =
∑

i∈N πi(G, δ) can be
written as

Π(G, δ) =
n

2
+ δ

n∑

i=1

dG(i) +
δ2

2

n∑

i=1

dG(i)
2 + δ2

n∑

i=1

∑

j∈NG(i)

dG(j) +O(δ3)

=
n

2
+ 2δ

(

1 +
3δ

n
e(G)

)

e(G) +
3nδ2

2
σ2
d(G) +O(δ3).

Aggregate payoff is increasing in the degree variance, and hence, condition (DC) holds.

F. THE LF-MCMC ALGORITHM

The purpose of the likelihood-free Markov chain Monte Carlo (LF-MCMC) algorithm is to

estimate the parameter vector θ ≡ (β, p, ns, m)1×L, L = 4, of the model on the basis of the
summary statistics S ≡ (S1, . . . ,SK)T×K , K = 4, where S1 ≡ (P (k))T−1

k=0 , S2 ≡ (C(k))T−1
k=0 ,

S3 ≡ (knn(k))
T−1
k=0 and S4 ≡ (P (s))Ts=1. The algorithm generates a Markov chain which

is a sequence of parameters (θs)
n
s=1 with a stationary distribution that approximates the

distribution of each parameter value θ ∈ θ conditional on the observed statistic So.

Definition 1 Consider the statistics S and denote by So the observed statistics. Further,
let ∆(So

i ,Si) be a measure of distance between the i-th realized statistic Si of the network

formation process (Gt)
T
t=1 with parameter vector θ and the i-th observed statistic So

i for
i = 1, . . . , K. Then we consider the Markov chain (θs)

n
s=1 induced by the following algorithm:

(i) Given θ, propose θ
′ according to the proposal density qs(θ → θ

′).
(ii) Generate a network GT (θ

′) according to θ
′ and calculate the summary statistics S′.
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(iii) Calculate

h(θ, θ′) = min

(

1,
qs(θ

′ → θ)

qs(θ → θ′)

K∏

i=1

1{∆(S′

i,S
o
i )<ǫi,s}

)

,

where ǫi,s ≥ 0 is a monotonic decreasing sequence of threshold values, ǫi,s ↓ ǫmin
i , and

∆ : RT
+ × R

T
+ → R+ is a distance metric in R

T
+.

(iv) Accept θ′ with probability h(θ, θ′), otherwise stay at θ and go to (i).

Marjoram et al. (2003) have shown that the distribution generated by the above algorithm

converges to the true conditional distribution of the parameter vector θ, given the obser-

vations So and the threshold values. Their result is stated more formally in the following
proposition.

Proposition 1 The stationary distribution f : RK → [0, 1]K of the Markov chain (θs)
n
s=1

is given by

f

(

θ

∣
∣
∣
∣
∣

K∏

i=1

1{∆(Si,So
i )<ǫmin

i }

)

.

Proof of Proposition 1: Let us denote the transition probability of the Markov chain

(θs)
n
s=1 from state θ to state θ′ by ps(θ → θ

′). Assume w.l.o.g. that for θ 6= θ
′ and 1 ≤ s ≤ n

it holds that

(F.1)
qs(θ

′ → θ)

qs(θ → θ′)
≤ 1.

Consider the distribution of the parameter vector θ, conditional on the event {∆(So,S) ≤
ǫ} ≡

∏K
i=1 1{∆(Si,So

i )<ǫmin
i }, that is f(θ|∆(So,S) ≤ ǫ) = P(∆(So,S) ≤ ǫ|θ)/P(∆(So,S) ≤ ǫ).

We have that

f(θ|∆(So,S) ≤ ǫ)ps(θ → θ
′) =

P(∆(So,S) ≤ ǫ|θ)

P(∆(So,S) ≤ ǫ)
P(∆(So,S′) ≤ ǫ|θ′)qs(θ → θ

′)
qs(θ

′ → θ)

qs(θ → θ′)

=
P(∆(So,S′) ≤ ǫ|θ′)

P(∆(So,S) ≤ ǫ)
P(∆(So,S) ≤ ǫ|θ)qs(θ

′ → θ)

= f(θ′|∆(So,S′) ≤ ǫ)qs(θ
′ → θ)P(∆(So,S) ≤ ǫ|θ)h(θ′, θ)

= f(θ′|∆(So,S′) ≤ ǫ)ps(θ
′ → θ),

where we have used the fact that h(θ′, θ) = 1 if the inequality in (F.1) is satisfied. It follows

that f(θ|∆(So,S) ≤ ǫ) satisfies a detailed balance condition and therefore is the stationary
distribution of the Markov chain. Q.E.D.

The proposal distribution qs(θ → θ
′) is a truncated normal distribution θ

′ ∼ N (θ,Σs)

9



1[θmin,θmax](θ) for each parameter θ ∈ θ with a diagonal variance-covariance matrix Σs =
diag{σ2

1,s, . . . , σ
2
L,s}. More precisely, for each continuous parameter θi ∈ R+ (i.e. p, β) I choose

a proposal distribution given by

qs(θi → θ′i) =
φ(θ′|θ, σ2

i,s)

Φ(θmax
i |θi, σ2

i,s)− Φ(θmin
i |θi, σ2

i,n)
1[θmin

i ,θmax
i ](θ

′
i),

where φ(θ|µ, σ2) and Φ(θ|µ, σ2) are the pdf and cdf, respectively, of a normally distributed

random variable with mean µ and variance σ2. For the discrete parameters θi ∈ Z+ (i.e. ns,
while m is set through the condition d̄ = mp when the network is directed while d̄ = 2pm

when it is undirected), I choose a proposal distribution given by

qs(θi → θ′i) =
Φ(θ′i + 1|θ, σ2

i,s)− Φ(θ′i|θ, σ
2
i,s)

Φ(θmax
i |θi, σ2

i,s)− Φ(θmin
i |θi, σ2

i,s)
1[θmin

i ,θmax
i ](θ

′
i).

During the “burn-in” phase (Chib, 2001), I consider a monotonic decreasing sequence of

thresholds given by ǫi,s ≥ ǫi,s+1 ≥ . . . ≥ ǫmin
i with ǫi,s+1 = max

{
(1− γ)ǫi,s, ǫ

min
i

}
and

γ = 0.05. Similarly, I assume a decreasing sequence of variances σ2
i,s ≥ σ2

i,s+1 ≥ . . . ≥
(σmin

i )2 with σ2
i,s+1 = max

{
(1− γ)σ2

i,s, (σ
min
i )2

}
for the proposal distribution qs(θi → θ′i).

The maximum number of iterations, n, has been chosen such that reasonably high values of

pθ(n) were obtained. As a measure of distance I choose the Euclidean distance ∆(Si,S
o
i ) =√

∑T
j=1

(
Si,j − So

i,j

)2
. The parameter ranges are ns ∈ {1, . . . , 100}, p ∈ [0, 1] and β ∈ [0, 100].

The parameters ǫmin
i are choose sufficiently small after long experimentation with different

starting values and burn-in periods.

G. UNDIRECTED LINKS

In the following network formation process we allow entering agents to observe not only
the out-neighbors of incumbent agents but also their in-neighbors. The resulting network

can then be viewed as an undirected graph. The precise definition of the network growth
process is given below:

Definition 2 For a fixed T ∈ N∪{∞} we define a network formation process (Gt)t∈[T ] as

follows. Given the initial graph G1 = . . . = Gm+1 = Km+1, for all t > m+ 1 the graph Gt is
obtained from Gt−1 by applying the following steps:

Growth: Given P1 and A1, for all t ≥ 2 the agent sets in period t are given by Pt =

Pt−1 ∪ {t} and At = At−1 \ {t}, respectively.
Network sampling: Agent t observes a sample St ⊆ Pt−1. The sample St is constructed by

selecting without replacement ns ≥ 1 agents i ∈ Pt−1 uniformly at random and adding
i as well as the neighbors NGt−1

(i) of i to St.

Link creation: Given the sample St, agent t creates m ≥ 1 links to agents in St without
replacement. For each link, agent t chooses the j ∈ St that maximizes f δ

t (Gt−1, j)+ εtj.

10



G.1. Large Observation Radius

We first consider the case of St = Pt−1. Let kj(t) denote the degree of agent j at time
t. Considering only the leading terms in O

(
1
t

)
we can write the probability that an agent

j ∈ Pt−1 to receive a link by the entrant t as follows

Kβ
t (j|Gt−1) ≈

m

1 + 2βm

1 + βdGt−1
(j)

t
.(G.1)

Using the recursive Equation (B.3) with the attachment kernel in Equation (G.1) yields the
following proposition.

Proposition 2 Consider the sequence of degree distributions {Pt}t∈N generated by an in-

definite iteration of the network formation process (Gβ
t )t∈N introduced in Definition 2 with

ns large enough such that St = Pt−1 for every t > m+ 1. Then, for all k ≥ 0 we have in the

limit β → 0 that Pt(k) → P β(k), where

(G.2) P β(k) =
(1 + 2mβ)Γ

(

k + 1
β

)

Γ
(

3 + 1
β
+ 1

mβ

)

(1 +m+ 2mβ)Γ
(

1
β

)

Γ
(

k + 3 + 1
β
+ 1

mβ

) .

Proof of Proposition 2: Equation (G.2) follows directly from the recursion in Equa-
tion (B.3) and the attachment kernel in Equation (G.1). Q.E.D.

From Equation (G.2) we find that the large k behavior of the degree distribution follows

a power-law as P β(k) ∼ k−(3+ 1

mβ ). In the continuum approximation we can write for the
dynamics of ks(t) using Equation (G.1) as

dks(t)

dt
=

m

1 + 2βm

1 + βkj(t)

t
,

with the initial condition ks(s) = m. The solution is given by

(G.3) ks(t) =
1

β

(

(1 + βm)

(
t

s

) βm
1+2βm

− 1

)

,

and we obtain for the degree distribution in the continuum approximation

(G.4) P β(k) =
1 + 2βm

m
(1 + βm)2+

1

βm (1 + βk)−(3+
1

mβ ),

with
∫∞

0
P β(k)dk = 1. This yields the same asymptotic behavior of the degree distribution

as in Equation (G.2).
Next, we turn to the average nearest neighbor connectivity.
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Proposition 3 Consider the network formation process (Gβ
t )t∈R+

of Definition 2 with
St = Pt−1 for all t > m+1 in the continuum approximation and assume that Equation (G.3)

holds. Then in the limit β → 0 the nearest-neighbor degree distribution is given by

(G.5) k
nn
(k) =

1

β2k

(

1 +
1 + βk

1 + βm

(

β2Rs(s)− 1 + (1 + βm)2 ln

(
1 + βk

1 + βm

)))

,

where a = m
1+2βm

, the initial condition

Rs+1(s+ 1) =
a(1− β)(1− 2mβ)

β
+

a(1 + βm)2

β
s2βa−1

s∑

j=1

1

j2βa
,

and s = t
(

1+βm
1+βk

)2+ 1

mβ

.

Asymptotically, only the last term in Equation (G.5) is relevant and we obtain

(G.6) knn(k) ∼
1 + βm

β
ln

(
1 + βk

1 + βm

)

,

as k → ∞.

Proof of Proposition 3: Denote by Rs(t) =
∑

j∈NGt
(s) kj(t) the sum of the degrees of

the neighbors of vertex s at time t. We can write

dRs(t)

dt
=

m2

1 + 2βm

1 + βks(t)

t
+

∑

j∈NGt
(s)

m

1 + 2βm

1 + βkj(t)

t

=
a

t
(m+ (1 + βm)ks(t) + βRs(t)) =

a

βt

(

(1 + βm)2
(
t

s

)βa

+ β2Rs(t)

)

,

where we have denoted by a = m
1+2βm

and using the fact that1 + βks(t) = (1 + βm)
(
t
s

)βa

from Equation (G.3) under the continuum approximation. The initial condition is given by

Rs(s) =
s∑

j=1

a

s
(1 + βkj(s))(1 + kj(s)) =

a(1− β)(1− 2mβ)

β
+

a

s

s∑

j=1

(1 + βkj(s))
2.

Using the fact that

(G.7) 1 + βkj(s) = (1 + βm)

(
s

j

)βa

,
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we obtain

Rs(s) =
a(1− β)(1− 2mβ)

β
+

a(1 + βm)2

β
s2βa−1H(s, 2βa).

We then get

(G.8)

Rs(t) =
1

β2

(

1 +

(

aβ(1 + βm)2
(
1

s
H(s, 2aβ) + (1 +mβ) ln

(
t

s

))

− 1 + β2b

)(
t

s

)aβ
)

.

Using once again Equation (G.7) and inserting into knn = Rs

k
delivers Equation (G.5). Q.E.D.

Moreover, we can compute the clustering degree distribution as provided in the next
proposition.

Proposition 4 Consider the network formation process (Gβ
t )t∈R+

of Definition 2 with
St = Pt−1 for all t > m+1 in the continuum approximation and assume that Equation (G.3)

holds. Then in the limit β → 0 the clustering degree distribution is given by

C(k) =
2

k(k − 1)

(

Ms +
b

s(1− 2aβ)

(

d+ aβs2aβ−1

(

1−

(
t

s

)2aβ−1
)

H2βa
s

−

(
t

s

)2aβ−1
(

d+ ln

(
t

s

)aβ
)))

,(G.9)

where s = t
(

1+mβ
1+kβ

)2+ 1

mβ

, a = a
1+2βm

, b = m(m−1)(1+βm)2

β(1+2βm)
, c = βm+aβ(1−β)(1−2mβ)

(1+βm)2
, d =

c+aβ(1−2c)
1−2aβ

, the Harmonic number is defined as Ha
s ≡

∑s
j=1 j

−a and the initial condition
is given by

Ms+1(s+ 1) =
m(m− 1)s2a−2

(1 + 2βm)2

(
m∑

i=1

1

ia

m∑

j=i+1

1

ja
+

2m

1 + 2βm

s∑

i=m+1

1

i2a

s−1∑

j=i

1

j

)

.

The large k behavior of the clustering coefficient is dominated by the second term in
Equation (G.9), yielding

(G.10)

C(k) ∼
2bd

k(k − 1)s(1− 2aβ)
=

1

t

2bd

(1− 2aβ)(1 +mβ)
2+ 1

mβ

(1 + βk)
2+ 1

mβ

k(k − 1)
= O

(
1

t
k

1

mβ

)

, k → ∞.
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Proof of Proposition 4: LetMs(t) denote the number of triangles containing s at time
t. We have that

dMs(t)

dt
=

m

1 + 2βm

1 + βks(t)

t

∑

j∈NGt
(s)

m− 1

1 + 2βm

1 + βkj(t)

t

=
m(m− 1)(1 + βks(t))

(1 + 2βm)2t2
(ks(t) + βRs(t)).

With Rs(t) from Equation (G.8) and Equation (G.7) we obtain

dMs(t)

dt
=

b

t2

(
t

s

)2βa
(

c+ ln

(
t

s

)βa

+ aβ(s)2βa−1H2βa
s

)

,

where a = a
1+2βm

, b = m(m−1)(1+βm)2

β(1+2βm)
, c = βm+aβ(1−β)(1−2mβ)

(1+βm)2
and the Harmonic number is

defined as Ha
s ≡

∑s
j=1 j

−a. The solution is given by

Ms(t) = Ms(s) +
b

s(1− 2aβ)

(

d+ aβs2aβ−1

(

1−

(
t

s

)2aβ−1
)

H2βa
s −

(
t

s

)2aβ−1
(

d+ ln

(
t

s

)aβ
))

,

where d = c+aβ(1−2c)
1−2aβ

. Similar to the derivation of Equation (B.24), the initial condition is

given by

Ms+1(s+ 1) =
m(m− 1)s2a−2

(1 + 2βm)2

(
m∑

i=1

1

ia

m∑

j=i+1

1

ja
+

2m

1 + 2βm

s∑

i=m+1

1

i2a

s∑

j=i+1

1

j − 1

)

.

Using Equation (G.7) we then arrive at the expression in Equation (G.9). Q.E.D.

G.2. Small Observation Radius

Next, we consider the case of a small observation radius ns. The probability that agent

j receives a link from the entrant at time t, conditional on the sample St (and the current
network Gt−1) when β = 0 is given by

Kβ
t (j|St, Gt−1) =

m

|St|
1St

(j).

In the following, we assume that St ≈ ns(d̄+1), where the average degree is given by d̄ = 2m,

so that St ≈ ns(2m+1). Note that this assumption is much stronger than the approximation
we have made in Equation (3.4). The probability that an agent j receives a link from t is

14



then given by

Kβ
t (j|Gt−1) =

m

|St|

ns(1 + dGt−1
(j))

t
+O

(
1

t2

)

≈
m

ns(2m+ 1)

ns(1 + dGt−1
(j))

t
+O

(
1

t2

)

≈
m

2m+ 1

1 + dGt−1
(j))

t
.(G.11)

An analysis following the recursive Equation (B.3) with the attachment kernel in Equation
(G.11) yields the following proposition.

Proposition 5 Consider the sequence of degree distributions {Pt}t∈N generated by an in-
definite iteration of the network formation process (Gβ

t )t∈N of Definition 2 with β = 0. If

ns > 1 or m > 1, further assume that Equation (G.11) holds. Then, for all, k ≥ 0 we have
Pt(k) → P (k), where

(G.12) P (k) =
(1 + 2m)Γ

(
3 + 1

m

)

mΓ
(
3 + k + 1

m

) .

Proof of Proposition 5: Equation (G.12) follows directly from the recursion in Equa-
tion (B.3) and Equation (G.11). Q.E.D.

From Equation (G.12) we find that the degree distribution follows a power-law as P (k) ∼

k−(3+ 1

m) for large k. For the dynamics of ks(t) in the continuum approximation we get with

Equation (G.11) the following differential equation

dks(t)

dt
=

m

2m+ 1

ks(t) + 1

t

with the solution

(G.13) ks(t) = (m+ 1)

(
t

s

) m
2m+1

− 1

The degree distribution in the continuum approximation is then given by8

(G.14) P (k) =
2m+ 1

m
(m+ 1)2+

1

m (1 + k)−(3+
1

m),

satisfying the normalization condition
∫∞

0
P (k)dk = 1.

Next we consider the average nearest neighbor degree.

8Note that the approximation for the degree distribution in Equation (G.14) has also been obtained in
Wang et al. (2009).
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Proposition 6 Consider the network formation process (Gβ
t )t∈R+

of Definition 2 in the
continuum approximation with ns small enough and assume that Equation (G.13) holds. If

β = 0 then the nearest-neighbor degree distribution is given by

(G.15) k
nn
(k) =

1

k

((
t

s+ 1

)a
(
a(m+ 1)2s2a−1H2a

s − 1
)
+ (m+ 1)

(
t

s

)a

ln

(
t

s+ 1

)a)

,

where a = m
2m+1

, s = t
(

k+1
m+1

)− 1

a and the Harmonic number is defined as H2a
s ≡

∑s
j=1

1
j2a

.

Proof of Proposition 6: Let Rs(t) =
∑

j∈NGt
(s) kj(t) be the sum of the degrees of the

neighbors of vertex s at time t. Denoting by a = m
1+2m

, we have up to leading orders in O
(
1
t

)

that9

dRs(t)

dt
=

ns

t

∑

j∈NGt
(s)

m

|St|
kj(t) +

ns

t

m∑

j=1

j

(
ks(t)
j

)(
|St|−ks(t)

m−j

)

(
|St|
m

)

=
a

t
(ks(t) +Rs(t)) =

a

t

(

(m+ 1)

(
t

s

)a

− 1 +Rs(t)

)

,

where we have assumed that |St| ≈ ns(2m + 1) and used the relation s = t
(

k+1
m+1

)− 1

a . The

solution is given by

Rs(t) = 1 +

(
t

s

)a(

Rs(s)− 1 + (m+ 1) ln

(
t

s

)a)

,

and the initial condition is given by

Rs+1(s+ 1) =
a

s

s∑

j=1

(1 + kj(s))
2 = a(m+ 1)2s2a−1H(s, 2a).

Using this equation to solve for Cs delivers Equation (G.15). Q.E.D.

Finally, we can compute the clustering coefficient as given in the following proposition.

Proposition 7 Consider the network formation process (Gβ
t )t∈R+

of Definition 2 in the
continuum approximation with ns small enough and assume that Equation (G.13) holds. Let

a = m
2m+1

and b = 2a(m−1)
ns(2m+1)−1

with a > b > 0. If β = 0 then the average clustering coefficient

of an agent with degree k is bounded by C(k) ≤ C(k) ≤ C(k), where

C(k) =
2

(a− b)k(k − 1)

(

a− (a+mb)

(
1 + k

1 +m

) b
a

+ bk

)

,(G.16)

9We ignore cases in which two or more neighbors of s are found as the neighbors of directly observed
vertices (other than s), which happens with probability O

(
1
t2

)
.
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and

C(k) =
2

(a− b)k(k − 1)

(

a+

((
m

2

)

(a− b)− (a+mb)

)(
1 + k

1 +m

) b
a

+ bk

)

,(G.17)

and the property that C(k) = O
(
1
k

)
.

Proof of Proposition 7: We need to consider the cases we have encountered already

in the proof of Proposition 8 for a vertex s to form an additional triangle by an entrant t
(see Figure B.3). The expected number of triangles associated with case (i) is given by

ns

t

m−1∑

j=1

j

(
ks(t)
j

)(
|St|−ks(t)−1
m−(j+1)

)

(
|St|
m

) =
ns

t

m(m− 1)ks(t)

(1 + 2m)ns(ns(1 + 2m)− 1)
,

where we have assumed that |St| = ns(2m+ 1). Similarly, for case (ii) we get

ks(t)
ns

t

(
|St|−2
m−2

)

(
|St|
m

) =
ks(t)ns

t

m(m− 1)

|St|(|St| − 1)
=

ks(t)

t

m(m− 1)

(2m+ 1)(ns(2m+ 1)− 1)
,

and for case (iii) we obtain

2Ms(t)
ns

t

(
|St|−2
m−2

)

(
|St|
m

) =
2Ms(t)ns

t

m(m− 1)

|St|(|St| − 1)
=

2Ms(t)

t

m(m− 1)

(2m+ 1)(ns(2m+ 1)− 1)
.

Denoting by a = m
2m+1

and b = 2a(m−1)
ns(2m+1)−1

we can add cases (i), (ii) and (iii) to get

dMs(t)

dt
=

2a(m− 1)

t(ns(2m+ 1)− 1)
(ks(t) +Ms(t)) =

b

t

((

(m+ 1)

(
t

s

)a

− 1 +Ms(t)

))

.

Using as a lower bound for the initial condition Ms(s) ≥ 0 and an upper bound Ms(s) ≤
(
m
2

)

as well as s =
(

1+k
1+m

)−1/a
t, we obtain the corresponding bounds for the clustering coefficient

in Equations (G.16) and (G.17). Both bounds decay as 2b
a−b

1
k
for large k and their difference

vanishes for large k, implying that also C(k) = O
(
1
k

)
. Q.E.D.
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Figure G.1: (Top row) Comparison of simulation results with the theoretical predictions
for T = 105, St = Pt−1 and m = 4 with β = 0.1 under the linear approximation to
the attachment kernel. (Bottom row) Comparison of simulation results for T = 105 and
ns = m = 4 (β = 0) with the theoretical predictions. Comparing the results of global and
local information, we find that they differ mainly in the clustering degree distribution.

18



H. HETEROGENEOUS LINKING OPPORTUNITIES

In this section we assume that not all agents become active during the network formation

process. More precisely, we assume that only a fraction p ∈ (0, 1) of the population of agents

forms links, while the remaining agents stay passive throughout the whole evolution of the
network. We assume that initially, agents in [T ] = {1, 2 . . . , T} are randomly assigned to

sets P1 with probability 1 − p and to A1 with probability p, such that |A1| = ⌊pT ⌋ and
|P1| = ⌈(1 − p)T ⌉. The agents in [m] are all connected to each other and form a complete

graph Km. At time t ≤ m + 1 these agents are all in the set Pt. The network evolution
process is then defined as follows:

Definition 3 For a fixed T ∈ N ∪ {∞} we define a network formation process (Gt)t∈[T ]

as follows. Given the initial graph G1 = . . . = Gm+1 = Km+1, for all t ∈ [T ]\{1, . . . , m+ 1}
the graph Gt is obtained from Gt−1 by applying the following steps:
Growth: Given P1 and A1, for all t > m, if agent t ∈ At−1 then the agent sets in period t

are given by Pt = Pt−1∪{t} and At = At−1\{t}, respectively. Otherwise, set Pt = Pt−1

and At = At−1.

Network sampling: If t ∈ At−1 then t observes a sample St ⊆ Pt−1. The sample St is con-
structed by selecting ns ≥ 1 agents i ∈ Pt−1 uniformly at random without replacement

and adding i as well as the out-neighbors N+
Gt−1

(i) of i to St.
Link creation: If t ∈ At−1, given the sample St, agent t creates Xm ≥ 1, E(Xm) = m links

to agents in St without replacement. For each link, agent t chooses the j ∈ St that
maximizes f δ

t (Gt−1, j) + εtj.

The number of links Xm to be created by an entrant is a discrete random variable with
expectation E(Xm) = m. The results and approximations we obtain in this section do not

depend on the specific distribution we choose for Xm. We illustrate this by comparing our
theoretical approximations with simulations for a uniform distribution Xm ∼ U{1, . . . , 2m−
1} and a Poisson distribution Xm ∼ Pois(m).

H.1. Large Observation Radius

We first consider the case of a large observation radius such that St = Pt−1 for all t > m+1.
Similar to our discussion in Section 3.2, the probability that an agent j ∈ Pt−1 with degree

dGt−1
(j) receives a link by the entrant at time t up to leading orders in O

(
1
t

)
is given by

(H.1) Kβ
t (j|Gt−1) ≈

pm

1 + βpm

1 + βdGt−1
(j)

t
.

Following the recursive Equation (B.3) with the attachment kernel in Equation (H.1) yields
the following proposition.

Proposition 8 Consider the sequence of degree distributions {Pt}t∈N generated by an in-
definite iteration of the network formation process (Gβ

t )t∈N introduced in Definition 3 with
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ns large enough such that St = Pt−1 for every t > m + 1. Then, for all k ≥ m we have in
the limit β → 0 that P β

t (k) → P β(k) almost surely, where

(H.2) P β(k) =
1 + βmp

1 +mp(1 + β)

Γ
(

1
β
+ k
)

Γ
(

2 + 1+mp
βmp

)

Γ
(

1
β

)

Γ
(

2 + 1+mp
βmp

+ k
) .

Proof of Proposition 8: Equation (H.2) follows directly from the recursion in Equa-

tion (B.3) and the attachment kernel in Equation (H.1). Q.E.D.

From the attachment kernel in Equation (H.1) we can write for the dynamics of the in-

degree ks(t) of vertex s at time t in the continuum approximation

dks(t)

dt
=

pm

1 + βpm

1 + βkj(t)

t
,

with the initial condition ks(s) = 0. The solution is given by

(H.3) ks(t) =
1

β

((
t

s

) βpm
1+βpm

− 1

)

,

and we obtain for the degree distribution in the continuum approximation

(H.4) P β(k) =
1 + βmp

mp
(1 + βk)−(2+

1

βmp),

with
∫∞

0
P β(k)dk = 1. For p = 1 we recover the distribution in Equation (B.13). The degree

distribution from Equations (H.2) and (H.4) can be seen in Figure H.1.

Next we consider the average nearest neighbor degrees. We can state the following propo-
sition.

Proposition 9 Consider the network formation process (Gβ
t )t∈R+

of Definition 3 with
St = Pt−1 for all t > m+1 in the continuum approximation and assume that Equation (H.3)

holds. Then in the limit β → 0 the nearest-neighbor degree distribution is given by

(H.5) k−
nn
(k) =

1

β2k
(1 + (1 + βk)(ln(1 + βk)− 1)) ,

and the average nearest neighbor out-degree is given by

(H.6) k+
nn
(k) =

1

β2m

((

βm(1 + p(β − 1)) +
a

s
s2aζ(s, 2a)

)( t

s+ 1

)a

−mβ

)

,

where a = βmp
1+βmp

, s = t(1 + βk)−
1

a .
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Observe that Equation (H.5) is independent of p and identical to Equation (B.17) from
Proposition 5. From Proposition 9 we find that for large k,f the average nearest in-neighbor

connectivity grows logarithmically with k while the average nearest out-neighbor connectivity

becomes independent of k and grows with the network sizes as t
βmp

1+βmp .

Proof of Proposition 9: Let R−
s (t) =

∑

j∈N−

Gt
(s) kj(t). Up to leading orders in O

(
1
t

)

we then have that

dR−
s (t)

dt
=

∑

j∈N−

Gt
(s)

pm

1 + βpm

1 + βkj(t)

t
=

a

t

(
1

β
kj(t) +R−

s (t)

)

,

where we have denoted by a = βmp
1+βmp

. The initial condition is given by R−
s = 0. The solution

is

R−
s (t) =

1

β2

(

1 +

(
t

s

)a(

a ln

(
t

s

)

− 1

))

.

Using the fact that t
s
= (1 + βk)

1

a from Equation (H.3), we obtain

R−
s (t) =

1

β2
(1 + (1 + βk)(−1 + ln(1 + βk))) .

With knn(k) =
R−

s

k
, the expression in Equation (H.5) follows.

Next we turn to the average nearest out-neighbor degree. Consider a vertex s which has

received a linking opportunity upon entry. Let R+
s (t) =

∑

j∈N+

Gt
(s) kj(t). Then up to leading

orders in O
(
1
t

)
we obtain

dR+
s (t)

dt
=

∑

j∈N+

Gt
(s)

a

t

(
1

β
+ kj(t)

)

=
a

t

(
m

β
+R+

s (t)

)

,

where a = βpm
1+βpm

. The solution is given by

R+
s (t) = −

m

β
+ taCs.

The constant Cs is determined by the initial condition

R+
s+1 =

s∑

j=1

a

s

(
1

β
+ kj(t)

)

(kj(t) + 1) =
a

β2

(
β − 1 +mpβ(β − 1) + s2a−1H(s, 2a)

)
.
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We then obtain

R+
s (t) =

1

β2

((

βm(1 + p(β − 1)) +
a

s
s2aH(s, 2a)

)( t

s+ 1

)a

−mβ

)

,

with s = t(1 + βk)−
1

a from Equation (H.3) and k+
nn = R+

s (k)
m

. Q.E.D.

Moreover, we can derive the clustering degree distribution.

Proposition 10 Consider the network formation process (Gβ
t )t∈R+

of Definition 3 with
St = Pt−1 for all t > m+1 in the continuum approximation and assume that Equation (H.3)

holds. Then in the limit β → 0 the clustering degree distribution is given by

C(k) =
2

(k + pm)(k + pm− 1)

a(m− 1)

mpβ3b2s

(

sb2
mpβ3

a(m− 1)
Ms +

(
(1 + βk)b − 1

)

×

(

b

(
s

s+ 1

)a
(
c+ as2a−1ζ(s, 2a)

)
− 1

)

+ b(1 + βk)b ln (1 + βk)

)

,(H.7)

where a = βmp
1+βmp

, b = 2− 1
a
, c = βm(1 + p(β − 1)), the initial condition is given by

Ms+1 =
mp(m− 1)s2a−2

(1 + βpm)2

(
m∑

i=1

1

ia

m∑

j=i+1

1

ja
+

2mp

1 + βpm

s∑

i=m+1

1

i2a

s−1∑

j=i

1

j

)

,

and s = t(1 + βk)−
1

a .

For large k (and small s, respectively) the first term in the initial condition Ms dominates,

and the behavior of the clustering coefficient is given by

(H.8) C(k) ∼
2t−2(1−a)(1 + kβ)2(

1

a
−1)

(k + pm)(k + pm− 1)

mp(m− 1)

(1 + βpm)2

m∑

i=1

i−a
m∑

j=i+1

j−a.

We see that this expression grows with k as a power-law with exponent 2
(
1
a
− 2
)
= −2 +

2
mpβ

.10 Moreover, we find that the clustering coefficient is decreasing with the network size

as t−2(1−a) = t−
2

1+mpβ .

Proof of Proposition 10: We need to consider the same cases as in the proof of Propo-

sition 7. The probability associated with case (i) in Figure B.2 is given by

pm(1 + βks(t))

(1 + βpm)t

∑

j∈N+

Gt
(s)

(m− 1)(1 + βkj(t))

(1 + βpm)t
=

pm(m− 1)(1 + βks(t))

(1 + βpm)2t2
(m+ βR+

s ).

10We need only consider values of k such that C(k) does not exceed its upper bound given by one.
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Similarly, for the probability of case (ii) in Figure B.2 we obtain

pm(1 + βks(t))

(1 + βmp)t

∑

j∈N−

Gt
(s)

(m− 1)(1 + βkj(t))

(1 + βpm)t
=

pm(m− 1)(1 + βks(t))

(1 + βpm)2t2
(ks(t) + βR−

s )

With R+
s and R−

s given by Equations (H.5) and (H.5), respectively, we obtain

dMs(t)

dt
=

pm(m− 1)(1 + βks(t))

(1 + βpm)t2
(m+ ks(t) + β(R+

s +R−
s ))

=
a2

t2
m− 1

pmβ3

(

(
c+ as2a−1H(s, 2a)

)
(
t

s

)a(
t

s+ 1

)a

+

(
t

s

)2a

a ln

(
t

s

)a
)

,

where we have denoted by c = βm(1 + p(β − 1)). The initial condition is given by

Ms+1 = p
m(m− 1)

2

s∑

j 6=i

1 + βki(s)

(1 + βpm)s

1 + βkj(s)

(1 + βpm)s
(Θ(m+ 1− i)Θ(m+ 1− j)

+Θ(i− j)Θ(j −m)pm
1 + βkj(i)

(1 + βpm)(i− 1)
+ Θ(j − i)Θ(i−m)pm

1 + βki(j)

(1 + βpm)(j − 1)

)

=
mp(m− 1)s2a−2

(1 + βpm)2

(
m∑

i=1

1

ia

m∑

j=i+1

1

ja
+

2mp

1 + βpm

s∑

i=m+1

1

i2a

∑

j=i+1

1

j − 1

)

,(H.9)

where we have denoted by a = βpm
1+βpm

. The initial condition Ms+1 together with Equation
(H.9) deliver

C(k) =
2

(k + pm)(k + pm− 1)

a(m− 1)

mpβ3b2s

(

sb2
mpβ3

a(m− 1)
Ms +

(
(1 + βk)b − 1

)

×

(

b

(
s

s+ 1

)a
(
c+ as2a−1H(s, 2a)

)
− 1

)

+ b(1 + βk)b ln (1 + βk)

)

.

Together with the initial condition, this is the expression in Proposition 10. Q.E.D.

Next, we turn to the analysis of the connectivity of the networks generated by our model.
We consider only the simple case where m = 1 and the limit of strong noise with β → 0,

where the network formation process follows a uniformly grown random graph.

Proposition 11 Let Ns(t) denote the number of components of size s at time t. Consider

the network formation process (Gβ
t )t∈N of Definition 3 with St = Pt−1 for all t > m + 1.

Assume that m = 1 and β = 0. If p < 1, then there exists no giant component and the
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Figure H.1: Comparison of simulation results with theoretical prediction of the link formation
process in Definition 3 under global information with p = 0.5, m = 4, β = 0.1 and T = 105.
Simulation results for the deterministic case (◦) a uniform distribution Xm ∼ U{1, 2m− 1}
(⋄) and a Poisson distribution Xm ∼ Pois(m) (✷) both with expectation E(Xm) = m are
shown.

asymptotic (finite) component size distribution P (s) = limt→∞
Ns(t)

t
is given by

(H.10) P (s) =
(1− p)Γ

(
1
p

)

Γ (s)

p2Γ
(

1 + 1
p
+ s
) .

When p = 1 then there exists a giant component encompassing all nodes.

Proof of Proposition 11: Let Ns(t) denote the number of components of size s at time

t. For m = 1, the entrant t forms only a single link and we need only consider the case of
the component with size s − 1 to receive a link in the contribution to the growth of Ns(t).

It then follows that

Et [N1(t+ 1)|Gt] =N1(t) + (1− p)− p
N1(t)

t
,

Et [Ns(t+ 1)|Gt] =Ns(t) + p
(s− 1)Ns−1(t)

t
− p

sNs(t)

t
, s ≥ 2.

Denote by ns(t) =
Et[Ns(t)]

t
. Taking expectations in the above equations delivers

n1(t + 1)(t+ 1) =n1(t)t+ (1− p)− pn1(t),

ns(t + 1)(t+ 1) =ns(t)t+ p(s− 1)ns−1(t)− psns(t), s ≥ 2.

For the stationary distribution P (s) = limt→∞ ns(t) we then get

P (1) =
1− p

1 + p
,

P (s) =
p(s− 1)

1 + ps
P (s− 1), s ≥ 2.
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Figure H.2: Comparison of simulation results with theoretical predictions for the component
size distribution P (s) of the link formation process in Definition 3 under global information
with p = 0.5, m = 1, β = 0 and T = 105 (left panel); with p = 0.5, ns = 1, m = 4, β = 0
and T = 105 (right panel).

From this recursive equation we obtain

P (s) = P (1)ps−1

s∏

k=2

k − 1

1 + pk
=

(1− p)Γ
(

1
p

)

Γ (s)

p2Γ
(

1 + 1
p
+ s
) ,

which is Equation (H.10).

We next consider the generating function of the component size distribution g(x) =
∑∞

s=1 sP (s)xs. Observe that g(1) =
∑∞

s=1 sP (s) the fraction of nodes in finite components.

In the absence of a giant component (that grows with t), we must have that g(1) = 1. In-
serting Equation (H.10) into g(x) we find that g(1) = 1 as long as p < 1. Hence, the critical

probability for the emergence of a giant component is p = 1. Q.E.D.

From Equation (H.10) we find that the component size decays as a power-law with expo-
nent 1 + 1

p
, i.e.

P (s) =
1− p

p2
Γ

(
1

p

)

s−(1+
1

p)
(

1 +O

(
1

s

))

.

We finally note that when β → 0, the probability that a component H ∈ Gt−1 of size s
receives a link at time t, and thus grows by one, is given by

p
∑

i∈H

1 + βki(t)

(1 + βp)t
=

p

(1 + βp)t

∑

i∈H

(s+ βki(t)) ≈
sp

t
,

where we have used the approximation
∑

i∈H ki(t) ≈ sp. This is the same probability for

the growth of a component of size s as in the case of β = 0 and hence we obtain the same
component size distribution as in Equation (H.10).
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H.2. Small Observation Radius

Next, we consider the case of a small observation radius corresponding to small values

of ns. Similar to our discussion in Section 3.2, the probability that an agent j ∈ Pt−1 with
degree dGt−1

(j) receives a link by the entrant at time t up to leading orders in O
(
1
t

)
is given

by

(H.11) Kβ
t (j|Gt−1) ≈

pm

1 +m

dGt−1
(j) + 1

t
.

Using the recursive solution of Equation (B.3) we can state the following proposition.

Proposition 12 Consider the sequence of degree distributions {Pt}t∈N generated by an
indefinite iteration of the network formation process (Gβ

t )t∈N of Definition 3 with β = 0.

Further assume that Equation (H.11) holds. Then, for all, k ≥ 0 we have Pt(k) → P (k),
where

(H.12) P (k) =
(1 +m)k!Γ

(

2 + m+1
mp

)

(1 +m(1 + p))Γ
(

2 + m+1
mp

+ k
) .

Proof of Proposition 12: Equation (H.12) follows directly from the recursion in Equa-
tion (B.3) and Equation (H.11). Q.E.D.

With Equation (H.11) it follows for the dynamics of ks(t) in the continuum approximation

dks(t)

dt
=

pm

m+ 1

ks(t) + 1

t
,

with the solution

(H.13) ks(t) =

(
t

s

) pm
1+m

− 1.

The degree distribution in the continuum approximation is then given by

(H.14) P (k) =
1 +m

pm
(1 + k)−(1+

1+m
pm ),

with
∫∞

0
P (k)dk = 1. For large k, Equations (H.12) and (H.14) are equivalent. Moreover, for

p = 1 we recover the distribution in Equation (B.15). Next we turn to the analysis of the

average nearest neighbor degree.

Proposition 13 Consider the network formation process (Gβ
t )t∈R+

of Definition 3 in the
continuum approximation with ns small enough and assume that Equation (H.13) holds. If
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β = 0 then the average nearest in-neighbor degree distribution is given by

(H.15) k−
nn
(k) =

1

k
(1 + (k + 1)(ln(k + 1)− 1))

and the average nearest out-neighbor degree distribution is given by

(H.16) k+
nn
(k) =

mp+ 1

m+ 1
k +

p

m+ 1
t2a−1(k + 1)−

2a−1

a ζ(t(k + 1)−
1

a , 2a)

where a = mp
1+m

.

Proof of Proposition 13: In order to derive Equation (H.15), let us denote by R−
s (t)

the sum of the in-neighbors’ degrees of a vertex s at time t. We then have that

dR−
s (t)

dt
=

∑

j∈N−

Gt
(s)

a

t
(1 + kj(t)) =

a

t

((s

t

)a

− 1 +R−
s (t)

)

,

where we have denoted by a = mp
1+m

. The initial condition is R−
s (s) = 0. The solution is given

by

R−
s (t) = 1 + (k + 1)(ln(k + 1)− 1),

where we have used the fact that s = t(k+1)−
1

a from Equation (H.13). Noting that k−
nn(k) =

R−

s

k
we readily obtain Equation (H.15).

Next, we consider the out-neighbors of s. Assume that vertex s has out-degree m and

denote by R+
s the sum of the in-degrees of the out-neighbors of s at time t. We then can

write

dR+
s (t)

dt
=

∑

j∈N+

Gt
(s)

a

t
kj(t) + p

ns

t

m∑

k=1

k

(
m
k

)(
ns(m+1)
m−k

)

(
ns(m+1)

m

) =
a

t

(

R+
s (t) +

m(mp + 1)

m+ 1

)

,

The solutions is given by R+
s (t) = −m(1+mp)

1+m
+ Cst

a and the initial condition is

R+
s (s) =

s∑

j=1

a

s
(1 + kj(s))

2 = as2a−1H(s, 2a),

so that we get

R+
s (t) =

m(mp + 1)

m+ 1

((
t

s

)a

− 1

)

+ as2a−1H(s, 2a).

Inserting s = t(k + 1)−
1

a from Equation (H.13) and using the fact that knn(k) =
R+

s

m
delivers

Equation (H.16) . Q.E.D.
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In a similar fashion as in Proposition 8 we can also compute the clustering degree distri-
bution.

Proposition 14 Consider the network formation process (Gβ
t )t∈R+

of Definition 3 in the
continuum approximation with ns small enough and assume that Equation (H.13) holds. If

β = 0 then the average clustering coefficient of an agent with degree k is given by Proposition
8 setting a = mp

m+1
.

Proof of Proposition 14: We need to consider the same cases as in the proof of Propo-

sition 8. We take |St| = ns(m+ 1) ignoring terms of the order O
(

1
t2

)
. For the probability of

case (i) we obtain

p
ns

t

m−1∑

k=1

k

(
m
k

)(
((ns−1)(m+1))

m−(k+1)

)

(
ns(m+1)

m

) = p
m2(m− 1)

(m+ 1)(ns(m+ 1)− 1)t
.

For case (ii) we get

pks(t)
ns

t

(
ns(m+1)−2

m−2

)

(
ns(m+1)

m

) = p
ks(t)

t

m(m− 1)

ns(m+ 1)(ns(m+ 1)− 1)
.

and similarly, for case (iii) we get

pMs(t)
ns

t

(
ns(m+1)−2

m−2

)

(
ns(m+1)

m

) = p
Ms(t)

t

m(m− 1)

(m+ 1)(ns(m+ 1)− 1)
.

The dynamics of Ms(t) is then given by

dMs(t)

dt
=

a(m− 1)

t(ns(m+ 1)− 1)
(m+ ks(t) +Ms(t))

=
b

t
(m+ ks(t) +Ms(t)) =

b

t
(m+

(
t

s

)a

− 1 +Ms(t)),

with a = mp
m+1

. This differential equation is identical to (B.27) and hence we obtain the same
result as in Proposition 8. Q.E.D.

In the following we study the connectivity of the emerging networks in the network for-
mation process introduced in Definition 3. We restrict our analysis to the case of ns = 1.

Observe that the probability that a component of size s grows by one unit due to the at-

tachment of an entrant t is equivalent to the event that t observes one of the nodes in the
component when constructing the sample St. The probability of this event is ps

t
. Hence, we

obtain the same component size distribution as in Proposition 11. We then can state the
following proposition.
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Figure H.3: Comparison of simulation results with theoretical predictions of the link forma-
tion process in Definition 3 with p = 0.5, ns = 1, m = 4, β = 0 where the network size
is T = 105 (top row) or T = 2 × 105 (bottom row). We show simulations for the deter-
ministic case (◦), a uniform distribution Xm ∼ U{1, 2m− 1} (⋄) and a Poisson distribution
Xm ∼ Pois(m) (✷) both with expectation E[Xm] = m.

Proposition 15 Let Ns(t) denote the expected number of components of size s at time

t. Consider the network formation process (Gβ
t )t∈N of Definition 3 with ns = 1. Then the

asymptotic component size distribution P (s) = limt→∞
Ns(t)

t
is given by

(H.17) P (s) =
(1− p)Γ

(
1
p

)

Γ (s)

p2Γ
(

1 + 1
p
+ s
) .

Proof of Proposition 15: The proof follows the one of Proposition 11. Q.E.D.
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