Supplement to "Strategy-proofness and efficiency with non-quasi-linear preferences: A characterization of minimum price Walrasian rule"

(Theoretical Economics, Vol. 10, No. 2, May 2015, 445-487)
Shuhei Morimoto
Graduate School of Economics, Kobe University
Shigehiro Serizawa
Institute of Social and Economic Research, Osaka University

In this supplement, we provide the proofs that we omitted from the main paper. In Appendix D, we provide the proof of Fact 4 in Section 3. The proof is the same as Mishra and Talman's (2010), but we provide it for completeness. Fact 5 is already shown by Demange and Gale (1985) and Roth and Sotomayor (1990). For completeness, we also give the proof of Fact 5 in Appendix E.

Appendix D: Proof of Fact 4
The following theorem is used to prove Fact 4.
Hall's theorem (Hall 1935). Let $N \equiv\{1, \ldots, n\}$ and $M \equiv\{1, \ldots, m\}$. For each $i \in N$, let $D_{i} \subseteq M$. Then there is a one-to-one mapping x^{\prime} from N to M such that for each $i \in N$, $x^{\prime}(i) \in D_{i}$ if and only iffor each $N^{\prime} \subseteq N,\left|\bigcup_{i \in N^{\prime}} D_{i}\right| \geq\left|N^{\prime}\right|$.

Fact 4 (Mishra and Talman 2010). Let $\mathcal{R} \subseteq \mathcal{R}^{E}$ and $R \in \mathcal{R}^{n}$. A price vector p is a Walrasian equilibrium price vector for R if and only if no set is overdemanded and no set is underdemanded at p for R.

Proof. "Only if." Let $p \in P(R)$. Then there is an allocation $z=\left(x_{i}, t_{i}\right)_{i \in N}$ satisfying conditions (WE-i) and (WE-ii) in Definition 3. Let $M^{\prime} \subseteq M$.

We show that M^{\prime} is not overdemanded at p for R. Let $N^{\prime} \equiv\left\{i \in N: D\left(R_{i}, p\right) \subseteq M^{\prime}\right\}$. Since for each $i \in N^{\prime}, x_{i} \in D\left(R_{i}, p\right) \subseteq M^{\prime}$, and each real object is consumed by at most one agent, $\left|N^{\prime}\right|=\left|\left\{x_{i}: i \in N^{\prime}\right\}\right|$. Since $\left\{x_{i}: i \in N^{\prime}\right\} \subseteq M^{\prime},\left|\left\{x_{i}: i \in N^{\prime}\right\}\right| \leq\left|M^{\prime}\right|$. Thus, $\left|N^{\prime}\right| \leq\left|M^{\prime}\right|$.

We show that M^{\prime} is not underdemanded at p for R. Let $N^{\prime} \equiv\{i \in N$: $\left.D\left(R_{i}, p\right) \cap M^{\prime} \neq \varnothing\right\}$. Suppose that for each $x \in M^{\prime}, p^{x}>0$ and $\left|N^{\prime}\right|<\left|M^{\prime}\right|$. Note that

[^0]$\left|N^{\prime}\right|<\left|M^{\prime}\right|$ implies that there is $x \in M^{\prime}$ such that for all $i \in N, x_{i} \neq x$. Then condition (WE-ii) implies that $p^{x}=0$. This is a contradiction. Thus, $\left|N^{\prime}\right| \geq\left|M^{\prime}\right|$.
"If." Assume that no set is overdemanded and no set is underdemanded at p for R.
Let $Z^{*} \equiv\left\{z=\left(x_{i}, t_{i}\right)_{i \in N} \in Z\right.$: for each $i \in N, x_{i} \in D\left(R_{i}, p\right)$ and $\left.t_{i}=p^{x_{i}}\right\}$. First, we show $Z^{*} \neq \varnothing$. Suppose that there is $N^{\prime} \subseteq N$ such that for each $i \in N^{\prime}, 0 \notin D\left(R_{i}, p\right)$ and $\left|\left\{\bigcup_{i \in N^{\prime}} D\left(R_{i}, p\right)\right\}\right|<\left|N^{\prime}\right|$. Then $\left\{\bigcup_{i \in N^{\prime}} D\left(R_{i}, p\right)\right\}$ is overdemanded at p for R. Thus, for each $N^{\prime} \subseteq N$, if for each $i \in N^{\prime}, 0 \notin D\left(R_{i}, p\right)$, then $\left|\left\{\bigcup_{i \in N^{\prime}} D\left(R_{i}, p\right)\right\}\right| \geq\left|N^{\prime}\right|$. Then, by Hall's theorem, there is $z^{\prime} \in Z$ such that for each $i \in N$, if $0 \notin D\left(R_{i}, p\right)$, then $x_{i}^{\prime} \in D\left(R_{i}, p\right)$ and $t_{i}^{\prime}=p^{x_{i}^{\prime}}$. Thus, $Z^{*} \neq \varnothing$.

By the definition of Z^{*}, for each $z \in Z^{*},(z, p)$ satisfies (WE-i). We show that there is $z \in Z^{*}$ such that (z, p) satisfies (WE-ii). Let $M^{+}(p) \equiv\left\{x \in M: p^{x}>0\right\}$. Let

$$
\begin{equation*}
z \in \underset{z^{\prime} \in \mathbb{Z}^{*}}{\arg \max } \mid\left\{y \in M^{+}(p): \text { for some } i \in N, x_{i}^{\prime}=y\right\} \mid \tag{1}
\end{equation*}
$$

that is, z maximizes over Z^{*} the number of objects in $M^{+}(p)$ that are assigned to some agents. Then, by the definition of $Z^{*},(z, p)$ satisfies (WE-i).

Let $M^{0} \equiv\left\{y \in M^{+}(p)\right.$: for each $\left.i \in N, x_{i} \neq y\right\}$. Note that if $M^{0}=\varnothing$, then (z, p) also satisfies (WE-ii). Thus, we show that $M^{0}=\varnothing$. By contradiction, suppose that $M^{0} \neq \varnothing$.

Let $N^{0} \equiv\left\{i \in N: D\left(R_{i}, p\right) \cap M^{0} \neq \varnothing\right\}$. For each $k=1,2, \ldots$, let $M^{k} \equiv\{y \in M$:for some $\left.i \in N^{k-1}, x_{i}=y\right\}$ and $N^{k} \equiv\left\{i \in N: D\left(R_{i}, p\right) \cap M^{k} \neq \varnothing\right\} \backslash\left\{\bigcup_{k^{\prime}=0}^{k-1} N^{k^{\prime}}\right\}$. We claim by induction that for each $k \geq 0, M^{k} \subseteq M^{+}(p)$ and $N^{k} \neq \varnothing$.

Induction argument.
Step 1. By the definition of $M^{0}, M^{0} \subseteq M^{+}(p)$. Since M^{0} is not underdemanded at p for $R,\left|N^{0}\right| \geq\left|M^{0}\right|$. Thus, $M^{0} \neq \varnothing$ implies that $N^{0} \neq \varnothing$.

Step 2. Let $K \geq 1$. As induction hypothesis, assume that for each $k \leq K-1, M^{k} \subseteq$ $M^{+}(p)$ and $N^{k} \neq \varnothing$.

First, we show that $M^{K} \subseteq M^{+}(p)$. Suppose that there is $x \in M^{K} \backslash M^{+}(p)$. Then $p^{x}=0$. By the induction hypothesis, there is a sequence $\{x(s), i(s)\}_{s=1}^{K}$ such that

$$
\begin{aligned}
x(1) & =x, \quad x_{i(1)}=x(1) & & \\
x(2) & \in D\left(R_{i(1)}, p\right) \cap M^{K-1}, & & x_{i(2)}=x(2) \\
x(3) & \in D\left(R_{i(2)}, p\right) \cap M^{K-2}, & & x_{i(3)}=x(3) \\
& \vdots & & \\
x(K) & \in D\left(R_{i_{(K-1)}}, p\right) \cap M^{1}, & & x_{i(K)}=x(K) .
\end{aligned}
$$

Let $x(K+1) \in D\left(R_{i(K)}, p\right) \cap M^{0}$. For each $s \in\{1,2, \ldots, K\}$, let $z_{i(s)}^{\prime} \equiv\left(x_{i(s+1)}, p^{x_{i(s+1)}}\right)$, and for each $j \in N \backslash\{i(s)\}_{s=1}^{K}$, let $z_{j}^{\prime} \equiv z_{j}$. Then $z^{\prime} \in Z^{*}$ and

$$
\mid\left\{y \in M^{+}(p): \text { for some } i \in N, x_{i}^{\prime}=y\right\}|=|\left\{y \in M^{+}(p): \text { for some } i \in N, x_{i}=y\right\} \mid+1
$$

This is a contradiction to (1). Thus, $M^{K} \subseteq M^{+}(p)$.

Next, we show that $N^{K} \neq \varnothing$. By $M^{K} \subseteq M^{+}(p)$ and the induction hypothesis, $\bigcup_{k=0}^{K} M^{k} \subseteq M^{+}(p)$. Thus, since $\bigcup_{k=0}^{K} M^{k}$ is not underdemanded at p for R,

$$
\begin{equation*}
\left|\bigcup_{k=0}^{K} N^{k}\right| \geq\left|\bigcup_{k=0}^{K} M^{k}\right| \tag{2}
\end{equation*}
$$

By the definition of M^{k} and N^{k}, for each $k, k^{\prime} \in\{0,1, \ldots, K\}$ with $k \neq k^{\prime}, N^{k} \cap N^{k^{\prime}}=\varnothing$, which also implies that $M^{k} \cap M^{k^{\prime}}=\varnothing$. Thus,

$$
\left|\bigcup_{k=0}^{K} N^{k}\right|=\sum_{k=0}^{K}\left|N^{k}\right| \quad \text { and } \quad\left|\bigcup_{k=0}^{K} M^{k}\right|=\sum_{k=0}^{K}\left|M^{k}\right|
$$

Then, by (2),

$$
\begin{equation*}
\sum_{k=0}^{K-1}\left|N^{k}\right|+\left|N^{K}\right|=\sum_{k=0}^{K}\left|N^{k}\right| \geq \sum_{k=0}^{K}\left|M^{k}\right|=\sum_{k=1}^{K}\left|M^{k}\right|+\left|M^{0}\right| \tag{3}
\end{equation*}
$$

For each $k \geq 1$, by $M^{k} \subseteq M^{+}(p),\left|M^{k}\right|=\left|N^{k-1}\right|$. Thus, $\sum_{k=0}^{K-1}\left|N^{k}\right|=\sum_{k=1}^{K}\left|M^{k}\right|$. Then, by (3),

$$
\left|N^{K}\right| \geq\left|M^{0}\right|
$$

Thus, by $M^{0} \neq \varnothing,\left|N^{K}\right| \geq 1$ and so $N^{K} \neq \varnothing$.
Since $M^{+}(p)$ is finite, by the above induction argument, for large $K,\left|\bigcup_{k=0}^{K} M^{k}\right|=$ $\sum_{k=0}^{K}\left|M^{k}\right|>\left|M^{+}(p)\right|$. Since $\bigcup_{k=0}^{K} M^{k} \subseteq M^{+}(p)$, this is impossible.

Appendix E: Proof of Fact 5

Let $\mathcal{R} \subseteq \mathcal{R}^{E}$.
Lemma 15. Let $i \in N$ and $R_{i} \in \mathcal{R}$. Let $p, q \in \mathbb{R}_{+}^{m}$ and $x, y \in L$ be such that $x \in D\left(R_{i}, p\right)$ and $\left(y, q^{y}\right) P_{i}\left(x, p^{x}\right)$. Then $y \in M$ and $q^{y}<p^{y}$.

Proof. Since $\left(y, q^{y}\right) P_{i}\left(x, p^{x}\right)$ and $x \in D\left(R_{i}, p\right)$, we have $\left(y, q^{y}\right) P_{i}\left(x, p^{x}\right) R_{i} \mathbf{0}$. Thus, $y \in M$. Also, by $x \in D\left(R_{i}, p\right),\left(y, q^{y}\right) P_{i}\left(x, p^{x}\right) R_{i}\left(y, p^{y}\right)$. Thus, $\left(y, q^{y}\right) P_{i}\left(y, p^{y}\right)$ implies $q^{y}<p^{y}$.

Given $R, R^{\prime} \in \mathcal{R}^{n},(z, p) \in W(R)$, and $\left(z^{\prime}, p^{\prime}\right) \in W\left(R^{\prime}\right)$, let

$$
\begin{aligned}
& N^{1} \equiv\left\{i \in N: z_{i}^{\prime} P_{i} z_{i}\right\}, \quad M^{2} \equiv\left\{x \in M: p^{x}>p^{\prime x}\right\} \\
& X^{1} \equiv\left\{x \in L: \text { for some } i \in N^{1}, x_{i}=x\right\}, \quad \text { and } \quad X^{\prime 1} \equiv\left\{x \in L: \text { for some } i \in N^{1}, x_{i}^{\prime}=x\right\} .
\end{aligned}
$$

Lemma 16 (Decomposition (Demange and Gale 1985)). Let $R \in \mathcal{R}^{n}$ and ($\left.z, p\right) \in W(R)$. Let R^{\prime} be a d-truncation of R such that for each $i \in N, d_{i} \leq-C V_{i}\left(0 ; z_{i}\right)$, and let $\left(z^{\prime}, p^{\prime}\right) \in$ $W\left(R^{\prime}\right)$. Then $X^{1}=X^{\prime 1}=M^{2}$.

Proof. First, we show $X^{\prime 1} \subseteq M^{2}$. Let $x \in X^{\prime 1}$. Then there is $i \in N^{1}$ such that $x_{i}^{\prime}=x$. By $i \in N^{1},\left(x_{i}^{\prime}, p^{\prime x_{i}^{\prime}}\right) P_{i}\left(x_{i}, p^{x_{i}}\right)$. Thus, by $x_{i} \in D\left(R_{i}, p\right)$ and Lemma 15, $x_{i}^{\prime} \in M$ and $p^{\prime x_{i}^{\prime}}<p^{x_{i}^{\prime}}$, and so $x=x_{i}^{\prime} \in M^{2}$. Thus, $X^{\prime 1} \subseteq M^{2}$.

Next we show $M^{2} \subseteq X^{1}$. Let $x \in M^{2}$. Then $x \in M$ and $0 \leq p^{\prime x}<p^{x}$. Thus, by (WE-ii), there is $i \in N$ such that $x_{i}=x$. By $d_{i} \leq-C V_{i}\left(0 ; z_{i}\right)$ and Lemma 2(ii), $\left(x_{i}^{\prime}, p^{\prime x_{i}^{\prime}}\right) P_{i}\left(x_{i}, p^{x_{i}}\right)$. Thus, $i \in N^{1}$ and so $x=x_{i} \in X^{1}$. Thus, $M^{2} \subseteq X^{1}$.

Note that by the definition of X^{1} and $X^{\prime 1},\left|X^{1}\right| \leq\left|N^{1}\right|$ and $\left|X^{\prime 1}\right| \leq\left|N^{1}\right|$. Since $X^{\prime 1} \subseteq$ $M^{2} \subseteq M$, each agent in N^{1} receives a different object and so $\left|X^{\prime 1}\right|=\left|N^{1}\right| \geq\left|X^{1}\right|$. Since $X^{\prime 1} \subseteq M^{2} \subseteq X^{1},\left|X^{\prime 1}\right| \leq\left|M^{2}\right| \leq\left|X^{1}\right|$. Thus, $\left|X^{\prime 1}\right|=\left|M^{2}\right|=\left|X^{1}\right|$. By $\left|X^{\prime 1}\right|=\left|M^{2}\right|$ and $X^{\prime 1} \subseteq$ $M^{2}, X^{\prime 1}=M^{2}$. By $\left|M^{2}\right|=\left|X^{1}\right|$ and $M^{2} \subseteq X^{1}, M^{2}=X^{1}$.

Lemma 17 (Lattice Structure (Demange and Gale 1985)). Let $R \in \mathcal{R}^{n}$ and $(z, p) \in W(R)$. Let R^{\prime} be a d-truncation of R such that for each $i \in N, d_{i} \leq-C V_{i}\left(0 ; z_{i}\right)$, and let $\left(z^{\prime}, p^{\prime}\right) \in$ $W\left(R^{\prime}\right)$. Then (i) $\hat{p} \equiv p \wedge p^{\prime} \in P(R)$ and (ii) $\bar{p} \equiv p \vee p^{\prime} \in P\left(R^{\prime}\right) .{ }^{1}$

Proof. Let $N^{1} \equiv\left\{i \in N: z_{i}^{\prime} P_{i} z_{i}\right\}$ and $M^{2} \equiv\left\{x \in M: p^{x}>p^{\prime x}\right\}$.
(i) Let \hat{z} be defined by setting for each $i \in N^{1}, \hat{z}_{i} \equiv z_{i}^{\prime}$, and for each $i \in N \backslash N^{1}, \hat{z}_{i} \equiv z_{i}$. We show that $(\hat{z}, \hat{p}) \in W(R)$.

Step 1. We have that (\hat{z}, \hat{p}) satisfies (WE-i).
Let $i \in N$ and $x \in L$. In the following two cases, we show $\left(\hat{x}_{i}, \hat{p}^{\hat{x}_{i}}\right) R_{i}\left(x, \hat{p}^{x}\right)$, which implies $\hat{x}_{i} \in D\left(R_{i}, \hat{p}\right)$.

Case 1. $i \in N^{1}$. By $\hat{x}_{i}=x_{i}^{\prime}$ and Lemma 16, $\hat{x}_{i} \in M^{2}$, and so $\hat{x}_{i} \in M$ and $p^{\prime \hat{x}_{i}}<p^{\hat{x}_{i}}$. Thus, $\hat{p}^{\hat{x}_{i}}=p^{\hat{x}_{i}}$.

First, assume that $x \in M^{2}$. Then, by $\hat{p}^{x}=p^{\prime x}$,

$$
\left(\hat{x}_{i}, \hat{p}^{\hat{x}_{i}}\right)=z_{i}^{\prime} \underset{x_{i}^{\prime} \in D\left(R_{i}^{\prime}, p^{\prime}\right)}{R_{i}^{\prime}}\left(x, p^{\prime x}\right)=\left(x, \hat{p}^{x}\right)
$$

Since R_{i}^{\prime} is a d_{i}-truncation of $R_{i}, \hat{x}_{i} \neq 0$ and $x \neq 0$, Remark $1(\mathrm{i})$ implies $\left(\hat{x}_{i}, \hat{p}^{\hat{x}_{i}}\right) R_{i}\left(x, \hat{p}^{x}\right)$.
Next, assume that $x \notin M^{2}$. Then, by $\hat{p}^{x}=p^{x}$,

$$
\left(\hat{x}_{i}, \hat{p}^{\hat{x}_{i}}\right)=z_{i}^{\prime} \underset{i \in N^{1}}{P_{i}} z_{i} \underset{x_{i} \in D\left(R_{i}, p\right)}{R_{i}}\left(x, p^{x}\right)=\left(x, \hat{p}^{x}\right)
$$

Case 2. $i \notin N^{1}$. By $\hat{x}_{i}=x_{i}$ and Lemma 16, $\hat{x}_{i} \notin M^{2}$. Thus, $p^{\hat{x}_{i}} \leq p^{\prime \hat{x}_{i}}$ or $\hat{x}_{i}=0$. First, we assume that $x \in M^{2}$. Then $\hat{p}^{x}=p^{\prime x}$. Note that $i \notin N^{1} \operatorname{implies}\left(\hat{x}_{i}, \hat{p}^{\hat{x}_{i}}\right)=z_{i} R_{i} z_{i}^{\prime}$.

Case 2.1. $x_{i}^{\prime} \neq 0$. By $x_{i}^{\prime} \in D\left(R_{i}^{\prime}, p^{\prime}\right), z_{i}^{\prime} R_{i}^{\prime}\left(x, p^{\prime x}\right)=\left(x, \hat{p}^{x}\right)$. Since R_{i}^{\prime} is a d_{i}-truncation of $R_{i}, x_{i}^{\prime} \neq 0$, and $x \neq 0$, Remark 1(i) implies $z_{i}^{\prime} R_{i}\left(x, p^{\prime x}\right)$. Thus,

$$
\left(\hat{x}_{i}, \hat{p}^{\hat{x}_{i}}\right)=z_{i} R_{i} z_{i}^{\prime} R_{i}\left(x, p^{\prime x}\right)=\left(x, \hat{p}^{x}\right)
$$

[^1]Case 2.2. $x_{i}^{\prime}=0$. Note $z_{i}^{\prime}=\mathbf{0}$. Since $x_{i}^{\prime} \in D\left(R_{i}^{\prime}, p^{\prime}\right), C V_{i}^{\prime}(x ; \mathbf{0}) \leq p^{\prime x}$. Thus, if $C V_{i}(x ; \mathbf{0}) \leq$ $C V_{i}^{\prime}(x ; \mathbf{0})$, then $z_{i}^{\prime} R_{i}\left(x, p^{\prime x}\right)$, which implies that

$$
\left(\hat{x}_{i}, \hat{p}^{\hat{x}_{i}}\right)=z_{i} R_{i} z_{i}^{\prime} R_{i}\left(x, p^{\prime x}\right)=\left(x, \hat{p}^{x}\right)
$$

Next, assume that $C V_{i}(x ; \mathbf{0})>C V_{i}^{\prime}(x ; \mathbf{0})$. Then, since R_{i}^{\prime} is a d_{i}-truncation of $R_{i}, d_{i}>$ 0 , which implies that $x_{i} \neq 0 .^{2}$ Then, by $d_{i} \leq-C V_{i}\left(0 ; z_{i}\right), C V_{i}\left(x ; z_{i}\right) \leq C V_{i}^{\prime}(x ; \mathbf{0}) \leq p^{\prime x}$, which implies that $z_{i} R_{i}\left(x, p^{\prime x}\right)$. Thus,

$$
\left(\hat{x}_{i}, \hat{p}^{\hat{x}_{i}}\right)=z_{i} R_{i} y\left(x, p^{x}\right)=\left(x, \hat{p}^{x}\right)
$$

Next assume that $x \notin M^{2}$. Then $\hat{p}^{x}=p^{x}$. Since $\hat{x}_{i}=x_{i} \in D\left(R_{i}, p\right)$,

$$
\left(\hat{x}_{i}, \hat{p}^{\hat{x}_{i}}\right)=z_{i} R_{i}\left(x, p^{x}\right)=\left(x, \hat{p}^{x}\right)
$$

Step 2. We have that (\hat{z}, \hat{p}) satisfies (WE-ii).
Let $x \in M$ be such that $\hat{p}^{x}>0$. We show that there is $i \in N$ such that $\hat{x}_{i}=x$. Since $\hat{p}=p \wedge p^{\prime}, \hat{p}^{x}>0$ implies $p^{x}>0$ and $p^{\prime x}>0$.

Case 1. $x \in M^{2}$. By Lemma 16, there is $i \in N^{1}$ such that $x_{i}^{\prime}=x$. Since $i \in N^{1}$, by construction of $\hat{z}, \hat{x}_{i}=x_{i}^{\prime}$. Thus, $\hat{x}_{i}=x$.

Case 2. $x \notin M^{2}$. By $p^{x}>0$, there is $i \in N$ such that $x_{i}=x$. By Lemma $16, i \notin N^{1}$. Thus, $\hat{x}_{i}=x_{i}$, and so $\hat{x}_{i}=x$.
(ii) Let \bar{z} be defined by setting for each $i \in N^{1}, \bar{z}_{i} \equiv z_{i}$, and for each $i \in N \backslash N^{1}, \bar{z}_{i} \equiv z_{i}^{\prime}$. We show $(\bar{z}, \bar{p}) \in W\left(R^{\prime}\right)$.

Step 1. We have that ($\bar{z}, \bar{p})$ satisfies (WE-i).
Let $i \in N$ and $x \in L$. In the following two cases, we show $\left(\bar{x}_{i}, \bar{p}^{\bar{x}_{i}}\right) R_{i}^{\prime}\left(x, \bar{p}^{x}\right)$, which implies $\bar{x}_{i} \in D\left(R_{i}^{\prime}, \bar{p}\right)$.

Case 1. $i \in N^{1}$. By $\bar{x}_{i}=x_{i}$ and Lemma 16, $\bar{x}_{i} \in M^{2}$, and so $\bar{x}_{i} \in M$ and $p^{\bar{x}_{i}}<p^{\bar{x}_{i}}$. Thus, $\bar{p}^{\bar{x}_{i}}=p^{\bar{x}_{i}}$. First assume that $x \in M^{2}$. Since $\bar{x}_{i}=x_{i} \in D\left(R_{i}, p\right)$ and $\bar{p}^{x}=p^{x}$,

$$
\left(\bar{x}_{i}, \bar{p}^{\bar{x}_{i}}\right)=z_{i} R_{i}\left(x, p^{x}\right)=\left(x, \bar{p}^{x}\right) .
$$

Since R_{i}^{\prime} is a d_{i}-truncation of $R_{i}, \bar{x}_{i} \neq 0$, and $x \neq 0$, Remark $1(\mathrm{i})$ implies $\left(\bar{x}_{i}, \bar{p}^{\bar{x}_{i}}\right) R_{i}^{\prime}\left(x, \bar{p}^{x}\right)$.

Next, assume that $x \notin M^{2}$. Then $p^{x} \leq p^{\prime x}$ or $x=0$.
Case 1.1. $x \neq 0$. Since $\bar{x}_{i}=x_{i} \in D\left(R_{i}, p\right)$ and $\bar{p}^{x}=p^{\prime x} \geq p^{x}$,

$$
\left(\bar{x}_{i}, \bar{p}^{\bar{x}_{i}}\right)=z_{i} R_{i} y\left(x, p^{x}\right) R_{i}\left(x, \bar{p}^{x}\right)
$$

Since R_{i}^{\prime} is a d_{i}-truncation of R_{i} and $\bar{x}_{i} \neq 0,\left(\bar{x}_{i}, \bar{p}^{\bar{x}_{i}}\right) R_{i}^{\prime}\left(x, \bar{p}^{x}\right)$.

[^2]Case 1.2. $x=0$. Since R_{i}^{\prime} is a d_{i}-truncation of R_{i} and $d_{i} \leq-C V_{i}\left(0 ; z_{i}\right)$,

$$
\left(\bar{x}_{i}, \bar{p}^{\bar{x}_{i}}\right)=z_{i} R_{i}^{\prime} \mathbf{0}=\left(x, \bar{p}^{x}\right)
$$

Case 2. $i \notin N^{1}$. By $\bar{x}_{i}=x_{i}^{\prime}$ and Lemma 16, $\bar{x}_{i} \notin M^{2}$. Thus, $p^{\bar{x}_{i}} \leq p^{\bar{x}_{i}}$ or $\bar{x}_{i}=0$. If $\bar{x}_{i}=0$,

$$
\left(\bar{x}_{i}, \bar{p}^{\bar{x}_{i}}\right)=\mathbf{0}=z_{i}^{\prime} \underset{x_{i}^{\prime} \in D\left(R_{i}^{\prime}, p^{\prime}\right)}{R_{i}^{\prime}}\left(x, p^{\prime x}\right) \underset{p^{\bar{x}}=\max \left\{p^{x}, p^{\prime x}\right\}}{R_{i}^{\prime}}\left(x, \bar{p}^{x}\right) .
$$

Thus, assume that $\bar{x}_{i} \neq 0$. Then

$$
\left(\bar{x}_{i}, \bar{p}^{\bar{x}_{i}}\right) \underset{p^{\bar{x}_{i} \leq p^{\prime \prime} \bar{x}_{i}}=\bar{p}^{\bar{x}_{i}}}{z_{i}^{\prime}}{\underset{x i}{\prime} \in D\left(R_{i}^{\prime}, p^{\prime}\right)}_{\prime}^{R_{i}^{\prime}}\left(x, p^{\prime x}\right) \underset{\bar{p}^{x}=\max \left\{p^{x}, p^{\prime x}\right\}}{R_{i}^{\prime}}\left(x, \bar{p}^{x}\right) .
$$

Step 2. We have that ($\bar{z}, \bar{p})$ satisfies (WE-ii).

Let $x \in M$ be such that $\bar{p}^{x}>0$. We show that there is $i \in N$ such that $\bar{x}_{i}=x$. Since $\bar{p}=p \vee p^{\prime}, \bar{p}^{x}>0$ implies $p^{x}>0$ or $p^{\prime x}>0$.

Case 1. $x \in M^{2}$. By Lemma 16, there is $i \in N^{1}$ such that $x_{i}=x$. Since $i \in N^{1}$, by construction of $\bar{z}, \bar{x}_{i}=x_{i}$. Thus, $\bar{x}_{i}=x$.

Case 2. $x \notin M^{2}$. If $p^{\prime x}=0$, then $p^{\prime x}=0<p^{x}$. Thus, $x \in M^{2}$, which is a contradiction. Thus, $p^{\prime x}>0$. Then there is $i \in N$ such that $x_{i}^{\prime}=x$. By Lemma 16, $i \notin N^{1}$, which implies that $\bar{x}_{i}=x_{i}^{\prime}$. Thus, $\bar{x}_{i}=x$.

The following is a corollary of Lemma 17.
Corollary 3. Let $R \in \mathcal{R}^{n}$ and $p, p^{\prime} \in P(R)$. Then (i) $p \wedge p^{\prime} \in P(R)$ and (ii) $p \vee p^{\prime} \in P(R)$.
Fact 5 (Roth and Sotomayor 1990). Let $R \in \mathcal{R}^{n}$ and let R^{\prime} be a d-truncation of R such that for each $i \in N, d_{i} \geq 0$. Then $p_{\min }\left(R^{\prime}\right) \leq p_{\min }(R)$.

Proof. Let $\left(z^{\prime}, p^{\prime}\right) \in W\left(R^{\prime}\right)$. Then, for each $i \in N$, since $C V_{i}^{\prime}\left(0 ; z_{i}^{\prime}\right) \leq 0$ and $d_{i} \geq 0$, $-d_{i} \leq 0 \leq-C V_{i}^{\prime}\left(0 ; z_{i}^{\prime}\right)$. Since R is the $(-d)$-truncation of R^{\prime}, Lemma 17 implies $\hat{p} \equiv$ $p^{\prime} \wedge p_{\min }(R) \in P\left(R^{\prime}\right)$. Thus, since $p_{\min }\left(R^{\prime}\right) \leq \hat{p}, p_{\min }\left(R^{\prime}\right) \leq p_{\min }(R)$.

References

Demange, Gabrielle and David Gale (1985), "The strategy structure of two-sided matching markets." Econometrica, 53, 873-888. [1, 3, 4]

Hall, Philip (1935), "On representatives of subsets." Journal of the London Mathematical Society, 10, 26-30. [1]

Mishra, Debasis and Dolf Talman (2010), "Characterization of the Walrasian equilibria of the assignment model." Journal of Mathematical Economics, 46, 6-20. [1]

Roth, Alvin E. and Marilda Sotomayor (1990), Two-Sided Matching: A Study in GameTheoretic Modelling and Analysis. Cambridge University Press, Cambridge. [1, 6]

Submitted 2013-2-26. Final version accepted 2014-5-14. Available online 2014-5-15.

[^0]: Shuhei Morimoto: morimoto@people.kobe-u.ac.jp
 Shigehiro Serizawa: serizawa@iser.osaka-u.ac.jp
 Copyright © 2015 Shuhei Morimoto and Shigehiro Serizawa. Licensed under the Creative Commons Attribution-NonCommercial License 3.0. Available at http: / /econtheory . org.
 DOI: 10.3982/TE1470

[^1]: ${ }^{1}$ Denote $p \wedge p^{\prime} \equiv\left(\min \left\{p^{x}, p^{\prime x}\right\}\right)_{x \in M}$ and $p \vee p^{\prime} \equiv\left(\max \left\{p^{x}, p^{\prime x}\right\}\right)_{x \in M}$.

[^2]: ${ }^{2}$ To see this, suppose that $x_{i}=0$. Then $d_{i} \leq-C V_{i}\left(0 ; z_{i}\right)=0$, which contradicts $d_{i}>0$.

