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Web Appendix 1: Further Bounds on the Length of Direct Paths

We �rst prove two lemmas.

Lemma 1. For 0 < C < 1 and tF ≥ 0 we have
∑∞

ts=0 ts(1− CtF )bts/tF c ≤ 3t2F /C
2tF

Proof. We have

∞∑
ts=0

ts(1− CtF )bts/tF c =

∞∑
k=0

tF∑
h=1

(ktF + h)(1− CtF )k

=

tF∑
h=1

(
tF

∞∑
k=0

k(1− CtF )k + h

∞∑
k=0

(1− CtF )k

)

=

tF (A)∑
h=1

(
tF (1− CtF )/C2tF + h/CtF

)
=

(
t2F (1− CtF )/C2tF + (t2F + tF )/(2CtF )

)
≤ 3t2F /C

2tF

giving the desired result.

Lemma 2. . If A ⊆ AxBW is not empty and W is comprehensive then for t ≥ 0 we have

Pε
(
t(a) = t+ 1, a ∈ A|x

)
≤ (1− CtF (A))b(t+1)/tF (A)c

and if B is a singleton then

Pε
(
t(a) = t+ 1, a ∈ A|x

)
≤ max

(x,z1,z2,...,zt−1,zt)∈A
Pε(zt(a)|zt−1(a))(1− CtF (A))bt/tF (A)c

Proof. The �rst inequality was proven in the Lemma on short loops in the Appendix to the paper.
The second makes use of the fact that in the course of proving that Lemma we used only the fact
that all the loops ended at the same target and that all had the same transition probability at the
end. If we replace the unique �nal transition probability with the maximum over all �nal transition
probabilities the same argument goes through.

In the Appendix to the paper a better bound is given for least resistance paths that exploits the

fact that they have a special structure. The idea is that long least resistance paths are not likely
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to be very long because to be long they must contain long loops, and long loops are not very likely.

For least resistance paths these loops must have zero resistance, however in a large state space we

could have zero resistance pieces of least resistance paths that are �unnecessarily� long but do not

in fact loops. Our goal is to show that these too are unlikely. To do so, we introduce the idea of

a waypoint of a path a = (z0, z1, . . . , zt). Let (zτ−1, zτ ) be the �rst transition in the path that has

positive resistance. The �rst waypoint is de�ned as zτ . Similarly, the second waypoint is de�ned

to be the end of the second transition in the path that has positive resistance and so forth. We say

that two paths a, a′ are equivalent, written a ∼ a′ if they have the same waypoints. The idea is now

to give conditions for least resistance paths under which the amount of time between waypoints is

bounded independent of the size of the state space, and consequently get a bound on the expected

length of least resistance paths of order equal to the number of waypoints. Let Y (A) be the set of

sequences of waypoints derived from paths in A, and for any given sequence of waypoints y ∈ Y (A)

let Aτ−1(y) be the set of least resistance paths from zτ−1 to zτ .

Theorem 1. If W is comprehensive and A ⊆ AxBW not empty is the set of all least resistance

paths then

Eε(t(a)|x,A) ≤ max
y=(z0,z1,...,zt−1)∈Y (A)

t
[

max
0≤s≤t−1

3DtF (As(y))2/C2tF (As(y))+t(AS(y))
]

Proof. Pick y = (z0, z1, . . . , zt−1) ∈ Y (A), that is a sequence of waypoints, and let Ay be the
paths with those waypoints. Notice these sets form a partition of A. If aτ is a sequence of states
(indexed starting with 1), let zs(τ) be the sth element of the sequence and s(τ) the length of the
sequence. Since that paths in question are least resistance paths, they are exactly paths of the form
(a0, a1, . . . , at−1) where

* z1(0) = x
* either zs(t−1)(t− 1) ∈ B or zt−1 ∈ B, at−1 = ∅
* any transitions in aτ have zero resistance
* transitions zs(τ−1)(τ − 1), z1(τ) have positive resistance rτ−1 that depends only on τ
* (aτ−1, z1(τ)) is a least resistance path from z1(τ − 1) to z1(τ) (with forbidden set W ).
Put di�erently, setting Aτ−1 = Aτ−1(y) (the set of least resistance paths from zτ−1 to zτ ) then

a path is a least resistance path if and only if aτ−1 ∈ Aτ−1and aτ ∈ Aτ implies that any transitions
in aτ have zero resistance, and the transition zs(τ−1)(τ − 1), z1(τ) has positive resistance equal to
rτ−1 independent of which path in Aτ−1 is chosen. Let Pτ (t) ≡ Pε

(
t((a, zτ+1)) = t+ 1, a ∈ Aτ |x

)
.

Then (using the same algebra as in the paper) we have

E(t(a)|x,Ay) =

∑∞
t0=0

∑∞
t1=0 . . .

∑∞
tt−1=0

(∑t−1
s=0 ts

)∏t−1
τ=0 Pτ (tτ )∏t(a)−1

τ=0

∑∞
t=0 Pτ (t)

=

t−1∑
s=0

∑∞
t=0 tsPs(t)∑∞
t=0 Ps(t)

.

As in the short loops Lemma in the Appendix of the paper by using Lemma 2 and Lemma 1 we
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�nd

∞∑
t=0

tsPs(t) ≤
∞∑
ts=0

tsDε
rs(1− CtF (As))bts/tF (As)c

≤ Dεrs3tF (As)
2/C2tF (As).

On the other hand,
∑∞

t=0 Ps(t) ≥ Ct(As)εrs , which gives the desired bound.

As we move away from a recurrent communicating class along a least resistance path, initially

we are in the basin of the class and we encounter resistance. This gives a natural monotonicity to

this part of the path: each time we encounter resistance we cannot go back and do it again because

to do so would add unnecessary resistance. The bounds in Theorem 1 exploits this monotonicity

and so is useful in bounding the time it takes to get out of the basin. However, once we leave the

basin there will be zero resistance paths to other recurrent communicating classes, and so there will

be no more waypoints and the bound is not useful. Indeed, as Web Appendix 2 shows, the length

of time in this region may not scale. However, in applications such as the model of hegemony,

once we get close enough to the recurrent communicating class that will be the end of the least

resistance path, there may be a form of monotonicity: in the example there is a point at which the

eventual hegemon can only gain land (along a least resistance path) and not lose it. If in place of

the natural monotonicity of Theorem 1 we assume monotonicity then we can get a bound for this

�nal segment of the least resistance path.

To formalize this, we �rst give a bound on the probability of zero resistance paths in the basin.

Suppose that for comprehensive W the set A ⊆ AxBW of least resistance paths is not null. De�ne

rxBW ≡ min{r(Ax(W\B)W ), r(AxBW \A)} and txBW ≡ max{t(Ax(W\B)W ), t(AxBW \A)}. Notice

that rxBW > 0 means that r(A) = 0 since there must be some zero resistance path from x to W ,

and that x is in the basin of B since all 0 resistance direct routes from x to B are in A.

Theorem 2. If rxBW > 0 thenPε(A|x) ≥ 1− 2G(txBW )εrxBW .

Proof. Since W is comprehensive, with probability 1 every path originating at x hits W with
probability 1. Hence Pε(Ax(W\B)W |x) +Pε(AxBW \A|x) +Pε(A|x) = 1. However, by bound proven
in the Appendix of the paper we have Pε(Ax(W\B)W |x), Pε(AxBW \A|x) ≤ G(txBW )εrxBW giving the
desired result.

Now consider a sequence of targets B1, B2, . . . , Bt where Bt = B. Also set B0 = {x}. For any
a starting at x we may consider t1(a) the �rst time B1 is hit before hitting W , possibly in�nite,

and if B1is hit before W we may consider t2(a) the additional amount of time from �rst hitting B1

until B2is hit before hitting W , again in�nite if either target is not hit before reaching W , and so

forth. We say that the sequence is a Liapuno� sequence for A if for every a we have tτ (a) < ∞.

In this case the sequence of states (z1, z2, . . . , zt) that are hit are similar to waypoints. For y ∈ Bτ
let Aτ (y) ≡ A(y,Bτ+1,W ). Let tFF (A) ≡ max0≤τ<t tF (Aτ ). Then

3



Theorem 3. If B1, B2, . . . , Bt is a Liapuno� sequence for least resistance paths A then

Eε(t(a)|x,A) ≤ t 1

Pε(A|x)

3tFF (A)2

C2tFF (A)

Proof. De�ne tτ (a) to be tτ (a) if it is �nite, zero otherwise, and observe that for a ∈ A we have
tτ (a) = tτ (a). Hence we may write

Eε(t(a)|x,A) =
t−1∑
τ=0

Eε(tτ (a)|x,A)

=
t−1∑
τ=0

Eε(tτ (a)|x,A)Pε(A|x)

Pε(A|x)

≤ 1

Pε(A|x)

t−1∑
τ=0

Eε(tτ (a)|x).

Moreover Eε(tτ (a)|x) ≤ maxy∈Bτ Eε(tτ (a)|y) as either tτ (a) is zero or a hits some y ∈ Bτ before
hitting Bτ+1 by de�nition. The desired bound now follows from Lemma 2 and the summation
formula Lemma 1.

Web Appendix 2: Expected Passage Time Bounds

Let Vt a standard Weiner process with 0 drift and instantaneous variance 1 that starts at 0.

Now let T be the �rst time that Vt leaves the region [−A,+A]. As usualΦ is the standard normal.

First we prove

Lemma 3. ET ≥ 1
2[Φ−1(1/8)]2

A2

Proof. Let τ+ be the �rst passage time for A > 0. We �rst establish a standard result: Pr(Vt >
A) = Pr(Vt > A & τ+ < t) = (1/2)Pr(τ+ < t). The �rst equality follows from the fact that if
Vt > A then certainly τ+ < t. The second follows from the re�ection principle: starting at Vτ+ = A
there is an equal probability of 1/2 that Vt > A and Vt < A hence if τ+ < t the probability that
Vt > A also is half the probability that τ+ < t.

Our goal is to establish a lower bound on the expectation of T . Let τ− be the �rst passage time
of −A. First we observe that

Pr(τ+ < t) = Pr(τ+ < t & τ− > t) + Pr(τ+ < t& τ+ < τ− < t) + Pr(τ+ < t & τ− < τ+).

Using the re�ection principle we have

Pr(τ+ < t& τ− < τ+) = Pr(τ− < t& τ+ < τ−) = Pr(τ+ < t& τ+ < τ− < t)

so that

Pr(τ+ < t) = Pr(τ+ < t & τ− > t) + 2Pr(τ+ < t& τ+ < τ− < t)

≥ Pr(τ+ < t & τ− > t) + Pr(τ+ < t& τ+ < τ− < t)

4



Moreover

Pr(T < t) = 2 Pr(τ+ < t & τ− > t) + 2Pr(τ+ < t& τ+ < τ− < t)

≤ 2 Pr(τ+ < t) = 4Pr(Vt > A) = 4Φ(−A/
√
t)

Finally ET ≥ t(1 − Pr(T < t)) ≥ t(1 − 4Φ(−A/
√
t)) for all t and in particular for t =

A2/
[
Φ−1(1/8)

]2
which gives ET ≥ 1

2[Φ−1(1/8)]2
A2.

Now we consider a random walk with probability β of moving up or down by one and passage

time K to ±θL.

Theorem 4. The expected hitting time is bounded below by

Eκ ≥ (θ/(2β))2

6 [Φ−1(1/8)]2
L2

Proof. Let Lk be the random walk and consider the sums SL(t) =
∑t/L2

k=1 (Lk − Lk−1)/(2βL) as
L → ∞ converges weakly to a Weiner process with instantaneous variance 1. The random walk
passes ±θL when SL(t) passes ±θ/(2β). Consider the T truncated hitting time T̃ , we have

EST ≥ EST̃ ≥ EWT − |EWT − EW T̃ | − |EW T̃ − EST̃ |.

where the �nal inequality is just the triangle inequality. However limL→∞EST̃ = EW T̃ , limT→∞EW T̃ =
EWT. So for all su�ciently large L, T we can make |EWT − EW T̃ |, |EW T̃ − EST̃ | both less than
or equal to 1/3rd the bound in Lemma 3 giving the bound

EST ≥ (1− 1

3
− 1

3
)

(θ/(2β))2

2 [Φ−1(1/8)]
.

Finally observe that the number of periods corresponding to T is L2T .

Web Appendix 3: Length of the Fall, Rise and Warring States

Here we prove

Proposition 1. For any K there exists an L such that for all L ≥ L there exists a ε such that for

all ε ≤ ε the expected length of the warring states period exceeds that of either the fall or rise by K
periods.

Proof. First the fall. From Web Appendix 1 we see that the waypoints are where the hegemon loses
a unit of land to opponents that consist entirely of a single society of zealots. Hence there are no
more than θL waypoints. The time to failure is 1 since the hegemon can gain a unit of land with
zero resistance and game over, and the least length of a least resistance path from the state after a
waypoint to the next waypoint is 2: one transition to replace the society that initially gained the
land with the zealots, and one transition for the zealots to take a unit of land from the hegemon.
Hence from theorem 1 we have the bound

Eε(t(a)|x,A) ≤ θLD3/C6.

Turning to the rise, �x x such that a would be hegemon j has enough land θ0L to resist an
opponent consisting entirely of zealots. Let rz be that resistance. By Theorem 2 we have the
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bound Pε(A|x) ≥ 1 − 2G(txBW )εrz . Moreover the sets Bτ such that the hegemon has θ0L + τ
units of land form a Liapuno� sequence. Notice that for this sequence tFF (A) = 1 since there is
always zero resistance to the hegemon gaining a single unit of land, and along a least resistance
path starting at x he can never lose any land. Hence by Theorem 3 we also have the bound

Eε(t(a)|x,A) ≤ (1− θ0)L
1

Pε(A|x)

3

C2

≤ (1− θ0)L
1

1− 2G(txBW )εrz
3

C2

during the rise.
Recall that at some point during the warring states period there is a society with Ljτ units of

land that follows a random walk with β chance of increasing by one or decreasing by one at least
until either Ljτ ≥ θL or Ljτ ≤ (1 − θ)L. From Theorem 4 we have the expected passage time
bound

Eεκ ≥
(θ/(2β))2

6 [Φ−1(1/8)]2
L2.

Hence for L su�ciently large the expected amount of time in the warring states is 3K larger than
an upper bound θLD3/C6 on the expected amount of time during a least resistance path during
the fall and larger than (1− θ0)L3/C2 which is not quite an upper bound on the expected amount
of time during the rise. This is not quite the end of the story, since it is the expected amount of
time of all paths during the rise or the fall that matters, and because we must account for dividing
by the probability of the rise. However, the expected length of all non-least-resistance paths is
bounded above by the bound in the Appendix to the paper as is G(txBW ) and while that bound
increases quite rapidly with L it is also weighted according to that Theorem by a probability that
goes to zero with ε. Hence once we �x L we can choose a small enough ε that the expected length
of all paths (during the rise or fall) is at most K larger than that of the length of least resistance
paths - that is of total length at most 2K. Hence the expected amount of time in the warring states
period is at least K larger than during the rise or fall.

Web Appendix 4: Ergodic Probabilities and Circuits

We are given a �nite set of nodes Ωk and for ψ, φ ∈ Ωk a resistance function rk(ψ, φ). For any

ψ ∈ Ωk we de�ne the least resistance rk(ψ) = minφ∈Ωk\ψ r
k(ψ, φ). We are interested in trees T on

Ωk. For any such tree and any ψ let T (ψ) denote the unique predecessor of ψ on the tree (which

is null for the unique root). Note that we follow the standard game theory terminology that the

predecessor is closer to the root - in contrast to Young who follows the logic of the Markov process

in imagining that the node closer to the root is the successor node. The resistance of the tree T is

de�ned to be rk(T ) =
∑

ψ∈Ωk r
k(ψ, T (ψ)) where rk(ψ, ∅) ≡ 0.

Our goal is to characterize least resistance trees by showing how they are constructed out of

groups of nodes that we call circuits. As in the text, Ωk+1
x ⊆ Ωk is a circuit if for each pair

ψ1, ψy ∈ Ωk+1
x there is a path ψ1, ψ2, . . . , ψn ∈ Ωk+1

x with ψn = ψy such that for τ = 2, 3, . . . n we

have rk(ψτ−1, ψτ ) = rk(ψτ−1), that is, there is a path from ψ1 to ψy within the circuit such that

each connection has least resistance.

De�nition 1 (Consolidation). A circuit Ωk+1
x is consolidated within the tree T if there is a φ ∈
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Ωk+1
x that precedes all other ψ ∈ Ωk+1

x , and for these other ψ 6= φ we have T (ψ) ∈ Ωk+1
x and

rk(ψ, T (ψ)) = rk(ψ).

In other words, in the consolidated tree the circuit Ωk+1
x forms a subtree with root φ, and each

connection within the circuit has least resistance. We refer to φ as the top of the circuit.

Intuitively if we think of the circuit as a circle of least resistance connections then we will break

that circle after φ to make a subtree and use φ to connect this subtree to the the rest of the tree.

Breaking the connection saves at least rk(φ), while making the new connection costs rk(φ, T (φ)),

hence we de�ne the modi�ed resistance from φ to ψ as Rk(φ, ψ) = rk(φ, ψ)− rk(φ).

In the next lemma we consolidate a circuit within a tree by breaking it after the node that

minimizes modi�ed resistance. By so doing, the resistance of the tree cannot increase.

Lemma 4. Suppose that T on Ωk has root ψ and that Ωk+1
x is a circuit on Ωk. Then there is a

tree T ′ with root ψ such that rk(T ′) ≤ rk(T ) and Ωk+1
x is consolidated in T ′ with the additional

properties that (1) if φ′ /∈ Ωk+1
x then T ′(φ′) = T (φ′) and (2) if φ is the top of Ωk+1

x in T ′ then
Rk(φ, T ′(φ)) = min{Rk(φ′, T ′(φ)) | φ′ ∈ Ωk+1

x }.

Proof. Let T have root ψ and let φ∗ ∈ Ωk+1
x be such that the unique path from φ∗ to the root ψ

contains no element of Ωk+1
x . If φ∗ = ψ take φ = φ∗. Otherwise choose as top a φ ∈ Ωk+1

x such that
rk(φ, T (φ∗))− rk(φ) = min{rk(φ′, T (φ∗))− rk(φ′) | φ′ ∈ Ωk+1

x }. We now use tree surgery to create
a sequence of new trees ending in the desired tree T ′. As we proceed we never cut a connection
originating in any set other than Ωk+1

x so that property (1) will be satis�ed.
At each step Ωk+1

x will be divided into two sets Φφ,Φ∼φ = Ωk+1
x \Φφ. The �rst set Φφ will

contain at least φ and consist of those elements of Ωk+1
x that are already consolidated with φ at the

top, and such that no element of Φ∼φ appears between φ and the root. We will proceed constructing
new trees by moving one element from Φ∼φ to Φφ at a time making sure that all properties are
preserved.

We start the process. If φ = ψ or φ = φ∗ we do nothing. Otherwise cut φ from the tree and paste
it to T (φ∗). Observe that this increased the resistance of the tree by at most rk(φ, T (φ∗))− rk(φ).
Let Φφ be the maximal set consolidated with φ at the top: this set now contains at least φ.

We now continue the process until Φ∼φ is empty. Pick an element φ′ ∈ Φ∼φ. Because Ωk+1
x is

a circuit there is a least resistance path in Ωk+1
x from φ′ to φ. Let φτ be the last element in Φ∼φ

that is reached on this path. Then cut φτ from the tree and paste it to φτ+1. Notice that this
cannot increase the resistance of the tree since the connection from φτ to φτ+1 has least resistance.
Moreover, if φ 6= φ∗ then at some step φτ = φ∗ and at this step the resistance of the tree is decreased
by exactly rk(φ∗, T (φ∗)) − rk(φ∗). Once again let Φφ be the maximal set consolidated with φ at
the top: this set now contains at least one more element φτ .

When we are �nished we end up with the new tree T ′. Now observe that either φ = φ∗ or
the resistance over the original tree was increased only in the �rst step, by at most rk(φ, T (φ∗))−
rk(φ), and it was decreased by rk(φ∗, T (φ∗)) − rk(φ∗) when we pasted φ∗. By the choice of φ we
have rk(φ, T (φ∗)) − rk(φ) ≤ rk(φ∗, T (φ∗)) − rk(φ∗), and in all other cases the resistance did not
increase. Therefore rk(T ′) ≤ rk(T ). Since by construction T ′(φ) = T (φ∗) we have Rk(φ, T ′(φ)) =
min{Rk(φ′, T ′(φ)) | φ′ ∈ Ωk+1

x }.

We now focus on least resistance trees. Let T (ψ) be the set of trees with root ψ, rkψ =

minT∈T (ψ) r
k(T ) be the least resistance of any tree with root ψ and T k

ψ = arg minT∈T (ψ) r
k(T )
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be the set of least resistance trees with root ψ. First we prove a simple relation between least

resistance of trees and of their roots:

Lemma 5. If ψ, φ are in the same circuit on Ωk then rkψ − rkφ = rk(φ)− rk(ψ).

Proof. Suppose ψ, φ ∈ Ωk+1
x where Ωk+1

x is a circuit. Then we can choose a path φ1, . . . , φν , . . . , φn ∈
Ωk+1
x with φ1 = ψ, φν = φ, φn = ψ such that for τ = 2, 3, . . . n we have rk(φτ−1, φτ ) = rk(φτ−1).

Choose T1 ∈ Tφ1 , and supposing that Tτ−1 has root φτ−1 de�ne Tτ as the tree in which we
cut φτ from Tτ−1, make it the root of Tτ and paste the root of Tτ−1 to φτ . This tree has root
φτ and resistance rk(Tτ ) ≤ rk(Tτ−1) + rk(φτ−1, φτ ) − rk(φτ ) = rk(Tτ−1) + rk(φτ−1) − rk(φτ ).
Hence rk(Tτ ) ≤ rk(T1) + rk(φ1) − rk(φτ ). Since φn = φ1, we conclude that rk(Tn) ≤ rk(T1) and
since T1 had least resistance, it must be that rk(Tn) = rk(T1). Hence all the inequalities must
hold with equality, that is, rk(Tτ ) = rk(T1) + rk(φ1) − rk(φτ ). Choosing τ = ν we then have
rk(Tτ ) = rkψ + rk(ψ) − rk(φ), whence rkφ ≤ rkψ + rk(ψ) − rk(φ); but by interchanging φ and ψ and

rearranging we get rkφ ≥ rkψ + rk(ψ)− rk(φ); this gives the conclusion.

We now assume that for ε > 0 Pε is ergodic so that there is a unique ergodic probability

distribution µε on the state space Z. Let TS(x) denote all trees over a set S with root x and set

Mε(x) =
∑

T∈TZ(x)

∏
z∈Z

Pε(T (z)|z).

Following ? and ?we observe that

µε(x) =
Mε(x)∑
z∈Z Mε(z)

.

Let the resistance r(x, y) on Z be the ordinary resistance. Let rx be the least resistance of trees on

Z with root x. Observing from Cayley's formula that NN−2 is the number of trees with the same

root over N nodes it follows that

Theorem 5. The ratio of ergodic probabilities satis�es the bounds

CN

NN−2DN
εrx−ry ≤ µε(x)

µε(y)
≤ NN−2DN

CN
εrx−ry .

Proof. We may rearrange the ? result to get

µε(x)
∑
z∈Z

Mε(z) = Mε(x)

so that
µε(x)

µε(y)
=

Mε(x)

Mε(y)

Recall the bounds Cεr(x,z) ≤ Pε(z|x) ≤ Dεr(x,z) on transition probabilities. Hence we have

CNεrx ≤
∑

T∈TZ(x)

CN
∏
x∈Z

εr(x,z) ≤Mε(x) ≤
∑

T∈TZ(x)

DN
∏
x∈Z

εr(x,z) ≤ DNεrxNN−2.

Dividing by Mε(y) and using the corresponding bounds then gives the result.
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These bounds are in terms of resistances of least resistance trees. The next goal is to translate

them in terms of appropriate resistances of least resistance paths.

Applying Lemma 5 give as immediate corollary the following result, where recall that r0(Ωx) is

de�ned in terms of direct routes:

Theorem. If the recurrent communicating classes Ωx and Ωy are in the same circuit on Ω0 ≡ Ω
then

CN

NN−2DN
εr

0(Ωy)−r0(Ωx) ≤ µε(x)

µε(y)
≤ NN−2DN

CN
εr

0(Ωy)−r0(Ωx).

This goes one step in the desired direction but applies only to elements of a given circuit. In

general, we can �nd the least resistance of trees in Z by �nding the least resistance of trees in Ω.

Recall that r0
Ωx

is the least resistance of trees on Ω with root Ωx, and rx is the least resistance of

trees on Z with root x. We next show that they are equal:

Lemma 6. If x ∈ Ωx ∈ Ω then rx = r0
Ωx

.

Proof. ? proves this lemma (Lemma 2 in his Appendix) for the case where the resistance, call
it r∗(Ωx,Ωy), is the least resistance of any path from Ωx to Ωy - that is, he allows the path to
pass through recurrent communicating classes Ωz which are neither Ωx nor Ωz (? does the same
in his de�nition of the modi�ed co-radius). Our resistance is in general larger than Young's since
we do not allow paths to pass through these other recurrent communicating classes. However, his
proof requires only minor modi�cation to yield the stronger result. Young �rst shows that the least
resistance r∗Ωx of any tree on Ω with root Ωx is greater than or equal to rx. Since r0

Ωx
≥ r∗Ωx we

have the immediate implication that r0
Ωx
≥ rx.

The second part of Young's proof shows that r∗Ωx ≤ rx. Following Young we show how to
transform a least resistance tree T ∈ Tx on Z into a tree T ′ ∈ T (Ωx) over Ω such that r0(T ′) ≤
r0(T ). The easiest way to do this would be by simply taking one point from each irreducible class
and using the resistance between those states to get a tree over Ω. However, this does not work
because there can be double-counting if paths in T join between irreducible classes. Young shows
how to avoid double-counting by reorganizing the tree. We can use his construction if we can avoid
having or creating paths between irreducible classes that contain elements of a third irreducible
class. This is the case if we start by choosing the �right� least resistance tree and the �right� point
from each irreducible class before we apply Young's method.

Observe that each φ ∈ Ω is a circuit, so by consolidating where needed as from Lemma 4 we
can assume that each φ ∈ Ω is already consolidated in T . The �rst step of Young's proof is to
choose one point y′ ∈ φ for each φ ∈ Ω - these are what Young calls special vertices. We do this
by choosing for each φ ∈ Ω, the top of φ in the tree. Observe that because the tree is consolidated
the path from any special vertex to the next special vertex y in the direction of the root cannot
contain elements of any irreducible class other than Ωy.

Now apply Young's construction to eliminate junctions (a junction in a tree T is any vertex
y with at least two incoming T -edges). Observe that when Young cuts a subtree T ∗ from a
vertex y that is not in a recurrent communicating class this preserves the consolidated structure,
because those φ′ ∈ Ω that lie further from the root than y are necessarily entirely contained in T ∗.
Consequently we never need to cut junctions at y that are in recurrent communicating classes, for
T is consolidated and therefore the path from y to the top of the circuit has zero resistance and no
double-counting is involved.

Finally, when Young pastes cuts T ∗ from the junction y back into the tree T , he implicitly
introduces new paths a = (y, z1, . . . , zt−1, z) from y to a special vertex z with r(a) = 0. However,
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these implicit paths cannot contain elements of any recurrent communicating class Ωy other than
Ωz. If they did the path could not have zero resistance since there is no path from Ωy 6= Ωz to Ωz

that has zero resistance. Hence at the end of Young's procedure we �nd that the paths along which
resistance is computed - those from one special vertex to the next special vertex in the direction of
the root - do not contain a vertex from a third recurrent communicating class. By this procedure
we then obtain a tree in T (Ωx) with resistance not larger than T , whence r0

Ωx
≤ rx.

Our next goal is to recursively compute rk and by doing so �nd bounds on µε(x)/µε(y) - without

the restriction that Ωx and Ωy be in the same circuit.

We take Ω0 = Ω, so an element ψ1 ∈ Ω1 will be a circuit of recurrent communicating classes

and for ψ, φ ∈ Ω0 the resistance r0(ψ, φ) is just the least resistance along a direct route. We

recursively de�ne on Ωk−1 the modi�ed resistance function Rk−1(ψk−1, φk−1) = rk−1(ψk−1, φk−1)−
rk−1(ψk−1), and we de�ne a resistance function on Ωk by the least modi�ed resistance: rk(ψk, φk) =

minψk−1∈ψk,φk−1∈φk R
k−1(ψk−1, φk−1). Then the following formula holds, where notice that the term∑

φk−1∈Ωk−1 rk−1(φk−1) is a constant independent of the tree in question.

Lemma 7. If ψk−1 ∈ ψk then rk−1
ψk−1 = rk

ψk
− rk−1(ψk−1) +

∑
φk−1∈Ωk−1 rk−1(φk−1).

Proof. Suppose we have a tree T k−1 on Ωk−1 that is consolidated with respect to all the circuits in
Ωk, and let ψk−1 be its root. The fact that T k−1 is consolidated means that the top of each circuit
has a predecessor which belongs to a di�erent circuit. For ψk ∈ Ωk denote by Γ(T k−1, ψk) ∈ Ωk−1

the top of circuit ψk in T k−1. Then if T k−1(Γ(T k−1, ψk)) = φk−1 ∈ φk 6= ψk (where if φk−1 is null
we set φk = ∅ as well), we may de�ne T k(ψk) = φk. In this way we de�ne a tree on Ωk. We have
rk−1(T k−1) =

∑
φk−1∈Ωk−1 rk−1(φk−1, T k−1(φk−1)). However, since the tree is consolidated, for any

φk−1 not at the top of the corresponding circuit φk we have rk−1(φk−1, T k−1(φk−1)) = rk−1(φk−1),
hence we may write

rk−1(T k−1) =
∑

φk−1∈Ψk−1

rk−1(φk−1)− rk−1(ψk−1) +
∑
φk∈Ψk

ρk−1(Γ(T k−1, φk), T k−1(Γ(T k−1, φk))).

Now start with a least resistance tree T k−1 ∈ Tψk−1 . By Lemma 4 we may consolidate this tree

T k−1 with respect to all the circuits in Ωk to get another least resistance tree T̃ k−1 ∈ Tψk−1 . By

the previous computation and the de�nition of rk we see that

rk−1
ψk−1 = rk−1(T̃ k−1) =

∑
φk−1∈Ψk−1

rk−1(φk−1)− rk−1(ψk−1) +
∑
φk∈Ψk

ρk−1(Γ(T k−1, φk), T k−1(Γ(T k−1, φk)))

≥
∑

φk−1∈Ψk−1

rk−1(φk−1)− rk−1(ψk−1) +
∑
φk∈Ψk

rk(φk, T k(φk))

≥
∑

φk−1∈Ψk−1

rk−1(φk−1)− rk−1(ψk−1) + rkψk .

Next start with a least resistance tree T k ∈ TΩkx
, where ψk−1 ∈ ψk, and construct a tree on

Ωk−1 as follows. For the root φk = ψk de�ne φk−1 = ψk−1. For given non-root φk and T k(φk) there
are points φk−1 ∈ φk and φ̃k−1 ∈ T k(φk) such that rk(φk, T k(φk)) = r(φk−1, φ̃k−1) − r(φk−1). For
each φk consolidate the tree over φk with root φk−1 to get a tree T [φk, φk−1]. Now de�ne a tree on
Ωk−1 by putting together these subtrees as follows: if φ̂k−1 is in T [φk, φk−1] but is not the root, set
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T k−1(φ̂k−1) = T [φk, φk−1](φ̂k−1). For the root φk−1 set T k−1(φ̂k−1) = φ̃k−1. This is clearly a tree
with root ψk−1, and we see that the resistance is

rk−1
ψk−1 ≤ rk−1(T k−1) =

∑
φk−1∈Ψk−1

rk−1(φk−1)− rk−1(ψk−1) +
∑
φk∈Ωk

rk(φk, T k(φk))

=
∑

φk−1∈Ωk−1

rk−1(φk−1)− rk−1(ψk−1) + rkψk .

Putting together the two inequalities gives the desired result.

Lemma 8. If Ωk has at least two elements it has at least one non-trivial circuit.

Proof. Starting at an arbitrary point ψk ∈ Ωk choose a path of least resistance. Since Ωk is �nite,
this must eventually have a loop, and that loop is necessarily a circuit.

We can now recursively de�ne a class of reverse �ltrations with resistances over the set Ω0 = Ω

of recurrent communicating classes for P0; assume Ω has NΩ elements, with NΩ ≥ 2. Starting with

Ωk−1 we observe that there is at least one non-trivial circuit, and that every singleton element is

trivially a circuit. Hence we can form a non-trivial partition of Ωk−1 into circuits, and denote this

partition Ωk. All the resistances are de�ned as before. Note that since each partition is non-trivial,

this construction has at most k ≤ NΩ layers before the partition has a single element and the

construction stops.

The modi�ed radius of x ∈ Ωx of order k is de�ned by

R
k
(x) =

k∑
κ=0

rκ(Ωκ
x)

where Ω0
x = Ωx and for each κ > 0 the element Ωκ

x 3 Ωκ−1
x . Then

Theorem. Let k be such that Ωk
x = Ωk

y; then rx − ry = R
k−1

(y)−Rk−1
(x) and consequently

CN

NN−2DN
εR

k−1
(y)−Rk−1

(x) ≤ µε(x)

µε(y)
≤ NN−2DN

CN
εR

k−1
(y)−Rk−1

(x).

Proof. From Lemma 6 we know that rx − ry = r0
ψ0(x) − r

0
ψ0(y). Applying Lemma 7 iteratively, we

see that if ψk−1 ∈ ψk then

r0
ψ0 = rkΩkx

+
k−1∑
κ=0

 ∑
φκ∈Ωκ

rκ(φκ)

− k−1∑
κ=0

rκ(ψκ)

from which

r0
ψ0(x) − r

0
ψ0(y) = −

k−1∑
κ=0

rκ(ψκ(x)) +
k−1∑
κ=0

rκ(ψκ(y)) = R
k−1

(y)−Rk−1
(x).
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