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Abstract: This paper studies an infinite horizon repeated moral hazard problem where a

single principal employs several agents. We assume that the principal cannot observe the
agents’ effort choices; however, agents can observe each other and can be contractually
required to make observation reports to the principal. Observation reports, if truthful, can
serve as a monitoring instrument to discipline the agents. However, reports are cheap talk
so that it is also possible for agents to collude, i.e. where they shirk, earn rents, and report
otherwise to the principal. The main result of the paper constructs a class of collusion-
proof contracts with two properties. First, equilibrium payoffs to both the principal and
the agents approach their first-best benchmarks as the discount factor tends to unity.
These payoff bounds apply to all subgame perfect equilibria in the game induced by the
contract. Second, while equilibria themselves depend on the discount factor, the contract
which induces these equilibria is independent of the discount factor.
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1 Introduction

This paper studies a moral hazard in teams problem, where a principal hires several
agents over an infinite time horizon. The information structure has the following
features. Effort is unobservable to the principal, but agents can observe each other.
Agents’ effort choices generate a single public observable, e.g. output. We add a
communication phase between the time when effort is taken and output is realized,
in which each agent can be required to make a publicly verifiable report of his co-
workers’ effort choices. Wages in any period are contingent only on the principal’s
information, viz. the history of output data and observation reports. The main re-
sult of this paper constructs a class of infinite horizon contracts with the property
that, in any subgame perfect equilibrium of the induced game, payoffs to the agents
and the principal converge to their respective first-best benchmarks as the discount
factor tends to unity.
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To put the dynamic problem in context, let us revisit (some of) the results de-
veloped for the static model. Variations of our contracting environment have been
studied in a series of papers, e.g. Holmstrom (1982), Mookherjee (1984), Ma (1988),
Ma et al. (1988), Miller (1997) among others. The model closest to ours is the one in
Ma (1988). The following mechanism — which is a sibling of the Ma contract — solves
the static optimal contract problem. The contract has two components, insurance
and a stochastic bonus (reward). Each player is assigned a monitor and is, in turn,
assigned to be some other player’s monitor. Moreover, between the time when effort
is chosen and output is realized each monitor is asked to issue a report on the effort
choice of the player he monitors. Wages are determined as follows. A player receives
insurance as long as his monitor issues a positive report. Moreover, if he receives
a positive report he can receive a stochastic bonus by issuing a negative report on
the player he monitors. On the other hand, if he receives a negative report he is
ineligible for insurance and gets his reservation wage less an epsilon. Since wages
and bonuses are contingent only on the principal’s information, under standard as-
sumptions on the conditional output distributions (e.g. stochastic dominance) one
can construct stochastic bonus payments that induce truth-telling in equilibrium.
Using this construction, it turns out that in the static setting the game induced by
this contract uniquely implements the first-best outcome. Hence, by introducing a
communication phase the principal can circumvent the moral hazard problem when
there are multiple agents.

A typical consequence of allowing for communication between players in games
is that the equilibrium payoff set is enlarged. In our case this is detrimental since
observation reports are cheap talk, so that by making wage payments depend on
reports we introduce opportunities for collusion — by which we mean agents shirk,
earn insurance, and report otherwise. Consequently, a contract with observation re-
ports has a dual responsibility to induce an efficient equilibrium without allowing
for alternative equilibria in which agents collude. That is, it must implement the
efficient outcome. The Ma contract has this property', but a problem arises when
we want to extend the scope of this contract to cover longer (and possibly infinite)
time horizons. Consider a long, but finite, contracting horizon in which the princi-
pal offers a Ma-style contract in each period. The analysis from the one-shot game
immediately yields a collusion-proof implementation of the efficient outcome for a
facile reason: collusion cannot be sustained in the last period of a putative equi-
librium path along which it allegedly occurs. Consequently, there is no last period
of collusion, which implies that there could not have been any collusion at all. The
existence of a deterministic end to the employment relationship is a critical feature

IThis isn’t quite accurate as stated since our environment has only a single public signal, which
implies (see Lemma 1 in section 2) that any symmetric mechanism (of which the modified Ma
contract is an example) can — at best — weakly implement the efficient outcome. However, we get
exact implementation if we adjoin a small participation fee to the contract.



of this argument. This assumption has the effect of choking off any incentives to
collude in the final period of the contract, and arms the principal with a de facto
incentive instrument. Thus, by imposing a deterministic end to the contract horizon
we assume away a part of the problem.? The objective of this paper is to provide a
collusion-proof implementation of the efficient stage outcome in the infinite horizon
problem.

We construct an infinite horizon contract which exhibits (for large §) the follow-
ing approximate implementation® features. First, payoffs to agents in any equilib-
rium are arbitrarily close to the first-best benchmark, so that the contract prevents
rents from collusion. Second, it maintains an efficient equilibrium — where agents
choose, say, high effort and report truthfully. Third, the principal’s payoff is nearly
first-best in all equilibria of the game induced by the contract.* The contracts that
have these features are comprised of two incentive instruments (i) a spot contract
(which is essentially the Ma contract), and (ii) an auditing mechanism. Let us briefly
describe these features. The principal starts off period 0 with the null hypothesis
that agents will be working hard and reporting each others’ effort choices truthfully
whenever asked. In anticipation of this, he offers all agents a version of the contract
in Ma (1988) for a fixed period of time, call this a “review phase”. At the end of
this period he conducts an audit on output quality, and decides whether the output
data confirms or rejects his null hypothesis. If it confirms his null, then a new review
phase is started and he continues to offer the modified Ma (1988) contract. On the
other hand, if the data rejects the null, then this triggers a permanent punishment
phase, where agents receive in each subsequent period the reservation wage less a
small participation fee.

The auditing mechanism in the contract takes the form of a statistical test. The
principal holds a hypothesis on the level of effort that has been chosen and either
accepts or rejects by comparing the empirical distribution of output to its hypothe-
sized distribution. This idea of statistical testing in contracts has its origin in Radner
(1985). Our contract melds the static multiple-agent contract with a variant of the
single agent contract in Radner (1985). In contrast to Radner (1985), it contains two
incentive instruments: (i) the monitoring mechanism in the stage contract and (ii)
the statistical review mechanism from which the principal infers effort choice from

2This discussion is unfair to Ma (1988) since the stated question, while relevant to the static
or finite-horizon problem, is not the question of his paper. Ma’s paper is primarily concerned with
unique implementation of the constrained efficient outcome — which had been an open question in
the literature.

3Terminology borrowed from Renou & Tomala (2013).

4We show in the text that, for our contracting environment, any anonymous contract that (i)
induces an efficient equilibrium and (ii) precludes collusive equilibria, must also admit an ineffi-
cient (i.e. Pareto dominated) equilibrium. Hence, modulo the anonymity hypothesis, we cannot
strengthen our result from approximate implementation to exact implementation.



output data. These two instruments are both necessary to obtain our result. If one
merely repeats the stage contract, then the infinite horizon game inherits the effi-
cient equilibrium. However, there are now also undesirable equilibria where collusion
persists in every period. These equilibria seem at least as plausible as the efficient
outcome, hence we are not content with merely repeating the stage contract. In
order to remove these equilibria, we arm the principal with the Radner-style statis-
tical reviews. However, this then raises a secondary question. Since we introduce the
possibility of colluding on reports by requiring an otherwise elective communication
phase, can the whole problem be solved by using just statistical reviews or, more
simply, Radner’s review contracts alone? The primary reason the Radner (1985)
approach is insufficient is that it does not provide a good bound on the principal’s
payoff for the teams problem.

For instance, since there are multiple agents and — typically — multiple equilibria,
we require a lower bound taken across all equilibrium outcomes, as opposed to the
optimal cooperative outcome. The Radner approach would give us a good payoff
bound on the latter, but not on the former. This issue doesn’t come up with a single
agent since team incentives and agent incentives are (vacuously) aligned when there
is only one agent. But with multiple agents the principal’s payoff from a planner’s
problem (where we impute payoffs for agents and maximize the principal’s welfare
subject to this restriction) and those from the equilibrium problem need not agree.
Second, and relatedly, there can be some equilibria in which the principal’s payoff is
high and others in which it is low. Absent a selection argument, this makes evalua-
tion of the principal’s welfare a priori ambiguous.” Third, Radner’s arguments rely
on a reduction to stationary strategies (viz. strategies exhibit temporal dependence
within reviews but not across reviews). Insofar as payoff bounds are concerned, this
is without loss of generality with a single agent but it does involve formal loss of
generality with a team. Moreover, non-stationary behavior is plausible in team prob-
lems. If agents carry out a schedule to split the cost of avoiding detection by the
test, following histories (which span more than one review) where some have borne
more of the costs continuation play might shift the burden to others. Hence, it is

5Since our contracts also induce multiple equilibria, we need to take a stand on how to evaluate
the principal’s welfare from any given contract. We apply a max-min criterion. The principal
evaluates a contract with the worst (from the viewpoint of his payoff) equilibrium outcome in
mind and designs a contract that is least worst. A virtue of this particular criterion is that it
requires no equilibrium selection, hence produces payoff bounds that are robust to predictions
about agents’ strategies. However, another natural criterion in this regard is Pareto optimality,
i.e. agents avoid strategies that are worse for everyone. If these two criteria were to yield separate
bounds, then welfare analysis would be ambiguous. However, the payoff bound using the max-min
criterion turns out to be approximately equal to the one obtained using the Pareto selection. There
is also a formal equivalence in the sense that one bound approaches the first-best benchmark for
the principal if and only if the other does.



important to obtain a bound on the principal’s payoff that applies to all equilibria.’

To address these issues we use a different approach than Radner (1985) and di-
rectly analyze the set of admissible (i.e. equilibrium) probability distributions on
histories. The main formal change is that our statistical reviews are becoming more
precise over time, but do not change with the discount factor. By contrast, the review
lengths in Radner (1985) increase with the discount factor but do not change length
over the time horizon. This change of structure allows a bound on the frequency
with which collusion occurs during review phases (in equilibrium). The bound im-
plies that the frequency of collusion vanishes over the time horizon as we move from
one review to the next. Moreover, as a consequence of the review structure being
independent of ¢, the bound holds uniformly across discount factors. This is the
key technical result from which the payoff bounds are derived, hence we now give
an intuition that helps explain why collusion dissipates over time. Punishment is
prohibitive in our contracts, so that when reviews are small relative to punishment
length, prospects for collusion are small and punishment is — by comparison — large.
Thus, players do not collude during short review lengths.

Over time the reviews get longer, so there is some review phase down the horizon
where prospects for cooperation are large relative to the magnitude of any prospec-
tive punishment. Ceteris paribus, agents would start colluding once this review be-
gins. However, the stage-monitoring incentives in the contract now restrict the scope
of collusion. First, because the reviews are long, the statistical test is quite accurate.
Thus, if players collude frequently they will be caught with high probability. More-
over, they will know that they will fail the test well before the end of the review.
Once this happens, the reporting mechanism takes effect, effectively switching the
game into a finite-horizon model. No collusion can take place once it is known that
punishment is coming because in the last period in which collusion allegedly occurs
all agreements to collude come unraveled. Hence, the scope for collusion is small both
when reviews are small and when reviews are large. Is there a non-trivial middle
ground in which agents can sustain some collusion and yet escape detection by the
test? This middle ground exists when ¢ is small, but it shrinks as we pass to the limit.

The reason is that, since reviews are becoming refined over time, for large ¢
the only reviews which are long enough that collusion is even worth the risk of
detection are simultaneously those in which the test detects collusion precisely. Since
punishment is prohibitive and collusion stops (on account of monitoring reports) the
moment it is detected, the threat of failing the review then dominates any potential

6This, by itself, is not necessarily a call for abandonment of the Radner approach. For example,
still using Radner’s contracts verbatim, one could try to prove bounds in the class of Markov
perfect equilibria for a suitably rich state space that captures the strategic considerations relevant
to team play. We comment on this possibility at the end of section 4.



rewards from collusion. Thus, for large §, the combination of monitoring reports
and increasingly precise reviews restricts the scope for collusion in any review. Note
that unlike the finite horizon problem there are paths in the infinite horizon game
along which collusion occurs infinitely often, since there is a small but non-zero
probability that agents pass even as they collude. Consequently, there is no definitive
last period of collusion. Nevertheless, our bounds on equilibrium behavior imply that
the continuation probability of these paths (viewed from the beginning of a review)
becomes vanishingly small as we move along the time horizon. Hence, even with the
extended contract horizon there is a sense in which we can think of unraveling as
being at the root of the (approximate) implementation result.

1.1 Related Literature

This paper is related to the static moral hazard in teams literature and to the liter-
ature in repeated games which uses review strategies as an ingredient in equilibrium
constructions that can support target feasible payoffs, e.g. towards folk theorems.
There is a rich literature on static contracting problems with multiple agents, initi-
ated by Holmstrom (1982), Mookherjee (1984), and subsequently developed in e.g.
Ma (1988), Itoh (1991), Ishiguro & Itoh (2001). By comparison, there has been less
work on dynamic extensions of these contracts to the infinite horizon. Some recent
exceptions are Che & Yoo (2001) and Bonatti & Horner (2009), who also study
repeated teams problems. See also Abdulkadiroglu & Chung (2003). There is also
a related literature on experimentation in teams that we are not mentioning here,
although the Bonatti & Horner (2009) paper can also be considered an example of
this. The principal objective of the Che & Yoo (2001) paper is to provide a sim-
pler (and stationary) incentive mechanism (joint-performance evaluation contracts)
that in many cases dominates more commonly used mechanisms. Bonatti & Horner
(2009) study a repeated teams problem where agents must work together and ex-
ert costly and unobservable effort into a project of unknown value. Higher effort
induces quicker discovery of the value of the project. Project value is realized only
when discovery occurs and, moreover, when this happens the game terminates. The
authors carry out a comprehensive analysis of this problem, among other things ob-
taining closed form solutions for equilibrium effort choice (when agents themselves
value discovery) and solving for the optimal wage scheme when a principal owns the
project.

Statistical testing in repeated games seems to have its roots in Radner (1985)
and has since been further developed in both the literature on repeated games with
imperfect monitoring, e.g. Sugaya (2010), Sugaya (2011), and also on repeated games
with incomplete information, e.g. Escobar & Toikka (2012), Renault et al. (2013),
Renou & Tomala (2013). These five papers also sharpen Radner’s review strategy
technique by using stationary review lengths which are invariant to §. Moreover, the



latter trio of papers is methodologically related to this paper in that they all solve
an implementation problem by using review strategies in combination with a stage
reporting mechanism to obtain uniform bounds on equilibrium payoffs.

This paper is also related to the literature on uniform (equiv. Blackwell optimal)
equilibria, viz. strategy profiles which are equilibria for all large discount factors, e.g.
Sobel (1971), Thuijsman & Vrieze (1989), Thuijsman & Raghavan (1997), Neyman
& Sorin (1998), Solan (1999), Vieille (2000), Rosenberg et al. (2004), Solan & Vieille
(2010). Several papers in this literature also use review strategies with increasing
review lengths to prove the existence of uniform equilibria or, more generally, uniform
e-equilibria.” Since our contracts don’t depend on the discount factor, our result
implicitly constructs a uniform e-equilibrium, where the principal’s date-0 contract
choice and (unspecified, but implicit) strategies of the agents are approximate best-
responses.

2 The Stage Contract

A risk neutral principal must hire I agents to complete a task. Output assumes a
finite set of values and is a function of collective effort choice. These choices are
unobservable to the principal but are observable to the agents. Between the time
when effort is chosen and output is realized, each agent makes an observation re-
port to the principal. These reports are contractible and are made publicly, so that
all agents know what other agents have reported.® As is standard, we also assume
output is contractible, so that — in sum — there are two contractible variables, (i)
output value and (ii) observation reports.

The set of possible effort choices for each agent is {ey, er}, i.e. each agent just
chooses (if he takes a pure action) between high and low effort. Let e € {eg,er}!
denote a vector of effort choices for the labor force. There is a single output vari-
able z which takes values in some finite subset {z1,...,2,} C Ry. Let f(z;|e) be
the probability of output x; conditional on this choice. Lastly, let c(e;) denote each
agent’s (utility) cost of choosing e; and the utility index over a pair (w, e) is given by
U(w,e) = u(w) — c(e), where u(-) and ¢(+) are increasing and u(+) is weakly concave
and C2?. The argument w denotes the wage paid by the principal to the agent and
can be any positive real number. We also assume vINM preferences over wage lotter-
ies (with money kernel u(+)). Finally, we assume all agents have (i) identical vNM

"I thank the co-editor for alerting the author to these references, correcting an error of omission
in a previous draft.

8We can allow private reports and/or imperfect observability of effort choice without changing
the main result (Theorem 1). For a technical reason (relating to our method of proof), the “finite
punishments” corollary (Corollary 1) is sensitive to this assumption.



preferences over wage lotteries with a common utility kernel U(w, e) given above and
(ii) a common outside option, equivalently reservation wage, denoted g := u(wy).”

To this set-up we add the following assumptions. For e € {ey,er}!, say that
e < € if at least as many agents select ey under €' as under e. Let FOSD denote
the first-order stochastic dominance relation.

Assumptions on primitives:
1. If e <€, then F(-|¢') FOSD F(-|e).

2. " :=(ey,epy,...,eq) is first-best.

Definition 1 (Definition of Collusion). An outcome is said to be collusive if aggre-
gate effort choice is less than first-best, yet some agent is earning better than his
reservation wage.

Intuitively, we would say that agents are colluding if they are shirking and col-
lecting insurance and, nevertheless, lying to the principal about the effort choices
of their peers. The definition above includes this possibility and more. For example,
it also counts as “collusion” the situation where someone is shirking and someone
else (who isn’t shirking) is earning insurance. Using a broader definition of collu-
sion strengthens our desired conclusion since our goal is to design a contract that
rules out manifestly collusive behavior without ruling out the efficient equilibrium.
It suffices, then, to rule out collusive outcomes using the definition given above.'’
The following proposition was previously established in Ma (1988). However, the
contract given in Ma’s paper is slightly different than the one we present. For this
reason only, a proof is also provided in this paper (in the appendix). The contractible
variables are output and observation reports (for the proposition the report space
is taken to be, wlog, the set of effort choices), so that a contract is formally a map
from report-output pairs to wage lotteries.

Proposition 1 (Ma (1988)). Assume players cannot make inter-personal transfers
(i.e. side-contracts). There exists a contract that attains the first best effort choice
at the first best cost. Moreover, in the extensive form game induced by the contract
there is no collusion in equilibrium.

9Comments on these assumptions. First, the symmetry hypothesis on preferences is again just
to abstract from complications — they do not change the results. With asymmetric preferences we
need to keep the vNM assumption on wage lotteries and separability between (w, e), i.e. U(w,e) =
u(w) — ¢(e), with a possibly different u, ¢ across agents. Second, we need that support of effort is
finite, but the binary assumption is just for economy of notation.

10Note that the efficient outcome (i.e. all agents putting in high effort and receiving insurance)
is not collusive under the definition.



We first give a sketch of the argument for the illustrative case where there are
two agents, two effort choices, and two values of output (Brusco (1997) refers to this
as the 2 x 2 x 2 model). Consider the contract represented by the following matrix
of payoffs. Label the players {1,2}. The entries in the box denote player 1’s payoff.

mio = + My = —
moq1 = + wFB wFB + (Rl, RQ)
ma1 = — Wy — € Wo

Table 1: A sample contract

The term m; 5 denotes player 1’s report on player 2, and similarly for mgy;. A plus
(4) denotes a good report and minus (—) is a bad report. Thus, if both players issue
good reports on each other, they both get the first-best wage (i.e. full insurance). If 1
gives 2 a minus and 2 gives 1 a plus, then 1 additionally obtains a stochastic reward
(R1, Ry). The reward pays out R; < 0 if output is high and Ry > 0 if the output
is low. The idea behind the sign convention is that if 1 reports a minus on 2 and
is telling the truth (i.e. player 2 is shirking), then low output should be more likely
than high output. Thus, the reward should have positive expected value. If neither
player is shirking and player 1 is untruthfully giving player 2 a thumbs down, then
high output should be more likely than low so that the reward should have negative
expected value. Analogously defining the payoff matrix for player 2, one can verify
that there is no collusion in equilibrium under this contract. Moreover, both players
putting in high effort and truth-telling is an equilibrium.

The principal difference between the mechanism we use to prove the Proposition
and the one constructed in Ma (1988) is that the equilibrium outcome is not unique
in our set-up whereas it is unique in Ma’s contract. The reason for this is that the
environment in our paper, while related to the one in Ma (1988), is formally distinct.
In Ma (1988), the principal’s information consists of a bivariate public signal —
implicitly, one for each agent’s action choice. In contrast, in our environment there
is a single public signal for the principal with values that are correlated with the
joint effort choices of the agents. The following lemma shows that (for the 2 x 2 x 2
model) any symmetric contract that is collusion-proof and maintains an efficient
SPNE must also admit an inefficient SPNE outcome. Let £ denote the economic
environment. This consists of: (i) two agents, two effort choices, and two output
values, (ii) a single public signal taken to be the value of output, and (iii) with
a view to the infinite horizon problem, agents are assumed to have non-negligible
(but arbitrarily small) liability. Consider contracts, C(£), that satisfy symmetry, i.e.
wy (-, (m',m?)) = wy(-, (m?,m')), so that wage is not intrinsic to the sender (m’ is
agent i’s message and message spaces are defined by the ambient game form G). The
timing structure both for this lemma and the preceding Proposition is such that (i)



the principal offers the contract, (ii) agents either sign or don’t sign, and (iii) the
induced effort /report choice game played between agents ensues (if all agents sign).

Lemma 1. For any symmetric contract C(E), let G denote the game form induced
by the contract, where the players are the agents, and let ¥(G) be the set of SPNE.
If the efficient outcome (i.e. high effort and full insurance) is an outcome of some
equilibrium in (G) and no equilibrium outcomes exhibit collusion, then there must
be an inefficient equilibrium outcome.

Thus, modulo the symmetry hypothesis on C(£), the existence of an inefficient
stage equilibrium is endemic to our single signal environment. This has important
implications for the infinite horizon problem. First, to implement the efficient stage
outcome, either by contract selection or equilibrium selection, we must eliminate
the equilibrium where the inefficient stage SPNE is played in every period. Second,
if we offer a contract C(€) in every period, then a profile where players switch to
the inefficient equilibrium in the distant future is an SPNE of the repeated game —
call these “eventually shirk” equilibria. If the principal is allowed to be arbitrarily
more patient than the agents, then — on account of the eventually shirk SPNE — his
payoff will be bounded away from first-best. We deal with the second issue by (i)
assuming a common discount factor between agents and the principal'! and with
the first by (ii) introducing (small) participation fees into the contract. The fees
must be small as we assume agents do not have unlimited liability (else, the infinite
horizon problem can be solved by a trivial extension of the stage contract). These
two modifications are enough to get us an almost efficient bound on the principal’s
payoff that holds across all SPNE induced by the infinite horizon contract.

3 The Infinite Horizon Contract

Now consider the infinite horizon setting. If the principal were to unconditionally
offer the stage contract in every period, then the following trigger strategy consti-
tutes an equilibrium: everyone shirks and covers for one another until a period when
someone reports otherwise. After this happens, everyone shirks and reports truth-
fully in every period. It is easy to see that when players employ this strategy profile,
collusion occurs in every period on the equilibrium path (for large ¢). To break this
equilibrium the principal needs to offer large rewards for reporting. However, un-
less liability is unbounded, the only way to make the rewards large (in expectation)
when agents shirk is to make the output-contingent payment large in reward states,

Note that this departs from Radner (1985), where the principal and single agent can have
distinct discount factors so long as they both surpass some threshold. The reason this is sufficient
for the principal’s bound in Radner (1985) is that the perfection requirement on the (lone) agent’s
strategy is sufficient to kill eventually shirk outcomes, whereas it is — via the lemma — insufficient
in the multiple agent framework.

10



e.g. when output is low in the 2 x 2 x 2 model. But this means that the reward
has large positive expected value even when nobody shirks, which destroys the ef-
ficient equilibrium. Hence, in the absence of unbounded liability, the Ma contract
alone cannot yield dynamic collusion-proof implementation of the efficient outcome.
We now design an infinite horizon collusion-proof contract that is insensitive to the
liability bound.

By offering the stage contract unconditionally the principal is ignoring the in-
formation about effort choice contained in the stream of output data. With a large
enough stream of data the principal should be able to infer whether agents were
indeed implementing the first-best if that is what they were reporting. Hence, the
infinite horizon contract uses an additional incentive instrument which takes the
form of a statistical test on the hypothesis that the agents are implementing the
first-best effort level. Now we describe the primitives of our infinite horizon prob-
lem. We then describe the principal’s contract choice problem before moving on to
describe the contracts themselves and the induced histories and strategies.

e Al: (Date-0 Commitment) The principal offers a take-it-or-leave-it contract
at date 0. If any of the agents refuses the contract, all agents receive their
reservation utility. These rules cannot be renegotiated once the contract is
signed.

e A2: (Preferences) Agents and principal are assumed to have a common dis-
count factor 0 € (0,1) and payoffs in the infinite horizon game are evaluated
using the d-discounted sum of stage game payoffs.

e A3: (Limited Liability) Agents can accept an arbitrarily small, but positive,
amount of per-period liability, denoted £. Moreover, the liability bound is
insensitive to the discount factor, 9.

The first two assumptions are, more or less, standard. Let us comment on assumption
A3. Note that the stage contract (see Table 1 for an example) requires A3 since the
reward incentives assess a small amount of punishment when high output is realized.
Since we want the infinite horizon contract to inherit the efficient equilibrium, we
need to be able to punish agents an arbitrarily small amount in each period, hence
the per-period liability assumption. The liability bound can be arbitrarily small, but
we assume it does not change with the discount factor. In this sense, we consider it
a primitive of the contracting environment.

There is not a canonical objective function for the principal on account of the
multiple equilibrium problem. We take a robustness-motivated approach and set the
principal’s welfare from a contract equal to the minimum payoff from any SPNE in
the game induced by the contract. Formally, let C denote a contract and let ¥¢ ()

11



denote the SPNE in the game induced by the contract, when all contractual par-
ties have discount factor §. Since agents must all sign the contract for the ensuing
game to exist, there is an implicit IR constraint built into agents’ payoffs along any
p € Yc(d). Namely, in any p an agent’s payoff must be bounded below by the (nor-
malized, discounted) value of his/her outside option. Let Wy(p) denote the principal’s
discounted (normalized) payoff along SPNE p and let We(d) denote the principal’s
“welfare” from the contract, where we put: (n.b. to be precise, max/min should be
sup/inf, but we will approximate the objective, so the distinction is irrelevant for
our results)
We(6) := minpese(s) Ws(p)-

This is not the only measure of welfare. For instance, a commonly used criterion in
the presence of multiple equilibria is the Pareto criterion. Were these two criteria to
yield very different answers, then a notion of principal’s welfare would be ambiguous.
However, we will show that all (subgame perfect) equilibria yield the principal a
payoff within a pre-selected ¢ of the first-best benchmark (for large §). Concretely, fix
a (to be specified) class of contracts ® as the principal’s choice space. The principal’s
problem — under the max-min criterion — is to choose C € ® to maximize We(J):

Principal’s Problem : maxcce We(9) = maxeeominges,s) Ws(p)-

Fixing the space of contracts ®, as we vary ¢ we obtain a value function for the
principal. We don’t compute this value function explicitly, but show that there is a
class @ such that the associated value function converges to the first-best benchmark
as 0 tends to unity. We now describe this class ®.

3.1 Statistical Testing

We introduce some of the statistical tools and notation that are used in the descrip-
tion of our contracts. Let E be the set of aggregate effort choice vectors and denote
the first-best choice as e*. For a given e € E, output X is distributed as F(-|e).
Let Xi,..., X7 denote the output r.v’s in periods ¢t = 1,...,T. The empirical c.d.f
corresponding to X7, ..., X7 is defined by the formula:

T
x|e E 1 (X, <J:
i=1

We now use the formula for the empirical c.d.f. to define a statistic. For X ~ e
(i.e. X is distributed as pe+) put K = l-max, Var(lx<,)) (where [ is the cardinality
of the support of output). Define the following parameters of the hypothesis test

Yo = 1/V/n, €, = K/n?, t, =n'

where n denotes a positive integer. These parameters serve the following roles:
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e Margin of Error: The quantity 7, determines the allowable margin of error
which determines the rejection region for our hypothesis test.

e Type I error bound: The term ¢, is an upper bound on the probability of
a Type I error (this follows by a simple application of Chebyshev’s inequality,
see proof of Proposition 3).

e Sample Size: The quantity ¢, is the sample size of the hypothesis test.

The functions ~,, €,,t, are fixed for the rest of the paper. The nth review phase,
of length T,, := n-t,, is partitioned into n samples of output data, {(i — 1)-¢, +

1,..., 0t} . Define the empirical c.d.f. for each sample,
itn
Fir, (x) = Z Lix;<a)/tn, fori e {1,2,..,n}.
J=(—1)tn+1

Definition 2 (Statistical Test). The Kolmogorov-Smirnov test statistic is given by
the formula,
St, = max; {sup, |Fir, () — F(z|e")[}

where F'(-|e*) is the c.d.f of the r.v X ~ fie-.

Note that we are really taking the maximum of several Kolmogorov-Smirnov
(KS) statistics and referring to this composite statistic as a KS test as well. The idea
behind the statistical test is that the principal breaks up the nth work (equivalently,
review) phase into n data gathering (sub)phases. During the entire work phase, the
null hypothesis is that agents are working the first best and truth-telling in every
period. For each of the n batches of output data, the principal uses a Kolmogorov-
Smirnov (KS) test to match the empirical cdf of output with the hypothesized cdf.
If the deviation from any of the n samples (weakly) exceeds the margin of error (v,
defined above), then the null is rejected and a punishment phase follows. To get a
good bound on the principal’s payoff we will want to control Type I errors, which
means that the first review length will start at some point far along the sequence,
{Yn, €n, tn}. Hence, the nth review phase will have samples of size ¢,y for some N
large, MOE 7, . n, and so on. We obscure this distinction with the understanding
that — implicitly — parameters of the nth review in the contract can involve a shift
of the sequence (7, €,,t,). The choice of a particular shift N is required when we
select appropriate participation fees.

3.2 Contract Description

We now define a class of contracts ®, with generic element denoted C. Each contract
is described by three ingredients, (i) a state space, (ii) a transition function (map-
ping from states to states), and (iii) a state-dependent payoff rule.
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State Space
The state space is divided into two classes, work (i.e. review) states and a single
(absorbing) punishment state.

1. Work states are identified by a pair (W,,, 1), where W), is of length T,, = n-t,
and ¢ denotes the current period within the given work state W,,.

2. There is a single, absorbing punishment state, denoted 0.

Transition Rules
Transitions between work states and the punishment state are determined as follows:

1. Initial state: (W7, 1).
2. If in state (W, ), where i < T,,, proceed to state (W,,,i + 1).

3. If in state (W,,, T,), consider the value of the KS statistic Sz, . If St,, > 7y, then
proceed to the unemployment state (). Otherwise, proceed to state (W1, 1).

4. If in state (), then remain in state 0.

Payment Rules

Payment alternates between two types of spot contract. To concisely describe the
switching rule, we cheat and define the rule using histories, even though — strictly
speaking — histories are induced by the date 0 contract, not the other way around.
There is no circularity here and everything can be written, albeit less cleanly, in
terms of states.'? In any given period, either the Ma contract or the punishment
contract (where everyone earns, in utils, ug —t.) is in place. Denote the Ma contract
by C(g}, Ri, Ry, wE?) with arguments: (i) the punishment quantity (}), (ii) the
negative reward when high output values are realized (R;), (iii) the positive reward
when low values are realized (R,), and (iv) the insurance payoff w’?, which equals
cost of high effort plus another €;. Let s denote a generic state and let T" denote the
stopping time associated to the KS statistic, i.e. T'(h) is the first time (along history
h) where it becomes known that the next state is the punishment state. The notation
s¢(h) denotes the state of the contract along history h and time ¢, and C(wy) denotes
the spot contract that unconditionally pays every agent the reservation wage. The
spot contract function is formally described:

0(6,1,R1,R2,1UEFB) — t€2, ift S T(h), St<h) 7é @
£

Ci(h) = { C(e), Ry, Ry, wl'®) —toy, it t > T(h), sy(h)
C(wo) — tey, if s,(h) = 0.

12f we insist on defining the transition rule this way, then we need states to keep track of output,
e.g. rather than state (W,,7) we would augment to state (W, i, x;,), where x;, denotes realized
output in phase n, period .
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This completes the description of the infinite horizon contract.'® The choice param-
eters of the contract are:

e The stage contract parameters (i.e. £}, Ry, Ry, wf?),

e The KS test statistic (consisting of choice parameters €,,v,, t,), and
e The per-period participation fee t.,.

Note that none of these parameters depend on the discount factor.

We choose the fee t. plus the (negative) reward R; to sum to less than the liabil-
ity bound £ (given by A3). The fee can simply be absorbed into the wage function
of the work state spot contract, C(¢/, Ry, Ra, wf1 B). in which case one could take the
reduced surplus during review phases, relative to the fee during punishments, as a
surplus net of an implicit participation fee. We choose to write it this way since it
is more transparent. The contract just described induces an infinite horizon game
between agents. We now describe its histories and associated strategies.

Histories: Let h° := () be the null history. Let h! denote the history of the game
up through period ¢. The contribution to h' in period ¢ itself consists of the follow-
ing data: (1) effort choices taken by agents in period ¢, (2) agents’ reports, and (3)
realized output level. In a period in which the game is in a punishment state we
denote that period’s contribution to the history with the empty-set symbol, (). Let
H! denote the set of histories up through period t and put H := U, H'.

Consider the history h' where in period ¢ the game is in a punishment state.
Thinking of h' as a string of outputs, reports, and effort choices, the period ¢ com-
ponent of this string is denoted with the empty-set symbol. All contracts we consider
will have the property that there is a unique absorbing punishment state and that
the factory “shuts down” in this state. Hence, once this state is entered, all play-
ers’ action sets are null and payoffs are constant. Since there is no new history
to add to the pre-existing one, once the punishment state is entered we denote all
such contributions to A with an empty-set symbol (more precisely, a string of empty
set symbols if the punishment state is entered at time ¢; and we look at h' for t > ;).

Strategies: Let R; : E — A({0,1}) denote agent i’s observation report strat-
egy (i.e. 0 = a shirk report, 1 = no shirk). Let ¥; denote the set of such R; and let
{em,er} denote the set of available effort choices. Then, agent i’s strategy space,
S(i), in a work period can be described as A({em, er}) X ;. A (behavioral) strategy
for player i (in the stochastic game) is a function p; : H — S(i) that prescribes a

13Tn the definition, w{™® denotes the insurance level where agents are insured an amount exactly
equal to the cost of high effort.
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(possibly mixed) action pair in period ¢ + 1 as a function of h* € H. If h? is such
that the spot contract in period t + 1 is the reservation wage contract, then set
pi(ht) = 0.** We also only consider strategy profiles p which are measurable w.r.t.
the (Borel) o-algebra generated by the cylinder sets of finite period histories {h'}
(i.e. all infinite histories which agree with A’ up to time t).

Notice that each agent sees the same history at time ¢, consisting of the history
of output, effort choices, and reports. Accordingly, the solution concept employed
in this paper is subgame perfect Nash equilibrium (SPNE).

3.3 Equilibrium Behavior

Let ¢ (d) denote the set of (measurable) SPNE strategy profiles in the game induced
by a contract C. For a given equilibrium p € $¢(d), let P,(-) denote the conditional
distribution on work phase n, where we condition on the set of histories that reach
the nth work phase. Let C(7},) denote the r.v. which counts the number of periods
in phase n in which collusion occurs.

Proposition 2. Assume that lim sup P,(C(T,,)/T, > a) > 0 for some o > 0.
Then, lim sup P,(sup, |Fr, (z) — F(z|€*)| > r) > 0 for some r € (0,1).

Proposition 2 says that if agents are shirking frequently and reporting that they
are working first-best, the statistical test will eventually catch on. Moreover, it tells
us that when they collude often they not only fail the test, but the failure probability
is bounded away from zero. Hence, whenever the conclusion of the Proposition holds
it must be the case that (for large n) the null hypothesis is violated in more than one
sub-phase of the review phase. The following fact, which we dub “unraveling”, just
observes that once it becomes known that the next phase is a punishment phase,
continuation play behaves as it would in a finite horizon game induced by a Ma
(1988) contract.

Observation 1 (Unraveling). On path play reverts to an idiosyncratic repetition of
one of the two stage game SPNE once agents are caught.

To justify this observation, let p € 3(d) and assume that there is a history h such
that St, (h) falls in the rejection region prior to the start of the nth sub-phase. Take
the earliest of the sub-phases for which this happens, say sub-phase k where k < n.
What can equilibrium play look like from the start of sub-phase £+ 1 until the end of
work-phase n? We claim no collusion can occur from the start of phase k-+1 until the
end of work phase n. This follows from an unraveling argument. If there is collusion,

l14Reporting strategies in our stage contracts are richer than described here, since we use sequen-
tial reports. However, beyond formality, there is little conceptual content to the more elaborate
definition of reporting strategies. Hence, we obscure the distinction here.
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there is a last period in which it occurs. Since punishment states are absorbing and
players receive subsistence wages after the review, the present value of reporting
exceeds the continuation value from not reporting. Thus, collusive agreements are
impossible to sustain once everyone knows that a punishment phase is forthcoming.
Consequently, once players have completed a sub-phase of work and know that the
next state is a punishment state, then play in each period till the termination of
the work state reduces to one of the stage SPNE. Insofar as agents’ payoffs are
concerned, we can wlog assume that play reverts to the efficient SPNE. Refer to a
profile p with this property as a rectified strategy. The preceding observation places
restrictions on the average long run values of the variables C'(7},) (in equilibrium).

Proposition 3 (Equilibrium Behavior). Let p be any SPNE (in the game induced
by C). Then, for any e > 0 we have P,(C(T,)/T, > ¢€) — 0 as n — co0."”

The statement applies only to phases which are reached with positive probability
on the equilibrium path. For the “finite punishments” version of C (see Corollary
1) all phases are reached with positive probability, so that the conditional distri-
butions are always defined. The statement of the proposition does not invoke any
restrictions on the SPNE, but we prove the proposition by reducing to rectified
equilibria. By the preceding discussion, this reduction entails no loss of generality
insofar as the distribution of C(T,,)/T,, is concerned. In the next section we sharpen
this result by showing that the rate at which the frequencies C(7},)/T,, vanish can be
bounded independently of both the SPNE strategy p which induces the distribution
on C(T,)/T, and also of the discount factor. To bound the principal’s payoff we
also need a companion result for the frequency F(7,)/T,, where E(T,) counts the
number of periods in phase n in which players are taking an inefficient effort choice,
even if they are not colluding. While these are largely technical extensions of the
preceding proposition, the rate bounds are critical to the proof of the main theorem.

4 Main Result

For each fixed ¢ consider the set of payoff vectors attainable through SPNE in the
game induced by a contract C € ®. Our main result produces a pair of equilibrium
payoff bounds. The first is an upper bound on agents’ payoffs. It says that as d
increases to one, the equilibrium payoff set converges (in the Hausdorff metric) to a
point mass on the vector (u(w??)—c(ey), ..., u(w?)—c(ey)), i.e. where every agent
is earning the payoff under the first-best, perfect-information benchmark. Moreover,
since sufficiently patient players can obtain close to this payoff by playing the effi-
cient SPNE, this payoff vector is attained in the limit. The second half of the theorem
provides a lower bound on the principal’s equilibrium payoff. Introduce some nota-
tion. Let II¥2 denote the first-best principal’s payoff, viz. I[I¥'? := EX* —w* where

15T am grateful to the anonymous referee who suggested this result.
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X* ~ pex and w* is the total insurance payment, and let (resp.) W (p), V(p) denote
the principal’s and any given agent’s discounted payoff under SPNE p. Fixing any
e >0, as § T 1, the lower bound result says that the principal’s worst payoff taken
across all SPNE in the game is at least I[I"? — ¢, Note that any element C € ® is
defined independently of the discount factor. However, the SPNE set of the game
induced by C will typically depend on the discount factor.

Theorem 1. Let ¥¢(5) denote the set of all SPNE in the infinite horizon game
induced by a contract C, where § denotes the common discount factor.'® Given any
e, > 0, there exists a contract C.y € ® which yields the following bounds on
equilitbrium payoffs:

1. Timgpy (1 = 0)V(8) < u(whB) — cley), where V(3) := SWPpexe,_, () Vi(p).

2. limgy (1 — 6)W(8) > ITFF — e, where W(J) := infpegc< NG W(p).

The two approximation parameters, €,¢’ can be chosen (independently) to be
arbitrarily small: & denotes surplus insurance over the cost of high effort and e
denotes the fraction of this surplus the agent keeps net of the participation fee.!”
The contracts in the class ® all have an absorbing punishment state. Since agents are
required to hand over an (arbitrarily small) participation fee in each period, it might
seem unrealistic that they would agree upfront to this sort of liability. All the more
so since a punishment phase can be triggered (albeit with very small probability)
even when everyone pursues the efficient equilibrium. The following corollary shows
that we recover the same result as Theorem 1 even if we require punishments to be
“memoryless”'® so that punishment phases are finite and of identical length. Let
C(6) be identical to a contract C chosen from &, with the only difference being
that the punishment lengths are of some finite length L(d). The state space, payoff
functions, and transition rules admit obvious adjustments — hence, we omit the
formal (re)definition for C(0).

Corollary 1. Fiz e,e’ > 0. Then, 36y > 0 such that for each § > 0.y we can
find a finite punishment contract Cc ¢\ (0) such that the bounds in Theorem 1 hold.

To derive these bounds we require a strengthening of Proposition 3.

Proposition 4. Fiz any C € . Given any € > 0,€' > 0 there is an index (e, )
such that whenever i > I(e,€') we have P,(C(T;)/T; > €) < €,Vp € (), V6.

16Recall that we assume this discount factor is common to the principal and the agents.

TMore precisely, we show the lower bound II*'Z — ¢, where ¢ = II¥"B.£, and €, is the fraction of
the surplus agents keep net of the participation fee.

8By this we mean that, as in Radner (1985), punishments are of finite length and agents get a
fresh start with a new review phase at the conclusion of a punishment phase.
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When play doesn’t reach the i¢th review phase, the conditional distributions are
not defined. Hence, we add, as in Proposition 3, the qualification that the bound of
the Proposition applies whenever ¢ > (e, €') and the ith phase is reached. The key
is that the bound I(e,€') applies across all profiles p € ¥(J) and across all discount
factors. This is the sense in which we are strengthening the previous Proposition,
which — at first blush — suggests that the bound is dependent on the given profile.

Note that to generate a folk theorem with discounting we require a rich enough
set of “delayed reward sequences”, i.e. we need to have the ability to bring sticks
to the present and push carrots into the future. As the discount factor increases,
to incentivize sophisticated patterns of on-path play we require access to a rich set
of payoff sequences where rewards are (possibly) delayed further and further. These
sequences exist so long as the feasible set of the stage game is sufficiently rich. The
Proposition points out the obstacle to applying this heuristic to our (stochastic)
game. Put the payoff from an episode of collusion at 1 and the efficient stage out-
come at 0 (any other outcome yields less than these). The Proposition says that,
with probability close to 1, a payoff stream in review phases far along the time
horizon is proportioned with at most ¢ ones and at least 1 — ¢ zeroes. These are
the only delayed reward sequences available through SPNE play. Hence, as we push
the discount factor to unity it might be possible to generate a folk theorem in a
vanishingly small neighborhood of the efficient stage game payoff — but that is all.
This is the intuition for how the Proposition implies an anti-folk result in our game.

For the principal’s payoff, we require a sharper version of the Proposition. We
apply the bounds to the variable E(T;)/T;, where E(T;) denotes the number of
periods in phase ¢ in which effort choice is not first-best. Notice that C(7;) C E(T;).
While the variable C'(7;) is more informative about agents’ payoffs, the variable
E(T;) is more informative about the principal’s payoff. The Proposition stated below
makes two changes from Proposition 4. First, it switches the variable of interest from
C(T;) to E(T;). Second, the bound applies only to rectified SPNE. Let ¥7°°(§) denote
the set of such (rectified) SPNE induced by the contract C.

Proposition 5. Fiz any C € ®. Given any € > 0,€' > 0 there is an index (e, €’)
such that whenever i > I(e, €') we have P,(E(T;)/T; > €) < €,Vp € £5°(0), V6.

The proof of the Proposition is nearly identical to Proposition 4. The modifica-
tion to the proof required to address the change from C(T;) to E(T;) is described in
remarks (see appendix) following the argument for Proposition 4.

4.1 Proof of Theorem 1

Upper Bound
Choosing an affine transformation of stage-game payoffs we assume that u(w?) —
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c(em)) = 0 (the extra € on the insurance wage is irrelevant for the upper bound, so
we suppress it). We proceed in two steps. First, we use Proposition 4 to construct
a stream of utility payoffs which forms an upper bound on agents’ payoffs. Second,
we compute that the limiting (in ¢) value of these streams can be brought as close
to 0 as we like.

Take any sequence of profiles ps, with (1 — 4,)V (ps,) converging to limgp (1 —
9)V(0). By Proposition 4, given any €,¢ we can find an index I(e,€') such that
Vp € ¥(0),V0 we have

(¥) P,(C(Ty)/T; > €) <€, Vi > I(e,€).
Define a payoff sequence ; (resp. u): (when k = 1 the sum below is, by fiat, zero)

1, ifte (X5 T X0, Tk < I(e€)
=41 ifte (Zf:_ll i, Zf:_ll Ti + €Tk} k = (e, €)
0 ifte (XN Ti+eT, S8, Tl k> I(e,€).

We ignore integer issues in defining the sequence u;. Define u by multiplying each
case by (1 — 0)d". Using Proposition 4, this is an upper bound stream of expected
payoffs since, within each phase, we have front-loaded the agent’s payoffs. For
brevity, let ELul be short-hand for the sum of the expected values of payoffs summed
over times during the ith work phase, i.e. Ebu? := Ep > el uf, where O(i) denotes
the set of times covering review phase i. Also let H* denote the space of infinite
histories in the game and put u°(h) equal to the discounted sum of payoffs along
the (infinite) history h. We have:

[ wmdr, = Enui= 3 Bl
* t=1 i

The above equality involves an interchange of integral with a summation, which can
be justified as follows: truncate the normalized discounted payoff at some large T'.
The interchange of sum and integral is obviously justified for the truncation. Take
arbitrarily large truncations to obtain equality. Now we use equation (x) to bound
the terms E};ﬂéuf for i > I(e, €),

Ep u} <@'[(1—€) Y m+e > 1]

t€O(7) teO(i)

where ¢ denotes the probability of reaching this phase (we suppress the dependence
on the underlying measure P,, as we will be using a trivial bound on ¢’ that applies
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regardless of the measure), and finally put 19 := (1—4)d*-1, where 1 is the normalized
stage payoff from collusion. Summing over phases ¢ we obtain,

/ * w®(h) dP,, :ZEP% ud = ZE;;%uf
< Z Zl§+ > Y- Zut+621

=1  t€O( 1>1(e€) teO(i teO(i

Use the trivial bound ¢* < 1 to obtain

/u6(h)de6§61+1—e Z Zut—l—e’

i>1(e,e’) teO(4

where €' is the bound on the sum over phases up until / (e, ¢’). By choosing § large
we can make €' as small as needed since I(e, €') is independent of § for all large 6.
Similarly, by choosing €,¢ to be small at the outset we can make the final term
above as small as we like.!” Hence, to show that the limiting value as ¢ tends to
unity is close to 0 it suffices to check that 37, >, g U w (=", u?) can be made (by

making e, ¢’ small) arbitrarily close to 0 as § gets large

Observation 2. Let ul(h) denote the (normalized) discounted time t payoff for an
agent. Then, we have (up to the €', € terms): limgpy fH* u(h)dP,, <limp Y., w/T.

Proof. We have already verified that (up to the €, ¢' terms, which we ignore here)
lim [,. u¢(h)dP,, <%, ul. It suffices to check that Y, u} = limy S a/T. We
compute the limit of this latter term along a subsequence of times of the form T =
>; T; and find that it can be pushed arbitrarily close to 0. However, we first check
that taking any other sequence of times we obtain the same limit. By Abel’s Theo-
rem (Radner (1985), pg. 1175) this proves that limgy Y., @) = limy ZtT:l u/T. To
prove the latter limit exists, take any 7" and put T'(k) = Zle T;. Find k such that
T(k) <T <T(k+1). Notice that we have

I

T T(k)

2 w/T=3 w/T+ S wr

t=1 = =T (k)+1
N—————

11
We check that, by the selection of sample sizes T}, term II tends to 0 as T is large.
Recall that we selected T}, := k°. Notice that

T

> /T < Toa/(T(K) + 1),

t=T(k)+1

19This may require a larger I(e, ¢’), but once this is done we then take limits on § — hence making
the first and third terms as small as we like.
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Now use the fact that the function n — f(n) = n® is convex and increasing. Using
right-endpoint Riemann sums (with rectangles of partition length 1 and of height

f(), f(2),..., f(k)) we obtain

k k
T(k)+1zzn+12/ Pdr41= K6+ 1.
0

i=1
Since Ty, 1 = (k + 1)° we clearly obtain
Teir/(T(k)+1) =0
as k — oo. Similar reasoning applies to show that
T(k)/T —1

as k — oo. Hence, term I determines the limit and, itself, limits to an average along
the subsequence T'(k): To see the latter claim, note that limy ZtT:Uf) u/T(k) = €
so that limgyy Y, W = e. Note that the sequences ﬂ? are functions of the pair
(€,€') which provide bounds on (resp.) C(T;)/T; and P,(C(T;)/T; > €). Hence, by

choosing €, ¢ small we can make the quantity — limgq ), w — arbitrarily small. [

Lower Bound

Now for the principal’s payoff. Since the argument is lengthy, we give a sketch be-
fore proceeding to formalities. The argument first restricts to the class of rectified
equilibria and shows that the principal’s worst payoff on the set of rectified SPNE
is close to first-best (for large 0). The principal’s bound (for rectified equilibria) is
obtained in two main steps. First, we tie the results on equilibrium behavior, namely
Proposition 5, to the principal’s payoff. Applying an iterated expectations identity
(see (%) below) we can express the principal’s (expected) payoff within each review
phase k as a function of two terms, (i) the probability ¢% with which this phase
is reached and (ii) the frequency of inefficient effort choice, measured by E(T;)/T;.
Since Proposition 5 bounds these frequencies, we can use this to show that, condi-
tional upon entrance, the principal’s payoff in these reviews is close to first-best.

We then turn to controlling the success probabilities, ¢%. This is where the par-
ticipation fee enters the argument. One could equivalently take the same contract
without participation fees and employ a Pareto selection criterion. We show in the
argument below that the two approaches are formally equivalent, and hence yield the
same bound on the principal’s payoff. Now, if there is a k such that ¢¥ drops below
some threshold, then — since punishment is absorbing — this leads to a permanent
drop in ¢%. Since agents are still contractually bound to participation fees during
punishment, this means that for IR to have been met the date 0 cost of this event
must be small, viz. the k such that ¢% incurs a discrete drop must be far into the
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future. Combining the bounds on within-review payoffs and success probabilities we
obtain that, conditional on entrance into any (large) phase k, the principal’s (time
0) within-review payoff is close to first-best. Moreover, any ¢ drop in the probability
of entrance into a review must occur — if at all — well into future, so that the time 0
discounted payoff from these “anomalous” phases is negligible. This is where we use
the assumption that the agents and the principal have a common discount factor.
Having shown this, the final step extends the lower bound from rectified equilibria
to all SPNE. Break this argument into four formal steps (resp.) labelled as (i) Con-
necting Proposition 5 to the principal’s payoff, (ii) IR constraint, (iii) Prop. 5 + IR
= Lower bound, and (iv) Extending to all SPNE.

Step 1: Connecting Prop. 5 to the principal’s payoff.

Take a sequence ps, with (1 — 0,,)W (ps,) converging to lim (1 — )W (d). Since we
will (in step 2) define participation fees as a fraction of the agent’s first-best stage
surplus, choose a normalization (different from the upper bound proof) of agents’
payoffs such that ug = 0. Let w?(h) denote the (normalized discounted) principal’s
payoff at time ¢ along history h and put w®(h) := Y, w?(h). We have:

/* w'(h) dPy = Ep,w) = Y Ep, w] (1)
t

i teo(i)

where Epw? is the expected time-t discounted payoff (we are interchanging sum and
integral as before). The term o, Epw? denotes the discounted expected value
of output summed over the ith work phase. To find a lower bound on this sum, we
find a stream of (expected) per-period payoffs that (i) yields a lower bound, and (ii)
possesses a time average close to the first-best principal’s payoff. Let w* denote the
(aggregate) insurance wage and let EX* EX, (resp.) denote the expected value
of output conditional on the first-best effort choice and the lowest aggregate effort
choice. Define a stream of (expected) payoffs, w;, as follows:

EX, —w' ifte (S T30 Tk < I(e,€)
W= EX, —w*  if (O T, T e k> I(e, €)
EX* —w*  if (N5 T+ €T, S8 Tk > I(e, €).

We use the result of Proposition 5 to motivate the definition of the stream. Ignore
integer issues (as before) and obtain w9 by pre-multiplying by (1 — 6)6'. This
is a lower bound of (expected) payoffs, where we backload the principal’s payoff
within each phase. Put w, := EX, — w* in every period ¢ and similarly define
w?. Let X; denote output in period ¢+ and X? denote the normalized discounted
counterpart. Also let e’ € {er, ey}’ denote realized effort choice in period i and
EX(e) denote the expected value of output conditional on effort choice e’. Let P

denote the conditional measure (induced by the underlying strategy p) on histories
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which reach the given review phase. This pushes out to a measure on T-tuples of

random vectors (e',...,e"), which we also denote with P. We have the following

iterated expectations identity:

(%) Ep(Xi+Xot+X7) = Y [EX(e")+EX(e’)+ - -+EX(e")]-P(e',....e").

Replacing with normalized discounted r.v.’s we obtain:

(k) > EpXP= > ¢p[EX°(e")+EX(e’)+ - +EX(e")]-Ple', e’ .. e

teO(k) (el

-----

Using Proposition 5, for k > I(e, ') we have

P(E(Ty))T, > e) < ¢

Tk).

We apply the pessimistic streams to (s ) to bound (from below) the terms [EX°(e!)+

EX%(€?) + -+ EX°(e™)]. Let 1yco, (h) denote the indicator that the time ¢ com-
ponent of history h is in a work state (i.e. no punishment has been incurred

leading up to the start of phase k). Using the previous bound and the fact that,
Epw! > Eplicom (X? — (1 — 0)6'w*), we obtain:

> Ep,w) > Z Ep, (X] = (1=0)d"w") > ¢, [(1—¢) Y wj+¢€ Z w?].
)

tcO(k) teO(k teO(k teO(k

Now sum over all phases k > I(¢,€'): (we ignore the contribution k < I(e, €’) which
vanishes for large §)

/H* >Z¢P (1—¢) Zw?—i—e'wa]. (2)

teO(k teO(k)

Step 2: Implications of the IR constraint.

We bound the term on the RHS of (2) from below by using the participation con-
straint to obtain a bound on the normalized PDV of the stream of (foregone) payofts
starting from the first failure time (i.e. the first phase in which players know they
will enter the absorbing punishment state). To avoid confusion, we denote the par-
ticipation fee with p and time is indexed with ¢. Let 1te@(k)(h) denote the indicator
function defined in step 1. Implicitly, we will only define indicators for times ¢ such
that work phase k covers time ¢, i.e. T(k —1) <t < T(k). Hence, l;zo() is the
indicator that along history h the game is in a punishment state at time ¢, even
though work state k is feasible at time ¢. Now select an appropriate participation
fee (defined in utils). Let 7"'% := u(wf?) — c¢(ey) denote the first-best surplus and
define

te, == (1 — &)™,
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Let ¢'B denote the probability of never incurring a Type I error under the contract
Cley.e0)- We will want to select review lengths (implicitly ¢*7) and e, such that the
following inequality holds:

¢"Pey > (1= ¢"")(1 - ).

The (non-empty) inequality ensures that there are (for large 0) equilibria that satisfy
the IR constraint. Multiplying by 77# the RHS is an upper bound on the expected
cost of participation along histories where punishment occurs, and the LHS is a
lower bound on the expected benefit from reviews under repetition of the efficient
stage SPNE. We have the following upper bound on equilibrium utility: (for brevity,
hereafter replace Ep, with E,,)

( E,, Z Lico(r) )5t) p'Epa(Z Lige, (1 - 5)5t) >0 (3)

By the IR constraint, the LHS (which is an upper bound® on equilibrium utility for
any agent) must be at least the value of the outside option (for any equilibrium p),
which was normalized to 0.

Inequality (3) is the precise step of the argument where participation fees are
invoked. What happens if we use a Pareto selection instead and eschew participation
fees? The Pareto criterion selects only those ps which deliver a utility of at least p
(to some agent), which yields the inequality:

mPE, Z Lico) (1 —0)d") >

Now write p = Y, p-19 and use p-12 = p-(Licon) (1 —8)8"+ Ligor) (1 —8)d") to rewrite
the inequality () as

(7" — p)Epg(Z Lo (1 —0)d") — p'Eps(Z Ligo, (1=0)0") =20

This is exactly inequality (3). Hence, imposing the Pareto criterion without contrac-
tual participation fees, or alternatively, using participation fees but no equilibrium
selection are formally equivalent. Bounding utility in the work states from above,
inequality (3) becomes:

Ep (D ligom 13) <% —p
t

20More accurately, it is an approximate upper bound. The maximum rent in a work stage is
insurance surplus plus the expected surplus from a report. But the latter is chosen to be some
small ¢’ = 3.7 B, where e3 < 5. This just adds another ey to the argument, so we ignore this
term in the computation that follows.
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which simplifies to

Eps (Y ligom19) < /(1 — 2). (4)

Note that 1;ce)(-) is a r.v., whilst 12 denotes the constant (1 — §)d’. Since p =
(1 — &2)-wfB and ey and 7P are themselves contract choice parameters that can
be made arbitrarily close to 0, we obtain that the quantity E,, (>, l;¢e,1!) can be
made arbitrarily small. Note that we can write,

Ep(Y Lo )= D> (1—op, )10,
t k

teO(k)

The fact that this term is for small &,, e.g. &5 < 1/2, bounded above in § by 2e,
has an important implication. Assume that, for each large J, there is some dis-
tant future phase k(J) for which 1 — ¢]1€3i? > k, where k is some constant defined

independently of . Then, for all £ > k(J) we have 1 — gb’fgpé > k. Hence, since
> kok(s) 2oteo) (1 — (ﬁ’}pé)-lf is bounded above (essentially) by 2e5 in §, we obtain
§*©) is bounded above by 2g5/k in §.%!

Step 3: Prop. 5 + IR = Lower bound.
Now return to inequality (2). Consider two cases: either (i) lims ¢p,. > 1 — (/&2

or (ii) lims ¢p, < 1 — /€2, where ¢p, = limy (b’}p&. Case (i) is easy as we just
replace (since gb’fgpé I ¢p,,) gb’fgpé by 1 — ,/e2 and apply the bound we obtain in the
forthcoming argument. Consider case (ii). Find a subsequence of ps’s with ¢ T 1 and
with an associated collection of phases k(d) for which QS];DE)? < 1—,/g5. Importantly,
we can find a first such k such that qb’f;pé <1—,/6&. Put

k(9) := min{k : (ﬁ’}% <1—/e}.

The fact that ¢ < 1 — /2 implies that (1 — ¢p") > \/z. Hence, Vk > k(0)
we have 1 — gb’f;pé > /€2. Apply the argument in the preceding paragraph (with

Kk = /€2) and we find that gFO) 2,/é2 in ¢. Hence, by choosing ¢, at the
outset to be small, we can ensure that the limiting values of 6*©®) are small. Now
note that we have the following inequality on the summands of the RHS of (2). For

21Since the key point is that 6%(®) is bounded above by a quantity that can be made arbitrarily
small as 5 tends to 0, we deliberately confuse the distinction between lim §%) and 2e, /K.
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k > max{k(9), I(e,€)} we have:

=) 30 T+ 30 i) zmexioh, 1= vaH0 =) 3w ¢ T ul

tcO(k) tcO(k) teO(k) teO(k

. Z 1. HFBlé

Q)
teO(k)

J/

To explain the bound note that the maximum occurs at 1 — /€5 and 1 is obviously
an upper bound on max{(1 — M@),(ﬁ'}ﬁé}, so that the increase in the first term

is more than offset by subtracting off II*? for each t € ©(k). Also note that for
I(e,€') < k < k(5) we have (by definition of k(J))

(Z)P,, [(1—¢€) Z w; + ¢ Z wy] > (1= /22)-(0).

teO(k teO(k)

The preceding argument presumes that k(d) > I(e, €'). If the first k& for which ¢’f3p5 <
1—,/23 is less than I (e, €'), then — since punishment is absorbing and the probabilities
qb'jgpé are decreasing in k — the maximum occurs on (e, €'). However, since k(¢) is
unbounded as ¢ tends to 1, for large 6 the maximum occurs on k(6). Moreover, the
contribution to the principal’s payoff from phases k < I(e,€') vanishes for large 4.
Hence, in what follows we will ignore contributions from phases k < I(e,€') and
assume (as we will be taking limits on §) that ¢ is large enough that the maximum
occurs on k(d). Sum across all phases k > I(¢,€') to get:

Zng% [(1—¢) Z w + ¢ Z w!]

teO(k) teO(k)

> sl 1= VA0 ) Y Wl Y uf
teO(k) teO(k)
. Z Z HFB16

k>k(5) teO(k)

>Z 1—/2)[(1—¢€) wa—i—e'wa]‘
teO©(k teO(k)
. Z Z HFBl5

E2k(6) t€O (k)

-~

11

J/

The latter term (II) simplifies to —IIFB§*®) which limits to —I1FB-2,/z; in § (as
principal and agents have a common discount factor). The forthcoming observation
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verifies that the sum involving the former term (I) has a long-run time average, and
that it can be made (by choice of €, €') arbitrarily close to the first-best value, ITF'5.
The argument is nearly identical to the proof for Observation 2, hence is omitted.
As before, the point is that the sequence of sample sizes that defines the reviews is
(i) increasing, (ii) convex (i.e. f(z) is convex), and (iii) slowly varying.*

Observation 3. Put @’ = (1 — €)Y, W + €3, w? and let W = Y., @7,
where wy := (1 — €)wy + €w, and Wy (resp. w,) is the undiscounted time t payoff
corresponding to w? (resp. w?). Then,

limgy @° = limp_ee @' = (1 — €)[(1 — )7 + €ll] + {0 (5)

We introduce II := EF X, —w* as shorthand for the principal’s worst static payoff
during a work phase. Clearly, the term on the RHS of (5) approaches 117 as we
make ¢, ¢ small. To conclude notice that by making ¢, ¢ small, and choosing 5 (at
the outset) small we obtain that limsy [,. w’(h)dP,; can be brought arbitrarily
close to I1FB.

Step 4: Extension to all SPNE.

Let ps € ¥() and denote by p} its rectified companion. Let 72 (h) denote the (nor-
malized discounted) payoff to the principal in period ¢ along history h. For ¢t € O(k)
let E; denote the event that (i) the game is currently in a work state and (ii) it
is known that the forthcoming state is an unemployment state. That is, for every
history h € E; the KS test falls into the rejection region for some first time ¢*, where
tr < t* < t and t; is the time when the kth work phase starts. Let v denote the

maximal (in absolute value) payoff to the principal in any period of the game. We
have the following bound on E,,[>, 70 (h)]:

Epl)  m(W)] 2 Eg[)  m(h)] = ExlY 2715, (h)].

t t

To explain the lower bound, note that (for any time t) payoffs to the principal under
p and p* only disagree along histories that lie in F;. By subtracting off v we have
reduced the principal’s payoff by the maximal possible amount along such histories
(and at such times t).* The 14, notation extends our shorthand for (1 — §)d* to
discounted values of indicators of events.

22Gay that f(x) is slowly varying if Vt, f(z)/f(z +t) — 1 as z — oc.

ZThere is agreement (between ps and p}) on both the principal’s payoff and on the attached
weight (w.r.t the two measures) up to the point where the KS test falls into this region. Beyond
this point, weights induced by p; are derived from i.i.d. repetition of X ~ pe- and for ps; weights
are induced by the (unspecified) continuation strategy. Replacing the random payoff X (resp. X,)
by the constant v we get a uniform lower bound.

28



We now verify that E,:[>", 1%, (h)] can be made small as § gets large. Define E (k)
to be the histories along which work phase k is reached. Notice that, for ¢t € ©(k),

we have
E, CEk)NE(k+1)

The containment can be strict since there may be histories h € E(k) N E(k + 1)°
where the KS statistic falls into the rejection region within the work phase, but after
time t. Hence, we obtain the bound

(#x) Py (Ey) < Pp:(E(k) N E(k+1)°).

Now apply the previous arguments. For each 0 let k(J) denote the first phase for
which ¢ <1 — V€2. We found that §k0) 2\/éz as 0 T 1. Put
)

k(5)—2
EPE[Z 1] = Z Z 1%, Z Z Eﬂ§16 T Z Z Eﬂsl%t
¢ k teO(k) k=1 teO(k) k=k(8)—1tcO(k)

For k < k(§) — 2 we have, using (x*):
Ep 1, = Py (B)1y < Py (E(k +1)9)17 < V/E213.

Note that we have used Pp:(E(k +1)°) < \/62,Vk < k() — 2. For k > k(5) — 1 we
use the trivial bound, P, (E;) < 1. Put together we obtain,

Epgzl(s <\/_ Z Z 15+ Z Z 15<\/_+5k:5) 1

k=1 tco(k) k=k(5)—1teO(k

Since the RHS limits to 3,/€3, by choosing e, small at the outset it follows that (for
large ) the difference between E,; Y-, wf(h) and E,: 3, 77 (h) can be made small.

g

Given its ubiquity in dynamic agency papers, it is natural to ask whether there
is an alternative route to our main result by using the Radner (1985) contract. Rad-
ner’s analysis makes key use of stationarity, i.e. by this we mean the single agent
uses the same work-shirk decision rule in every review phase, regardless of histories
in past review phases. Assuming stationarity he obtains recursive expressions for
the agent’s payoff, which allows him to bound the (stationary) success probability
and, in turn, to compute a lower bound on the principal’s payoff. Since the optimal
cooperative payoff is stationary and this is an upper bound on agents’ payoffs, this
assumption is without loss insofar as the agent’s payoff is concerned. However, there
is loss of generality in imposing this assumption to derive the principal’s payoff.
Still using Radner contracts, one could try to characterize the set of Markov perfect
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equilibria, e.g. taking the state space to be the set of within-review phase histories.

Let us make two comments on this proof strategy. First, it still requires an
innovation over the argument in Radner (1985) since MPE’s need not be stationary
(i.e. here “stationarity” would mean the reaction function is constant across the
subset of states which represent complete review histories). Second, once we fix
a state space, MPE’s still assume a sort of “memoryless-ness” since continuation
play only depends on the fixed history encoded in a state. With multiple players it
is reasonable to expect that continuation play exhibits pure temporal dependence
(e.g. agents plan to shirk more as time passes on since they are less sensitive ex ante
to future punishment) and correlation between histories in distinct review phases.
To account for these possibilities within the MPE framework, one would need to
allow for a richer (e.g. infinite) state space than the one used in Radner (1985).
Rather than trying to bound value functions via a recursive approach, we have
chosen to directly analyze properties of distributions on equilibrium histories. This
approach allows us to obtain a payoff bound on all subgame perfect equilibria and,
additionally, says something about the equilibrium behavior which generates these
bounds, e.g. the specific role of reports in constraining on-path play.

5 Conclusion

This paper considers an infinite horizon repeated moral hazard problem with multi-
ple agents. The environment is like the canonical principal-agent model except that
between the time when effort is taken and output is realized, agents can be required
to communicate their observations of co-workers’ effort choices to the principal. Our
main result constructs a class of contracts with the following two features. First,
fixing an € we can find a contract such that for all (SPNE) equilibria in the game
induced by this contract, payoffs for all parties are within ¢ of their first best bench-
marks as the (common) discount factor gets large. Second, the contracts are defined
without reference to the ambient discount factor. After the literature on uniform e-
equilibrium (see e.g. Maschler et al. (2013)), this matters when the discount factor
represents a common payoff relevant parameter, e.g. the interest rate or the number
of periods in the game (so that the discount factor would be a continuation probabil-
ity), whose precise value is subject to uncertainty. Contracts that are less sensitive
to ¢ are more robust to this uncertainty.
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6 Appendix - Omitted Proofs

6.1 Omitted Proofs from Section 2

Proof of Proposition 1. Proceed in two steps. In the first step we show the existence
of incentive compatible reward schemes that are designed to elicit truthful observa-
tion reports. In the second step, using these reward schemes we describe the contract
and characterize the equilibria of the extensive form game induced by the contract.

Step 1
Put e* := (epy,..,ey) and consider the set of effort choice vectors E\e*, where
we put E := {(eq,...,er) : e; € {er,en}} with generic element e. The collection

{F(-|e)} is partially ordered under FOSD. Put € := (ep,...,en,er) and note that
F(-le') =rosp F(-le),Ve € E\e*. That is, F(-|€') is (weakly) =posp-maximal in
E\e*. Now consider the cdf’s F(-|€’), F'(-|e*). By FOSD these cdf’s are distinct so
that, labeling the finitely many elements of X from smallest to greatest (on the real
line), there is a least integer m (# | X|) such that F(x,,|€’) > F(z,,|e*). Thus, the
system

(1 — F(zy|€e))R1+ F(zyle )Ry = A
(]_ — F(xm|e*))R1 + F(:Em|e*)R2 =B

has a unique solution with R; < 0, Ry > 0 for any A > 0, B < 0. Choosing A, B

to be arbitrarily small, we can make R;, Ry arbitrarily small. As u(-) is C?, the

quadruple (w8 wy, Ry, Ry), where w'P := u™(ug + cley) + €),wo := u~(up) and

Ry, Ry are sufficiently small, solves the following system:
L. TR: uw(wP) — clem) > uo
2. ICy: (1 — F(zm|e))u(w!™® + Ry) + F(z,]e)u(w!? + Ry) > u(w!P)
3. ICs: (1 — F(zm|e))u(w'™® + Ry) + F(zy|e*)u(w!™® + Ry) < u(w'™P).

By FOSD-maximality of F'(-|e’), if this system holds with the given choice of Ry, Ry
then:
(1 — F(zple)u(w! + Ry) + F(znle)u(w! + Ry) > u(w?®).

for any e € E\e*. The two IC’s are truth-telling conditions. IC; implies that agents
report shirking to the principal. ICy ensures that it is not profitable to issue a false
report.

Step 2
Give agents labels 1,...,I and let m; ;41 (mod I) denote agent ¢’s report on agent
i+1 (mod I). Require agents to make announcements sequentially. That is, ¢ makes
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his report on i + 1. Upon hearing this, ¢ + 1 reports on 7 + 2, and so on. Let ¢ > 0
and consider the following wage contract (let w(i) = agent i’s wage):

wk?, if mi_1; = ey, M1 = ey
w(i) = (wF? ‘,i‘ Ri)1(esa,) + (WP 4+ Ry)1le<a,), %f Mi—1; = €, Miitr1 7 €H
Wo — €, if mi—1, # en, mii+1 = €H
W, if m;_1; # ew, Miir1 7 en.

Here 1(,<,,,) denotes the indicator of the output event {# < x,,}. Note that (i)
choosing ey and reporting truthfully is an equilibrium, and (ii) there is no equilib-
rium where collusion occurs on the equilibrium path. Let us verify (ii). Fix a history
where effort choice is less than first-best, and consider agent I. By ICy, it is strictly
dominant for him to report on agent 1. Thus, along any equilibrium history where
effort choice is not first-best, agent [ is always reporting on agent 1. Given this,
along any such history it is then a strict best-response for agent 1 to report on agent
2, and for 2 to report on agent 3, and so on. Hence, along any history where aggre-
gate effort is less than first-best, all agents are reporting on each other and nobody
is earning higher than the reservation wage. O]

Proof of Lemma 1. Let C(E) denote a generic wage contract for this environment
(satisfying symmetry and limited liability). Normalize effort costs so that c(e;) =0
and let € denote the (arbitrarily small) liability bound. There are two physical points
in time. First, the effort choice time, say t;. Second, the time where output is realized,
time 5. Assume that ¢; < t5. The contracts induce an (extensive form) game whose
general form G consists of the following pieces:

e A finite set of messages, M, := {my,...,my} (wlog the same for all agents).

e A wage contract for each agent i, w; : X x [[, M; — R, i.e. a contract is
defined by assigning a number to each realized output value and profile of
messages.

The wage contract is symmetric: wi (-, (m', m?)) = wy(-, (m?, m?)).

Agents have two (pure) choice sets, at two separate points in time:

— One of these is the set of effort choices, e € {ey,er}, at time ¢;.

— The second (pure) choice set is the message space. There is a variable
timing structure of when messages are sent. Let ¢ty denote this time
and observe that we have one of the possibilities, (i) typ € (0,¢1], (ii)
t/\/( S (tl,t2]7 (111) tM S (tQ,OO).

Agents have perfect information, so that each agent’s information set at time
taq is a singleton node.
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This completes the description of the abstract game form G.** Let 3(G) denote
the set of SPNE in the extensive form game induced by G. For o € 3(G) let m,
denote the profile of messages induced by o. Abusing notation, let it also denote a
distribution over profiles if ¢ is mixed. We wish to find G satisfying two desiderata:
(uo denotes the common reservation utility)

e There is some opp € 3(G) such that at time ¢; all agents choose ey and at
time ¢ agents choose some profile {m'}; such that w(-, {m'};) is constant and
equals (in utility space, for simplicity) ug + c(eg) + €, for some small €'

e There is no o € ¥(G) such that e; # ey (where ¢; is agent i’s, possibly random,
effort choice under o) for some ¢ and u;(co) > ug for some j, i.e. no collusion
in equilibrium.

The claim of the lemma is that any game form G that satisfies these two properties
must admit multiple (SPNE) equilibrium outcomes, and — in particular — an ineffi-
cient outcome. The easy cases are where the game forms are such that ¢ € (o, 00)
or ty € (0,tq]. It is trivial to check that, in either of these cases, there are no game
forms satisfying the above desiderata. We consider tys € (t1,t5]. The analysis is
the same for times tpy € (t1,t2) as for ty; = t, since in the latter case the agent
evaluates expected payoffs as he would if output is realized just after messages are
chosen. Assume w(-, ) (weakly) implements the efficient outcome (at first-best cost)
and prevents collusion. We show the existence of another (inefficient) SPNE. For
the subgames induced by (eq, er) and (er, ey) consider the following two equilibria.
Let M, ;) denote the worst equilibrium for player 1 and let i, .,) denote the
worst equilibrium for player 2. By symmetry of w(-,-) player 2’s (gross) expected
payoff is weakly higher than player 1’s in equilibrium 7, ., ) and, similarly, player
I’s gross payoff is higher than player 2’s in the equilibrium 1, ,,).*" Let Mi(ey e
denote the message profile in the first-best SPNE and let i, .,) denote any equi-
librium in the subgame (er,er). Now use these message profiles to construct the
following extensive form profile: Each player ¢ chooses e; = ey and sends message
ﬂ(-ehez) (player i’s component of M, ,)) when (eq, e3) is observed. Denote this profile
as {o1(er,er),o2(er, er)}. Similarly use the message profiles to construct extensive
form profiles {o1(ey, er), o2(en,er)} and {o1(er, en),oa(er, ex)}-

We claim that {o1(er,er),02(er,er)} is an SPNE. Towards contradiction, if it

is not, then player 1, say, wishes to deviate to e; = ey. Let u%el e) denote his gross

24Note that we have left the message protocol, e.g. sequential vs. simultaneous, unspecified. The
result of the lemma does not depend on the message protocol of the game form.

Z5Notice that with a bivariate signal (as in Ma (1988)) we would never use such a contract, since
it allows an equilibrium where the shirker does better than the “worker”, i.e. the agent who chooses
ey . We have such an outcome in our setting because, with a sole public signal, the principal cannot
statistically distinguish the worker from the shirker.
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utility payoff under this profile when choices (eq, e5) are observed. Plug in (ey,ey)
to get: (note that uz > ug — €, where € is the liability bound)

e1,e2)

1
(emer)

1

u —cler) > Uy ep)-
Note that in the subgame (ey, er) player 2 obtains u?eH .

and

. 2 1
L) Since Ul er) > Uepen)

+ c(eg) > min(u, u? )+ clen)

1 1
Uleper,) > U (er,er)’ “(er,er)

er,er)

we obtain that
2
Ueper)

> ug — €+ clen).

Hence, consider the profile {o(ey,er),02(en,er))}. We claim this must then be a
SPNE. We have just argued that player 1 would not want to deviate to e; = ey.
Moreover, player 2 obtains (net) payoff of at least ug — e + c(ep) if he plays es = ey.
If he switches to ey his payoff net of c(eg) is ug+ €. Hence, {o1(en,er),02(em,er)}
is an inefficient SPNE where collusion occurs — contradicting the hypothesis that
the initial contract is collusion proof. Similarly, if player 2 has a deviation from
{o1(er,er),0a(er, er)}, then we argue that {oy(er, ex), 02(er, em)} is an SPNE with
collusion. It follows that {(o1(er,er), 02(er, er)} is an inefficient SPNE in which, by
collusion-proofness of C(€) and IR, both players obtain wuy. [

Let us make three remarks about the preceding argument. First, note that the
argument does not use the FOSD assumption. This is because we are assuming the
existence of a collusion-proof contract with an efficient SPNE, and taking this as
given we prove multiplicity of SPNE. The FOSD assumption is required to actually
construct such a contract. Second, the only place we use the simplicity of the 2 x 2 x 2
model is in the last step. In particular, with more than two effort choices the set
of possible deviations is larger — so that a distinct, but otherwise straightforward,
argument is required. Third, we have not proved that the symmetry assumption is
necessary for the result, but it is (in our view) a normatively reasonable feature since
there is only a single public signal and conditional distributions satisfy symmetry,

e.g. f(-[(em,er)) = f(:|(er,en)).

6.2 Omitted Proofs from Section 3

Proof of Proposition 2. All probabilities and expectations are conditional in the
forthcoming proof, although we will suppress the P notation. Hence, for a given
phase n, when we write P, we mean P, and when we write E,(-) we mean Ep(-).
Wlog assume that o > 0 is such that lim P,(C(7},)/T, > o) = 8 > 0. Towards a
contradiction, assume that Vr € (0,1), P,(sup, |Fr,(z) — F(z|e*)] > r) — 0. We
will now compute the limit of E,(X; + X5 + -+ + Xq,)/T,, in two different ways,
obtaining two different answers as a consequence of this assumption.
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Method 1
Assuming that

Vr e (0,1), Py(sup, |Fr, (z) — F(z|e*)| >7) =0
we obtain,
Ey|Fr, (2)=F(x]e®)| < 2-Pp(|Fr, (x) = F(z|e”)| > r)+r-B,(|Fr, (x)—F(z[e")| < 7) = r, Va.
Since this holds for all € (0, 1), it follows that we may find ¢,, — 0 such that
— G < E,(Fr, () — F(z|e)) < G, Vo (6)

Relabel the per-period output variables, in phase n, so that X; denotes output in
period ¢ (notation for the work phase within which it occurs is suppressed). Let
X; ~ p; and let p*(-) denote the measure that corresponds to F'(-|e*). Choose a
labeling of the support of output X := {z1,..,2;} such that z; < z;;;. Plugging
xr = xj into (6) gives:

Tn
— G <) ml{a}o))/To = Flaale) < G (7)
i=1
equivalently,
F(xkle”) <Zuz ({z;}20)/ T < Flaxle™) + G-

This implies (apply the preceding inequality with xy 1)

F(xyq]e*)— Z L4 {:E]} )/ T, < Zn: pi(@g)/Tn < F(xkﬂ‘e*)"{n—(i: :Ui({‘xj}?:l))/Tn

Using the bounds from (7) we then obtain:

Ty

W (Thy1) — 26, < Z pilwe1)/Tn < p(zpg1) + 26,

=1

Since this holds for every x € {z1,...,2;} we deduce that for each j:

i (zj)e; — 225G, < Z pi(zy)z; /T < g () s + 225G (8)

=1
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Now note that

Ef(Xi+Xo 4+ Xr,) /Th = ZZ pi(zg)a; [T, = Z i: pi(@;)z;/Tn. (9)

i=1 j=1 7j=1 =1
Let X ~ p*. Sum inequality (8) on j and apply equation (9) to obtain:

! !
EX ~ Gy 20, S Ef(Xi+ Xo+ -+ Xg,) /Ty < EX + (0 Y 2.

j=1 j=1

Since ¢, — 0 we obtain that E,(X; + Xo+---+ Xp,)/T, = EX (as n — 00).

Method 2

Label the set of effort choice vectors, E = {ey,...,en,...,e,}. Let X(e,) de-
note a r.v. with c.d.f. F(-|e,). Since e* is first-best we know that FX(e*) >
EX(en),Ve, # €. Put EX' := maxye, Ler} £ X(en). Let EZJ be the r.v. that
denotes effort choice in phase i, period j. For notational economy, suppress the i-
subscript and write B for E}. Note that the variable X; is distributed as X (e,,,) con-
ditional on E; = e,,. This allows us to write: £,X; =Y " _ P,(E; = e;,) 22:1 P,(X; =
k| E; = en)zi. Put X(em) ~ e, Since P,(X; = xx|E; = en) = fte,, () We ob-
tain: EX; =" | P,(E; =e;)-EX(ey). Let € denote a realized value of E;. It
follows that we may write

E,X\+E,Xo+ - +E,Xg, = Y Pye'. e’ .. e™)[EX(e!)+ - -+EX(e™)].

(el 7927"7eTn )

By hypothesis, Jo, 3 > 0 such that P,(C(1,)/T, > «) > B,Vn. Taking E(T))
to be the number of periods in which aggregate effort choice is less then first-
best, we have E(T,) > C(1,). Thus, {E(T,)/T, > o} 2 {C(T,)/T, > a}. Note
that, for each realization (e!,... eT"), either {(e!,...,e!")} C {E(T,)/T, > a} or
{(e',....el)} N {E(T,)/T,, > a} = 0. Let [aT},)] denote the integer part of aT,.
Since P,(E(T,)/T, > «) >  we have the following upper bound:

EXi+E,Xo+ -+ E,Xg, < (1 -8)T, + B(T,, — [aT,)))EX + BloT,]EX".
Thus,

EX —E,(Xi+-+Xp,)/T, > (1—[(1=B)T,+ B(T, — [aT)))/T,)EX — (B[aT,]/T,)EX’
= (BlaTy]/T,)(EX — EX).

For large n the RHS is at least (Sa/2)-(EX — EX’) > 0. This contradicts the limit
obtained by the first method. m
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Proof of Proposition 3. Since an (equilibrium) strategy and its rectified companion
(which is also an equilibrium, though we do not need this additional fact) have
the same C(T,,)/T, distribution, we will assume that all strategies are rectified.
Furthermore, suppress the P(-) notation — keeping in mind that all probabilities in
question are conditional probabilities, where for each work phase i we condition on
the set of histories that reach work phase ¢. Towards a contradiction, assume that
C(T,)/T,. # 0 (in probability) and let r be the constant given by Proposition 2.
Put

By (r) := {sup, |Fr, () — F(z]e")| > r}.
For h € B, (r) we have

r < sup, |Fr, (z) = F(z]e”)| <) sup, |Fiz, (x) — F(ze”)|/n. (10)

i=1

Introduce the following r.v’s,
o My,(h):=[{i:sup,|Fir,(z) — F(z[e")] = m}l,

o C,:={h:M,(h)>2}.

Thus, M, (h) counts the number of (sub)phases within the nth work phase in which
the margin of error is surpassed (along history h) and C, is the set of histories
for which this happens at least twice. By inequality (10), IN(r) >> 0 such that
Vn > N(r), M,(h) > 2 whenever h € B,(r). This implies B, (r) C C,, Vn > N(r).
We claim that P,(C,) — 0. Define {h™»(M} to be the set of histories that agree
with A up through the first failure time along h, N, (h)t,, and note that the sets
{pNe(M)tnY are disjoint sets of histories. Decompose

Cp = Up ({R" Wy 0 Cy).
Observe that
P,(C,) = Z Py (Cy 0 {INn 0} pNeB)tny. p (£ Na (W)t )y,
Note that
P, (C N ®) = P({3i > N,y (h) s.t. sup, |Fi, (¥) — F(z|e*)] > 7} | B0,

Since p is rectified (wlog — as this doesn’t change the P, distribution of C(T},)/T,),
for histories following h™¥»("i» the output process in every period follows the law
F(-le*). Let P(-) denote the product measure on the sample space [["; X — gener-
ated by t, i.i.d draws from the distribution F(-|e*). By Chebyshev’s inequality, we
have

P(sup, |Fy, () = F(z|e”)| = ) < K/yptn = €
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where K = [-max, Var(1(x<z)) (and [ is the cardinality of the range of output). Now
define

y = o1 i sup[Fir, () — Fale”)[ = 7
’ 0 else.

This gives:
P,({3i > Nu(h) s:t. sup, |Fir, ()= F(zle)| = 7u} | BN 0t) < P(Y; = 1 for some i, 1 < i < n).

Note that {Y;}, are i.i.d and P(Y; = 1) < ¢,, by the Chebyshev bound. The fact
that ne,, — 0 then implies,

Pp(Cn) = Z Pp(Cﬂ {hNn(h)t"}’hN"(h)t">-Pp(hNn(h)tn)
Z P(Y; =1 for some i, 1 <i < n).pp(hNn(h)tn)
< nepy Bp(h) < ney 0.

IA

This contradicts that B,(r) C C,,V¥n > N(r) and lim,, P,(B,(r)) > 0, by Proposi-
tion 2. O

6.3 Omitted Proofs from Section 4

Proof of Proposition 4. Proceed via contradiction. Fix an € and find a sequence of
SPNE p; € ¥(9;) and associated work phases n; such that

lim P, (C(T,,)/ Ty, > ¢€) > 0.

Note that we may wlog take each p; to be a rectified profile and this doesn’t change
the P, -distribution of C(T},,)/Ty,. Now let N = U;{n;_1+1,...,n;} be the partition
of N induced by the sequence {n;} and, putting H? equal to the space of phase j
histories, define measures P; on H’ as follows. Put

(*) P] = ?Pi lﬁ] c {ni_l +1,.. ,TLZ}

Let P, := ®!_, P;. Abusing notation let H* now denote the product space H* =
H;’il H’. The following observation is a straightforward application of Kolmogorov’s
extension theorem (see Ch.6, Kallenberg (2002)).

Observation 4. There is a probability space (H*, F*, P,), with o-field F* C 21
and p.m. P, that uniquely extends P, to H*.

Proof of Observation 4. For each j identify each H? with a discrete subset of [j, j+1)
(vielding an embedding k : H* — RN) with corresponding discrete measure P,

where from (%) we have j € {n,_ + 1,...,n;}. For brevity, denote the mea-
sure as P;(j). Thus, we obtain a sequence of measures P, = ®/_, Pg(j) (resp. on
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(R", R"), where R"™ is the Borel o-algebra on R"). Moreover, note that the se-
quence is consistent, i.e. P,11(A x R) = P,(A), for any A € R" of the form
A= (Ay,..,A,),A; € R By Kolmogorov’s Extension Theorem, there is a (unique)
extension of the P,, call it u,, to (RN, RN). Now we can define the infinite product
measure. For the domain of the measure we take

F* =k ' (RN):={ACH :3Be RN st. A=r"!(B)}

and for A € F* we define
P,(A) = p.(B)

where B is any element of RN such that x~}(B) = A. The key is to check that
this gives a well-defined function. Let By, By € RN be s.t. A= k"1(B;) = k7 1(By).
Note that we have

e x(H*) is RN-measurable (as it is a countable intersection of sets which are
each finite unions of Gs’s in RN).

o 1. (k(H*)) =1 (by the extension property and continuity of p.(-)).
Also note that By Nk(H*) = k(A) = Bo N k(H*). It follows that
pe(B1) = pa(Br N K(H")) = pa(h(A)) = pa (B N £(H")) = p1(Ba)

so that P, is well-defined. For countable additivity let A; € F™ be disjoint, and
choose any B; such that x'(B;) = A;. Put B} := B;\(U} B;) and note that
since the A; are disjoint, k™1 (B;) = A;. It follows that P,(U; A;) = u.(U; Bf) =
> 1(BY) = 25 Pu(Ad). O

Now apply Proposition 2 and Proposition 3 to the composite measure P,. Note
that, by construction, we have lim P,(C(T},)/T,, > €) > 0. Hence, 3r > 0 such
that lim P,(sup, |Fr, (¥) — F(z|e*)] > r) > 0. Now note that the only input of
equilibrium in Proposition 3 was to be able to claim that the profiles generating
the conditional measures P,(-) on H™ were rectified. Rectification implies the r.v’s
|Fr, () — F'(x]|e*)| cannot be bounded above some fixed r with probability bounded
away from zero — as Type I error probabilities vanish. Hence, we have a contradiction,
implying that there could not have been a sequence of alleged counterexample SPNE
pi € X(8;) with P,,(C(T,,)/Tn, > €) 7 0. It follows that, given € > 0,¢ > 0, there
is some integer I(¢,€') such that Vn > I(e,€') we have

P,(C(T,))T, > €) < ¢

where the bound holds for all p € ¥(J) and for all § € [0,1). O
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Remark: The proof of Proposition 5 proceeds verbatim as in the preceding proof,
replacing C(T},) everywhere with F(7},). We omit the proof and just explain here
why the result is basically a duplicate of Proposition 4. The result of Proposition
4 rests on Propositions 2 and 3, where (i) Proposition 2 only uses C(T,,) insofar as
C(T,) C E(T,) so that a bound on C(7},)/T,, implies a bound on E(T,,)/T,, and (ii)
Proposition 3 only uses C(7,,) insofar as passing from a given p to its rectification p*
does not change its C(T,,)/T,, distribution (since no collusion takes place after the
KS statistic falls in the rejection region). When we restrict at the outset to rectified
SPNE (as in Proposition 5) this step is immediate, so we can switch to E(T},) here
as well.

Proof of Corollary 1. Let K denote the maximal payoff (taken across agents and
the principal) from the stage game. The idea is to find, for each §, a punishment
length L(6) satisfying three inequalities. The first inequality is

SFOK/(1—06) < é (11)

for some appropriately small ¢ to be specified. For the second inequality, let —K;
denote the maximal (expected) stage game loss for the principal (i.e. lowest expected
output minus insurance payments). Choose L(J) such that

PO K /(1 —06) <& (12)

For the third inequality on L(d) let é; denote the expected value of the bonus
payment from reporting in a given period. We need L(¢) long enough so that

SFOK/(1—6) < é. (13)

This ensures that under C(J) collusion stops once it becomes known that the KS
test registers failure. Let ¢,¢" be fixed as in the Corollary and let C(. .y denote the
contract produced by Theorem 1, with participation fee t.. Now choose ¢ and a
participation fee, f¢(s), such that the following inequality is satisfied:

t. < tew) — E(1—0). (14)

Note that the principal’s expected loss, viewed forward from a period where the KS
statistic has fallen into the rejection region, is at most é (by (11)). The inequalities
defining L(6), t¢(s) imply that the reduction in the participation fee (which itself
can be made arbitrarily small) outweighs the maximal potential loss to the prin-
cipal from restarting the review phases after a punishment of length L(§). Hence,
if we reduce the participation fee to t., his expected normalized discounted payoff
(viewed forward from the period where the punishment phase would commence) is
lower than in the equilibrium with the contract C(6).
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Consider the class of contracts, C(9), where the KS statistic and stage parameters
(e.g. Ri, Ry, etc.) are the same as in C(. ). Punishment lengths equal L(J) (chosen
to satisfy the above inequalities 11-14) and the per-period participation fee is some
tes) that satisfies (14). We claim that this collection {C(9)} satisfies the Corollary.
We check this by reducing the argument to the result of Theorem 1. Let us treat the
upper bound on agents’ payoffs. Let ps, be the sequence of SPNE in ¥(4,,) and for
each ps, consider the associated strategy, call it ps, , in the game induced by contract
C(ce)- The associated strategy profile ps, just mimics ps, along histories in which
the null hypothesis is never rejected. Along histories in which the null hypothesis is
rejected, the p strategy mimics p until the conclusion of the current review phase.
From that point on, there is nothing to mimic since the punishment length is infinite
under the contract C. ).

Note that by choice of the participation fee t¢(5) and the lengths L(0) we ob-
tain that payoffs to agents under C ) are weaker highly under the profile ps, than
under the contract C(d) when the profile ps, is played. Importantly, the participa-
tion constraint holds for the game induced by the contract C(. .y (under the profile
ps, ). Also note that the profile ps, inherits the property that collusion stops once
the null hypothesis is rejected (moreover, it is an SPNE if ps, is pure — although
we do not need this), hence the arguments of Theorem 1 apply to this modified
profile, as the only place where we use the hypothesis of equilibrium is to claim (i)
participation holds and (ii) that collusion stops once the null is rejected. Finally,
observe that the probability measures P,, live on the product space [], H*. Adjust
continuation probabilities as follows: include () in the space of continuation histories
and whenever punishment is incurred place all mass of the continuation probability
on (). Now extend to H* — arguing as in Observation 4 — to obtain a measure P;, on
the histories induced by C(. ). We apply the result of Theorem 1 to the sequence
(Ps,.> P55, ). Payoffs to agents from this sequence approach the first-best payoff. Since
payoffs under p are higher than under p, the upper bound on agents’ payofts follows.

Now for the principal’s payoff. Let ps, , ps, be as above, the latter with associated
measures P;; . Note that by choice of the participation fees (and since the participa-
tion constraint is satisfied under ps, ) and punishment lengths L(6), the principal’s
payoff in the contract C. .y under the profile ps, is lower than in the game induced
by contract C(d). Now apply the result of Theorem 1 to the pair (ps,, P, ). Since
participation holds under this sequence of profiles, the principal’s payoff approaches
the first-best benchmark. Since payoffs under the contracts C(J) (under the equilibria
ps, ) are (weakly) higher, the lower bound follows. O

41



References

Abdulkadiroglu, Attila, & Chung, Kim-Sau. 2003. Auction Design with Tacit Col-
lusion. Mimeo.

Abreu, Dilip, Pearce, David, & Stacchetti, Ennio. 1990. Toward a Theory of Dis-
counted Repeated Games with Imperfect Monitoring. FEconometrica, 58, 1041—
1063.

Blackwell, David. 1962. Discrete Dynamic Programming. Annals of Mathematical
Statistics, 33, 7T19-726.

Blackwell, David, & Ferguson, Tom S. 1968. The Big Match. Annals of Mathematical
Statistics, 39, 159-163.

Bonatti, Alessandro, & Horner, Johannes. 2009. Collaborating. American Economic
Review, 101, 632-663.

Brusco, Sandro. 1997. Implementing Action Profiles when Agents Collude. Journal
of Economic Theory, 73, 395-424.

Che, Yeon-Koo, & Yoo, Seon-Young. 2001. Optimal Incentives for Teams. American
Economic Review, 91, 525-541.

Compte, Olivier. 1998. Communication in Repeated Games with Imperfect Private
Monitoring. Econometrica, 66, 597-626.

Crémer, Jacques, & McLean, Richard. 1988. Full Extraction of the Surplus in
Bayesian and Dominant Strategy Auctions. Fconometrica, 56, 1247-1257.

Escobar, Juan, & Toikka, Juuso. 2012. Efficiency in Games with Markovian Private
Information. Econometrica, 81, 1887-1934.

Fudenberg, Drew, Levine, David K., & Maskin, Eric. 1994. The Folk Theorem with
Imperfect Public Information. Fconometrica, 56, 997-1039.

Holmstrom, Bengt. 1982. Moral Hazard in Teams. Bell Journal of Economics, 13,
324-340.

Horner, Johannes, & Lovo, Stefano. 2009. Belief-Free Equilibria in Games with
Incomplete Information. Econometrica, 77, 453—487.

Horner, Johannes, & Olszewski, Wojciech. 2006. The Folk Theorem for Games with
Private Almost-Perfect Monitoring. Econometrica, 74, 1499-1544.

Ishiguro, Shingo, & Itoh, Hideshi. 2001. Moral Hazard and Renegotiation with
Multiple Agents. The Review of Economic Studies, 68, 1-20.

42



Itoh, Hideshi. 1991. Incentives to Help in Multi-Agent Situations. FEconometrica,
59, 611-636.

Kallenberg, Olav. 2002. Foundations of Modern Probability. Springer-Verlag.

Kohlberg, Elon. 1974. Repeated games with absorbing states. Annals of Mathemat-
ical Statistics, 39, 724-738.

Ma, Ching-to A. 1988. Unique Implementation of Incentive Contracts with Many
Agents. The Review of Economic Studies, 55, 555-571.

Ma, Ching—to A., Moore, John, & Turnbull, Steven. 1988. Stopping Agents from
Cheating. Journal of Economic Theory, 46, 355-372.

Mailath, George, & Samuelson, Larry. 2006. Repeated Games and Reputations:
Long-Run Relationships. Oxford University Press.

Maschler, Michael, Solan, Eilon, & Zamir, Shmuel. 2013. Game Theory. Cambridge
University Press.

Mertens, Jean-Francois, & Neyman, Abraham. 1981. Stochastic games. Interna-
tional Journal of Game Theory, 10, 53—66.

Mertens, Jean-Francois, & Zamir, Shmuel. 1981. The value of two-person zero-sum
repeated games with lack of information on both sides. International Journal of
Game Theory, 10, 53-66.

Miller, Nolan H. 1997. Efficiency in Partnerships with Joint Monitoring. Journal of
Economic Theory, 77, 285-299.

Mookherjee, Dilip. 1984. Optimal Incentive Schemes with Many Agents. The Review
of Economic Studies, 51, 433—446.

Neyman, Abraham, & Sorin, Sylvain. 1998. Equilibria in repeated games of incom-

plete information: The general symmetric case. International Journal of Game
Theory, 27, 201-210.

Radner, Roy. 1981. Monitoring Cooperative Agreements in a Repeated Principal-
Agent Relationship. Econometrica, 49, 1127-1148.

Radner, Roy. 1985. Repeated Principal-Agent Games with Discounting. Economet-
rica, 53, 1173-1198.

Renault, Jérome, Solan, Eilon, & Vieille, Nicolas. 2013. Dynamic Sender-Receiver
Games. Journal of Economic Theory, 148, 502-534.

43



Renou, Ludovic, & Tomala, Tristan. 2013. Approximate Implementation in Marko-
vian Environments. Mimeo.

Rogerson, William P. 1985. Repeated Moral Hazard. Fconometrica, 53, 69-76.

Rosenberg, Dinah, Solan, Eilon, & Vieille, Nicolas. 2004. Blackwell Optimality in
Markov Decision Processes with Partial Observation. Annals of Statistics, 32,
2742-2775.

Rubinstein, Ariel, & Yaari, Menahem. 1983. Repeated Insurance Contracts and
Moral Hazard. Journal of Economic Theory, 30, 74-97.

Sannikov, Yuliy. 2007. Games with Imperfectly Observable Actions in Continuous
Time. Econometrica, 75, 1285-1329.

Sannikov, Yuliy. 2008. A Continuous-Time Version of the Principal-Agent Problem.
The Review of Economic Studies, 75, 957-984.

Sobel, Matthew J. 1971. Noncooperative Stochastic Games. Annals of Mathematical
Statistics, 42, 1930-1935.

Solan, Eilon. 1999. Three-person absorbing games. Mathematics of Operations
Research, 24, 669-698.

Solan, FEilon, & Vieille, Nicolas. 2010. Computing uniformly optimal strategies in
two-player stochastic games. Fconomic Theory, 42, 237-253.

Sorin, Sylvain. 1984. Big Match with Lack of Information on One Side (Part I).
International Journal of Game Theory, 13, 201-255.

Sorin, Sylvain. 1985. Big Match with Lack of Information on One Side (Part II).
International Journal of Game Theory, 14, 173-204.

Spear, Steven, & Srivastava, Sanjay. 1987. On Repeated Moral Hazard with Dis-
counting. The Review of Economic Studies, 54, 599-617.

Sugaya, Takuo. 2010. The Folk Theorem in Repeated Games with Private Monitor-
ing. Mimeo.

Sugaya, Takuo. 2011. Belief-Free Review Strategy Equilibrium without Conditional
Independence. Mimeo.

Thuijsman, Frank, & Raghavan, Thirukkannamangai Fachambadi S. 1997. Per-
fect Information Stochastic Games and Related Classes. International Journal of
Game Theory, 26, 403-408.

44



Thuijsman, Frank, & Vrieze, Okko J. 1989. On Equilibria in Repeated Games with
Absorbing States. International Journal of Game Theory, 18, 293-310.

Vieille, Nicolas. 2000. Equilibrium in 2-person stochastic games. I. A reduction.
Israel Journal of Mathematics, 119, 55-91.

Yamamoto, Yuichi. 2012. Characterizing belief-free review-strategy equilibrium pay-
offs under conditional independence. Journal of Economic Theory, 147, 1998—
2027.

45



	Introduction
	Related Literature

	The Stage Contract
	The Infinite Horizon Contract
	Statistical Testing
	Contract Description
	Equilibrium Behavior

	Main Result
	Proof of Theorem 1

	Conclusion
	Appendix - Omitted Proofs
	Omitted Proofs from Section 2
	Omitted Proofs from Section 3
	Omitted Proofs from Section 4


