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Consider an urn filled with balls, each labeled with one of several pos-
sible collective decisions. Now, let a random voter draw two balls from
the urn and pick her more preferred as the collective decision. Relabel
the losing ball with the collective decision, put both balls back into the
urn, and repeat. Once in a while, relabel a randomly drawn ball with a
random collective decision. We prove that the empirical distribution of
collective decisions produced by this process approximates a maximal lot-
tery, a celebrated probabilistic voting rule proposed by Peter C. Fishburn
(Rev. Econ. Stud., 51(4), 1984). In fact, the probability that the collective
decision in round n is made according to a maximal lottery increases ex-
ponentially in n. The proposed procedure is more flexible than traditional
voting rules and bears strong similarities to natural processes studied in
biology, physics, and chemistry as well as algorithms proposed in machine
learning.

1. Introduction

The question of how to collectively select one of many alternatives based on the
preferences of multiple agents has occupied great minds from various disciplines. Its
formal study goes back to the Age of Enlightenment, in particular during the French
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Revolution, and the important contributions by Jean-Charles de Borda and Marie
Jean Antoine Nicolas de Caritat, better known as the Marquis de Condorcet. Borda
and Condorcet agreed that plurality rule—then and now the most common collec-
tive choice procedure—has serious shortcomings. This observation remains a point of
consensus among social choice theorists and is largely due to the fact that plurality
rule merely asks each voter for her most-preferred alternative (see, e.g., Brams and
Fishburn, 2002; Laslier, 2011).1 When eliciting more fine-grained preferences such as
complete rankings over all alternatives from the voters, much more attractive choice
procedures are available. As a matter of fact, since Arrow’s (1951) seminal work, the
standard assumption in social choice theory is that preferences are given in the form
of binary relations that satisfy completeness, transitivity, and often anti-symmetry.
Despite a number of results which prove critical limitations of choice procedures for
more than two alternatives (e.g., Arrow, 1951; Gibbard, 1973; Satterthwaite, 1975),
there are many encouraging results (e.g. Young, 1974; Young and Levenglick, 1978;
Brams and Fishburn, 1978; Laslier, 2000a). In particular, when allowing for random-
ization between alternatives, some of the traditional limitations can be avoided and
there are appealing choice procedures that stand out (Gibbard, 1977; Brandl et al.,
2016; Brandl and Brandt, 2020).

The standard framework in social choice theory rests on a number of rigid as-
sumptions that confine its applicability: there is a fixed set of voters, a fixed set
of alternatives, and a single point in time when preferences are to be aggregated;
all voters are able to rank-order all alternatives; there is a central authority that
collects all these rankings, computes the outcome, and convinces voters of the out-
come’s correctness, etc. On top of that, computing the outcome of many attractive
choice procedures is a demanding task that requires a computer, which can render
the process less transparent to voters.2

In this paper, we devise an ongoing process in which voters may arrive, leave, and
change their preferences over time and collective decisions are made repeatedly at

1For example, plurality rule may select an alternative that an overwhelming majority of voters
consider to be the worst of all alternatives.

2In some cases, computing the outcome was even shown to be NP-hard, i.e., the running time of
all known algorithms for computing election winners increases exponentially in the number of
alternatives (see, e.g., Bartholdi, III et al., 1989; Brandt et al., 2016).
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small probability r (mutation).
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(iii) The distribution of winners converges to a
maximal lottery w.r.t. the voters’ preferences.

Figure 1: Illustration of one round of the urn process (i and ii) and the main result (iii).

intervals. Voters are never asked for their complete preference relations, but rather
reveal minimal information about their preferences by choosing between two randomly
drawn alternatives from time to time. No central voting authority is required. The
process can be executed via a simple physical device: an urn filled with balls that
allows for two primitive operations: (i) randomly sampling a ball and (ii) replacing
a sampled ball of one kind with a ball of another kind. More precisely, the process
works as follows (see Figure 1). There is an urn filled with balls that each carry the
label of one alternative. The initial distribution of balls in the urn is arbitrary. In
each round, a randomly selected voter will draw two balls from the urn at random.
Say these two balls are labeled with alternatives 1 and 2, and the voter prefers 1 to
2. She will then change the label of the second ball to 1 and return both balls to the
urn. Alternative 1 is declared the collective choice—or winner—of this round. After
each round, with some small probability r which we call mutation rate, a randomly
drawn ball is relabeled with a random alternative.

We show that if the number of balls in the urn is sufficiently large, then the limit
of the empirical distribution of winners is almost surely close to a maximal lottery—
a randomized extension of the Condorcet principle that was proposed by Fishburn
(1984) and enjoys many desirable axiomatic properties. How far the limiting distri-
bution will be from a maximal lottery depends on r. As r goes to 0, the limiting
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distribution converges to a maximal lottery. We can, however, not set r to 0 as then
almost surely, all alternatives except one will permanently disappear from the urn and
the limiting distribution will be degenerate. Our proof not only shows convergence of
the limiting distribution but also that the probability that the urn distribution itself
is close to a maximal lottery gets arbitrarily close to 1 and increases exponentially
in the number of rounds. The winners of most rounds are thus selected according to
approximate maximal lotteries.

1.1. Maximal Lotteries and Dynamic Voting

The basic idea of maximal lotteries is to avoid the Condorcet paradox—which lies at
the heart of classic impossibility theorems—by extending the notion of a Condorcet
winner to lotteries. A lottery p is a randomized Condorcet winner—or maximal—if
for any other lottery q, a random voter is more likely to prefer the alternative sampled
from p to that sampled from q than vice versa.3 The minimax theorem guarantees that
maximal lotteries exist. Maximal lotteries also have a natural interpretation in terms
of electoral competition (see, e.g., Myerson, 1993; Laslier, 2000b; Carbonell-Nicolau
and Ok, 2007). In fact, maximal lotteries are precisely the mixed Nash equilibrium
(or maximin) strategies of the symmetric two-player zero-sum game given by the
pairwise majority margins of the voters’ preferences. When interpreting the two
players as parties and the alternatives as possible positions of the parties, this can be
seen as a game of electoral competition in which two parties aim at maximizing the
number of voters who prefer their (mixed) position to that of the other party. For
this reason, the social choice literature sometimes refers to the support of maximal
lotteries as the bipartisan set (a term proposed by Roger Myerson).

Maximal lotteries are known to satisfy a number of desirable properties that are
typically considered in social choice theory (see, e.g., Felsenthal and Machover, 1992;
Laslier, 2000a; Rivest and Shen, 2010; Hoang, 2017; Brandl et al., 2022). For example,
Condorcet winners (i.e., alternatives that defeat every other alternative in a pairwise
majority comparison) will be selected with probability 1, and Condorcet losers (i.e.,
alternatives that are defeated in all pairwise majority comparisons) will never be se-

3This comparison of lotteries induces a binary relation on lotteries whose maximal elements are
precisely the maximal lotteries.
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lected. No group of voters benefits by abstaining from an election, removing losing
alternatives does not affect maximal lotteries, and each alternative’s probability is
unaffected by cloning other alternatives. Maximal lotteries have been axiomatically
characterized using Arrow’s independence of irrelevant alternatives and Pareto effi-
ciency (Brandl and Brandt, 2020) as well as population-consistency and composition-
consistency (Brandl et al., 2016). The dynamic procedure described above implements
maximal lotteries while providing

• myopic strategyproofness within each round,

• minimal preference elicitation and thus increased privacy protection,

• verifiability realized via a simple physical procedure, and

• all-round flexibility.

Myopic strategyproofness : Each round’s decision is made by letting a randomly se-
lected voter choose between two alternatives. Clearly, a voter who is only concerned
with the outcome of the current round is best off by choosing the alternative that
she truly prefers. If she also takes into account the outcomes of future rounds, how-
ever, she may be able to skew the distribution in the urn by choosing alternatives
strategically.4

Preference elicitation: Eliciting pairwise preferences on an as-needed basis has several
advantages. First, it spares the voters from the cognitive burden of having to rank-
order all alternatives at once. If the number of voters is large, it may well be possible
that the urn process yields satisfying results without ever querying some of the voters.
Secondly, rather than submitting a complete ranking of all alternatives to a trusted
authority, voters only reveal their preferences by making pairwise choices from time
to time.5

4Maximal lotteries, like any ex post Pareto efficient randomized choice procedure other than ran-
dom dictatorships, fail to be strategyproof (Gibbard, 1977). The simple notion of myopic strat-
egyproofness could be strengthened by discounting future rounds.

5Privacy can be further increased by letting voters draw their balls privately, announce the winner,
and put two balls of the same color back into the urn, without revealing the original color of
the losing ball. Alternatively, the voters’ preferences can be protected completely by letting the
voter publicly draw both balls, make one copy of each ball, and let her privately put back two
balls of her choice. The collective decision in each round can then be made by drawing a random
ball from the urn.
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Verifiability : Previously, the deployment of maximal lotteries required that a central
authority collects the preferences of all voters, computes a maximal lottery by solving
a linear program, and instantiates the lottery in some user-verifiable way. The urn
process allows to achieve these goals via a simple physical device.

Flexibility : The urn process is oblivious to changes in the voters’ preferences, the set
of voters as well as the set of alternatives. Everything that has happened up to the
current round is irrelevant. Since the process converges from any initial configuration,
it will keep “walking in the right direction” (towards a maximal lottery of the current
preference profile). If the preferences change slowly in the sense that only a small
fraction of voters changes their preferences from one round to the next, collective
choices will thus be made according to a maximal lottery for the current preferences
in most rounds. This includes the case when the distribution of preferences converges.

We also note some disadvantages of the urn process. The convergence of the dis-
tribution of winners to an approximate maximal lottery is an asymptotic result. In
particular, for a finite number of rounds, there is a non-zero probability that the
chosen alternative is subpar for a significant fraction of rounds, for example, because
it is Pareto dominated. To bound this probability below an acceptable threshold,
it may be necessary to run the process for an excessively large number of rounds.
Second, ensuring that the limit distribution is sufficiently close to a maximal lottery
could require an urn with a large number of balls. We address the first concern by
showing that the probability for the distribution of winners to be far from the limit
distribution converges to 0 exponentially fast in the number of rounds. The rate of
convergence is also evident in computational simulations we ran for various param-
eterizations of the process. When the preference profile admits a Condorcet winner,
we can give tractable bounds on the number of balls in the urn required to achieve a
good approximation in the limit. This partially mitigates the second concern since it
has been observed that most real-world preference profiles admit Condorcet winners
(see, e.g., Gehrlein and Lepelley, 2011).

The axiomatic characterizations of maximal lotteries not only imply that maximal
lotteries satisfy desirable axioms, but also that any deviation from maximal lotter-
ies leads to a violation of at least one of the axioms. Hence, a process that only
guarantees an approximation of a maximal lottery will not enjoy the same axiomatic
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properties. However, rather than insisting on stringent axioms, one can relax them
by only requiring them to hold in an approximate sense. For example, a natural
notion of approximate Condorcet-consistency would require that a Condorcet winner
receives probability close to 1 whenever one exists. Since the empirical distribution
of winners according to our process is almost surely close to a maximal lottery and
maximal lotteries are Condorcet-consistent, the process is approximately Condorcet-
consistent in the above sense. More generally, approximate maximal lotteries satisfy
approximate versions of many of the axioms enjoyed by maximal lotteries such as
population-consistency, composition-consistency, agenda-consistency, and efficiency.6

Maximal lotteries have been repeatedly recommended for practical use (Felsenthal
and Machover, 1992; Rivest and Shen, 2010; Brandl et al., 2016; Hoang, 2017). We
believe that the benefits of the urn process described above extend the applicability of
maximal lotteries. Rather than for traditional political elections, probabilistic rules
like maximal lotteries seem more suitable for frequently repeated low-stakes elections
where some degree of randomization may not only be tolerable but even desirable.
Two example applications that have been suggested for maximal lotteries are to help a
group of coworkers with the daily decision where to have lunch and to select music for
a party or a radio station based on the preferences of the listeners (Brandl et al., 2016).
The transparency and the flexibility of the urn process seem particularly effective in
the music broadcasting example. Agents come and go, they only need to select from
a pair of songs rather than rank-order all of them, and individual preferences, as
well as the set of available songs, can be changed at any time. Our theorem shows
that the sequence of simple pairwise choices results in a socially desirable distribution
of songs: the more songs are being played, the less likely it becomes that another
distribution of songs would have been preferred by an expected majority of listeners.
It is plausible that, over time, the preferences of the listeners change depending on
the songs that have been played so far. These changes will be reflected immediately
in the selection of future songs.

6Details on how these statements can be formalized are given in an extended version of this paper
(Brandl and Brandt, 2021).
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1.2. Applications Beyond Collective Decision-Making

Interestingly, dynamic processes similar to the process we describe here have recently
been studied in population biology, quantum physics, chemical kinetics, and plasma
physics to model phenomena such as the coexistence of species, the condensation of
bosons, the reactions of molecules, and the scattering of plasmons. In each of these
cases, simple interactions between randomly sampled entities result in distributions
that correspond to equilibrium strategies of symmetric zero-sum games. Since the
definition of maximal lotteries and our dynamic process merely rely on this compari-
son matrix, describing with which probability one entity will be replaced with another
in a pairwise encounter, our results are also of relevance to these areas. We discuss
these connections, as well as those to equilibrium learning and evolutionary game
theory, in more detail in Section 5.

An alternative interpretation of our result can be used to describe the formation of
opinions. In this model, there is a population of agents, each of which entertains one
of many possible opinions. Agents come together in random pairwise interactions, in
which they try to convince each other of their opinion. The probabilities with which
one opinion beats another are given as a square matrix and, with some small proba-
bility, an agent randomly changes her opinion. In other words, the agents correspond
to the balls in the urn, the opinions correspond to the alternatives, and there are
neither voters nor preference profiles as transition probabilities are given explicitly.
Our theorem then shows that, if the population is large enough, the distribution of
opinions within the population is close to a maximal lottery of the probability matrix
most of the time. Other models of opinion formation based on different processes
were for example considered by DeGroot (1974), Holley and Ligget (1975), and Goel
and Lee (2014).

The process we describe approximately computes a mixed Nash equilibrium of a
symmetric zero-sum game. This problem is known to be equivalent to linear program-
ming. In fact, deciding whether an action is played with positive probability in an
equilibrium of a symmetric zero-sum game is P-complete (Brandt and Fischer, 2008,
Theorem 5), which, loosely speaking, means that the problem is at least as hard as any
problem that can be solved in polynomial time. The urn process can thus be seen as a
probabilistic algorithm that approximates polynomial-time computable functions. In
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contrast to traditional computing devices such as Turing machines, the urn process
is based on unordered elementary entities that randomly interact according to very
simple replacement rules.7

The remainder of the paper is structured as follows. After defining our model in
Section 2, we state the main result (Theorem 1) and a rough proof sketch in Section 3.
The full proof is given in the Appendix. In Section 4, we analyze the instructive
special case of preference profiles that admit a Condorcet winner, which allows for a
more elementary proof. In Section 5, we extensively discuss the connections between
our work and results from equilibrium learning, evolutionary game theory, and the
natural sciences. We also state a continuous version of our main result (Theorem 2)
that may be of independent interest.

2. The Model

Let [d] = {1, . . . , d} be a set of alternatives and ∆ the d− 1-dimensional unit simplex
in Rd, that is, ∆ = {x ∈ Rd

≥0 :
∑d

i=1 xi = 1}. We refer to elements of ∆ as lotteries.
By N = {1, 2, . . . } and N0 = N∪ {0} we denote the sets of positive and non-negative
integers, respectively. Throughout the paper, for a vector x ∈ Rk for some k, |x| =∑k

l=1|xl| denotes its L1-norm. For δ > 0 and S ⊂ Rd, let Bδ(S) = {x ∈ ∆: |x− y| <
δ for some y ∈ S} be the δ-ball around S. For a finite set S, we write |S| for the
number of elements of S.

A preference relation ≻ is an asymmetric binary relation over [d].8 By R we denote

7Related decentralized models of computation with applications to sensor networks and molecular
computing are studied under the name “population protocols” in computer science (e.g., Angluin
et al., 2006; Aspnes and Ruppert, 2009). While the urn process has the same modus operandi as
population protocols, the input-output behavior is different. The input of population protocols
is given by the initial distribution of balls in the urn and the output has been reached if all
balls belong to a certain subset of types. By contrast, the input for our urn process is encoded
in the matrix describing the replacement rules and the (approximate) output is given by the
distribution of balls in the urn after sufficiently many rounds.

8Preferences need not be transitive or complete. The definition of maximal lotteries and the urn
process we describe only depend on the fractions of voters who prefer one alternative to another.
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the set of all preference relations. Let V be a finite set of voters. A preference profile
R ∈ RV specifies a preference relation for each voter. With each preference profile
R, we can associate a comparison matrix MR ∈ [0, 1]d×d that states for each ordered
pair of alternatives the fraction of voters who prefer the first to the second. That
is, MR(i, j) = |{v ∈ V : i ≻v j}|/|V |. This matrix induces a skew-symmetric matrix
M̃R = MR −M⊺

R, which we call the skew-comparison matrix.9

2.1. Maximal Lotteries

A lottery p ∈ ∆ is a maximal lottery for a profile R if M̃R p ≤ 0. The minimax
theorem implies that every profile admits at least one maximal lottery. By ML(R) we
denote the set of all lotteries that are maximal for R. Most profiles admit a unique
maximal lottery. For example, when the number of voters is odd and voters have
strict preferences, there is always a unique maximal lottery (Laffond et al., 1997).

Example 1 (Condorcet winner). Consider, for example, 900 voters, three alterna-
tives, and a preference profile R given by the following table. Each column header
contains the number of voters with the corresponding preference ranking.

300 300 300

1 1 2

2 3 3

3 2 1

Then,

MR =

 0 2/3 2/3

1/3 0 2/3

1/3 1/3 0

 and M̃R =

 0 1/3 1/3

−1/3 0 1/3

−1/3 −1/3 0

 .

The set of maximal lotteries ML(R) = {(1, 0, 0)⊺} only contains the degenerate lottery
with probability 1 on the first alternative. This alternative is a Condorcet winner,

In particular, indifferences can easily be accommodated by randomly selecting which of the two
balls will be relabelled.

9A matrix M is skew-symmetric if M = −M⊺.
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i.e., an alternative that is preferred to every other alternative by some majority of
voters.

2.2. Markov Chains

Let S be a finite set and {X(n) : n ∈ N0} be a discrete-time, time-homogeneous
Markov chain with state space S. The transition probability matrix P ∈ [0, 1]S×S of
{X(n) : n ∈ N0} is given by

P (p, p′) = P (X(n+ 1) = p′ | X(n) = p)

for all p, p′ ∈ S. We will frequently write X(n, p0) for X(n) conditioned on X(0) =

p0 ∈ S and call p0 the initial state.
The period of a state p ∈ S is the greatest common divisor of the return times with

positive probability {n ∈ N : (P n)(p, p) > 0}. A Markov chain is aperiodic if every
state has period 1. Note that any Markov chain with P (p, p) > 0 for all p ∈ S is
aperiodic. A Markov chain is irreducible if every state is reached from any other state
with positive probability. That is, for any two states p, p′ ∈ S, there is a positive
integer n so that (P n)(p, p′) > 0. If {X(n) : n ∈ N0} is irreducible and aperiodic, it
has a unique stationary distribution π ∈ ∆S so that π⊺ = π⊺P .

2.3. The Urn Process

Consider an urn with N ∈ N balls, each labeled with some alternative. Viewing balls
with the same label as indistinguishable, we can identify each state of the urn with
an element of the discrete unit simplex ∆(N) = {p ∈ ∆: Np ∈ Nd

0}. Fix a mutation
rate r ∈ [0, 1].

We are interested in a Markov chain with state space ∆(N) that can be informally
described as follows. First, we flip a coin that has probability 1− r of landing heads.
If the coin shows heads, we choose one voter v ∈ V uniformly at random and ask the
voter to draw two balls from the urn. Say these two balls are labeled with alternatives
1 and 2. If 1 ≻v 2, the label of the second ball is changed to 1. Likewise, if 2 ≻v 1,
the first ball is relabeled with label 2. If both balls carry the same label, the labels
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remain unchanged. If the coin shows tails, we draw a single ball from the urn, relabel
it with an alternative chosen uniformly at random, and put it back into the urn.

This description of the process assumes that two alternatives are sampled from the
urn distribution without replacement. For the formal description, we will assume that
drawing is with replacement. This corresponds to sampling one alternative by drawing
one ball, putting the ball back into the urn, and sampling a second alternative by
again drawing one ball (which may be the same as the first).10 Doing so avoids a lot
of clumsy notation. If the number of balls in the urn is large, there is no significant
difference between drawing with and without replacement. In the proof, we point
out why the same arguments also carry through with minor adaptions for drawing
without replacement.

We define a transition probability matrix P (N,r) that specifies for every pair of
states the probability that the distribution of the urn transitions from the first to the
second. Denote by ei the ith unit vector in Nd

0. For p ∈ ∆(N) and i, j ∈ [d] with
p′ = p+ ei

N
− ej

N
∈ ∆(N), let

P (N,r)(p, p′) =


(1− r)2pipjMR(i, j) +

r

d
pj if i ̸= j

(1− r)
d∑

k=1

p2k +
r

d
if i = j

be the probability of transitioning from p to p′. For the remaining pairs of states
p, p′ ∈ ∆(N), let P (N,r)(p, p′) = 0. Then, P (N,r) has non-negative values and its
rows sum to 1 so that it is a valid transition probability matrix. For an initial
state p0 ∈ ∆(N), we consider a Markov chain {X(N,r)(n, p0) : n ∈ N0} with transition
probability matrix P (N,r). The distribution of X(N,r)(n, p0) over ∆(N) is given by the
row of

(
P (N,r)

)n with index p0. If r > 0, this Markov chain is irreducible and aperiodic
(since it remains in the same state with positive probability). It corresponds to the
urn process described above when the initial state of the urn is p0.

Continuing Example 1, consider an urn with N = 5 balls and recall that d = 3.

10In practice, it would the be infeasible to relabel the first drawn ball since it is “lost” in the urn
after putting it back. However, one could modify the process by relabeling the second ball if
the voter prefers the first sampled alternative and change nothing otherwise. This eliminates the
factor of 2 in the transition probabilities below but does not change the results.
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Then, the transition probability matrix P (N,r) is an
(
3+5−1

5

)
= 21-dimensional square

matrix. Let the mutation rate be r = 0.1 and the initial state p0 = 1
5
(1, 2, 2)⊺. The

probability that one of the balls of the second type is replaced with one of the first
type is

P (5,0.1)(p0,
1

5
(2, 1, 2)⊺) = 0.9 · 4

25
· 2
3
+ 0.1 · 1

3
· 2
5
∼ 0.109.

3. The Result

We prove the following:

For any small enough mutation rate r > 0, there is a maximal lottery p∗ so
that for any initial state p0, X(N,r)(k, p0) is close to p∗ for all but a small
fraction of rounds k provided that the number of balls N is large enough.

More precisely, for any δ, τ > 0, there is an upper bound on the mutation rate r0 > 0

so that for every 0 < r ≤ r0, there is a maximal lottery p∗ and a lower bound on the
number of balls N0 ∈ N such that for every N ≥ N0 and every p0 ∈ ∆(N), the fraction
of rounds k in which X(N,r)(k, p0) is no more than δ away from p∗ is almost surely at
least 1− τ .11

Theorem 1. Let δ, τ > 0. Then, there is r0 > 0 such that for all 0 < r ≤ r0, there
are p∗ ∈ ML(R) and N0 ∈ N such that for all N ≥ N0 and p0 ∈ ∆(N), almost surely

lim
n→∞

1

n

∣∣{k ≤ n :
∣∣X(N,r)(k, p0)− p∗

∣∣ ≤ δ
}∣∣ ≥ 1− τ.

Moreover, there is C > 0 such that for all n ∈ N0,

P
(∣∣X(N,r)(n, p0)− p∗

∣∣ ≤ δ
)
≥ 1− τ − e−⌊Cn⌋.

11Theorem 1 implies that the stationary distribution of X(N,r) assigns probability at least 1− τ to
states that are in a δ-neighborhood of p∗. Conversely, this property of the stationary distribution
implies Theorem 1 by the ergodic theorem for Markov chains. The proof does however not derive
the above property of the stationary distribution as an intermediate step. It is only a by-product
of the final result. For more than two alternatives, our result is stronger than proving that
the expectation of the stationary distribution, or, equivalently, the temporal average of the urn
distribution, is close to a maximal lottery.
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To prove this, we approximate our discrete and stochastic urn process by a con-
tinuous and deterministic process. The latter can be viewed as a version of the urn
process with a continuum of balls. Using analytical tools, it can be shown that this
process converges to an approximate maximal lottery for every initial state, where
the approximation can be made arbitrarily precise if r is made small (see Theorem 2
in Section 5). The approximation only works for a finite number of rounds (respec-
tively, bounded time interval) and only with probability close to 1 (rather than almost
surely). However, on long enough time intervals, the deterministic process is close
to an approximate maximal lottery most of the time (since it converges to such a
lottery). Moreover, on any such interval, the deterministic process is a good approxi-
mation to the stochastic process with probability close to 1 (provided that the number
of balls is large enough). By a variant of the strong law of large numbers, it then
follows that the stochastic process is close to an approximate maximal lottery for
most rounds almost surely. This is the first statement of Theorem 1. We give a more
detailed outline and a complete proof in the Appendix. The second statement follows
from the first using the standard result that the distribution of an irreducible and
aperiodic Markov chain converges exponentially fast to its stationary distribution in
the total variation norm.

Theorem 1 is a statement about the distribution in the urn. Recall that the collec-
tive decision in each round is the winner of the pairwise comparison between the two
drawn balls. It is not hard to show that the empirical distribution of winners is also
close to a maximal lottery.12

Another straightforward corollary of Theorem 1 is that the temporal average of the
urn distribution is almost surely close to a maximal lottery (provided that r is small

12Suppose the distribution of balls in the urn is p ∈ ∆(N). Then the probability that i ∈ [d] is the
collective decision is

wi = pi

(
pi + 2

∑
j ̸=i

MR(i, j)pj

)
= pi

(
pi +

∑
j ̸=i

(M̃R(i, j) + 1)pj

)
= pi

(
1 + M̃Rp

)
where we used that 2MR(i, j) = M̃R(i, j)+1,

∑
j∈[d] pj = 1, and MR(i, i) = 0. If p∗ is a maximal

lottery and |p− p∗| ≤ δ, then (M̃Rp)i ≤ δ for all i ∈ [d]. Hence, wi ∈ [pi − δ, pi + δ] for all i, so
that |w − p∗| ≤ (d + 1)δ. For every δ′ > 0, choosing δ = τ = δ′

2(d+1) in Theorem 1 thus shows
that the empirical distribution of collective decisions is almost surely no more than δ′ away from
p∗.
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and N is large). Let

Z(N,r)(n, p0) =
1

n
·
n−1∑
k=0

X(N,r)(k, p0)

be the temporal average of X(N,r)(k, p0) over the first n rounds. Then, we have the
following.

Corollary 1. Let δ > 0. Then, there is r0 > 0 such that for all 0 < r ≤ r0, there are
p∗ ∈ ML(R) and N0 ∈ N such that for all N ≥ N0 and p0 ∈ ∆(N),

P
(∣∣∣ lim

n→∞
Z(N,r)(n, p0)− p∗

∣∣∣ ≤ δ
)
= 1

Proof. For some τ to be determined later, let r0 and, depending on 0 < r ≤ r0, p∗
and N0 be as obtained from Theorem 1. By the triangle inequality, we have

∣∣Z(N,r)(n, p0)− p∗
∣∣ ≤ 1

n
·
n−1∑
k=0

∣∣X(N,r)(k, p0)− p∗
∣∣ .

By Theorem 1, in the limit when n goes to infinity, all but a 1 − τ fraction of the
summands on the right-hand side are smaller than δ. The remaining summands are
bounded by 2. Hence, choosing τ = δ

2
gives that almost surely, |limn→∞ Z(N,r)(n, p0)−

p∗| ≤ 2δ. The ergodic theorem for Markov chains ensures that the limit exists.

Before illustrating these results via examples, we discuss variations of the urn pro-
cess.

Remark 1 (Decoupling collective decisions). We assume that in each round, a col-
lective decision is made by selecting the winner of the pairwise comparison. It may
however be more practical to decouple collective decisions from the preference elic-
itation process and draw winners less frequently. For example, collective decisions
could be made by drawing a random ball after any fixed number of rounds or at
random times. Corollary 1 shows that the resulting distribution would approximate
a maximal lottery.

15



Remark 2 (Non-uniform mutation rates). The results still hold if we let the prob-
ability of a random mutation from alternative i to alternative j depend on the pair
(i, j). It suffices that every alternative in the support of a maximal lottery can escape
permanent depletion via some path of mutations. More explicitly, it suffices if for
any two alternatives i and j, there is a path of alternatives from i to j so that the
mutation rate is positive from any alternative on the path to the next. The proof can
be adapted at the expense of more book-keeping.

Remark 3 (Mutation rate vs. urn size). Corollary 1 shows that the temporal average
of the urn distribution converges to a maximal lottery if we let N go to infinity
and then take r to 0 (see also Theorem 2). This is in contrast to other works on
evolutionary dynamics that take limits in the reverse order.13 While the frameworks
are similar, these results are conceptually different. In our model, if r is too small
compared to 1

N
, it will in general not be the case that the distribution in the urn

is close to a maximal lottery for most rounds. For any long enough time interval,
the distribution in the urn will for all r degenerate within the interval with high
probability, that is, it will only contain balls of one type. If r is very small, it will
stay in a degenerate state for a long time (compared to the chosen interval) with high
probability. When the process leaves the degenerate state, the same will repeat itself
(possibly with a different degenerate state), so that the process spends most rounds in
degenerate states. As a consequence, decreasing r over time does not work unless N

is increased as well. When increasing N at an appropriate rate, the urn distribution
will converge exactly to the set of maximal lotteries by Theorem 1.

Remark 4 (Majority voting). Rather than letting only a single voter decide on the
pairwise comparison between the two randomly drawn balls, it is possible to ask all
voters which alternative they prefer and replace the alternative which is less preferred
by a majority of voters. This variant is equivalent to the original process for a
single voter with possibly intransitive preferences (given by the majority relation of
13For example, Fudenberg and Imhof (2008) study imitation dynamics with mutations in symmetric

two-player games (not necessarily zero-sum). They consider the case when the mutation rate
goes to 0 for a fixed population size N . For small but positive mutation rates, the dynamics
spend most of the time in degenerate states where all but a small fraction of individuals play the
same strategy. Letting the mutation rate go to 0 thus induces a distribution over actions. Their
main result determines the limit of this distribution as the population size goes to infinity.
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the entire population of voters) and converges to a so-called C1 maximal lottery of
the preference profile (see Brandl et al., 2022, for more information on C1 maximal
lotteries).

Remark 5 (Static or growing urn). When the initial distribution of balls in the urn
is uniform and remains fixed (i.e., no balls are replaced over time), then the empirical
distribution of winners converges to the lottery returned by the proportional Borda
rule (see, e.g., Barberà, 1979; Heckelman, 2003).14 This rule violates Condorcet-
consistency and Pareto efficiency. It can put probability 1

d
on Pareto-dominated

alternatives and almost as little as 1
d

on Condorcet winners for large numbers of voters
(Brandt et al., 2022). When adding a new ball labeled with the winning alternative
rather than replacing the losing one (i.e., the number of balls increases over time),
neither the relative distribution in the urn nor the temporal average converges (see
Section 5).

Figure 2 (left) shows a simulation of the urn process for the preference profile
and corresponding skew-comparison matrix given in Example 1. The urn process
corresponds to a random walk within the shown triangle starting from the center
(an almost uniform distribution). The first alternative in this profile is a Condorcet
winner. From round 177 on, at least 90% of the balls (45 of the 50) are labeled
with the Condorcet winner except for three rounds. At this point, only 160 of the
900 voters were asked for their preferences. The path is tilted to the left because a
majority of voters prefer alternative 2 to alternative 3. Note that the process only
depends on the fractions of voters who prefer one alternative to another and is thus
independent of the number of voters. Hence, if there are nine million—rather than
nine hundred—voters whose preferences are distributed as in Example 1, the process
could turn out exactly as shown in Figure 2. In particular, the overwhelming majority
of voters would never be queried for their preferences.

We now give another example, for which the unique maximal lottery is not degen-
erate.

14The proportional Borda rule assigns to each alternative a probability that is proportional to its
Borda score. For example, for one voter with lexicographic preferences over a, b, and c, the
Borda scores are 2, 1, and 0, respectively. The proportional Borda rule thus returns the lottery
(2/3, 1/3, 0).
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Figure 2: Simulations of the urn process.
The left diagram shows the urn process for the profile given in Example 1 using an urn
with N = 50 balls for 1,000 rounds and mutation rate r = 0.02, starting from an almost
uniform distribution. Each intersection of the grid lines corresponds to a configuration
of the urn. The right diagram shows the urn process for the profile given in Example 2
using an urn with N = 5, 000 balls for 500,000 rounds and mutation rate r = 0.04,
starting from the degenerate distribution in which all balls are labeled with Alternative
2. The green lines depict the actual distribution of balls while the red lines depict the
temporal average of urn distributions until the given round.

Example 2 (Condorcet cycle). Consider 900 voters, three alternatives, and the fol-
lowing preference profile R, leading to a so-called Condorcet cycle or Condorcet para-
dox.

300 300 300

1 2 3

2 3 1

3 1 2

Then,

MR =

 0 2/3 1/3

1/3 0 2/3

2/3 1/3 0

 and M̃R =

 0 1/3 −1/3

−1/3 0 1/3

1/3 −1/3 0

 .

The set of maximal lotteries ML(R) = {(1/3, 1/3, 1/3)} consists of the uniform lottery
over the three alternatives. A simulation of the urn process for this profile is given
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in Figure 2 (right). This time, the initial distribution is degenerate with all balls
being of type 2. It can be seen how the distribution of balls in the urn closes in on
the maximal lottery and remains in its neighborhood for most of the time while the
temporal average converges to the maximal lottery.

4. The Case of a Condorcet Winner

We give an elementary proof of Theorem 1 for profiles that admit a Condorcet winner.
For those profiles, the unique maximal lottery assigns probability 1 to the Condorcet
winner. To analyze the stationary distribution π ∈ ∆(∆(N)) of the Markov chain
induced by the urn process, it suffices to examine the fraction of balls labeled with
the Condorcet winner. This allows us to relate the Markov chain to a process that
is one-dimensional in the sense that each state can only transition to two different
states, and is thus easy to analyze. It also enables us to give a concrete lower bound
on the number of balls N required for given δ, τ > 0 for the conclusion of Theorem 1
to hold.

Let M = MR be the majority matrix of a profile R with Condorcet winner i ∈ [d].
Hence, Mij >

1
2

for all j ∈ [d] \ {i}. Let α = min{Mij : j ∈ [d] \ {i}} − 1
2
. We slice

up ∆(N) into the level sets of the map p 7→ pi. For k ∈ {0, . . . , N}, let Sk = {p ∈
∆(N) : pi =

k
N
} be the states corresponding to distributions with k of the N balls of

type i. Then σk :=
∑

p∈Sk
π(p) is the limit probability that the urn is in a state in

Sk as the number of rounds goes to infinity. We want to show that if r is sufficiently
small and N sufficiently large, π has most of the probability on states in Sk with k

close to N .
For 4 alternatives, one can illustrate the ensuing argument as follows. The set of

states ∆(N) corresponds to rooms in a tetrahedral-shaped pyramid. The rooms on
the kth floor correspond to Sk, so that the tip of the pyramid is the state where all
balls are of type i. The urn process is a random walk through the pyramid, moving
from one room to an adjacent one (which could be on the same floor, the floor below,
or the floor above). With the exception of few floors close to the tip, the probability
of going up is always larger than the probability of going down. It is then intuitively
clear that if the pyramid is large enough, one should expect to find the random walk
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close to the tip of the pyramid most of the time.15

Recall that P (N,r)(p, q) is the probability of transitioning from state p to state q.
Since π is a stationary distribution, we have π⊺P (N,r) = π⊺. Consider any partition
of ∆(N) into two sets. For the stationary distribution, the probability of transitioning
from the first set to the second is equal to the probability of transitioning from the
second set to the first since the probabilities of both sets are conserved. Applying
this to the sets

⋃k−1
l=0 Sl and

⋃N
l=k Sl for k ∈ [N ] and noticing that the only transitions

between the two sets with positive probability are from Sk−1 to Sk and vice versa, we
get ∑

p∈Sk−1

π(p)
∑
q∈Sk

P (N,r)(p, q) =
∑
p∈Sk

π(p)
∑

q∈Sk−1

P (N,r)(p, q). (1)

That is, the probability of being in a state in Sk−1 and transitioning to a state in Sk

equals the probability of being in a state in Sk and transitioning to a state in Sk−1.
Now observe that for p ∈ Sk, k ∈ {0, . . . , N − 1}, we have

∑
q∈Sk+1

P (N,r)(p, q) ≥ 2(1− r)
k(N − k)

N2

(
1

2
+ α

)
+

r

d

N − k

N
=: uk

where the left hand side is the probability of replacing a ball of type other than i by
one of type i in state p ∈ Sk (moving up one floor in the pyramid). Similarly, we find
that for p ∈ Sk, k ∈ [N ], we have

∑
q∈Sk−1

P (N,r)(p, q) ≤ 2(1− r)
k(N − k)

N2

(
1

2
− α

)
+ r

d− 1

d

k

N
=: dk

for the probability of replacing a ball of type i by one of type other than i in state
p ∈ Sk (moving down one floor in the pyramid). Plugging this into (1), we get

σk−1uk−1 ≤ σkdk. (2)

15In the analysis of the general case, the number of balls of type i is replaced by the entropy of the
urn distribution relative to a maximal lottery. The fact that the number of balls not of type i
more likely than not decreases corresponds to the fact that the expected entropy relative to a
maximal lottery decreases.
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All terms in (2) are strictly positive if r > 0.
Let N be so that r

Nd
≥ 21−r

N2 (we choose r > 0 later). Then,

uk ≥ 2(1− r)
k(N − k)

N2

(
1

2
+ α

)
+ 2(1− r)

N − k

N2

≥ 2(1− r)
(k + 1)(N − k − 1)

N2

(
1

2
+ α

)
where the last inequality uses 1 ≥ 1

2
+ α. Similarly, we find that for r ≤ 1

d
and

k ≤ N
(
1− r

α

)
,

dk ≤ 2(1− r)
k(N − k)

N2

1− α

2
.

Hence, with this bound on k, we have

dk
uk−1

≤ 1− α

2
(
1
2
+ α

) =
1− α

1 + 2α
=: β.

Thus, by (2), σk−1

σk
≤ β < 1. We have shown that the cumulative probability σk of the

states Sk decreases at least as fast as the terms of the geometric series with parameter
β from some k (close to N) downwards.

The maximal lottery for R is the degenerate lottery with probability 1 on i. For
given δ, τ > 0, we are aiming for a lower bound on N so that the probability on states
with at least a 1 − δ fraction of balls of type i in the stationary distribution π is at
least 1− τ . That is,

N∑
k=⌈N(1−δ)⌉

σk ≥ 1− τ .

First observe that ∑
k≥k0

βk = βk0
1

1− β
≤ τ (3)

for k0 ≥ log(τ(1−β))
log β

. For our bound, N needs to be large enough so that there are at
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least k0 integers in the interval {⌈(1− δ)N⌉ , . . . ,
⌊(
1− r

α

)
N
⌋
}. The probability on

states in Sk with k < (1− δ)N will then be below τ by (3) and the choice of k0 (since
the bound on dk assumes that k ≤ N(1− r

α
)). Choosing r ≤ αδ

2
and

N ≥ k0
δ − r

α

≥ 1

δ

⌈
log (τ(1− β))

log β

⌉
achieves this.

In Example 1, there are three alternatives and 900 voters. Alternative 1 is a
Condorcet winner as it is preferred to every other alternative by 600 of the voters
(α = 2

3
− 1

2
= 1

6
, β = 5

8
). Suppose we want that at least 90% of the balls in the urn are

of type 1 in at least 90% of rounds (δ = 0.2, τ = 0.1). Choosing r = αδ
2
= 1

60
, we need

N ≥ 70 balls in the urn. These calculations suggest that, when a Condorcet winner
exists, a reasonable choice of the parameters is N ≥ −1

δ
log(τ) and 1

N
≤ r ≤ δ.

5. Discussion

Since the urn process described in this paper only depends on the comparison ma-
trix MR and the mutation rate r, it is connected to various problems unrelated to
collective decision-making. In particular, the literature on equilibrium learning and
evolutionary game theory has extensively studied dynamics based on payoff matrices
and their convergence behavior.

5.1. Equilibrium learning

When interpreting M̃R as a symmetric two-player zero-sum game and maximal lot-
teries as equilibrium strategies, our result can be phrased as a result about a learning
procedure for equilibrium play. Such procedures have been extensively studied in
game theory and, in particular for zero-sum games, a number of simple and attrac-
tive procedures have been proposed. The earliest of these is fictitious play (Brown,
1951; Robinson, 1951) and its variant stochastic fictitious play (Fudenberg and Kreps,
1993).16 More recently, the multiplicative weights update algorithm (e.g., Freund and
16Hofbauer and Sandholm (2002) show that under stochastic fictitious play, players’ strategies and

beliefs converge to a Nash equilibrium in several classes of games, including two-player zero-sum
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Schapire, 1999; Arora et al., 2012) and regret matching (Hart and Mas-Colell, 2000,
2013) have been celebrated in game theory, optimization, and machine learning.
When translating the multiplicative weights update algorithm to our setting, one
obtains a dynamic urn process, in which voters need to compare a drawn ball to all
possible alternatives and adjust the distribution in the urn accordingly. It does not
suffice to replace a single ball and the total number of balls does not remain constant.
Also, the multiplicative weights update algorithm only guarantees convergence of the
temporal average. The actual distribution does not converge, even for self-play in
symmetric zero-sum games (Bailey and Piliouras, 2018).

A notable subarea of machine learning is concerned with multi-armed bandits, a
simple model of learning optimal sequential decisions when only very limited infor-
mation is available (see, e.g., Bubeck and Cesa-Bianchi, 2012; Slivkins, 2019). The
theory of adversarial bandits is closely connected to learning in repeated multi-player
games and it turns out that the prototypical algorithm for adversarial bandits, Exp3
(which stands for “exponential-weight algorithm for exploration and exploitation”),
bears some similarities to the urn process we describe in this paper. Exp3 can be
formulated as an algorithm that learns an equilibrium strategy of a symmetric zero-
sum game in self-play by iteratively updating a probability distribution merely based
on the payoff associated with two actions randomly drawn from the current distri-
bution. Auer et al. (2002) prove strong bounds on the expected average regret and
average regret achieved by Exp3 after a finite number of rounds, which imply that the
temporal average of the distributions converges to a strategy close to an equilibrium.
How close it gets to an equilibrium depends on a parameter that is roughly related to
our mutation rate. Exp3 updates a probability distribution rather than the contents
of a discrete urn and we are not aware of convergence results beyond the temporal
average.

The literature on equilibrium learning often focusses on minimizing regret rather
than relative entropy with respect to an equilibrium distribution (see, e.g., Foster and
Vohra, 1999; Auer et al., 2002). In our context, the regret of the urn distribution at
round n is maxi∈[d](M̃RX

(N,r)(n, p0))i. It follows from Theorem 1 that for sufficiently

games. While best-response dynamics are conceptually different from our urn process, their
technical approach bares similarities with ours in that they use a deterministic process obtained
as a solution to a differential equation to approximate a stochastic process.
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large n, the regret is close to zero with high probability. Our simulations show that
the regret of the urn distribution converges faster than its relative entropy. This
is interesting insofar as in order to approximately satisfy the desirable axiomatic
properties of maximal lotteries, low regret is sufficient. It can be shown that a lottery
has small regret if and only if it is a maximal lottery of a nearby preference profile.
In other words, even if the urn distribution is still far from a maximal lottery, the
distribution can perform almost as well as a maximal lottery. We have identified
preference profiles where this effect is quite noticeable.

5.2. Evolutionary Game Theory

The replicator equation in evolutionary game theory (see, e.g., Taylor and Jonker,
1978; Schuster and Sigmund, 1983; Hofbauer and Sigmund, 1998) describes how the
distribution of different species changes continuously over time based on the individ-
uals’ fitnesses. In its basic form, it states that the change in the relative frequency of
a species equals the relative fitness of the species (that is, its fitness relative to the
entire population) minus the change in the size of the entire population. When the
fitness depends linearly on the relative frequencies of the species and the population
size is constant, the replicator equation defines the continuous deterministic process
y : R≥0 → ∆ with fitness function f (r) : ∆ → Rd below when setting r to 0. When
r > 0, this process corresponds to a continuous and deterministic version of the urn
process described in this paper (see Theorem 2).

d

dt
y(t) = f (r)(y(t)) and y(0) = p0, where

f
(r)
i (p) = 2(1− r)pi(M̃p)i + r

(
1

d
− pi

)
.

(4)

Solutions of this equation for r = 0 are connected to evolutionary stable distribu-
tions as introduced by Maynard Smith and Price (1973). A distribution of species is
evolutionary stable if its relative fitness exceeds that of every other distribution in a
fixed neighborhood of it. Hence, evolutionary stable distributions are attractors of
the dynamics defined by Equation (4) (with r = 0) in the sense that they are limit
points of solutions when the initial distribution p0 is in the respective neighborhood.
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Model Interaction Mutations Pop. Size Convergence

Knebel et al. (2015) continuous pairs, det. noa fixed temporal average
Laslier et al. (2017) discrete triples, det. no increasing distribution
Grilli et al. (2017) continuous triples, stoch. no fixed distribution

Theorem 1 discrete pairs, stoch. yes fixed fraction of rounds
Corollary 1 discrete pairs, stoch. yes fixed temporal average
Theorem 2 continuous pairs, det. yes fixed distribution

Table 1: Comparison of related models and results.
a: While Knebel et al. (2015) consider a discrete process with mutations, the continuous
process they study has no mutations.

Mixed equilibria of zero-sum games such as Rock-Paper-Scissors usually fail to be
evolutionary stable. As a consequence, results that prove convergence of dynamics
to equilibrium strategies, either modify the underlying process or settle for weaker
notions of convergence such as convergence of the temporal average.

In the following, we briefly discuss three results that are closest to ours.17

Knebel et al. (2015) study a dynamic process that involves quantum particles and
is equivalent to a deterministic version of our urn process. Leveraging a classic result
from evolutionary game theory (Hofbauer and Sigmund, 1998, Theorem 5.2.3), they
show that the temporal average of this process converges to an equilibrium strategy
(i.e., a maximal lottery) of the zero-sum game induced by the transition probabilities
between quantum states. Even though their model allows for mutations, Knebel
et al. neglect mutations when analyzing the continuous process, which may cause the
process to cycle around the equilibrium strategy without converging to it.

Laslier and Laslier (2017) consider a discrete urn process that is similar to ours,
but in which the number of balls in the urn increases over time. Given a binary
comparison matrix that specifies which alternative wins against which alternative,
they consider a process, in which three balls are drawn from the urn. Whenever one
of three balls beats both other balls, a new ball of the same type is added to the
urn. Otherwise, one of the three types is chosen at random and a ball of that type
is added. Their main result shows that the distribution in the urn converges towards
the (unique) maximal lottery of the skew-comparison matrix. Since the number of

17An extended version of this paper gives a more complete account of the related literature (Brandl
and Brandt, 2021).
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Figure 3: The continuous deterministic process y(t) solving Equation (4) with r = 0.01 on the
left and r = 0 on the right. For strictly positive r, y(t) converges to a zero of f (r) (see
Theorem 2). For r = 0, it approaches an orbit of constant entropy relative to a zero of
f (r). The underlying skew-symmetric matrix M̃ is given by M̃12 = M̃14 = M̃24 = M̃34 =
1/3, M̃13 = −1/9, and M̃23 = 2/9.

balls in the urn increases, convergence is generally very slow.
Following earlier work by Allesina and Levine (2011), Grilli et al. (2017) consider

a dynamic process in population biology to explain the stable coexistence of multiple
species. Based on Laslier and Laslier’s findings, Grilli et al. adapt the replicator
equation to interactions of triples of individuals. In contrast to Laslier and Laslier,
they keep the number of individuals constant and do not require the comparison
matrix to be binary. They show that with a continuum of individuals, this process
converges to an equilibrium strategy of the skew-comparison matrix.

Without mutations (i.e., r = 0), the deterministic process described by the dif-
ferential equation (4) does not in general converge, but only approaches an orbit of
constant entropy relative to a zero of the fitness function f (0). When introducing
mutations, the limiting behavior of the process changes qualitatively (see Figure 3).
As Theorem 2 shows, it then converges to a zero of the fitness function. To the best
of our knowledge, this is a new observation.

Theorem 2. Let f (r) and y be defined as in Equation (4). If r > 0, f (r) has a unique
zero p(r) and y(t) converges to p(r) as t → ∞. Moreover, if r goes to 0, then p(r)

converges to ML(R) in Hausdorff distance.

Table 1 summarizes the key differences between the above mentioned results and
ours. In comparison, the main contribution of our work is that we are able to show
for a discrete (rather than continuous) process based on stochastic (rather than de-
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terministic) interactions between pairs (rather than triples) that the distribution in
the urn is close to a maximal lottery most of the time (rather than convergence of the
temporal average). Methodologically, the approach we take to cope with the discrete
process is related to that of Benaïm and Weibull (2003), who study more general
population processes in n-player games.18

We believe that Theorem 2 as well as Theorem 1 and Corollary 1 are of relevance
to the natural sciences. In particular, a discrete model may describe the mentioned
natural phenomena more accurately than continuous ones. As Corollary 1 shows,
the expectation of the discrete process with a large number of individuals is a good
approximation of the continuous process. Furthermore, the observation that conver-
gence is only guaranteed if mutations occur with small probability and the number
of individuals is large enough seems noteworthy.
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distributions of pure strategies of all players. An update rule induces a deterministic process
described by a differential equation similar to (4) below. They show that if N is large, the distri-
butions of strategies among the individuals of each role in this stochastic process approximate the
deterministic process described by the differential equation. Our setting corresponds to a sym-
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special properties of this instance allow us to make more precise statements about the behavior
of the deterministic process, and, thus, of the stochastic process for large N . In particular, we
show that the deterministic process converges and that its limit approximates a maximal lottery.

27



APPENDIX: Proofs

As guidance for the reader, we outline the main steps in the proof of Theorem 1. Fix
any δ, τ > 0.

In Appendix A, we consider, for any p ∈ ∆(N), the expected value of
N
(
X(N,r)(k + 1, p)−X(N,r)(k, p)

)
, which, conditional on X(N,r)(k, p), is independent

of k since X(N,r) is a time-homogeneous Markov process. Moreover, it is independent
of N since the probability of replacing a ball of type j by one of type i is independent
of N . Hence, these expected values induce a continuous function f (r) : ∆ → Rd. We
consider g(r) : ∆ → Rd with g(r)(p) = p + 1

2
f (r)(p) and show that it maps to ∆. If

r > 0, g(r) has a unique fixed-point p(r) (a zero of f (r)), which is close to some lottery
in ML(R) for any small enough r. We choose r0 so that p(r) is no more than δ

2
away

from ML(R) for all 0 < r ≤ r0. Fixing such an r, let p∗ ∈ ML(R) be a maximal
lottery which is within δ of p(r).

Appendix B studies the following differential equation with p ∈ ∆, t ∈ R≥0, and
y(·, p) : R≥0 → ∆.

d

dt
y(t, p) = f (r)(y(t, p))

y(0, p) = p
(5)

A solution to (5) is a deterministic process that can be interpreted as the stochastic
process we consider with a continuum of balls. We show that the unique solution
y(r)(·, p) of (5) converges to p(r) for any initial state p ∈ ∆ as t goes to infinity and
the convergence is uniform in p. This is done by showing that the entropy of p(r)

relative to y(r)(t, p) decreases monotonically at a rate proportional to the square of
the distance between p(r) and y(r)(t, p).

Appendix C relates the discrete-time stochastic process X(N,r) to the continuous-
time deterministic process y(r). To this end, we extend the former to the real time
axis by letting X̄(N,r)(t, p) = X(N,r)(k, p) for t ∈ [k−1

N
, k
N
). Given any T > 0, one

can show that with probability close to 1, X̄(N,r) approximately satisfies the integral
equation corresponding to (5) for t between 0 and T and uniformly in p ∈ ∆(N) if
N is large. Using Grönwall’s inequality, we show that with probability close to 1,
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X̄(N,r)(t, p) and y(r)(t, p) are close to each other for all t from 0 to T .19 However, for
t larger than T , they may (and almost surely will) be arbitrarily far apart.

To deal with this, we partition the time axis into consecutive intervals of length T

and synchronize the deterministic process with the stochastic process at the beginning
of each interval. More precisely, since y(r)(t, p) converges to p(r) as t goes to infinity
uniformly in p, we can find T > 0 such that y(r)(t, p) is no more than δ

4
away from

p(r) for all but possibly a 1 − τ
2

fraction of the interval [0, T ] for all p. Moreover,
we can choose N large enough so that with probability at least 1 − τ

2
, the distance

between X̄(N,r) and y(r) is less than δ
4

for all t in an interval of length T provided both
processes start at the same point at the beginning of the interval. We chop up the
time axis into intervals [0, T ], [T, 2T ], . . . . On the interval [(k−1)T, kT ], we compare
X̄(N,r)(t, p) to y(r)(t− (k − 1)T, x̄k−1), where x̄k−1 = X(N,r)((k − 1)T, p). That is, we
reset y(r) to the position of X̄(N,r) at the beginning of the interval. In those intervals
where the distance between both processes is never more than δ

4
, X̄(N,r) is no more

than δ
4
+ δ

4
= δ

2
away from p(r) for all but a τ

2
fraction of the interval. By the choice

of N , the union of those intervals is almost surely at least a 1− τ
2

fraction of the time
axis. Summing over all intervals, this is enough to conclude that X̄(N,r) is no more
than δ

2
away from p(r) at least a 1− τ fraction of the time. Since p(r) is no more than

δ
2

away from p∗, we can get the same conclusion with δ in place of δ
2

and p∗ in place
of p(r). Translating this statement back to X(N,r) gives the first part of Theorem 1.

A. A Continuous Vector Field Induced by the Markov
Chain

In this section, we define a continuous mapping from ∆ to ∆ based on the expected
urn distribution in the subsequent round for each state of the Markov chain. We then
show that this mapping admits a unique fixed-point corresponding to an approximate
maximal lottery.

19In the language of functional analysis, this step corresponds to an approximation of an operator
semi-group. Consider the operators Γ(t) on probability measures on ∆ induced by mapping
p ∈ ∆ to y(r)(t, p). Then {Γ(t) : t ≥ 0} is an operator semi-group (that is, Γ(s+ t) = Γ(s)Γ(t)).
On ∆(∆(N)), we approximate Γ(t) by (P (N,r))Nt.
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Recall that {X(N,r)(n, p0) : n ∈ N0} is a discrete-time, time-homogeneous Markov
chain with state space ∆(N) and transition probability matrix

P (N,r)(p, p′) =

2(1− r)pipjM(i, j) + r
d
pj if i ̸= j

2(1− r)
∑d

k=1 p
2
k +

r
d

if i = j

for p ∈ ∆(N) and p′ = p + ei
N

− ej
N

for i, j ∈ [d] = {1, . . . , d} with p′ ∈ ∆(N). All
other transition probabilities are 0. If r > 0, it is irreducible and aperiodic and thus
admits a unique stationary distribution in ∆(∆(N)), a probability distribution over
urn distributions. We omit writing the initial state p0 whenever it is convenient.

For i ∈ [d], we calculate the expected change in the ith component of X(N,r) times
N given that X(N,r) is in state p ∈ ∆(N).

N E
(
X

(N,r)
i (n+ 1)−X

(N,r)
i (n) | X(N,r)(n) = p

)
= N

∑
p′∈∆(N)

(p′i − pi)P
(N,r)(p, p′)

= 2(1− r)
∑
j ̸=i

pipj (M(i, j)−M(j, i)) +
r

d

∑
j ̸=i

(pj − pi)

= 2(1− r)pi
∑
j ̸=i

M̃(i, j)pj +
r

d
(1− pi − (d− 1)pi)

= 2(1− r)pi(M̃p)i + r

(
1

d
− pi

)
For the last equality, recall that M̃(i, i) = 0 since M̃ is skew-symmetric.

Based on this, we define the continuous function f (r) : ∆ → Rd with

f
(r)
i (p) = 2(1− r)pi(M̃p)i + r

(
1

d
− pi

)
. (6)

Let g(r) : ∆ → ∆ with g(r)(p) = p + 1
2
f(p) for p ∈ ∆. We show that g(r) is well-

defined (that is, indeed maps to ∆) and has a fixed-point. If r > 0, this fixed-point is
unique and we denote it by p(r). As r goes to 0, p(r) converges to the set of maximal
lotteries for the profile R that induces M̃ . We note that if r = 0, g(r) has a unique
fixed-point if and only if there is a unique maximal lottery.
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Lemma 1. For r > 0, g(r) has a unique fixed-point p(r). Moreover, for every δ > 0,
there is r0 so that p(r) ∈ Bδ(ML(R)) for all r ≤ r0.

Proof. We verify that g(r) maps to ∆. For all p ∈ ∆,
∑

i∈[d] f
(r)
i (p) = 2(1− r)p⊺M̃p+

r
(
1−

∑
i∈[d] pi

)
= 0 since M̃ is skew-symmetric and p ∈ ∆. Moreover,

f
(r)
i (p) = 2(1− r)pi (M̃p)i︸ ︷︷ ︸

≥−1

+r

(
1

d
− pi

)
≥ −2pi.

Thus,

g
(r)
i (p) ≥ pi +

1

2
(−2pi) ≥ 0.

It follows that g(r) maps to ∆. Moreover, g(r) is continuous since f (r) is continuous.
Hence, by Brouwer’s Theorem, g(r) has a fixed point p(r).

Now let r > 0. Then, for all p ∈ ∆ with f (r)(p) = 0, we have for all i ∈ [d], pi > 0

since pi = 0 implies f
(r)
i (p) = r 1

d
> 0. Hence, we can rewrite f (r)(p) = 0 as follows:

for all i ∈ [d],

2(1− r)(M̃p)i = r

(
1− 1

pid

)
(7)

To show that f (r) has a unique zero, assume that f (r)(p) = f (r)(q) = 0 for p, q ∈ ∆.
We have

0 = 2(1− r)
(
p⊺M̃q + q⊺M̃p

)
= 2(1− r)

∑
i∈[d]

pi

(
M̃q
)
i
+ qi

(
M̃p
)
i

(7)
= r

∑
i∈[d]

pi

(
1− 1

qid

)
+ qi

(
1− 1

pid

)
=

r

d

∑
i∈[d]

piqi − pi
qi

+
piqi − qi

pi

= −r

d

∑
i∈[d]

(pi − qi)
2

piqi
≤ −r

d
|p− q|22

31



where the first equality uses the skew-symmetry of M̃ (hence, p⊺M̃q = −q⊺M̃p), the
third equality follows from (7) and the fact that p and q are zeros of f (r), and the last
two are algebra. (|·|2 denotes the L2-norm.) This sequence of equalities implies that
p = q. Hence, p(r) is the unique zero of f (r) for r > 0. Since every fixed-point of g(r)

is a zero of f (r), g(r) has a unique fixed-point.
For the last statement, let δ > 0. By (7), for all r > 0 and i ∈ [d],

(
M̃p(r)

)
i
=

r

2(1− r)

(
1− 1

p
(r)
i d

)
≤ r

2(1− r)
. (8)

Suppose for every r0 > 0, there is r < r0 so that p(r) ̸∈ Bδ(ML(R)). Then we can
find a sequence (rn) going to 0 so that p(rn) ̸∈ Bδ(ML(R)) for all n. By passing to a
subsequence, we may assume that p(rn) → p ̸∈ Bδ(ML(R)). But from (8) it follows
that M̃p ≤ 0 so that p ∈ ML(R), which is a contradiction.

B. Properties of the Deterministic Process

In this section, we study a deterministic version of the stochastic process described
by the Markov chain. We thus have a continuum of balls and continuous time, and
show that this process converges to the unique fixed-point identified in the previous
section.

Function f (r) defined in Equation (6) gives rise to a (first-order ordinary) differential
equation for continuously differentiable functions from [0,∞) to ∆, that is, functions
in C1([0,∞),∆). For y ∈ C1([0,∞),∆) and p0 ∈ ∆, consider

d

dt
y(t) = f (r)(y(t))

y(0) = p0

(9)

We show that (9) has a unique global solution y(r) for all r > 0 and p0 ∈ ∆. Moreover,
this solution converges to the zero p(r) of f (r) as t goes to infinity. Since r remains
fixed throughout this section, we frequently omit the superscript (r).
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The proof that (9) has a unique local solution with values in Rd is standard. Only
the fact that the solution does not leave the domain ∆ of f and can thus be extended
to a global solution requires attention.

Lemma 2. For every p0 ∈ ∆, (9) has a unique solution y ∈ C1([0,∞),∆) with
y(0) = p0.

Proof. Note that f is Lipschitz-continuous in a neighborhood of ∆. It follows from
the Picard-Lindelöf Theorem that for any t0 ∈ [0,∞) and p ∈ ∆, the system

d

dt
y(t) = f(y(t))

y(t0) = p
(10)

has a unique local solution, that is, a solution y ∈ C1((t0 − ε, t0 + ε),Rd).
We observe that y maps to ∆. First, by the same arguments as in the proof of

Lemma 1, we have

d

dt

∑
i∈[d]

yi(t) =
∑
i∈[d]

fi(y(t)) = 0

whenever y(t) ∈ ∆. Second, if yi(t) = 0, then d
dt
yi(t) = fi(y(t)) > 0. Hence, y(t) ∈ ∆

for all t ∈ (t0 − ε, t0 + ε). Since t0 ∈ [0,∞) was arbitrary, it follows that y can be
uniquely extended to a global solution in C1([0,∞),∆).

Denote by y(r)(t, p0) ∈ C1([0,∞),∆) the unique solution to (9) with y(r)(0, p0) = p0.
We will sometimes suppress the argument p0 when it is clear from the context.

We want to show that if r > 0, y(r)(t, p0) converges to the zero p(r) of f (r) as t

goes to infinity. Moreover, the convergence is uniform in p0. The proof of this fact in
Lemma 4 uses the relative entropy (aka the Kullback–Leibler Divergence) of p, q ∈ ∆,
which is defined as

D(p | q) =
∑
i∈[d]

pi log

(
pi
qi

)
.

Moreover, the following lower bound on the relative entropy will be helpful (see, e.g.,
Cover and Thomas, 2006, Lemma 11.6.1).
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Lemma 3. For all p, q ∈ ∆,

D(p | q) ≥ 1

2 log 2
|p− q|2 .

To ease notation, we write χS for the indicator function of a set S ⊂ Rd and
χ̄S = 1− χS for the indicator function of the complement of S.

Lemma 4. Let r > 0. Then,

lim
t→∞

sup
{∣∣y(r)(t, p0)− p(r)

∣∣ : p0 ∈ ∆
}
= 0.

Proof. Fix p0 in the interior of ∆ and write y = y(·, p0). We show that the entropy
of p(r) relative to y(t) decreases at a rate of at least r

d
√
d

∣∣p(r) − y(t)
∣∣2
2
.

d

dt
D(p(r) | y(t)) = d

dt

∑
i∈[d]

p
(r)
i log

(
p
(r)
i

yi(t)

)
= −

∑
i∈[d]

p
(r)
i

d
dt
yi(t)

yi(t)

(i)
= −

∑
i∈[d]

p
(r)
i

fi(y(t))

yi(t)

= −
∑
i∈[d]

p
(r)
i

2(1− r)yi(t)(M̃y(t))i + r
(
1
d
− yi(t)

)
yi(t)

= −2(1− r)
∑
i∈[d]

p
(r)
i (M̃y(t))i − r

∑
i∈[d]

p
(r)
i

(
1

yi(t)d
− 1

)
(ii)
= 2(1− r)

∑
i∈[d]

yi(t)(M̃p(r))i − r

∑
i∈[d]

p
(r)
i

yi(t)d
− 1


(iii)
=
∑
i∈[d]

yi(t)r

(
1− 1

p
(r)
i d

)
− r

∑
i∈[d]

p
(r)
i

yi(t)d
− 1


= r

2− 1

d

∑
i∈[d]

yi(t)

p
(r)
i

+
p
(r)
i

yi(t)


(iv)
= −r

d

∑
i∈[d]

(p
(r)
i − yi(t))

2

p
(r)
i yi(t)

≤ − r

d
√
d

∣∣p(r) − y(t)
∣∣2
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Here, (i) follows from the fact that y satisfies (9), (ii) uses the skew-symmetry of
M̃ and

∑
i∈[d] p

(r)
i = 1, (iii) uses (7), and (iv) uses a2 + b2 = (a + b)2 − 2ab for any

a, b ∈ R.
For t ≥ t0 ≥ 0, we have

0 ≤ D(p(r) | y(t)) = D(p(r) | y(t0)) +
∫ t

t0

d

ds
D(p(r) | y(s))ds ≤ D(p(r) | y(t0)).

Combining this with the sequence of equalities above, we see that

0 ≤ r

d

d∑
i=1

∫ t

t0

(p
(r)
i − yi(s))

2

p
(r)
i yi(s)

ds = −
∫ t

t0

d

ds
D(p(r) | y(s))ds ≤ D(p(r) | y(t0)). (11)

We want to prove that y(t, p0) converges to p(r) uniformly in p0 as t goes to ∞.
That is, for all ε > 0, there exists T > 0 such that for all t ≥ T and all p0 ∈ ∆,
|y(t, p0)− p(r)| < ε. To this end, first note that if yi(t, p0) < r

4d
, then

d

dt
yi(t, p0) = 2(1− r)yi(t, p0)

(
M̃y(t, p0)

)
i︸ ︷︷ ︸

≥−1

+r

(
1

d
− yi(t, p0)

)
≥ − r

2d
+

r

d
≥ r

2d
.

Hence, for all p0 ∈ ∆, i ∈ [d], and t ≥ 1, yi(t, p0) ≥ r
4d

. We can thus upper bound
D(p(r) | y(t, p0)) for all p0 ∈ ∆ and t ≥ 1 by C = maxp∈∆r D(p(r) | p) < ∞, where
∆r = {p ∈ ∆: pi ≥ r

4d
for all i ∈ [d]}.

Now we prove uniform convergence in p0. Let ε > 0. It follows from (11) with
t0 = 1 that given δ > 0, for all p0 ∈ ∆r,∫

t≥1

χ̄Bδ(p(r))
(y(t, p0))dt ≤

Cd
√
d

rδ2
.

Hence, for every p0 ∈ ∆r, we can find t0(p0, δ) ∈ [1, 1 + Cd
√
d

rδ2
] such that

∣∣y(t0(p0, δ), p0)− p(r)
∣∣ < δ. (12)

35



Using the estimate log(x− δ) ≥ log(x)− δ
x−δ

for the last inequality, we find that

D(p(r) | y(t0(p0, δ))) ≤
∑
i∈[d]

log

(
p
(r)
i

p
(r)
i − δ

)
=
∑
i∈[d]

log
(
p
(r)
i

)
− log

(
p
(r)
i − δ

)
≤
∑
i∈[d]

δ

p
(r)
i − δ

≤ δC ′

where C ′ = 2dmax{ 1

p
(r)
i

: i ∈ [d]} if δ ∈ (0, 1
2
min{p(r)i : i ∈ [d]}).

We use this bound and the fact that the relative entropy is non-increasing in t to
show that |y(t, p0)−p(r)| < ε for t ≥ t0(p0, δ) for sufficiently small δ. By Lemma 3, we
have for all p ∈ ∆, D(p(r) | p) ≥ 1

2 log 2
|p(r)−p|2. Hence, |p(r)−y(t, p0)| ≤

√
2 log(2)δC ′

for t ≥ t0(p0, δ). Recalling that t0(p0, δ) ≤ 1+ Cd
√
d

rδ2
=: T , we have for δ ∈ (0, ε2

2 log(2)C′ )

that |p(r) − y(t, p0)| < ε for all t ≥ T and p0 ∈ ∆. Since ε was arbitrary, this proves
uniform convergence.

The next lemma states that for any δ > 0, if the process y(r) starts sufficiently close
to p(r), it will never get further than δ away from p(r).

Lemma 5. Let r > 0 and δ > 0. Then, there is η > 0 such that

sup
{∣∣y(r)(t, p)− p(r)

∣∣ : t ≥ 0, p ∈ Bη(p
(r))
}
< δ

Proof. Recall that p
(r)
i > 0 for all i ∈ [d]. By Lemma 3, if p ̸∈ Bδ(p

(r)), then
D(p(r) | p) ≥ 1

2
√
2
δ2 =: C. Since D(p(r) | ·) is continuous on the interior of ∆ and

D(p(r) | p(r)) = 0, there is η > 0 such that D(p(r) | p) < C for all p ∈ Bη(p
(r)). In the

proof of Lemma 4, we have seen that D(p(r) | y(r)(t, p)) is non-increasing in t. Hence,
for p ∈ Bη(p

(r)), it follows that |y(r)(t, p)− p(r)| < δ for all t ≥ 0.

Summarizing Lemma 1, Lemma 2, and Lemma 4, we get the following theorem.

Theorem 2. Let f (r) and y be defined as in Equation (4). If r > 0, f (r) has a unique
zero p(r) and y(t) converges to p(r) as t → ∞. Moreover, if r goes to 0, then p(r)

converges to ML(R) in Hausdorff distance.
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Remark 6 (Drawing without replacement). For the urn process with drawing without
replacement, f (r) as derived in Appendix A would depend on N . The solution y(r) of
the differential equation (9) and the unique zero p(r) of f (r) would thus also depend on
N . The previous lemmas carry over to this case with the straightforward adaptions.

C. Properties of the Stochastic Process

In this section, we study the behavior of the Markov chain X(N,r) by exploring its
connections to the deterministic process y(r).

We estimate the distance between X(N,r) and the set of maximal lotteries in several
steps. First, we choose T0 large enough so that y(r)(·, p0) is close to p(r) for all but
a small fraction of the time interval [0, T0] for all initial states p0. In Lemma 6, we
show that if N is large enough, X(N,r) approximately solves (the integral equation
equivalent to) the differential equation (9) with high probability on the interval [0, T0]

for any initial state. From this we conclude in Lemma 7 that for large enough N ,
X(N,r) is close to y(r) with high probability on any interval of length T0, provided both
processes start with the same state at the beginning of that interval. Thus, X(N,r) is
with high probability approximately equal to p(r) for all but a small fraction of rounds
in any interval of length T0. Now we chop up the time line into successive intervals
of length T0. In expectation, X(N,r) stays close to y(r) in a large fraction of these
intervals. Using an adaption of the strong law of large numbers, we show in Lemma 9
that X(N,r) is almost surely close to p(r) for all but a small fractions of rounds. Lastly,
since by Lemma 1, p(r) is close to a maximal lottery if r is small enough, Theorem 1
follows.

The integral equation equivalent to (9) is

y(t)− y(0) =

∫ t

0

f (r)(y(s))ds

y(0) = p0

(13)

We show that X(N,r) approximately satisfies (13) (with the integral replaced by a sum)
for large N on bounded time intervals. Lemma 6 below states that for any time T and
any δ > 0, we can choose N large enough so that with high probability, X(N,r)(n, p0)
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does not violate (13) by more than δ within the first NT rounds independently of the
initial state p0 ∈ ∆(N). For the proof, we use the following proposition due to Kurtz
(1970, Proposition 4.1). (The statement is adapted to our setting.)

Proposition 1 (Kurtz, 1970). Let (z(N))N∈N be a sequence of discrete-time Markov
chains with states spaces A(N) and probability transition matrices Q(N). Suppose there
exist sequences of positive number (αN) and (εN),

lim
N→∞

αN = ∞ and lim
N→∞

εN = 0

such that

sup
N∈N

sup
p∈A(N)

αN

∑
q∈A(N)

|p− q|Q(N)(p, q) < ∞ (14)

and

lim
N→∞

sup
p∈A(N)

αN

∑
q∈A(N),|p−q|>εN

|p− q|Q(N)(p, q) = 0. (15)

Let

G(N)(p) = αN

∑
q∈A(N)

(q − p)Q(N)(p, q).

Then, for every δ > 0 and T > 0,

lim
N→∞

sup
p∈A(N)

P

(
sup

n≤αnT

∣∣∣∣∣z(N)(n)− z(N)(0)−
n−1∑
k=0

1

αN

G(N)(z(N)(k))

∣∣∣∣∣ > δ | z(N)(0) = p

)
= 0.

The following lemma applies this result to (X(N,r))N∈N for a fixed r.

Lemma 6. For every T > 0 and δ > 0,

lim
N→∞

sup
p∈∆(N)

P

(
sup
n≤NT

∣∣∣∣∣X(N,r)(n, p)−X(N,r)(0, p)−
n−1∑
k=0

f (r)
(
X(N,r)(k, p)

)∣∣∣∣∣ ≥ δ

)
= 0

(16)
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Proof. Recall that P (N,r) is the transition probability matrix of X(N,r). We apply
Proposition 1 with z(N) = X(N,r), A(N) = ∆(N), Q(N) = P (N,r), αN = N , and εN = 2

N

and check (14) and (15):

sup
N∈N

sup
p∈∆(N)

N
∑

q∈∆(N)

|p− q|P (N,r)(Np,Nq)

= sup
N∈N

sup
p∈∆(N)

N

d∑
i,j=1

1

N
|ei − ej|P (N,r)(Np,Np− ei + ej) ≤ 2

and

lim
N→∞

sup
p∈∆(N)

N
∑

q∈∆(N) : |p−q|> 2
N

|p− q|P (N,r)(Np,Nq) = 0

Recalling the definition of f (r) shows that G(N) = f (r) for all N . Hence, (16) follows.

Note that Lemma 6 does not use the full strength of Proposition 1 since G(N) =

f (r) is independent of N . Recall from Remark 6 that for the urn process without
replacement, f (r) does depend on N . Hence, the additional flexibility of Proposition 1
is needed in that case.

Since we want to compare the discrete-time process X(N,r) to the continuous-time
process y(r) solving (9), it is convenient to turn X(N,r) into a continuous-time process.
To this end, let X̄(N,r)(t, p) = X(N,r)(⌊Nt⌋, p) for all t ≥ 0 and p ∈ ∆. (That is,
time is scaled by 1

N
.) X̄(N,r) is a right-continuous step function, which takes steps of

length 1
N
|ei − ej| = 2

N
and is constant on time intervals [ k

N
, k+1

N
). Thus, as N grows,

the steps become smaller and appear in shorter intervals. Lemma 6 shows that on
any bounded time interval, X̄(N,r) satisfies (13) up to some arbitrary error with high
probability when N is large enough. That is, for every T > 0 and δ > 0,

lim
N→∞

sup
p∈∆(N)

P
(
sup
t≤T

∣∣∣∣X̄(N,r)(t, p)− X̄(N,r)(0, p)−
∫ t

0

f (r)
(
X̄(N,r)(s, p)ds

)∣∣∣∣ ≥ δ

)
= 0

(17)
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In Lemma 7, we show that this implies that the trajectories of y(r)(·, p) and
X̄(N,r)(·, p) stay close to each other with high probability on a given bounded time
interval for any initial state p for large N . Importantly for later use, the bound on
the probability is uniform in p.

Lemma 7. For every T > 0 and δ > 0,

lim
N→∞

sup
p∈∆(N)

P
(
sup
t≤T

∣∣y(r)(t, p)− X̄(N,r)(t, p)
∣∣ ≥ δ

)
= 0 (18)

Proof. First observe that since f (r) is continuously differentiable on the compact space
∆, there is C ∈ R≥0 such that f (r) is Lipschitz-continuous with constant C. Let T > 0,
δ > 0, and p ∈ ∆. If supt≤T |X̄(N,r)(t, p) − X̄(N,r)(0, p) −

∫ t

0
f (r)(X̄(N,r)(s, p))ds| < ε,

then for all t ∈ [0, T ],

∣∣y(r)(t, p)− X̄(N,r)(t, p)
∣∣ = ∣∣y(r)(t, p)− y(r)(0, p)− X̄(N,r)(t, p) + X̄(N,r)(0, p)

∣∣
< ε+

∫ t

0

∣∣f (r)
(
y(r)(s, p)

)
− f (r)

(
X̄(N,r)(s, p)

)∣∣ ds
≤ ε+ C

∫ t

0

∣∣y(r)(s, p)− X̄(N,r)(s, p)
∣∣ ds

The first inequality follows from the assumption about X̄(N,r) and the fact that y(r)

satisfies (13). The second inequality uses the Lipschitz-continuity of f (r). We apply
Grönwall’s inequality to conclude that

sup
t≤T

∣∣y(r)(t, p)− X̄(N,r)(t, p)
∣∣ < εeCT < δ

for ε > 0 small enough. Note that the choice of ε does not depend on p = X̄(N,r)(0, p).
By (17), for every ρ > 0, we can find N0 ∈ N such that for every N ≥ N0,

sup
p∈∆(N)

P
(
sup
t≤T

∣∣∣∣X̄(N,r)(t, p)− X̄(N,r)(0, p)−
∫ t

0

f (r)
(
X̄(N,r)(s, p)

)
ds

∣∣∣∣ ≥ ε

)
< ρ
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Hence, for all N ≥ N0,

sup
p∈∆(N)

P
(
sup
t≤T

|y(r)(t, p)− X̄(N,r)(t, p)| ≥ δ

)
< ρ

Since ρ was arbitrary, (18) follows.

The last tool, Lemma 8, is in essence a one-sided strong law of large numbers
for indicator random variables. Instead of the usual assumption of i.i.d. random
variables, it only assumes that the probability of each variable being 1 is conditionally
upper bounded. The elegant proof was pointed out to us by an anonymous referee.

Lemma 8. Let α ∈ [0, 1]. Let {Zn : n ∈ N0} be indicator random variables and, for
n ≥ 1, Sn =

∑n
k=1 Zk. If P (Z1 = 1) ≤ α and for all n ≥ 2, P (Zn = 1 | Sn−1) ≤ α,

then

P
(
lim sup
n→∞

Sn

n
> α

)
= 0

Proof. The proof uses the moment generating functions of the random variables in-
volved. Let Z be an indicator random variable with P (Z = 1) = α. Then, for all
n ≥ 2 and t > 0,

E
(
etSn

)
= E

(
etZnetSn−1

)
≤ E

(
etZ
)
E
(
etSn−1

)
,

where the inequality follows from the assumption that P (Zn = 1 | Sn−1) ≤ α and
Fubini’s theorem. Repeated application of this inequality and the assumption
P (Z1 = 1) ≤ α give that for all n ≥ 1 and t > 0,

E
(
etSn

)
≤ E

(
etZ
)n

.

Now let β > α, n ≥ 1, and t > 0. Then, by Markov’s inequality,

P (Sn ≥ βn) = P
(
etSn ≥ etβn

)
≤ e−tβn E

(
etSn

)
.
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Combining the two preceding inequalities gives

P (Sn ≥ βn) ≤ e−tβn E
(
etZ
)n

= E
(
et(Z−β)

)n
.

Since E (Z − β) < 0, we have for sufficiently small t > 0 that E
(
et(Z−β)

)
< 1. Hence,

P (Sn ≥ βn) decays exponentially in n, and so∑
n≥1

P (Sn ≥ βn) < ∞.

The Borel-Cantelli lemma thus gives that lim supn
Sn

n
≤ β almost surely. Since β > α

was arbitrary, we conclude that lim supn
Sn

n
≤ α almost surely as claimed.

Putting together Lemma 4, Lemma 7, and Lemma 8, we show that X̄(N,r) is almost
surely close to p(r) most of the time for large enough N . More precisely, for S ⊂ ∆(N),
let

s̄
(N,r)
t (S) =

1

t

∫ t

0

χS(X̄
(N,r)(s))ds

be the fraction of time X̄(N,r) spends in a state in S. For δ > 0, we consider the
fraction of time spent in Bδ(p

(r)). If N is large enough, the limit of s̄(N,r)
t (Bδ(p

(r)))

for t to infinity is almost surely close to 1.

Lemma 9. Let δ, τ > 0. Then, for every r > 0, there is N0 such that for all N ≥ N0

and p0 ∈ ∆(N),

P
(
lim
t→∞

s̄
(N,r)
t (Bδ(p

(r))) ≥ 1− τ
)
= 1 (19)

Proof. Let r > 0. By Lemma 5, we can find η > 0 such that

sup
{∣∣y(r)(t, p)− p(r)

∣∣ : t ≥ 0, p ∈ Bη(p
(r))
}
<

δ

2

By Lemma 4, we can find T1 > 0 such that for all T ≥ T1,

sup
{∣∣y(r)(T, p)− p(r)

∣∣ : p ∈ ∆
}
< η
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Let T0 =
2
τ
T1. Note that y(r) is time-invariant, that is, y(r)(t, p) = y(r)(t−t0, y

(r)(t0, p))

for all t ≥ t0 ≥ 0. Combining these facts, it follows that for every p ∈ ∆, the measure
of t ∈ [t0, t0 + T0] for which y(r)(t, p) is in an δ

2
-ball around p(r) is at least (1− τ

2
)T0.

We may assume that T0 is integral.
By Lemma 7, there is N0 ∈ N such that for all N ≥ N0,

sup
p∈∆(N)

P
(

sup
0≤t≤T0

∣∣y(r)(t, p)− X̄(N,r)(t, p)
∣∣ ≥ δ

2

)
<

τ

2
.

Now fix N ≥ N0 and p ∈ ∆(N). We upper bound the fraction of time X̄(N,r)

is further than δ away from p(r). To simplify notation, let tk = kT0 and x̄k =

X̄(N,r)(tk, p). For n ≥ 1, we calculate the expected number of intervals [tk−1, tk],
1 ≤ k ≤ n so that |x̄(t, p)−p(r)| ≥ δ for some t ∈ [tk−1, tk]. Let Z(N,r)

k be the indicator
variable for the event that X̄(N,r)(t, p) and y(r)(t−tk−1, x̄k−1) differ by at least δ

2
on the

time interval [tk−1, tk] given that both start at the point x̄k−1 at time tk−1. So Z
(N,r)
k

is 1 if suptk−1≤t≤tk
|X̄(N,r)(t, p)− y(r)(t− tk−1, x̄k−1)| ≥ δ

2
, and 0 otherwise. Notice that

{Z(N,r)
k : k ∈ N0} satisfies the hypothesis of Lemma 8 with α = τ

2
.20

If Z(N,r)
k = 0, then∫ tk

tk−1

χ̄Bδ(p(r))
(X̄(N,r)(t, p))dt ≤

∫ tk

tk−1

χ̄B δ
2
(y(r)(t−tk−1,x̄k−1))

(X̄(N,r)(t, p))dt

+

∫ tk

tk−1

χ̄B δ
2
(p(r))y

(r)(t− tk−1, x̄k−1)dt

≤ τ

2
T0.

It follows that

1

nT0

∑
k∈[n]

∫ tk

tk−1

χ̄Bδ(p(r))
(X̄(N,r)(t, p))dt =

∑
k∈[n]

Z
(N,r)
k =0

1

nT0

∫ tk

tk−1

χ̄Bδ(p(r))
(X̄(N,r)(t, p))dt

20While the probability that Z(N,r)
n equals 1 may depend on Z

(N,r)
k for k < n, the bound of τ

2 holds
independently of the Z

(N,r)
k since the bound obtained in Lemma 7 is uniform in the initial state

p.
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+
∑
k∈[n]

Z
(N,r)
k =1

1

nT0

∫ tk

tk−1

χ̄Bδ(p(r))
(X̄(N,r)(t, p))dt

≤ τ

2
+

1

n

n∑
k=1

Z
(N,r)
k .

Applying Lemma 8 to {Z(N,r)
k : k ∈ N0} with α = τ

2
gives

P

(
lim sup
n→∞

1

n

n∑
k=1

Z
(N,r)
k ≥ τ

2

)
= 0.

Hence, with the preceding inequality we get

P
(
lim
t→∞

s̄
(N,r)
t (Bδ(p

(r)) ≥ 1− τ
)
= P

(
lim
t→∞

∫ t

0

χBδ(p(r))
(X̄(N,r)) ≥ 1− τ

)
= 1

which is (19).

Theorem 1. Let δ, τ > 0. Then, there is r0 > 0 such that for all 0 < r ≤ r0, there
are p∗ ∈ ML(R) and N0 ∈ N such that for all N ≥ N0 and p0 ∈ ∆(N), almost surely

lim
n→∞

1

n

∣∣{k ≤ n :
∣∣X(N,r)(k, p0)− p∗

∣∣ ≤ δ
}∣∣ ≥ 1− τ.

Moreover, there is C > 0 such that for all n ∈ N0,

P
(∣∣X(N,r)(n, p0)− p∗

∣∣ ≤ δ
)
≥ 1− τ − e−⌊Cn⌋.

Proof. By Lemma 1, we can choose r0 > 0 so that p(r) ∈ B δ
2
(ML(R)) for all 0 < r ≤ r0.

Let 0 < r ≤ r0 and p∗ ∈ ML(R) so that |p(r) − p∗| ≤ δ
2
. Then, applying Lemma 9 to

δ
2
, τ , and r, we get N0 ∈ N such that (19) holds (with δ

2
in place of δ). Hence,

P
(
lim
t→∞

s̄
(N,r)
t (Bδ(p

∗)) ≥ 1− τ
)
= 1 (20)

This is equivalent to the assertion in the first part of the theorem.
The second statement follows by recalling the standard fact that the distribution of
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an irreducible and aperiodic Markov chain converges exponentially to its stationary
distribution in the total variation norm (Levin et al., 2009, Theorem 4.9).
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