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Attaining efficiency with imperfect public monitoring and
one-sided Markov adverse selection

Daniel Barron
Kellogg School of Management, Northwestern University

I prove an efficiency result for repeated games with imperfect public monitoring
in which one player’s utility is privately known and evolves according to a Markov
process. Under certain assumptions, patient players can attain approximately ef-
ficient payoffs in equilibrium. The public signal must satisfy a “pairwise full rank”
condition that is somewhat stronger than the monitoring condition required in
the folk theorem proved by Fudenberg et al. (1994). Under stronger assumptions,
the efficiency result partially extends to settings in which one player has private
information that determines every player’s payoff. The proof is partially construc-
tive and uses an intuitive technique to mitigate the impact of private information
on continuation payoffs.
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1. Introduction

Many economic environments entail both imperfect observability of actions and per-
sistent, privately known types. Collusive firms have private information about their
costs and imperfectly observe their rivals’ pricing decisions; a boss motivates her work-
ers without observing either effort or the opportunity cost of that effort; a regulator
observes neither a monopolist’s actions nor market demand. If formal contracts are
unavailable, then repeated interaction must give players an incentive to both share
their private information and choose efficiency-enhancing actions given that infor-
mation. An established literature considers equilibria in repeated games for patient
players if actions are imperfectly observed but types are either public or independent
and identically distributed (i.i.d.) (Abreu et al. 1990, Fudenberg et al. 1994 (hence-
forth FLM), Fudenberg and Levine 1994, Fudenberg and Yamamoto 2011, Hörner et al.
2011). A smaller literature has considered games with persistent private information
but observable actions (Jackson and Sonnenschein 2007, Escobar and Toikka 2013,
Renault et al. 2013 (henceforth RSV)).
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This paper takes one step toward analyzing settings with both imperfect monitoring
and persistent private information by considering games in which one player is privately
informed, this information follows a Markov process, and monitoring is public but im-
perfect. In this setting, I prove that patient players can attain approximately Pareto effi-
cient payoffs in equilibrium. The proof of this result relies on a novel construction that
limits the impact of a player’s private information on her expected punishment from
deviating. I first prove an efficiency result for a class of games in which the informed
player’s private information affects only her own payoff. Under stronger assumptions, I
extend this argument to games in which the informed player is an “expert” whose type
affects every player’s payoff.

Consider an infinite-horizon game with imperfect public monitoring, and suppose
that one player has private information about her own payoffs that evolves according to
an irreducible Markov process. Two basic difficulties must be solved to attain efficient
payoffs in equilibrium. First, the player with private information must reveal it in such
a way that actions can be tailored to the state of the world. Second, players must be
induced to choose the correct actions given the informed player’s report.

To solve the revelation problem, Section 3 adapts the “quota mechanisms” devel-
oped by Jackson and Sonnenschein (2007) and substantially extended by Escobar and
Toikka (2013). These mechanisms induce approximately efficient outcomes by requir-
ing the informed player to report each type a fixed number of times in a block of T pe-
riods. This “quota” is determined by the invariant distribution of the private informa-
tion. On the Pareto frontier, I adopt assumptions from RSV to ensure that the informed
player cannot increase her utility by permuting her reports, so her gain from lying in
such a mechanism is severely limited if T is large. If players were sufficiently patient and
could commit to actions as a function of the informed player’s message, then payoffs
within a large T -period block would approximate those from truth-telling. Hence, a se-
quence of these T -period mechanisms would lead to approximately efficient payoffs in
the infinite-horizon game with commitment.

Section 4 considers how to enforce actions in the game without commitment. Be-
cause monitoring is imperfect, players are sometimes punished on the equilibrium
path, which implies that the “carrot-and-stick” incentives discussed in Abreu (1986)
and used in the folk theorems by Fudenberg and Maskin (1986) and Escobar and Toikka
(2013) would lead to substantial inefficiencies even for arbitrarily patient players. There-
fore, my argument extends the tools developed in FLM, which proves a folk theorem for
repeated games with imperfect public monitoring (but not Markov private information)
by constructing rewards and punishments that are approximately efficient if players are
sufficiently patient.

A natural adaptation of FLM’s proof to the setting with Markov private information
would be to construct a sequence of T -period quota mechanisms in which the actions
played in each T -period block are used to reward or punish players for outcomes in
past blocks. If not done carefully, however, such a construction would not induce effi-
cient play because players have private information about their continuation payoffs.
In particular, a player might have an incentive to deviate in the current block because
that deviation is likely to lead to continuation play that he privately believes would yield
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a high payoff in the future. This problem is particularly severe for patient players be-
cause such players care mostly about their continuation payoffs, which depend on their
current private information.

Because types evolve according to a Markov process, private information in each
period is approximately uninformative about payoffs in the distant future. Rewards and
punishments in these distant periods can be precisely targeted, so can be used to induce
players to follow the equilibrium action without being inefficiently harsh. The proposed
equilibrium breaks the infinite-horizon game into sets of K blocks of T periods each.
Within each T period block, actions correspond to a fixed allocation rule and the player
with private information is given a quota for the number of times she can report each
type. One period is chosen at random from each block to determine continuation play.
The chosen period affects play only in future blocks that are separated from that period
by at least K − 1 other blocks. Thus, the messages and signals in block 1 influence the
actions played in blocks 1 +K, 1 + 2K, and so on. Rewards and punishments in these
distant blocks are approximately independent of today’s private information ifK is large.
By choosing K appropriately, I can ensure that for very patient players—who would be
very tempted to deviate based on their private information about future types—rewards
and punishments are nearly uncorrelated with their current private information.

In this construction, rewards and punishments for actions in a block are “delayed”
in the sense that they are enacted only after (K − 1) other blocks. This feature is simi-
lar to a construction in Ellison (1994), which uses delayed punishments to decrease the
effective discount factor in a repeated game. While delay also decreases the effective
discount factor in my construction, its main purpose is to limit the impact of today’s
private information on rewards or punishments for today’s outcome. Because this out-
come only affects the allocation rule in distant periods, and types in these distant pe-
riods are approximately independent of today’s types, continuation payoffs vary with
today’s outcome in a way that is nearly independent of today’s private information.

Finally, Section 5 extends this equilibrium construction to prove an efficiency result
for games in which the informed player’s information affects all players’ payoffs. For ex-
ample, the informed player might be an “expert” as in the canonical cheap-talk model
of Crawford and Sobel (1982).1 In such settings, stronger assumptions are required for
quota mechanisms to be approximately efficient. RSV prove an efficiency result for
cheap-talk games with Markov private types and observed actions, but their construc-
tion uses carrot-and-stick punishments and so does not directly extend to games with
imperfect public monitoring. I adapt elements of RSV and extend my proof to show that
patient players can attain some approximately efficient payoffs in equilibrium, though
these payoffs are limited by the demands imposed by the informed player’s truth-telling
constraints. In particular, an uninformed player’s maximum payoff is potentially con-
strained because the informed player must have an incentive to report truthfully.

In recent years, a growing body of research has focused on dynamic Bayesian games
with Markov private types. In an independently developed paper, Hörner et al. (2015)

1In such settings, players might infer private information if they observe their past payoffs. My results
hold regardless of whether players observe their own payoffs.
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builds on FLM to develop techniques for general games with imperfect monitoring and
multi-sided private information. Its tools apply to all the games I consider in this paper
and many others. It also proves an efficiency result (their Theorem 3) that includes as
a special case the class of games I consider in Sections 3 and 4. However, neither this
result nor its folk theorem for correlated types (Theorem 5) includes environments in
which the informed player’s type affects every player’s payoff, which I study in Section 5.
My techniques apply to a more specialized class of games but allow the explicit (partial)
construction of a class of equilibria that attain approximately efficient payoffs.

This paper proves an efficiency result for games with (i) one-sided Markov private
information, in which (ii) utility is not transferable, (iii) players cannot commit to ac-
tions as a function of reports, and (iv) monitoring is public but imperfect. Both dynamic
mechanism design and repeated games with adverse selection are established litera-
tures; this paper’s central contribution is to combine (i)–(iii) with (iv) (though see the
discussion of Hörner et al. 2015 above). Pavan et al. (2014) provide very general tools to
analyze settings if players can commit and utility is transferable, but its results are diffi-
cult to apply in a setting with neither commitment nor transfers. In work closely related
to this paper, Escobar and Toikka (2013) consider a setting with neither commitment nor
transferable utility and with multi-sided Markov private information; however, it also as-
sumes perfect monitoring. Athey and Bagwell (2001, 2008) study a collusion model with
neither commitment nor transferable utility, and with potentially persistent private in-
formation. However, these papers restrict attention to their respective applied settings
and focus on results for players with fixed discount factors.

2. Model and statement of main result

Consider an infinite-horizon dynamic game with N players. Player 1 (“she”; other play-
ers are “he”) has a private type θt ∈�= {θ1� � � � � θ|�|} with |�|<∞ that evolves accord-
ing to a Markov process with initial distribution ν ∈ �(�) and transition probability
P(θt+1|θt). Player 1 sends a costless public message mt ∈ Mt after learning θt . After
mt is observed, players simultaneously choose unobserved actions ai�t ∈ Ai with pro-
file at = (a1�t � � � � � aN�t) ∈A=A1 × · · · ×AN , which together determine the distribution
F(yt |at) of a public signal yt ∈ Y , |Y |<∞. The utility of player i depends on his private
action ai�t , the public signal yt , and—in the case of player 1—the type θt : u1(a1�t � yt� θt)

and ui(ai�t � yt) for i �= 1. Denote the vector of period-t payoffs by ut ∈ R
N . Players dis-

count at rate δ, with normalized discounted payoffs
∑∞
t=0(1 − δ)δtut .

The stage game in each period is outlined as follows:

i. A public randomization device ξt ∼U[0�1] is realized.

ii. Type θt ∈� is drawn according to P(θt |θt−1).

iii. Player 1 observes θt and sends public messagemt ∈M .

iv. After observingmt , each player i simultaneously chooses private action ai�t ∈Ai�t .
v. Public signal yt is realized according to F(yt |at).
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To simplify notation, I typically include θt as an argument in ui even if i �= 1. The ex-
pected stage-game payoff for player i is gi(a�θ)= Ey [ui(ai� y�θ)|a], where gi(a�θ) is con-
stant in θ for i �= 1. Section 5 relaxes this restriction and instead assumes that θ affects
every player’s payoff. Let g(a�θ) = [gi(a�θ)]Ni=1 denote the vector of expected payoffs.
An (pure-strategy) allocation rule is a mapping from player 1’s private type to an action
vector, α :�→A.

All players observe the realization of the randomization device, the message, and
the public signal. Player 1 privately observes her type θt and every player i privately
observes his own action ai�t . An outcome in period t is (ξt� θt�mt�at� yt), and a public
outcome is (ξt�mt� yt). Denote the corresponding histories by hT = (ξt� θt�mt�at� yt)

T
t=0

and hTpub = (ξt�mt� yt)
T
t=0. A strategy for player i, σi ∈ �i, is a mapping from player i’s

information to feasible actions, with strategy profile σ = (σ1� � � � �σN) ∈ �. The goal of
this paper is to construct a class of perfect Bayesian equilibria that approximate Pareto
efficient payoffs.2

I assume that P(·|·) converges to an unique invariant distribution to ensure that
long-run average payoffs are uniquely defined.

Assumption 1. Probability P(·|·) is irreducible and aperiodic, with unique invariant
distribution π.

In equilibrium, player i’s payoff is bounded below by the payoff he can guarantee
himself after a deviation. Following Escobar and Toikka (2013), the stationary min-max
payoff for player i is his minimum possible payoff if all other players play a constant,
pure-strategy action, player i best responds to these actions, and θ is drawn from π.
The stationary min-max is not the weakest notion of min-max, since play can neither
depend on θ nor be mixed. It is also convenient to define the max-max payoff for player
i, which is i’s maximum expected payoff if θ is drawn from π.

Definition 1. For each player i, define the stationary min-max payoff

gmi = min
a−i∈A−i

max
αi:�→Ai

Eθ∼π
[
gi

(
αi(θ)�a−i� θ

)]

with corresponding allocation rule αm�i :�→A. The max-max payoff for player i is

gMi = max
α:�→A

Eθ∼π
[
gi

(
α(θ)�θ

)]
with allocation rule αM�i : �→A. Define the set of min-max and max-max allocation
rules Am and AM , respectively.3

2Following Fudenberg and Tirole (1991, pp. 331–333), in a perfect Bayesian equilibrium, players update
using Bayes’ rule whenever possible and best respond given their beliefs. For any a, the distribution over
y has full support by Assumption 2. Therefore, Bayes’ rule applies unless player 1 has deviated from the
equilibriumm. In that case, beliefs may update arbitrarily.

3In principle, multiple min-max or max-max allocation rules could exist for a given player i. It suffices
that at least one of these allocation rules satisfies the assumptions below; with abuse of notation, let αm�i

(or αM�i) denote one such allocation rule (if it exists).
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For player i �= 1, αm�i and αM�i are constant in θt because player i’s payoff is constant
in θt . Player 1’s min-max action αm�11 can vary in θt , but the other players’ actions αm�1−1
cannot. Every element of αM�1 can vary in θt .

The quota mechanism in my construction induces player 1 to trade off a favorable
report today for the possibility of a favorable report in the future. If the mechanism
implements an allocation rule such that player 1 would be unwilling to permute her
reports, then her gains from lying are also sharply limited. This restriction, which is
satisfied by any Pareto efficient allocation rule, is closely akin to Rochet’s (1987) neces-
sary and sufficient condition for implementability in a static mechanism design prob-
lem with transferable utility. It is also identical to Condition C′1 in RSV.

Definition 2. An allocation rule α : � → A satisfies cyclical monotonicity if for any
permutation ψ :�→�,

∑
θ∈�

g1
(
α(θ)�θ

) ≥
∑
θ∈�

g1
(
α
(
ψ(θ)

)
� θ

)
� (1)

Let ACM be the set of allocation rules satisfying (1).

I consider the set of feasible and individually rational stationary payoffs. This payoff
set is constructed in the following way: take all allocation rules α : �→ A that either
(i) min-max or max-max some player, or (ii) are cyclically monotone. The target pay-
off set V ∗ is the convex hull of expected payoffs from these allocation rules under the
invariant distribution, such that every player earns at least his min-max payoff.

Definition 3. Define the set of implementable allocation rules as the set of all rules
that either satisfy cyclical monotonicity, or min- or max-max a player: AI = ACM ∪Am ∪
AM . Let

V = co
{
Eθ∼π

[
g
(
α(θ)�θ

)]|a ∈ AI
}
�

V ∗ = {
v ∈ V |for all i� vi ≥ gmi

}
�

As in FLM, the distribution over outcomes F must statistically distinguish between
deviations by different players. This property holds if F satisfies a pairwise full rank
condition. While not required for the result, I also assume for convenience that F(y|a)
has full support.

Assumption 2. For any a, F(·|a) has full support. For any α ∈ AI and any θ ∈ �,
F(·|α(θ)) satisfies pairwise full rank: for any i� j ∈ {1� � � � �N}, rank(�yij(α(θ))) = |Ai| +
|Aj| − 1, where

�
y
ij

(
α(θ)

) =
[[
F

(
yr |ai = aki �α−i(θ)

)]
k≤|Ai|�r≤|Y |[

F
(
yr |aj = akj �α−j(θ)

)]
k≤|Aj |�r≤|Y |

]
�
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Pairwise full rank ensures that unilateral deviations by different players are statisti-
cally distinguishable from one another. Without this assumption, the equilibrium might
require multiple players to be simultaneously punished, which could lead to substantial
inefficiencies even if players are patient. Assumption 2 is somewhat stronger than the
condition in FLM, which shows that if there exists one action profile with pairwise full
rank, then a dense subset of (mixed-strategy) action profiles also satisfies pairwise full
rank. My construction uses pure strategies, so pairwise full rank must hold at each allo-
cation rule.4

Finally, I assume that if player 1 is being min- or max-maxed, then she has a strict
incentive to report a type that leads to the same action as her true type. Therefore, player
1 would only be willing to lie to change the action if she expected a nontrivial gain in the
continuation game from doing so.

Assumption 3. Define

Lm = min
θ�θ′|αm�1(θ)�=αm�1(θ′)

g1
(
αm�1(θ)�θ

) − g1
(
αm�1

(
θ′)� θ)�

If αm�1(θ)= αm�1(θ′) for all θ�θ′ ∈�, then set Lm to some strictly positive number. Let LM

be the corresponding value for αM�1. Then L≡ min{Lm�LM}> 0.

If α min- or max-maxes player 1, then she has a weak myopic incentive to tell the
truth. Assumption 3 requires this incentive to be strict, and is implied by two rela-
tively weak conditions: (i) π has full support on � and (ii) for every θ ∈�, if a �= ã, then
g1(a�θ) �= g1(ã� θ).

The next two sections prove the following efficiency result.

Theorem 1. Suppose Assumptions 1–3 hold, and let W ⊆ int(V ∗) be a smooth5 set. For
all ε > 0, there exists a δ∗ < 1 such that if δ≥ δ∗, for anyw ∈W there exists an equilibrium
payoff v ∈R

N satisfying ‖w− v‖< ε.

The proof of Theorem 1 consists of two steps. Section 3 considers a T -period mech-
anism design problem in which players can commit to an allocation rule as a func-
tion of player 1’s messages. It introduces the central construction of the proof: the
(T�K)-recurrent mechanism, which implements a sequence of T -period mechanisms in
the infinite-horizon game. Section 4 then extends FLM’s technique to (T�K)-recurrent
mechanisms so as to enforce actions in the game without commitment.

4Some variants of the folk theorem from FLM require players to strictly prefer their equilibrium actions,
which implies that equilibria must be in pure strategies. These versions typically assume that all extremal
points of the payoff frontier satisfy pairwise full rank. See, e.g., Mailath and Samuelson (2006, Proposi-
tion 9.2.2).

5A setW ⊆ R
N is smooth if (i) it is closed and convex, (ii) it has a nonempty interior, and (iii) the boundary

is aC2 submanifold of RN : at each boundary point v, there exists a unique tangent hyperplane Pv that varies
continuously with v.
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3. The mechanism design problem

In this section, I consider a T -period game with commitment. At the start of the game,
players commit to a mechanism that specifies actions as a function of public histories.
The game is played T times, with normalized discounted payoffs (

∑T−1
t=0 δ

t(1 − δ)ut)/

(1 − δT ).
I consider two classes of mechanisms in this setting. The first is the quota mech-

anism, used for allocation rules α ∈ AI \ {Am ∪ AM}. Player 1 is given a quota for the
maximum number of times she can report each θ ∈ �. The mechanism implements
α(m) following messagem.

Definition 4. Fix α ∈ AI in the T -period game with commitment. For any θj ∈�, de-
fine

Q
(
θj

) =

⎧⎪⎨
⎪⎩

⌊
Tπ

(
θj

)⌋ + 1 if j ≤ T −
∑
θ∈�

⌊
Tπ(θ)

⌋
�

⌊
Tπ

(
θj

)⌋
otherwise�

The T -period quota mechanism implementing α is, for any t ∈ {0� � � � �T − 1}, at = α(mt),
where

mt ∈Mt ≡
{
θ ∈�

∣∣∣∑
t ′<t

1{mt ′ = θ}<Q(θ)
}
�

In this mechanism, player 1 faces an intertemporal trade-off: she foregoes report-
ing a type in the future if she reports that type today.6 A second important class of
mechanisms is unrestricted mechanisms. In each period, player 1 reports m ∈ � and
the mechanism plays α(m).

Definition 5. Fix an allocation rule α ∈ AI in the T -period game with commitment.
The T -period unrestricted mechanism implementing α is, for any t ∈ {0� � � � �T − 1}, mt ∈
� and at = α(mt).

Player 1 must have a myopic incentive to report truthfully in an unrestricted mech-
anism. If αmin- or max-maxes player 1, then by definition she finds it optimal to report
truthfully. If α min- or max-maxes some other player, then the allocation rule α is con-
stant in θ and so player 1 again has a (weak) incentive to tell the truth.

The first step of the argument is to define a set of invariant payoffs. These are the
equilibrium payoffs as δ→ 1 of either (i) a T -period unrestricted mechanism that im-
plements α ∈Am ∪AM or (ii) a T -period quota mechanism that implements some other
α ∈ AI .

6Note that I can use a simpler mechanism than Jackson and Sonnenschein (2007) and Escobar and
Toikka (2013) because private information is one-sided in my setting.
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Definition 6. If α ∈ Am ∪ AM , consider an unrestricted mechanism. If α ∈ AI \
{Am�AM}, consider a T -period quota mechanism. Let σ∗

δ(α) be a strategy that maxi-
mizes player 1’s payoff in this mechanism, and define

v(δ�T)(α)=E
[

1 − δ
1 − δT

T−1∑
t=0

δtut

∣∣∣σ∗
δ(α)� ν = π

]
�

where ν is the distribution over types in t = 0. Define the invariant payoff for α as
vT (α) = limδ→1 v

(δ�T)(α) whenever this limit exists. The set of individually rational in-
variant payoffs is

V T∗ = co
{
vT (α)|α ∈AI�and for any i� vTi (α)≥ vTi

(
αm�i

)}
�

The remainder of this section proceeds as follows. First, I show that as T → ∞, the
set of invariant payoffs V T∗ approximates the set of stationary payoffs V ∗. Second, I
consider a class of games in which players’ payoffs are perturbed and show that as long
as these perturbations are small and δ is close to 1, then player 1 will report as if her pay-
offs are unperturbed. Finally, I construct a class of mechanisms in the infinite-horizon
game by concatenating T -period mechanisms. It turns out that under some conditions,
player 1’s optimal strategy in this infinite-horizon mechanism is simply the concatena-
tion of optimal strategies from the corresponding T -period games.

First, I prove that as T → ∞, invariant payoffs approximate payoffs under truth-
telling.

Proposition 1. For any α ∈AI and any T ≥ 1, vT (α) exists, with

lim
T→∞

vT (α)=Eθ∼π
[
g
(
α(θ)�θ

)]
�

Define σ truth as the strategy in whichmt = θt for all t. If α ∈ Am∪AM , then σ∗
δ(α)= σ truth.

All proofs are provided in the Appendix, available in a supplementary file on the
journal website, http://econtheory.org/supp/1934/supplement.pdf.

Consider α ∈ Am∪AM and an unrestricted mechanism. Player 1 has a myopic incen-
tive to reveal her type in each period, so σ∗

δ(α)= σ truth. For any prior ν, the distribution
of θt converges to the invariant distribution π as t → ∞. Therefore, if players are pa-
tient and T is sufficiently large, then payoffs in the unrestricted mechanism approximate
Eθ∼π[g(α(θ)�θ)].

The proof is a little more complicated if α is implemented using a quota mechanism.
For each θ, the normalized quotaQ(θ)/T converges toπ(θ) as T → ∞. Players i �= 1 care
only about the action taken and, moreover, care little about the timing of those actions if
δ is close to 1. Each action α(θ) is played exactly Q(θ) times, so as T → ∞, player i �= 1’s
invariant payoff approximates Eθ∼π[gi(α(θ)�θ)].

Player 1 can always report truthfully in each period and, moreover, it can be shown
that she would be unlikely to exceed her quota until the final periods by so doing. Her
payoff from reporting truthfully in each period approximatesEθ∼π[g1(α(θ)�θ)]. Because

http://econtheory.org/supp/1934/supplement.pdf
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α ∈ ACM, player 1 cannot gain from permuting her reports. But misreporting her type
in each period is analogous to permuting her reports if T is large and δ is close to 1.
Therefore, player 1’s gains from misreporting are limited and her payoff from her opti-
mal strategy also approximates Eθ∼π[g1(α(θ)�θ)].

Truth-telling (or even approximate truth-telling) does not necessarily maximize
player 1’s payoff in the quota mechanism. Consequently, my construction does not ex-
actly pin down equilibrium payoffs and instead uses vT (α) as an approximation. To for-
malize this uncertainty about continuation payoffs, I introduce a version of the T -period
game with perturbed payoffs. Payoffs are similar to the T -period game with commit-
ment, except players also receives some utility (

∑T−1
t=0 d((mt� yt)� θT ))/T that depends

on the history of messages and outcomes in each period and player 1’s private type at
the end of the game. Perturbed games are characterized by a maximum perturbation
size d ≥ 0, which bounds how much this extra utility can vary.

Definition 7. Fix d ≥ 0, T ∈N, and α ∈ AI . A game is (d�T)-perturbed if it is a T -period
game with commitment and payoffs equal

1 − δ
1 − δT

T−1∑
t=0

δtut + 1
T

T−1∑
t=0

d
(
(mt� yt)� θT

)
� (2)

The function d :M ×Y ×�→R
N satisfies, for allm�m̂�θ ∈�,

∥∥Ey[d((m�y)�θ)|α(m)] −Ey
[
d
(
(m̂� y)�θ

)|α(m̂)]∥∥< d�
For all y ∈ Y , θ ∈�, andm ∈� such that α(m)= α(m̂), d((m�y)�θ)= d((m̂� y)�θ).

In the next section, the perturbed payoff 1
T

∑T−1
t=0 d((mt� yt)� θT ) reflects the fact that

payoffs are not exactly pinned down in a quota mechanism. These perturbations are
additively separable in the equilibrium I construct because only a single period from
each T -period block (drawn uniformly at random) affects continuation play. The next
result shows that if d is small, then player 1’s reporting strategy in this perturbed game
is identical to her strategy in the unperturbed game.

Proposition 2. Fix α ∈ AI . If α ∈ Am ∪AM , consider an unrestricted mechanism. Oth-
erwise, consider a T -period quota mechanism. Define

d(δ�T)= 2
1 − δ

1 − δT δ
TTL�

Then the following statements hold:

(i) If d < d(δ�T), then σ∗
δ(α) maximizes player 1’s payoff in any (d�T)-perturbed

game.
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(ii) For any ε > 0, there exists some χ > 0 and δ∗ < 1 such that if ‖ν − π‖ < χ, δ > δ∗,
and d < d(δ�T), then

E

[
1 − δ

1 − δT
T−1∑
t=0

δtut

∣∣∣σ∗
δ(α)

]
∈ B(

vT (α)� ε
)
� (3)

In a quota mechanism, each action is played a fixed number of times. Hence, the
perturbation term E[∑T−1

t=0 d1((mt� yt)� θT )|σ] is constant in σ , so the unperturbed re-
porting strategy σ∗

δ(α) continues to be an optimal strategy.7 In an unrestricted mecha-
nism, player 1 could send any message any number of times. However, if α min-maxes
or max-maxes player i �= 1, then α is constant in θ and so player 1’s message is irrelevant.
If α min-maxes or max-maxes player 1, then by Assumption 3 she has a strict incentive
to report a type that induces the same action as her true type. If d is small, then player
1 cannot gain too much from the perturbation term by misreporting θt , so she reports
truthfully.

The final goal of this section is to construct an infinite-horizon mechanism in a
way that preserves player 1’s incentives from the T -period game. The resulting (T�K)-
recurrent mechanism is the major building block of the equilibrium construction in Sec-
tion 4 and is designed to limit the effect of player 1’s private information about future
payoffs on her temptation to deviate today.

Consider the infinite-horizon game with commitment, defined as the infinitely re-
peated game in which players can commit ex ante to actions as a function of the public
history. A (T�K)-recurrent mechanism breaks this infinite-horizon game into blocks of
T periods each. In each block, an allocation ruleα ∈AI is implemented using a T -period
unrestricted (if α ∈ AM ∪ Am) or quota (if α ∈ AI \ {AM ∪ Am}) mechanism. The alloca-
tion rule in each block is determined by messages and outcomes from previous blocks,
but only in sharply limited ways as a function of K.

More precisely, a (T�K)-recurrent mechanism groups the firstK blocks together and
labels them j = 0. Similarly, the next K blocks are j = 1 and so on. Within each group
of K blocks, the first block is labeled k = 0, the second k = 1, and so on to k = K − 1.
Hence, each T -period block is identified with a unique label (k� j). The allocation rule
implemented in block (k� j) depends only on messages and signals from blocks (k� j′)
for j′ < j. As illustrated in Figure 1, player 1’s message in block (k� j) affects continuation
play only in periods at least T(K − 1) periods in the future. Player 1’s private informa-
tion about her type today gives her little information about her type in these far distant
periods.

Definition 8. Consider the infinite-horizon dynamic game and fix T�K ∈ N and δ ∈
(0�1). For any j ∈ {0�1� � � �}, k ∈ {0� � � � �K − 1}, define block (k� j) as the periods

T(k�j) = {
(Kj + k)T� (Kj + k)T + 1� � � � (Kj + k+ 1)T − 1

}
�

7This argument requires that F(y|a) is independent of θ. Otherwise, the perturbation term would de-
pend on the joint distribution of (yt � θt) and so would not be constant in σ .
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Figure 1. A (T�2)-recurrent mechanism. Each block represents T periods. Arrows indicate
which periods influence the targeted allocation rule in each block.

Define the (k� j) block public history h(k�j) = (ξt�mt� yt)t∈T(k�j) . A mechanism is (T�K)-
recurrent if it satisfies the following conditions:

(i) For any (k� j), the mechanism is either a T -period quota mechanism implement-
ing α ∈ AI \{Am∪AM} or an unrestricted mechanism implementing α ∈ Am∪AM .
Let α(k�j) ∈ AI be the implemented allocation rule.

(ii) At the end of block (k� j), a single period t(k�j) ∈ T(k�j) is chosen uniformly at
random using the public randomization device.

(iii) The rule α(k�j) depends only on (α(k�j
′)(mt(k�j′))� yt(k�j′))

j−1
j′=0.

(iv) Let σ∗ denote the following strategy: in each block (k� j), player 1 plays the op-
timal T -period strategy σ(k�j) ≡ σ∗

δ(α
(k�j)) for the mechanism in block (k� j). For

any (k� j) and any public history htpub such that t = minT(k�j), let H(k�j)(htpub�m)

denote the set of histories in period t ′ = maxT(k�j) that follow htpub for which

mt(k�j) =m. Then there exists a w̄(k�j)1 (htpub) ∈R such that for anym ∈�,

∞∑
j′=j+1

δTK(j
′−j)(1 − δTK)

E
[
vT1

(
α(k�j

′))|σ∗�H(k�j)
(
htpub�m

)] = w̄(k�j)1

(
htpub

)
�

A block (k� j) consists of T adjacent periods and is denoted T(k�j). For example, in
a (T�2)-recurrent mechanism, block (0�0) consists of the first T periods, block (1�0) is
the next T periods, block (0�1) is the third set of T periods, and so on.

The first property of a (T�K)-recurrent mechanism says that the T -period mech-
anism played in each block (k� j) must be either a quota mechanism (if α(k�j) ∈ AI \
{Am ∪ AM}) or an unrestricted mechanism (if α(k�j) ∈ Am ∪ AM ). The second property
says that at the end of block (k� j), a single period t(k�j) from that block is chosen uni-
formly at random. Only these chosen periods have any impact on the continuation
mechanism. The third property requires the allocation rule in block (k� j) to depend
only on the public history in periods t(k�j

′) with the same index k. In particular, the allo-
cation rule implemented in block (k� j) is independent of play in any block (k′� j′) with
k′ �= k. The fourth property says that agent 1’s expected invariant payoff in future blocks
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is independent of her messages in the current block. That is, player 1 cannot change her
expected future invariant payoffs by changing her reporting strategy.

The final proposition in this section argues that if K and δ are large and δTK is
bounded away from 1, then equilibrium payoffs in a (T�K)-recurrent mechanism are
close to the corresponding discounted sum of invariant payoffs. In that case, player 1’s
payoff in each T -period block can rewritten as a (d�T)-perturbed game with d small, so
by Proposition 2 she treats each block as a T -period mechanism.

Proposition 3. For any ε > 0, there existsK∗ <∞ and δ∗ < 1 such that ifK ≥K∗, δ≥ δ∗,
and δTK ≤ 1 − ε, then σ∗ is an optimal strategy in any (T�K)-recurrent mechanism. For
any history ht in block (k� j) and j′ > j,∑

t ′∈T(k�j′)
(1 − δ)δt ′E[

ut ′ |σ∗�ht
]

∈ B(
E

[(
1 − δT )

δKTj
′+kT vT

(
α(k�j

′))|σ∗�ht
]
�
(
1 − δT )

δKTj
′+kT ε

)
�

(4)

In a (T�K)-recurrent mechanism, player 1’s messages in block (k� j) influence her
payoffs in two ways: (i) they constrain her messages in the remainder of that block and
(ii) they affect the allocation rule in blocks (k� j′) for j′ > j. The strategy σ∗

δ(α
(k�j)) is

optimal given (i). Property (iv) of Definition 8 implies that player 1’s message cannot
affect her future expected invariant payoff, which implies that (ii) can be captured as a
perturbation in a (d�T)-perturbed game.

More precisely, consider the impact of a message in block (k� j) on block (k� j + 1).
We can bound the difference between player 1’s expected payoff in (k� j + 1) and the
invariant payoff vT1 (α

(k�j+1)) by η> 0. Because player 1’s private information affects her
payoffs in every future block, we can put a similar bound (for simplicity, also η > 0) on
the difference between her expected and invariant payoffs in each (k� j′)with j′ > j. The
sum of player 1’s gains in every future period is therefore no larger thanη/(1−δTK). The
boundη> 0 is decreasing in the number of periods between (k� j) and (k� j+1) because
players have less private information about payoffs in the more distant future. Hold-
ing δTK bounded away from 1 as K and δ increase ensures that this sum approaches
0 (because η → 0 as K → ∞). The resulting payoffs can be represented as a (d�T)-
perturbed game with d small. By Proposition 2, σ∗

δ(α
(k�j)) is an optimal strategy in such

a game and, hence, σ∗ is an optimal strategy in the (T�K)-recurrent mechanism. Ex-
pression (4) follows from the definition of invariant payoffs. Note that the error term of
(4), (1 − δT )δKTj′+kT ε, decays exponentially in j′, so its sum across j′ is small if ε > 0 is
small.

To understand why (T�K)-recurrent mechanisms facilitate the proof of Proposi-
tion 3, suppose instead that actions in each T -period block affect allocation rules in
all future blocks, but blocks are separated by a fixed number of “burnt” periods TA in
which play is arbitrary. Given a fixed TA, expected and invariant payoffs in the next block
differ by no more than a fixed η > 0. As δ→ 1, player 1’s potential gain from misreport-
ing, η/(1 − δTA+T ), becomes large relative to her stage-game payoff, so player 1 might
deviate if she is very patient. Increasing TA as δ→ 1 mitigates this problem but might
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lead to inefficient payoffs in the limit. The (T�K)-recurrent mechanisms solve this prob-
lem by replacing the TA burnt periods with K − 1 blocks, each of which implements an
approximately efficient T -period mechanism.8

4. Enforcing actions in equilibrium

In this section, I modify the techniques used by FLM to construct (T�K)-recurrent
mechanisms that are equilibria of the game without commitment. This construction
is flexible enough to approximate any payoff in V ∗ if players are sufficiently patient.

Consider a (T�2)-recurrent mechanism. Intuitively, odd (1� j) and even (2� j) blocks
form two distinct games: outcomes observed in block (1�1) only affect the targeted al-
location rule for blocks (1�2), (1�3), and so on, and similarly for blocks (2� j). Players’
beliefs in blocks (1� j) and (2� j) are still related. However, if continuation play can in-
duce player i to play αi(mt) for any possible on-path beliefs about θ, then α(mt) can be
enforced in equilibrium.

As a first step, I define the notions of decomposability and enforceability that I will
use in the rest of the proof.

Definition 9. Let T ∈ N, ζ ≥ 0, W ⊆ R
N , and δ ∈ [0�1). A payoff v ∈ R

N is (T�ζ�W �δ)-
decomposable if there exists w̄ ∈ R

N such that for every realization of the public ran-
domization device ξ ∈ [0�1], there exists some αξ ∈ AI and wξ : Y × �→ W satisfying
the following conditions:

(i) For any ξ ∈ [0�1] andm ∈�,

Ey
[
wξ(y�m)|αξ(m)] = w̄� (5)

(ii) The adding up constraint holds:

v= (1 − δ)Eξ
[
vT

(
αξ

)] + δw̄� (6)

(iii) For all ξ ∈ [0�1], αξ is (T�ζ�W �δ)-enforceable: either of the following statements
holds.

(a) For every player i ∈ {1� � � � �N}, messagem ∈�, and type θ ∈�,

max
ai∈Ai\αξi (m)

{
(1 − δ)min

{
0� gi

(
αξ(m)�θ

) − gi
(
ai�α

ξ
−i(m)�θ

)}

+ δ

T

(
w̄−Ey

[
w
ξ
i (y�m)|ai�αξ−i(m)

])} ≥ ζ�
(7)

(b) The variable αξ min- or max-maxes player 1, (7) holds for i �= 1 and all m�θ,
and (7) holds for i= 1 ifm= θ.

8Appendix D discusses this alternative mechanism in more detail. I thank two anonymous referees for
suggesting this exposition of the intuition.
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(iv) For all ξ ∈ [0�1] and for any m�m′ ∈ �, if αξ(m) = αξ(m′), then for any y ∈ Y ,
wξ(y�m)=wξ(y�m′).

A setW is (T�ζ�δ)-decomposable if every w ∈W is (T�ζ�W �δ)-decomposable.

Decomposability is defined with respect to the number of periods in each block T ,
a set of payoffs W ⊆ R

N , a discount factor δ, and a positive number ζ > 0 that describes
the slack in each player’s incentive constraints. A payoff v ∈R

N is decomposable if there
exists a convex combination of allocation rules and continuation payoffs satisfying four
conditions. First, assuming that players follow the allocation rule, the expected invari-
ant continuation payoff is constant in the reported type m. Second, the (appropriately
discounted) invariant and continuation payoffs add up to v. Third, each player loses at
least ζ > 0 by deviating from the specified action, even if the current period’s outcome
affects continuation play with probability 1

T . Importantly, the first term in (7) is the max-
imum of player i’s myopic gain from deviating and 0. Finally, messages that induce the
same action lead to the same distribution over continuation payoffs.

For α ∈ AI to be (T�ζ�W �δ)-enforceable, players must have strict incentives to play
according to α, regardless of their beliefs about θ. The sole exception to this is if the al-
location rule min- or max-maxes player 1, in which case player 1’s incentive constraint
must hold only if mt = θt . Note that (7) requires player 1 to have a strictly smaller con-
tinuation payoff following a deviation, even if she is being min- or max-maxed. This is
a substantial departure from the argument in FLM, which requires player 1’s continua-
tion payoffs to be constant in yt if she is min-maxed. I discuss this complication after
Proposition 5.

Definition 9 superficially resembles the notion of enforceability in FLM (Defini-
tion 4.1), but I apply it in a very different way. In my argument, each “period” is in
fact a T -period block in a (T�K)-recurrent mechanism. Let G(k) denotes the blocks
((k�0)� (k�1)� � � �). Since equilibrium play in G(k) depends only on the outcomes in
those periods, each G(k) can be treated as a separate game. Of course, these games
are not completely independent because types follow a Markov process. Consequently,
my equilibrium construction must deter players from deviating for any on-path type
and for a range of beliefs about that type.

For a fixed k, (6) can be interpreted as the payoff decomposition for the game G(k).
Fix k and define Uj = ∑T−1

t=0 δ
tuTKj+Tk+t as the discounted payoff from block (k� j).

From the perspective of the first period in G(k), payoffs from the periods in G(k) may
be written

U0 + δTKU1 + δ2TKU2 + · · · =
∞∑
j=0

δTKjUj� (8)

Setting Ũj = ((1 −δ)/(1 −δT ))Uj , we can rescale (8) by (1 −δ)(1 −δTK)/(1 −δT ) to yield
(1 − δTK)

∑∞
j=0 δ

TKjŨj , which is equivalent to the average payoff in a repeated game

with discount factor δTK and stage-game payoffs Ũj . We can decompose this payoff in
the standard way by setting v = (1 − δTK)Ũ0 + δTKw̄, where v is the rescaled payoff in
G(k), Ũ0 is the average payoff from the first block, and w̄ = (1 − δTK)

∑∞
j=1 δ

TK(j−1)Ũj .
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Replacing Ũj with the expected invariant payoff Eξ[vT (αξ)] and replacing δTK with δ
yields the payoff decomposition (6).9

The next result shows that any (T�ζ�δ)-decomposable set can be approximated by
a set of equilibrium payoffs. After stating the result, I discuss how I use (T�K)-recurrent
mechanisms to construct an equilibrium from Definition 9.

Proposition 4. LetW ⊆ R
N be a closed, convex, bounded set. Suppose there exists a δ̂ <

1 and a continuous function ζ : [δ̂�1)→ (0�∞) such that for all δ ≥ δ̂, W is (T�ζ(δ)�δ)-
decomposable. Then for any ε > 0, there exists a δ∗ < 1 such that for all δ≥ δ∗ andw ∈W ,
there exists an equilibrium with payoff v ∈ B(w�ε).

Let W be (T�ζ�δTK)-decomposable and suppose w ∈W . By Definition 9, w can be
decomposed into the sum of an invariant payoff from an allocation rule and a contin-
uation payoff in W . Iterating this process results in a history-dependent sequence of
allocation rules (α0�α1� � � �). A (T�K)-recurrent mechanism can be constructed from
this sequence: α0 is played in all blocks (k�0), while the allocation rule in block (k� j) is
determined by a single period from each of (k�0)� � � � � (k� j − 1). Conditions (i) and (iv)
of Definition 9 ensure that the resulting mechanism is (T�K)-recurrent.

Fix the effective discount factor between blocks, δTK , and note that δTK can be kept
(approximately) constant as δ increases by also increasingK. ForK and δ large and δTK

bounded away from 1, Proposition 3 proves that payoffs in block (k� j) would approxi-
mate vT (α(k�j)) if players could commit to their actions. Then (6) implies that expected
payoffs approximate w. Hence, it suffices to show that players do not wish to deviate
from equilibrium actions.

Suppose the allocation rule in the current block does not min- or max-max a player.
Then (7) implies that no player has a profitable deviation from the action profile, re-
gardless of that player’s belief about θt . If the strategy min- or max-maxes player i, then
player i cannot myopically gain by either deviating in her action (for any i) or reporting
the wrong type (for i= 1). One subtlety complicates the argument in this case: (7) holds
with respect to the effective discount factor δTK , while the true gain from deviating in a
period is weighted by (1−δ). So (7) overweights player i’s myopic loss if he deviates from
α(mt). This is why the first term in (7) is constrained to be nonnegative; otherwise, this
overweighted myopic loss might be large enough to satisfy the enforceability constraint
but not large enough to actually deter deviations.

The penultimate step in the proof holds T <∞ fixed and considers the sets of payoffs
that are (T�ζ�δ)-decomposable.

Proposition 5. Fix a smoothW ⊆ int(V T∗). For any ε > 0, there exists a δ̄ < 1 such that
for any δ≥ δ̄ and w ∈W , there exists an equilibrium with payoff v ∈ B(w�ε).

This discussion focuses on how my proof departs from the analogous argument in
FLM. Fix T and consider v on the boundary of W . Let X be the unique plane that is
tangent to W at v, and assume for now that X is not parallel to any of the axes. For

9I thank an anonymous referee for suggesting this discussion.
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any δ, there exists α ∈ AI and a plane Xδ that is parallel to X such that (6) holds for
appropriately chosen continuation payoffs inXδ. Assumption 2 implies that any α ∈ AI
is (T�ζ�Xδ�δ)-enforceable for any ζ ≥ 0. So v is (T�ζ�Xδ�δ)-decomposable.

Let {wξ�δ(y�m)}ξ�y�m ⊆ Xδ be the set of payoffs that enforce α. If we fix ζ = 0, then
an increase in δ has two effects. First, Xδ →X as δ→ 1 to satisfy (6). Second, we can
decrease the distance between elements of {wξ�δ(y�m)} without violating (7). FLM show
that for sufficiently high δ, the resulting {wξ�δ(y�m)} lie within W , which implies that v
is (T�0�W �δ)-decomposable.

However, ζ > 0 in the setting with Markov types: players must be given strict incen-
tives to follow equilibrium actions because they have private information about their
continuation payoffs. As δ→ 1 and the distance between elements of {wξ�δ(y�m)} de-
creases, any fixed ζ > 0 will overwhelm the incentives provided by continuation payoffs,
violating (7). I solve this problem by increasingK in the (T�K)-recurrent mechanism as
δ increases, which decreases the effect of player 1’s private information on her gain from
deviating and, hence, leads to a smaller ζ > 0. IfK and δ increase so that δTK is approx-
imately constant, then ζ falls quickly enough to satisfy (7) as δ→ 1. Consequently, any
v ∈W such that X is not parallel to an axis can be sustained using continuation payoffs
inW .

Suppose X is parallel to the ith axis. If continuation payoffs lie in Xδ, then player
i’s continuation payoff is constant in his action and so (7) cannot be satisfied for i. So
continuation payoffs cannot lie in Xδ, which implies that these payoffs are inefficient
even as δ→ 1. However, if αmin- or max-maxes player i, then the size of this inefficiency
is proportional to ζ > 0; if ζ is sufficiently small relative to a fixed δTK , then continuation
payoffs are approximately efficient. I show that such v ∈ W can be decomposed by an
α that min- or max-maxes player i along with nearly efficient continuation payoffs if ζ
is small, so v can again be approximated by an equilibrium. Any interior point in W
can be attained by public randomization among boundary points. I conclude that W
is (T�ζ�δ)-decomposable and so Proposition 4 implies that it can be approximated by
equilibrium payoffs.

To prove Theorem 1, it suffices to note that V T∗ converges to V ∗ as T → ∞ by Propo-
sition 1. The argument above applies for any fixed T , so any payoff inW can be approx-
imated arbitrarily closely by an equilibrium payoff if δ is close to 1.

5. Extension: Games with an expert

In this section, I turn to games in which player 1’s private information affects every
player’s payoff and I extend the argument developed above to these games with an
expert.

Consider the model from Section 2, with the sole difference that ui can depend on θ
for i �= 1. Intuitively, player 1 is an expert who privately observes a state of the world θ
that affects everybody’s payoffs. Importantly, player i �= 1 might learn about θ from his
realized payoff. For the exposition (and as in RSV), I assume that players do not observe
their realized payoffs. However, this assumption is not required for the result to hold:
the result in this section also holds (with minor modifications to the proof) if players
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privately observe their own realized payoffs at the end of each period.10 I return to this
point and discuss it further at the end of this section.

Because θ affects everyone’s payoffs, player 1 must be motivated to report truth-
fully with high probability in most periods. The quota mechanism does not necessarily
provide incentives for approximate truth-telling, but RSV have shown that it does if the
allocation rule satisfies a strict form of (1). I define such strictly cyclically monotone
allocation rules.

Definition 10. An allocation rule α ∈ ACM is strictly cyclically monotone if for any per-
mutation ψ :�→�, either α(θ)= α(ψ(θ)) for all θ ∈� or∑

θ∈�
g1

(
α(θ)�θ

)
>

∑
θ∈�

g1
(
α
(
ψ(θ)

)
� θ

)
�

Define ÂCM ⊆ ACM as the allocation rules satisfying strict cyclical monotonicity.

Unlike the games studied in Sections 2–4, min- and max-max actions for players
other than 1 now depend on θ. Player 1 must be induced to report θ truthfully if another
player is being min- or max-maxed, which constrains the payoffs that can be sustained
in equilibrium.

Definition 11. For player i �= 1, the strictly cyclical max-max for player i solves

ĝMi = max
α∈ÂCM

Eθ∼π
[
gi

(
α(θ)�θ

)]

subject to the condition that for any θ, αi(θ) ∈ arg maxai gi(ai�α−i(θ)�θ). Let α̂M�i be the
corresponding allocation rule. Similarly, define the strictly cyclical min-max for player i
as

ĝmi = min
α∈ÂCM

Eθ∼π
[
gi

(
α(θ)�θ

)]
subject to the condition that for any θ, αi(θ) ∈ arg maxai gi(ai�α−i(θ)�θ). Let α̂m�i be the
corresponding allocation rule.

For player 1, min-max α̂m�1 and max-max α̂M�1 are the same as in Definition 1. De-
fine the set of min-max and max-max allocation rules Âm and ÂM , respectively.

The min- and max-max payoffs in Definition 11 are clearly not the weakest possible
notions. For instance, the payoff ĝmi supposes that player i observes θt , but he could be
punished more harshly without this information. However, in that case player i’s actions
would depend on his beliefs about past θ, which depend on player 1’s reporting strategy
in previous blocks. The proof of Proposition 4 requires that strategies in one block of a
(T�K)-recurrent strategy be independent of past blocks.

10Indeed, the argument would work if payoffs were publicly observed. However, in that case players
could infer a from these payoffs, which eliminates much of the difficulty of imperfect monitoring.
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The set of payoffs that can be sustained in equilibrium is bounded above by max-
max payoffs. This upper bound arises because a max-max allocation for player i must
satisfy two conflicting requirements. First, it must be cyclically monotone to induce
player 1 to report truthfully. Second, player i must have a myopic incentive to follow
the allocation rule, since otherwise deviations could only be deterred using inefficient
continuation play. While the upper bound presented here could almost certainly be
relaxed—for instance, it assumes that player i knows the true state of the world—these
conflicting requirements intuitively limit the set of allocation rules that could be sus-
tained in equilibrium.

Finally, I assume that for α ∈ {α̂m�i� α̂M�i}Ni=2, there exist payments such that player 1
would strictly prefer to reveal θ in a static mechanism design problem. I defer discussion
of this assumption until after I state the main theorem of this section.

Assumption 4. There exists L̃ > 0 such that for any α ∈ {α̂m�i� α̂M�i}Ni=2, there exists a
function τtruth : � → R such that for any θ and θ′, (i) if α(θ) = α(θ′), then τtruth(θ) =
τtruth(θ′); (ii) if α(θ) �= α(θ′), then

u1
(
α(θ)�θ

) − τtruth(θ)− L̃≥ u1
(
α
(
θ′)� θ) − τtruth(

θ′)�
The structure of the theorem and proof in this section is similar to Theorem 1. I state

the theorem formally, then highlight some of the key differences in the proof.

Definition 12. Define ÂI = Âm ∪ ÂM ∪ ÂCM, and let

V̂ = co
{
Eθ∼π

[
g
(
α(θ)�θ

)]|α ∈ ÂI
}
�

V̂ ∗ = {
v ∈ V̂ | for any i� ĝmi ≤ v≤ ĝMi

}
�

Theorem 2. Suppose Assumptions 1–4 hold and letW ⊆ int V̂ ∗. Then for any ε > 0, there
exists δ∗ < 1 such that if δ ≥ δ∗, for any w ∈W there exists an equilibrium payoff v ∈ R

N

satisfying ‖w− v‖< ε.

The proof of Theorem 2 modifies the argument from Theorem 1 in a few key ways.
First, player 1 must be induced to report truthfully with high probability in each period,
since the other players’ payoffs now depend on θ. For α ∈ ÂCM, techniques from RSV
can be adapted to show that quota mechanisms can induce “approximate truth-telling”
among patient players. For allocation rules that min- or max-max player 1, Proposition 2
shows that player 1 has an incentive to report truthfully.

The real new difficulty arises for allocation rules that min- or max-max some player
i �= 1. Because α ∈ ÂCM, a quota mechanism would induce player 1 to report approx-
imately truthfully in this case. Even if reporting is approximately truthful, however,
player i might not have an incentive to follow his min- or max-max action. In partic-
ular, if player i believes that player 1 is lying with high probability conditional on the
public history, then i might prefer to deviate. Because i is being min- or max-maxed,
using continuation payoffs to deter such deviations would result in a substantial loss of
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efficiency even as δ→ 1. Therefore, for such allocation rules, player 1 must be induced
to report exactly truthfully, rather than just approximately truthfully.

My construction uses continuation payoffs to ensure that player 1 has the incentive
to tell the truth. If player i �= 1 is min- or max-maxed, then the construction already uses
continuation payoffs to ensure she does not deviate in actions. I modify the construc-
tion so that, before players take actions, player 1’s expected continuation payoff mimics
the transfers τtruth that induce truth-telling in a static mechanism design problem. Con-
tinuation payoffs after outcome y is observed are then used to deter deviations from α.
Assumption 4 ensures that τtruth strictly motivates truth-telling, so continuation payoffs
that approximate these transfers sufficiently closely also induce truth-telling. There-
fore, player 1 has the incentive to report truthfully in every period if i �= 1 is being min-
or max-maxed.

Finally, suppose that players privately observe their own payoffs. Player 1 already
observes (yt� ai�t � θt) in each period t, so observing her payoff does not change her in-
formation or incentives. Any other player could potentially learn θt−1 from his period-
(t − 1) payoff, which would affect his prior in period t. However, in my equilibrium
construction, either (i) player i �= 1 has no incentive to deviate for any belief or (ii) player
1 reports truthfully, mt = θt . In either case, player i is willing to follow the equilibrium
regardless of his prior at the start of period t. So the proof of Theorem 2 holds even if
each player privately observes his own payoffs.11

6. Conclusion

My results rely on three important assumptions. First, only player 1 has private informa-
tion. If multiple players have private information, then the mechanism design problem
in Section 3 is not a decision problem and so invariant payoffs might depend on the
prior ν. Second, the distribution of y is independent of θ. As noted in footnote 7, this
assumption is required to ensure that player 1’s optimal reporting strategy does not vary
in a slightly perturbed game. It also implies that player 1 can be induced to follow the
equilibrium action profile even after she lies about her type. Finally, the distribution
over types does not depend on past actions or outcomes, which implies that actions in
one block of a (T�K)-recurrent mechanism do not directly affect payoffs in an adjacent
block.

In principle, payoffs from other blocks could be used both to induce truth-telling
and to deter deviations in actions. Indeed, in Section 5, I use continuation payoffs to
induce truth-telling when player i �= 1 is min-maxed or max-maxed. Generalizing this
technique might allow the argument to be extended in both Sections 4 and 5.12
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