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1. Introduction

It is well understood by students of probability and statistical theory that rather than the
random variable itself, it is the distribution of the random variable that is the useful and
relevant object to be investigated; the sample space of the random variable is usually not
of any real consequence for the problem at hand. This idea has not fully caught on in
Walrasian general equilibrium theory and in game theory with a continuum of players.
Despite Hildenbrand’s conception of an economy as a distribution on the space of agent
characteristics in the context of his asymptotic implementation of Aumann’s theorems,1

the first explicit treatment of a large game and its Nash equilibrium, both as distribu-
tions, is due to Mas-Colell (1984). His discussion built on Milgrom and Weber (1985)
and presupposed the formulation of a game and its equilibrium concept as a random
variable, as in Schmeidler (1973).2

The domain of the random variable—the sample space—in both general equilib-
rium theory and in large games refers to the space of players’ names,3 and it would not
be far-fetched to refer to the approach based on random variables as individualized mi-
croeconomic and that based on distributions as distributionalized macroeconomic. In
the first approach, each characteristic and each equilibrium action is tied to an individ-
ual player and is, as such, named and non-anonymous, whereas in the second approach,
one can only speak of proportions of players having a given set of characteristics and
equilibrium actions, and is, as such, anonymous. This anonymous conception, with its
focus on aggregates, as in macroeconomics, is silent on questions having to do with the
cardinality of the set of players and their individual identities.4 To be sure, the individu-
alistic formulation makes explicit the connection between individual responses and the
resulting social outcomes; but it is the distributional formulation that delivers existence
proofs effortlessly.5

1Hildenbrand conceived an economy to be a distribution of a random variable on the space of agent
characteristics, and the convergence of a sequence of economies to a limit economy as the corresponding
weak-star limit of the distributions of their characteristics; see Hildenbrand (1974) and his text for earlier
papers of Kannai, Hart and Kohlberg, in addition to Hildenbrand himself. So as to minimize references, we
send the reader to the relevant texts and surveys.

2In Milgrom and Weber (1985), it is not the specification of the game, but rather its Bayesian-Nash equi-
librium, that is formulated as a joint distribution on actions and information.

3This presupposes a setting of complete information; in an incomplete information setting, the domain
could also include the space of information, but such a description and an analysis of an infinite game with
incomplete information is not yet available in the literature; but see Section 4 below.

4This terminology is not standard in the literature. In their survey, Khan and Sun (2002) conform to the
above usage, but other authors take note of the fact that it is a statistical summary of the actions of the
other players, rather than the actions of each individual, that enters as an argument in a player’s payoff, be
he anonymous or non-anonymous in the sense of the terms here, and that it is this that renders a game
anonymous. In Kalai (2004), for example, the term “semi-anonymous” is also used for a large but finite
setting that a player has a name as well as a trait, and the externality argument takes both strategies and
traits into account; also see Kalai and Shmaya (2013) and its references. To avoid confusion, we shall avoid
this anonymity terminology and talk of large individualized and large distributionalized games (LIG and
LDG).

5The fact that the distributional approach offers the most promise for dynamics was realized early on by
Jovanovic and Rosenthal (1988) and pursued in Bergin (1992), Bergin and Bernhardt (1992, 1995).
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Thus, an analyst has two formulations of a large game at her disposal, and a natural
question arises as to how they correspond to each other. Since the formulation of a
game based on a random variable induces that based on the distribution of that random
variable, one is asking how the equilibrium of one induces that of the other, and vice
versa.6

In this paper, we offer a systematic investigation of this question7 in the context of
the recent generalization of the theory of large games to admit a biosocial typology. With
this broadening of the notion of player interdependence to include a dependence on
societal summaries of both players’ actions and players’ traits, we obtain a richer and
more relevant notion of social interaction, and thereby are able to explore further what
is commonly referred to as externalities in Walrasian general equilibrium theory. The
individualized and distributionalized components of the original theory carry over in
a natural and straightforward way to this generalization where an agent has a name as
well as a trait, and the size of a coalition is not the only consideration.8 We conduct our
investigation in the generalized vernacular.

The context we work in involves both a common (compact) action set as well as a
common (compact) set of traits. A trait, and a payoff function defined on actions and
distributions on traits and action, constitute the characteristic of a player. A large dis-
tributionalized game (LDG henceforth) is a (probability) measure on the space of char-
acteristics. A large individualized game (LIG henceforth) is a (measurable) mapping
from an atomless probability space of players to the space of characteristics. The cor-
responding equilibrium notions of these two games are Nash equilibrium distribution
(NED) and Nash equilibrium (NE), defined in the usual manner. Given an LDG, its repre-
sentation is an LIG that induces it. This is simply to say that given a distribution, we find
a random variable whose distribution it is. In general, an LDG has a multitude of repre-
sentations, even if the space of players is fixed. We consider three notions of equivalence
between an LIG and an LDG.

An LIG and an LDG are considered equivalent if (a) each NE of the LIG induces an
NED of the LDG and (b) each NED of the LDG is induced by some NE of the LIG. Whereas
the first condition always holds between a representing LIG and an LDG (Lemma 1), the
second, in general, is not always fulfilled. Example 1 demonstrates this in a game with
two actions and a single trait. This suggests that equivalence is perhaps too demanding
a notion. Given the failure of equivalence in general, one needs to relax the conditions
to some extent to explore the relationships that hold. An NED of an LDG is a symmetric
Nash equilibrium distribution (SNED) if players with the same characteristics take the
same action. An LDG and an LIG are weakly equivalent if the LIG represents the LDG,

6It is worth stating that Mas-Colell (1984, p. 203) had already asked this question and observed a potential
discrepancy, but did not pursue it further; his concern was with existence issues.

7In the context of a large game with finite actions, the issue was undertaken in Rath (1995); its main result
is subsumed in Theorem 2 below.

8See Khan et al. (2013a, 2013b), and Qiao and Yu (2014); also see Kalai (2004) for its large but finite analogs
where the interdependence assumption is called semi-anonymity. The canonical models of large games
without traits (Schmeidler 1973 and Mas-Colell 1984) are special cases of the generalization investigated
here when the space of traits is reduced to a singleton.
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and each SNED of the LDG is induced by some NE of the LIG. Weak equivalence always
holds: an LDG and an LIG that represents it are weakly equivalent (Theorem 1).

Even though the weak equivalence result is satisfying, it applies only to SNEDs, a
subset of NEDs, and as such suffers from a limitation. As a result, when there is no SNED
in an LDG, weak equivalence holds between the LDG and an LIG that represents it, and
in addition, the LIG may not have an NE even though there always exists an NED in an
LDG.9 To encompass all NEDs, we consider quasi-equivalence that relies on the concept
of similarity between two NEDs. Two NEDs of an LDG are similar if their marginals on
the product space of traits and actions are identical. Since the payoff of a player depends
on the choice of action and the distribution on traits and actions, two similar NEDs have
the same best response sets and are alike in important game theoretic aspects. An LIG
and an LDG are quasi-equivalent if corresponding to each NED of the LDG there is an
NE of the LIG that induces an NED similar to the given one. The countability of the trait
and action spaces are necessary and sufficient for an LIG that represents an LDG to be
quasi-equivalent to it (Theorem 2).

In terms of the relationships among these three notions of equivalence, equivalence
implies quasi-equivalence and quasi-equivalence implies weak equivalence. In either
case, the converse relation is false in general. This leads to our turning to the case where
equivalence holds with some additional assumption on the representing LIG. We show
that the original notion of equivalence of an LIG and an LDG is obtained if the LIG satu-
ratedly10 represents the LDG (Theorem 3).

The paper then is organized as follows. In Section 2, we present the two game forms
and their solution concepts, and offer an example that equivalence is far too much to
hope for without additional assumptions and refinements. Section 3 turns to these ad-
ditional considerations, and offers other equivalence notions and spaces that are sat-
urated. Section 4 concludes the paper with a summary and two remarks on possible
extensions. Technical details of examples and proofs of the results are relegated to Ap-
pendixes A and B.

2. Two canonical formulations

Let A be a compact metric space with at least two elements representing the set of
actions, and let T be a compact metric space representing the space of traits.11 Let
M (T ×A) be the set of Borel probability measures on T ×A equipped with its Borel σ-
algebra B(T × A), and metrized by the topology of weak-star convergence. Let U(A�T)

be the space of real-valued continuous functions on A × M (T × A) representing the

9The existence of an NED in a large game is a general result, but that of an NE or an SNED requires more
restrictive assumptions. This aspect is discussed in detail in Section 3; see the discussion before Example 2
and footnote 19 in particular.

10Note that the notion of one game form saturatedly representing another, as in Definition 9, is based on
the saturation property, first used to study large games in 2002; see the Acknowledgements in Keisler and
Sun (2009). We provide a detailed discussion of the property in Section 3.

11Earlier work in Khan et al. (2013a, 2013b) suggests that the compactness requirement on T can be
relaxed to the weaker requirement of complete separability, or a Polish space. We leave an investigation of
this for future work.
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space of payoff functions, metrized by the supremum norm. The characteristics of an
individual player then consist of a trait and a payoff function, and thus the space of
characteristics is T ×U(A�T), a complete separable metric space with its Borel σ-algebra
B(T × U(A�T)). In the sequel, (I�I �λ) denotes an atomless probability space and
Meas((I�I �λ); (T × U(A�T))) denotes the space of measurable functions from (I�I �λ)

to (T × U(A�T)). When there is no possibility of confusion we abbreviate the latter by
Meas(I;T × U(A�T)). We also denote the unit Lebesgue interval by ([0�1]�B([0�1])� �),
where B([0�1]) is the Borel σ-algebra on [0�1] and � is the Lebesgue measure on it. Next
we develop the basic notions underlying the two formulations of a large game.

Definition 1. A large distributionalized game (LDG) is a Borel probability measure μ

on the space of characteristics, T × U(A�T), which is to say that μ ∈ M (T × U(A�T)).
A Nash equilibrium distribution (NED) of an LDG μ is a Borel probability measure τ on
the space of characteristics and actions, T × U(A�T) ×A, such that the marginal of τ on
the space of characteristics T × U(A�T) is μ and τ(B(τ)) = 1, where

B(τ) = {
(t�u�a) ∈ T × U(A�T) ×A : u(a�τT×A) ≥ u(x�τT×A) for all x ∈A

}
�

We denote the set of Nash equilibrium distributions of an LDG μ by NED(μ).

We now turn to a large individualized game and its equilibria. For this, in addition to
the ingredients A, T , and U(A�T), we need one more constituent object (I�I �λ), a name
space of players.

Definition 2. A large individualized game (LIG) is a measurable function G from the
space of players’ names I to the space of characteristics, T × U(A�T), which is to say
that G ∈ Meas(I;T × U(A�T)). A (pure) strategy profile f of G is a measurable function
from I to the action set A, and is said to be a (pure strategy) Nash equilibrium (NE) if for
λ-almost all i ∈ I,

vi
(
f (i)�λ(α� f )−1) ≥ vi

(
a�λ(α� f )−1) for all a ∈A�

with vi abbreviated for G2(i) and α abbreviated for G1, where Gk is the projection of G on
its kth coordinate, k= 1�2. We denote the set of Nash equilibria of an LIG G by NE(G ).

It should be noted that these notions of LIGs and LDGs are taken from Qiao and Yu
(2014), and have advantage over the corresponding notions in Khan et al. (2013a, 2013b)
in that they do not depend on a given marginal.12 We now connect these notions by
saying that an LIG represents an LDG if the LIG induces the same distribution on the
space of characteristics as the LDG, which is defined formally as follows.

12Specifically, in Khan et al. (2013a, 2013b), a payoff function is a continuous real-valued function de-
fined on A×M ρ(T ×A) rather than on A×M (T ×A) as defined here, where ρ ≡ λα−1, and M ρ(T ×A) is
the subspace of M (T ×A) such that for any τ ∈ M ρ(T ×A), its marginal probability on T , τT = ρ; see the
discussion in Qiao and Yu (2014). To repeat footnote 11 in this connection, compactness on T in this paper
can be relaxed to the weaker requirement of a Polish space by appealing to the argumentation in Khan et al.
(2013a, 2013b).
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Definition 3. An LIG G represents an LDG μ if μ= λG −1.

Given an LDG μ ∈ M (T × U(A�T)) and an atomless probability space (I�I �λ), one
can show that there always exists13 an LIG G ∈ Meas(I;T × U(A�T)) that represents μ. In
general, an LDG has a multiplicity of LIGs that represent it.

We now consider the equivalence of an LIG and an LDG in terms of their equilibria.

Definition 4. An LIG G and an LDG μ are equivalent if the following statements hold:

(i) For every f ∈ NE(G ), λ(G � f )−1 ∈ NED(μ).

(ii) For every τ ∈ NED(μ), there is f ∈ NE(G ) such that τ = λ(G � f )−1.

Note that in our setup, for any LDG μ, NED(μ) is nonempty.14 Therefore, if an LIG
and an LDG are equivalent, then (ii) implies that the LIG must represent the LDG and the
LIG must have an NE. With this notion of equivalence of the two game forms in place,
our first observation establishes a particular kind of correspondence between the NED
of an LDG and NE of any given LIG that represents it.

Lemma 1. If an LIG G represents an LDG μ, f ∈ Meas(I;A) and τ = λ(G � f )−1, then f ∈
NE(G ) if and only if τ ∈ NED(μ).

Lemma 1 establishes that if we consider a strategy profile f (i.e., a measurable map-
ping from the name space to the action set) of an LIG G , then the joint distribution
induced by G and f is an NED of the LDG that G represents if any only if f satisfies
the Nash equilibrium condition. This shows that Definition 4(i) is always satisfied be-
tween an LDG and any LIG that represents it. Any equilibrium of an LIG, an individual-
ized microeconomic form, automatically induces an equilibrium in its macroeconomic
counterpart.

Before investigating Definition 4(ii), we provide the following observation.

Lemma 2. For any τ ∈ NED(μ) and an atomless probability space (I�I �λ), there ex-
ists an LIG G ∈ Meas(I;T × U(A�T)) that represents μ and an NE f of G such that
τ = λ(G � f )−1.

The content of Lemma 2 can be phrased as follows. Given an NED of an LDG, and
given an atomless name space of players, there exists an LIG based on that name space
that induces the given LDG and that has an NE that induces the given NED of the LDG.
It provides the microfoundation for a particular given NED of an LDG when the name
space is available. What it does not do is to establish that an LIG is equivalent to the
LDG that it represents, i.e., Lemma 2 does not ensure that the requirement expressed in
Definition 4(ii) is fulfilled. The question then is whether Lemma 2 can be strengthened

13See Lemma 2.1(ii) in Keisler and Sun (2009), for example.
14This claim on the existence of an NED in an LDG can be established through the fixed-point argument

in Mas-Colell (1984); also see Khan et al. (2013b).
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so that the requirement in Definition 4(ii) holds as well? Example 1 offered below gives a
decisively negative answer to this question. It involves only two actions and a single trait,
and essentially involves a single-payoff function, one on which societal responses have
no effect under the first action and have an “inverse” effect under the second action.

Example 1. Let the space of players (I�I �λ) be the Lebesgue unit interval ([0�1]�
B([0�1])� �), let their common action space be A= {a1� a2}, and let G bea function such
that for all i ∈ [0�1], G (i) = iu, where for any ν ∈ M (A),

u(a� ν) =
{

1/2 for a= a1�

1 − ν(a2) for a= a2�

The space of traits T is a singleton in this example and we abbreviate T × U(A�T) to UA.
Let μ = �G −1. Clearly, G is an LIG, μ is an LDG, and G represents μ. It is easy to

verify that f is a Nash equilibrium of G if and only if �f−1(a1) = �f−1(a2) = 1/2, i.e., in
equilibrium, both actions are best responses. Moreover, NED(μ) is the set of all Borel
probability measures τ on UA ×A such that τUA

= μ and τA = (δa1 +δa2)/2, where δa is
the Dirac measure on {a}.

Define f1 and f2 as

f1(i) = a1 if i < 1/2 and f1(i) = a2 if i ≥ 1/2�

f2(i) = a2 if i < 1/2 and f2(i) = a1 if i ≥ 1/2�

Both f1 and f2 are Nash equilibria of G and �f−1
1 = �f−1

2 . Let τ1 = �(G � f1)
−1 and τ2 =

�(G � f2)
−1. By Lemma 1, both τ1 and τ2 are NEDs of μ. Observe that τ1({(G (i)� a1) : i <

1/2}) = 1/2 and τ2({(G (i)� a1) : i < 1/2}) = 0, so τ1 �= τ2. Now consider τθ = θτ1 + (1 −
θ)τ2, θ ∈ (0�1). Clearly, τθUA

= μ and τθA = τ1
A = τ2

A. Therefore, B(τθ) = B(τ1) = B(τ2).

Since τ1(B(τθ)) = τ2(B(τθ)) = 1, τθ(B(τθ)) = 1. So each τθ is an NED of μ.
The important point is that given θ ∈ (0�1), there is no f ∈ NE(G ) such that τθ =

�(G � f )−1. Hence, G and μ are not equivalent.15 We defer the details of the substantia-
tion of this claim to Appendix A; suffice it to say that it relies essentially on the extreme
point characterization of an SNED16 offered in Khan and Sun (1995).

The results that we present below can be categorized under three headings: (i) weak
equivalence under which the focus is on SNEDs, (ii) quasi-equivalence under which the
equality of two distributions is weakened to an equality of their marginals, an,d finally,
(iii) equivalence requiring additional assumptions on the space of players of the rep-
resenting LIG. Under (i), the set of equilibrium distributions is restricted; under (ii),
equality is weakened to similarity; under (iii), we invoke an additional assumption on
a property of the space of players that has already proved to be of consequence for the
subject of atomless games. These notions overcome the aforementioned deficiency of
Lemma 2.

15It is also worth noting that in Example 1, for any fixed θ ∈ (0�1), we can construct another LIG that
represents μ and has an NE that does induce the NED τθ. The case when θ = 1/2 is done to illustrate
Lemma 2 and is Example 4 in Appendix A.

16See Definition 5 below for its formal definition.
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3. Equivalence results

There is an interesting feature of Example 1 that deserves to be noted. It is simply that
even though there exists an NED of an LDG that cannot be induced by an NE of a given
representing LIG, there is an identifiable subset17 of NEDs, such as τ1 and τ2 in the ex-
ample, that can be so induced. This observation leads to the following statement.

Definition 5. In an LDG μ, a τ ∈ NED(μ) is symmetric if there exists a measurable
function h : T ×U(A�T) −→A such that τ(graph of h) = 1. We denote the set of symmet-
ric Nash equilibrium distributions of an LDG μ by SNED(μ).

We then build on the idea of an SNED to present the following weakening of Def-
inition 4 and our first substantive result based on it. Unlike Definition 4, we are now
explicit in making it a requirement that an LIG represents the LDG.

Definition 6. An LIG G and an LDG μ are weakly equivalent if G represents μ and in
Definition 4(ii), NED(μ) is replaced by SNED(μ) to read as follows:

(ii′) For every τ ∈ SNED(μ), there is f ∈ NE(G ) such that τ = λ(G � f )−1.

The equivalence of an LIG and an LDG implies that the LIG is weakly equivalent
to the LDG. However, the converse may not hold. For instance, in Example 1, the LIG
G and the LDG μ are not equivalent, but they are weakly equivalent. If τ ∈ SNED(μ)

and τ(graph of h) = 1, then �({i : h(iu) = a1}) = �({i : h(iu) = a2}) = 1/2. Consider the
function f : [0�1] −→ {a1� a2} defined as f (i) = a1 if and only if h(iu) = a1 for all i ∈ [0�1].
It is clear that f is an NE of G and τ = �(G � f )−1.

We are ready to present our first theorem.

Theorem 1. Any LIG that represents an LDG is weakly equivalent to it.

Intuitively, Theorem 1 works because an SNED has the individualistic microfounda-
tion in itself: according to Definition 5, at any SNED in an LDG, players with the same
characteristics take the same action. Thus, when an SNED exists for a given LDG, an
NE for an LIG representing it can be obtained in a way such that players with the same
characteristics take the same actions.

However, Theorem 1 has not fully established a correspondence between NEDs of
an LDG and the NE of any of its individualized form, since it only focuses on the set of
SNEDs, a subset of NEDs. In particular, it is well known that an (atomic) LDG may not
have an SNED, even when the action set is finite and the trait space is a singleton; see
Rath (1995, Example 2).18 And thus, Theorem 1 still trivially holds for any LDG without
an SNED and an LIG that represents the LDG. Even worse, it is possible that Theorem 1

17See Lemmas 3 and 4 below in this regard.
18To be sure, as shown in Mas-Colell (1984, Theorem 2), an SNED does exist for an atomless LDG with

finite actions and a single trait. Such a result still holds when the action set is countable; see the nontrivial
generalization in the 1995 papers of Khan and Sun, referenced in Khan and Sun (2002), where an NE is also
connected to an SNED.
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still holds when an LIG does not have any NE even though there always exists an NED
in an LDG.19

It is well understood that if the action set is uncountable, there may not exist an NE
in an LIG; see Khan et al. (1997). We now also understand that with an uncountable set
of traits, there may not exist an NE in an LIG; see Qiao and Yu (2014). In the first case,
the set of traits can be a singleton, and in the second case, the action set can contain
only two elements. These examples are thus decisive in dashing hopes of any progress
with sets of uncountable cardinality. Two examples along these lines are provided below
briefly for the reader’s convenience.

Example 2. Let the space of players be the Lebesgue unit interval ([0�1]�B([0�1])� �),
let the action set A be the interval [−1�1], and let G be a function on I such that for each
player i ∈ [0�1], for a ∈A, ν ∈ M (A),

G (i)(a� ν) =
∫ 1

−1
wi(a�x)dν(x)� where wi(a�x) = −∣∣i− |a|∣∣ + (i− a)h(i�x)

and the function h : [0�1] × [−1�1] −→ R is such that for all t ∈ [0�1],

h(i�a) =

⎧⎪⎪⎨
⎪⎪⎩
a if 0 ≤ a ≤ i�

i if i < a≤ 1�

−h(i�−a) if a < 0�

Let μ = �G −1. It is clear that G is an LIG, with the space of traits being a singleton, that μ
is an LDG and that G represents μ. While μ has an NED, G does not have an NE.20

Example 3. Let the space of players be the Lebesgue unit interval ([0�1]�B([0�1])� �),
let the space of traits T be the unit interval [0�1], and let the common action space be
A = {a1� a2}. Let α be the identity mapping on [0�1]. For any a ∈ A and ν ∈ M (T × A),
let the payoff function for player i be

vi(a� ν) =
∫
T×A

(t − i)1[0�i)×{a}(t�x)dν�

Let G be a function on [0�1] such that for all i ∈ [0�1], G (i) = (α(i)� vi), where α(i) and
vi are specified as above. Let μ = �G −1. It is clear that the LIG G represents the LDG μ.
Whereas μ has an NED, it is shown in Qiao and Yu (2014) that G is an LIG without any
NE.

19The existence of an NED in an LDG is a remarkably robust result, is true for any complete separable
metric space of traits and true for action sets that are not even metrizable but only compact Hausdorff,
and with no non-atomic requirements on the measure space of payoff functions; see Mas-Colell (1984,
Theorem 1) and its generalization in Khan (1989) referenced in Khan and Sun (2002); also see Khan et al.
(2013b). However, an NE may fail to exist in an LIG; see Examples 2 and 3. In this connection, note that the
first example of nonexistence of an NE is a large game with uncountable actions but without traits is due to
Rath-Sun-Yamashige in 1995; see the precise reference and its reproduction in Khan and Sun (2002).

20This example is originally in a 1997 paper of Khan, Rath, and Sun, discussed and referenced as Exam-
ple 3 in Khan and Sun (2002).
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To summarize and to repeat, these examples suggest that in general, when the ac-
tion set A or the space of traits T is uncountable in a large game, connecting equilibria
in an LDG and an LIG can be problematic: the latter may not have an equilibrium while
the former always does.21 Therefore, so as to address the entire set of NEDs (rather than
the set of SNEDs that could be vacuous) and the set of NEs, and given that the equiva-
lence does not hold as well, the next modification is to draw on the notion of similarity
introduced in Rath (1995) for games without traits.

Definition 7. Two NEDs τ and τ′ of μ are similar if τT×A = τ′
T×A. This is denoted

τ 	 τ′.

In a game, from the perspective of players’ payoffs, what is most relevant is the
marginal distribution on traits and actions. Since an NED is a joint distribution on traits,
payoffs, and actions, the externality part is the marginal distribution on T and A, and
it is this that regulates the best responses. If two NEDs are similar, they generate the
same best response sets and are alike in important game theoretic aspects. Based on
similarity, we modify equivalence to quasi-equivalence below.

Definition 8. An LIG G and an LDG μ are quasi-equivalent if in Definition 4, (ii) is
changed so as to weaken the equality to similarity:

(ii′′) For every τ ∈ NED(μ), there is f ∈ NE(G ) such that λ(G � f )−1 	 τ.

The equivalence of an LIG and an LDG implies that they are quasi-equivalent. The
converse may not hold: Example 1 shows the quasi-equivalence of an LDG and an LIG
that represents it cannot be strengthened to the equivalence in Definition 4 even with
finite traits and actions. Quasi-equivalence implies weak equivalence. The nonempti-
ness of the set of NEDs and quasi-equivalence imply that the given LIG represents the
given LDG; see the discussion following Definition 4. Weak equivalence then follows
from Theorem 1. Weak equivalence does not imply quasi-equivalence, as illustrated by
Examples 2 and 3 in which an NE fails to exist for some LIG when the action set or trait
set is uncountable.

We are now ready to present our theorem on the characterization of quasi-
equivalence.

Theorem 2. The following two statements are equivalent:

(i) Both A and T are countable.

(ii) Any LIG that represents an LDG in M (T × U(A�T)) is quasi-equivalent to it.

The quasi-equivalence relation between an LDG and an LIG that represents it is thus
fully characterized by the countability of both the action set and the space of traits.22

21In terms of the existence of an NE, this observation also suggests the possible dissonance of two LIG
representations of the same LDG: in each example above, whereas the given LIG does not have any NE, one
can always find another LIG that represents the given LDG and that has an NE (by Lemma 2).
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With A and T being countable, given any NED of an LDG, one can always find another
NED, similar to the original one, that is induced by an NE of the LIG. What is a sur-
prise, however, is that the countability assumption is also necessary for such a quasi-
equivalence. From a substantive point of view, it is after all the (marginal) equilibrium
distribution on the trait and action sets that constitutes the raison d’etre of the theory.
It is a little surprising that this situation of “approximate” equality is characterized by a
setting of countable traits and countable actions. In a phrase, countability of the rele-
vant sets implies and is implied by quasi-equivalence. From a technical point of view,
Theorem 2 is a nontrivial consequence of a nontrivial theorem.23 Note also that the im-
plication of quasi-equivalence, or of equivalence for that matter, is not shared by weak
equivalence for the existence theory. Since weak equivalence is focused on a subset of
equilibria, it has little to say regarding the existence of equilibrium in one game form
implying that in the other.

Some additional discussion of the “externality” may be warranted. For the external-
ity notion that has been used in this paper, one generated by traits and actions, it is the
uncountable cardinality of the juxtaposition of the two spaces that is responsible for the
difficulties. Under the countability restriction of the trait and action spaces of an LDG,
it follows from Theorem 2 that there exists an NE in a given LIG that represents a given
LDG. As the counterexamples suggest, this is no longer true if T or A is uncountable (i.e.,
a measurable selection from individualized best responses that induces the externality
part of an NED may fail to exist). If there is to be no cardinality restrictions on T and A,
one has to impose some other structure on an LIG, the name space, for example, that
guarantees the existence of an NE. That is the exact equivalence characterization that
we are after and achieve.

The literature of a large game with uncountable actions and/or uncountable traits
has already provided alternative hypotheses to address the existence of an NE in an LIG;
see, for examples, games with countable characteristics as in Carmona (2008), games
with “many players of every type” as in Noguchi (2009), and games with a saturated
name space24 as in Keisler and Sun (2009), Carmona and Podczeck (2009), and Khan
et al. (2013a). We note that under these hypotheses, the notion of equivalence proposed
in Definition 4 does hold. Given our interest in exact equivalence, we would like to ex-
tract a feature shared by these classes of games. To do this, we now focus on the rep-
resenting LIG based on a name space that has a certain feature related to the following
property.25

22For the special case of the similarity result (i.e., from (i) to (ii) in Theorem 2) in a finite-action setting
without traits; see Rath (1995) and the 1995 Tokyo Conference Volume paper of Khan and Sun referenced
in Khan and Sun (2002).

23This is the Ballobas–Varapoulos generalization of the marriage lemma. For its formal statement and its
application in large games to relax the finiteness assumption on the action set, see the 1995 papers of Khan
and Sun referenced in Khan and Sun (2002).

24The necessity of a saturated name space for the existence of NE is considered in Keisler and Sun (2009)
and Khan et al. (2013a). The latter also considers the relation of a saturated name space and the closed-
graph property of equilibrium correspondence in large games; also see Qiao and Yu (2014).

25See Keisler and Sun (2009) and their reference to Hoover-Keisler (1984).
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Local Saturation Property. An atomless probability space (I�I �λ) is said to have
the local saturation property for a Borel probability measure ρ on the product of com-
plete separable metric spaces X × Y such that if ρX = λf−1 for a measurable mapping
f : I −→ X , then there is a measurable mapping g : I −→ Y such that λ(f�g)−1 = ρ.

For instance, if a Borel probability measure ρ on the product of two complete sepa-
rable metric spaces X ×Y has its marginal on X being purely atomic, then by Proposi-
tion 2.3 in Keisler and Sun (2009), any atomless probability space has the local saturation
property for ρ. Note also that in Example 1, the Lebesgue unit interval has the local sat-
uration property for τ1 and τ2 therein, but does not have the local saturation property
for τθ with θ ∈ (0�1).

A probability space (I�I �λ) is saturated, or has the global saturation property if it
has the local saturation property for every Borel probability measure ν on the product of
any two complete separable metric spaces.26 For instance, an atomless Loeb probability
space is saturated. Note also that every saturated probability space is an atomless space,
that the unit Lebesgue interval is not saturated, and that every nonsaturated atomless
probability space admits a saturated extension.27 The definition below is stronger than
the local saturation property, but weaker than the global saturated property.

Definition 9. Given an LDG μ, a representing LIG based on the name space (I�I �λ)

is said to saturatedly represent μ if (I�I �λ) has the local saturation property for each
ρ ∈ M (T × U(A�T) ×A) with ρT×U(A�T)

= μ.

We now present a basic result on the equivalence of an LDG and an LIG.

Theorem 3. Any LIG that saturatedly represents an LDG is equivalent to it.

As Example 1 already shows, a representing LIG with the Lebesgue name space may
not in general saturatedly represent the given LDG. We consider next two cases related
to Theorem 3. The first one concerns the local saturation property. If an LDG μ ∈ M (T ×
U(A�T)) is purely atomic, as pointed out earlier, any atomless probability space has the
local saturation property for each ρ ∈ M (T × U(A�T) × A) with ρT×U(A�T)

equal to μ.
Thus, this fact directly yields the following corollary to Theorem 3.

Corollary 1. If an LDG is purely atomic, then any LIG that represents it is equivalent
to it.

If the population has at most countable characteristics, the corresponding LDG
must be purely atomic. Thus, Corollary 1 implies that when we model a large game with
countable characteristics in its LIG form, the choice of the LIG form does not matter,
and every LIG that represents this LDG is equivalent to it.

26The distinction between the local and global saturation properties of a probability space is emphasized
in Keisler and Sun (2009); also see Khan et al. (2013a, Proposition A) and the discussion therein.

27The first two claims are standard, and the last claim is not difficult to show; details are available from
the authors on request.
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Second, since a saturated probability space has the global saturation property, the
following corollary is also directly implied by Theorem 3.

Corollary 2. An LIG with a saturated name space that represents an LDG is equivalent
to it.

The result above suggests that for any suitable A, T , and U(A�T), there is always a
“universally” equivalent name space such that even before knowing the μ, we are sure
that an equivalent LIG with that name space can be constructed. Observe that if the
name space of LIGs in Examples 1, 2, and 3 is extended to a saturated one,28 we obtain
equivalence between the given LDGs and the modified LIGs.

It is important to understand that these results do not render Theorems 1 and 2 ob-
solescent based on arbitrary atomless probability spaces (of which the Lebesgue interval
is the prototype) and charting out the different versions of equivalence. Indeed, since
the mid-sixties, the Lebesgue interval has been the workhorse space for the set of play-
ers’ names in general equilibrium theory, and from the mid-seventies, in nonatomic
game theory. Even leaving this aside, one can ask about the relationship between the
two sets of results: those based on the Lebesgue interval as opposed to those based
on saturated spaces. The answer lies in the fact that the two can be directly related to
symmetric and nonsymmetric NEDs, respectively, in an atomless LDG. We saw in Theo-
rem 1 that any LIG that represents a given LDG has an NE that induces a given SNED of
the LDG; also see the discussion preceding Example 1. This naturally suggests the ques-
tion, “What transpires when the given NED of an LDG is not necessarily symmetric?” To
answer this question, one can relate the choice of the name space of the LIGs such that
all representing LIGs on that space have NE that induce the given NED.29 But first, we
need the following concept.

Definition 10. Let τ be an NED of an LDG μ. An atomless probability space (I�I �λ)

realizes τ if for every LIG G ∈ Meas(I;T × U(A�T)) that represents μ has an NE f such
that τ = λ(G � f )−1.

We are now ready to present a result,30 whose first assertion is implied directly by
Lemma 3 in Appendix A and Keisler and Sun (2009, Proposition 2.4), and whose second
assertion is a direct consequence of Keisler and Sun (2009, Theorem 2.7).

Corollary 3. In an atomless LDG, (i) an NED is symmetric if and only if it can be real-
ized by the Lebesgue unit interval; (ii) a nonsymmetric NED can be realized by an atomless
probability space (I�I �λ) if and only if (I�I �λ) is saturated.

We conclude this section by noting some implications of our findings for the exis-
tence theory of large games with traits. Since there always exists an NED in an LDG,

28We defer to future investigation the possible application of the nonsaturated measure space studied in
Khan and Zhang (2012).

29Such a connection is explicit in Keisler and Sun (2009); also see Noguchi (2009).
30Such a result has been reported in a similar setup in Khan et al. (2013b); see Khan et al. (2013b, Theo-

rem 4, Corollary 1) and the remark after Khan et al. (2013b, Corollary 1).
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Theorems 2 and 3 yield two sufficient conditions to guarantee the existence of an NE in
an LIG. To be more specific, there exists an NE in an LIG G : (I�I �λ) −→ T × U(A�T) if
(i) both T and A are countable or (ii) G saturatedly represents λG −1. Furthermore, one
can apply Theorem 1 and Corollary 1 to obtain a characterization of saturated spaces in
terms of the existence of an NE in an LIG. In particular, if either of A or T is uncount-
able, then all LIGs based on (I�I �λ) as its name space, and with A as its action set or
T as its space of traits, have NE if and only if (I�I �λ) is saturated. We sketch briefly
the intuition of the argument.31 Given an uncountable set of actions or traits, one can
transfer the nonexistence claim of Example 2 or Example 3 to another LIG G ′ without
an NE based on the Lebesgue unit interval as its name space but with the same given
actions or traits, and show that there is only one NED in the reduced LDG. Theorem 1
implies that the induced LDG �G ′−1 does not have any SNED. The claim follows as a
direct consequence of Corollary 3.

It is also worth underscoring the fact that one can translate the existence results,
discussed above for an LIG, to those (a) for Bayes-Nash equilibria (henceforth, BNE)
in a Bayesian game with diffused and disparate information, and (b) for approximate
equilibria in large but finite games with traits. For (a), with the standard diffuseness
and mutual independence assumptions, as shown in Fu and Yu (2015), by treating a real
player, together with her type in a Bayesian game, as an artificial player, and using the
real player’s name as the trait of the artificial player in the induced large game, one can
transfer a Bayesian game with private information to a large game and establish that
a BNE exists in the original Bayesian game if and only if a Nash equilibrium exists in
the induced large game. This shows the relevance of the sufficient conditions on the
existence of an NE in an LIG for Bayesian game theory.

For (b), the methodology for an asymptotic implementation draws on nonstandard
analysis, and is by now relatively well understood. The existence of an NE in an LIG with
a saturated name space can be used to study approximate equilibria in large but finite
games with traits as a consequence of the observation that an atomless Loeb space is
saturated, and, therefore, results for it translated (the term of art is “transferred”) to an
increasing sequence of large but finite games.32 It is worthy of emphasis that the other
way does not work: in general, even the exact NE of a convergent sequence of finite
games may not even imply that the limit LIG has an NE; see Qiao and Yu (2014). The use
of a saturated space to model the name space of the limit game is thus shown to be not
only sufficient, but also necessary to avoid such a dissonance.

4. Concluding remarks

In summary, we chart the relationship between two formulations of the theory of large
games with a biosocial typology, and draw on the notions of similarity, countability, re-
alizability, and saturation to connect to the antecedent literature. We leave it for future

31The details are reported in Qiao et al. (2016), which in turn draws and builds on Khan et al. (2013a).
Such a result in a similar setup has been reported through direct constructions.

32For details, we refer the reader to Khan et al. (2013a, Section 6). The ε ex post property of mixed-strategy
Nash equilibria in semi-anonymous games can be obtained through the ex post property of well defined
mixed-strategy Nash equilibria as in Khan et al. (2015), where the exact law of large numbers of Sun (2006)
is used. Also see footnote 4 above.
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work to take these ideas to questions of stochastic dynamics, especially those arising
in macroeconomic settings.33 We conclude by commenting on two other directions of
work.

First, there is little doubt that the methodology that is implicit in this paper can be
used to develop results on individualized representation of large economies with ex-
ternalities. Such results have been presented only in a distributionalized form and an
example of an economy without an individualized equilibrium; see Nogushi and Zame
(2006). The point of course is not to present a taxonomy of results, but to see how the
resolution of the dissonance between the two formulations sheds insight into the sub-
stantive problems that either formulation is attempting to articulate and come to terms
with.

Our second point concerns the question of a player’s trait entering as an argument
of a player’s payoff function. In the framework analyzed here, each trait is pegged to
an individual name, which is to say that the trait function α : I −→ T is a deterministic
function. One can of course consider a situation when the traits are random or, to think
in terms of a dynamic context, a function of chosen actions, but all this is very much
outside the scope of this work. We refer the reader to Balbus et al. (2015) for a consider-
ation of this enriched context in its distributionalized form, and leave the consideration
of its individualized form for future investigation.

Appendix A: Auxiliary results and details of examples

We offer two results on the characterization of SNEDs in an LDG. The second is used
in the discussion of examples and the first is used to prove the second. Given an LIG
G ∈ Meas(I;T × U(A�T)), let σ(G ) = {G −1(V ) : V ∈ B(T × U(A�T))}. It is clear that σ(G )

is the smallest σ-algebra on I with respect to which G is measurable.

Lemma 3. Suppose that μ is an LDG and G ∈ Meas(I;T × U(A�T)) represents μ. Then
τ ∈ SNED(μ) if and only if τ = λ(G � f )−1 for a σ(G )-measurable NE f of G .

Given any probability space (I�I �λ), a function on I is called almost one-to-one if
it is one-to-one on I except for some λ-null set of I . If μ is atomless, the existence of an
almost one-to-one LIG G ∈ Meas(([0�1]�B([0�1])� �);T × U(A�T)) that represents μ can
be deduced from Bogachev (2007, Theorem 9.6.3). The next result brings out the impli-
cations and the importance of an almost one-to-one LIG with Lebesgue name space. It
is important to note that this concept has a natural interpretation in that it entails a so-
ciety that is heterogeneous in the extreme: except for a null set, every agent that differs
in name also differs in characteristics.

Lemma 4. Let μ be an LDG and let G ∈ Meas(([0�1]�B([0�1])� �);T × U(A�T)) be an LIG
that represents μ. Assume that G is almost one-to-one. If f ∈ NE(G ), then �(G � f )−1 ∈
SNED(μ).

33For stochastic dynamics and global games, see Balbus et al. (2015), Bergemann and Morris (2013),
Bergin (1992), Bergin and Bernhardt (1992, 1995), Jovanovic and Rosenthal (1988), Morris and Shin (2003)
and their references; for other settings, see Guesnerie and Jara-Moroni (2011), Jara-Moroni (2012).



548 Khan, Rath, Yu, and Zhang Theoretical Economics 12 (2017)

We now complete the discussion pertaining to Example 1.

Example 1 (Revisited). Observe that G is one-to-one on [0�1] and that μ is atomless. By
Lemma 4, both τ1 and τ2 are SNEDs of μ.

For any NED τ of μ, let

�(τ) = {
ρ ∈ M (UA ×A) : ρUA

= μ and ρA = τA
}
�

The extreme point characterization of an SNED of an atomless game as given in Khan
and Sun (1995) is that τ is an SNED of μ if and only if τ is an extreme point of �(τ). In
the present context, �(τ1) = �(τ2) = �(τθ) for any θ ∈ (0�1). It follows that τ1 and τ2 are
extreme points of �(τθ). Given any θ ∈ (0�1), since τθ is a strict convex combination
of τ1 and τ2 and τ1 �= τ2, it cannot be an extreme point of �(τθ). Therefore, τθ for θ ∈
(0�1) is an NED of μ, but cannot be symmetric. Lemma 4 now implies that for any
f ∈ Meas([0�1];A), �(G � f )−1 �= τθ.

Another feature of this example is noteworthy. We have seen that no NE of G can
induce τθ for θ ∈ (0�1). Notice also that each τθ is similar to both τ1 and τ2. So an NE
of G does induce an NED similar to τθ. This emphasizes the fact that one cannot go
beyond similarity in Theorem 2.

In light of the preceding discussion, and given Lemma 2, there must exist an LIG
that represents μ above and an NE of that LIG that induces τθ for a given θ ∈ (0�1). In
the next example, we find an LIG that represents μ and an NE of that LIG that induces
τθ for θ = 1/2.

Example 4. In this example, u, μ, G , f1, f2, τ1, and τ2 are as in Example 1. Define an
LIG H : ([0�1]�B([0�1])� �) −→ UA as

H (i) = 2iu if i <
1
2

and H (i) = 2
[
i− (1/2)

]
u if i ≥ 1

2
�

and define a strategy profile f : [0�1] −→ A as f (i) = a1 if i ∈ [0�1/4) ∪ (3/4�1] and as
f (i) = a2 if i ∈ [1/4�3/4]. Since f−1(a1) = f−1(a2) = 1/2, f ∈ NE(H ). From Lemma 1,
η = �(H � f )−1 is an NED of �H −1. We will show that η = τθ for θ = 1/2. It follows that
�H −1 = ηUA

= τθUA
= μ. Thus, H represents μ and has an NE f that induces the NED

τθ for θ = 1/2.
Let B1 = {(G (i)� a1) : i ∈ L1}, B2 = {(G (i)� a2) : i ∈ L1}, C1 = {(G (i)� a1) : i ∈ L2},

and C2 = {(G (i)� a2) : i ∈ L2}, where L1 = (0�1/4) ∪ (1/4�1/2) and L2 = (1/2�3/4) ∪
(3/4�1). Then τ1(B1) = τ1(C2) = τ2(B2) = τ2(C1) = 1/2 and τ1(B2) = τ1(C1) = τ2(B1) =
τ2(C2)= 0.

For any Borel subset E of UA × A, let F1 = E ∩ B1, F2 = E ∩ B2, G1 = E ∩ C1,
and G2 = E ∩ C2. It is immediate that τ1(F2) = τ1(G1)= τ2(F1) = τ2(G2) = 0. One has
(H � f )−1(F1) = {i/2 : i ∈ (G � f1)

−1(F1)}, (H � f )−1(F2) = {(i + 1)/2 : i ∈ (G � f2)
−1(F2)},

(H � f )−1(G1) = {(i + 1)/2 : i ∈ (G � f2)
−1(G1)}, and (H � f )−1(G2) = {i/2 : i ∈
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(G � f1)
−1(G2)}. So η(F1) = τ1(F1)/2, η(F2) = τ2(F2)/2, η(G1) = τ2(G1)/2, η(G2) =

τ1(G2)/2, and, therefore,

η(E)= [
τ1(E)+ τ2(E)

]
/2�

We have now shown that η= τθ for θ = 1/2.

Appendix B: Proofs of the results

Proof of Lemma 1. It is easy to show that τT×U(A�T)
= μ and τT×A = λ(α� f )−1. Let

v ≡ G2.
Assume that f ∈ NE(G ). Let I ′ = {i ∈ I : vi(f (i)�λ(α� f )−1) ≥ vi(a�λ(α� f )

−1) for all
a ∈ A}. Since f ∈ NE(G ), λ(I ′) = 1. The fact that τT×A = λ(α� f )−1 implies that
(G (i)� f (i)) ∈ B(τ) for all i ∈ I ′. Therefore, τ(B(τ)) = λ(G � f )−1(B(τ)) = λ({i ∈ I :
(G (i)� f (i)) ∈ B(τ)}) ≥ λ({i ∈ I ′ : (G (i)� f (i)) ∈ B(τ)}) = λ(I ′) = 1. This shows that
τ ∈ NED(μ).

Let τ ∈ NED(μ). Then τ(B(τ)) = 1. Since τ = λ(G � f )−1, τ(B(τ)) = λ({i ∈ I :
(G (i)� f (i)) ∈ B(τ)}) = 1. Moreover, τT×A = λ(α� f )−1 and B(τ) = {(t�u�a) : u(a�τT×A) ≥
u(x�τT×A) for all x ∈A} imply that vi(f (i)�λ(α� f )−1) ≥ vi(x�λ(α� f )

−1) for all x ∈A and
for λ-almost all i ∈ I, i.e., f ∈ NE(G ). �

Proof of Lemma 2. Since τ is a probability measure on T × U(A�T) × A, a complete
separable metric space, we can appeal to Keisler and Sun (2009, Lemma 2.1(ii)) to assert
that there is a measurable mapping z : I −→ T × U(A�T) × A such that τ = λz−1. Let G

and f be the projections of z on T × U(A�T) and A, respectively. Then μ = λG −1 and
τ = λ(G � f )−1. Lemma 1 shows that f ∈ NE(G ). �

Proof of Theorem 1. Let μ be an LDG and let G ∈ Meas(I;T × U(A�T)) repre-
sent μ. It is easy to see that Definition 6(ii′) trivially holds if μ does not have an
SNED. Therefore, suppose that μ has an SNED. If τ ∈ SNED(μ), then there exists a
measurable h : T × U(A�T) −→ A such that τ(graph of h) = 1. Define f : I −→ A

by f (i) = h(G (i)). If M is any Borel subset of T × U(A�T) × A, then τ(M) = τ(M ∩
graph of h) = τ({(t�u�h(t�u)) : (t�u�h(t�u)) ∈ M}) = μ({(t�u) : (t�u�h(t�u)) ∈ M}) =
λ({i : (G (i)� f (i)) ∈ M}) = λ(G � f )−1(M). So τ = λ(G � f )−1. That f ∈ NE(G ) follows from
Lemma 1. �

Proof of Theorem 2. We first show that the countability of A and T implies quasi-
equivalence. Let μ be an LDG in M (T × U(A�T)), let G be an LIG that represents μ, and
let τ ∈ NED(μ). We begin the proof for the case where μ is atomless. Suppose that μ is
atomless. By an argument similar to the proof of Khan et al. (2013b, Theorem 2), we can
show that there exists τ∗ ∈ SNED(μ) such that τ∗ 	 τ. Theorem 1 now implies that there
exists f ∈ NE(G ) and τ∗ = λ(G � f )−1 	 τ.

We now turn to the case with atoms. Assume that μ has atoms. As T is countable,
μ is atomless if and only if μU(A�T)

is atomless. Let U(A�T) = U0 ∪ U1, where U0 is the

atomless part and U1 is the set of atoms of μU(A�T)
. Write τ = τ0 +τ1, where τ0 and τ1 are,

respectively, the restrictions of τ to T ×U0 ×A and T ×U1 ×A. Denote α ≡ G1 and v ≡ G2.
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Let I0 = {i ∈ I : v(i) ∈ U0} and I1 = {i ∈ I : v(i) ∈ U1}. Let λ0 and λ1 be the restrictions of
λ to I0 and I1. Since a measure space has countable number of atoms, U1 = {u∗

j : j ∈
J}, where J is countable. As T is countable, we can write T = {tk : k ∈ K}, where K is
countable. Further partition I1 to sets Ijk1 , where I

jk
1 = {i ∈ I1 : v(i) = u∗

j �α(i) = tk}, j ∈ J,

k ∈ K. Fix any j ∈ J and k ∈ K, and define a measure σjk on A by σjk(P) = τ1({tk} ×
{u∗

j } × P), where P ∈ B(A). Let Bj = {a ∈ A : u∗
j (a� τT×A) ≥ u∗

j (x� τT×A) for all x ∈ A}.

The Bj is a closed set and since τ(B(τ)) = 1, σjk is concentrated on Bj . It is easy to

verify that σjk(Bj) = λ1(I
jk
1 ). By rescaling λ1 on I

jk
1 and σjk, one obtains a measurable

function zjk : Ijk1 −→ Bj such that λ1z
−1
jk = σjk. Define z : I1 −→ A by z(i) = zjk(i) if

i ∈ I
jk
1 . We will verify that τ1

T×A = λ1(α� z)
−1.

Let C be a Borel subset of T × A. Let K′ = {k ∈ K : (tk�a) ∈ C for some a ∈ A} and
{tk : k ∈K′} be the projection of C on T . Let Ck = {a : (tk�a) ∈ C} for k ∈K′:

τ1
T×A(C) =

∑
k∈K′

τ1
T×A

({tk} ×Ck

) =
∑
k∈K′

τ1({tk} × U1 ×Ck

)

=
∑
k∈K′

∑
j∈J

τ1({tk} × {
u∗
j

} ×Ck

)

=
∑
k∈K′

∑
j∈J

σjk(Ck) =
∑
k∈K′

∑
j∈J

λ1z
−1
jk (Ck)

= λ1(α� z)
−1(C)�

We now construct a game H , related to G , which has an atomless distribution. By
Bogachev (2007, Proposition 9.1.11), there is a measurable g : I −→ [0�1] such that � =
λg−1. For r ∈ [0�1], let C∗(r) denote the function in U(A�T) that is identically r on A ×
M (T ×A). Define w : I −→ U(A�T) as

w(i) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
v(i) if i ∈ I0�

C∗(g(i)) if i ∈ v−1({C∗(0)
})

and C∗(0) is an atom of μU(A�T)
�

g(i)
v(i)

‖v(i)‖ otherwise�

It is clear that w is measurable and ‖w(i)‖ = g(i) on I1. Now define H : I −→ T × U(A�T)

as H (i) = (α(i)�w(i)) for all i ∈ I.
Let μ′ = λH −1. Using the fact that λg−1 is atomless, it is easy to check that the LDG

μ′ is atomless. From the construction of H , for each i ∈ I1, (H (i)� z(i)) ∈ B(τ). Consider
the mappings H and z from I1, and let ρ1 = λ1(H � z)−1 and ρ = τ0 + ρ1. The marginal
of ρ on T ×U(A�T) is μ′ as μ′ = λH −1 = λ0G

−1 +λ1H
−1 = τ0

U(A�T)
+ρ1

U(A�T)
= ρU(A�T)

. We

now show that ρ is an NED of μ′.
Note that ρT×A = τ0

T×A + ρ1
T×A = τ0

T×A + λ1(α� z)
−1 = τ0

T×A + τ1
T×A = τT×A. Thus,

B(ρ) = B(τ). Therefore, to show that ρ is an NED of μ′, it suffices to show that
ρ(B(τ)) = 1. Since ρ1 = λ1(H � z)−1, ρ1(B(τ)) = λ1({i ∈ I1 : (H (i)� z(i)) ∈ B(τ)}) = λ(I1).
Moreover, τ0(B(τ)) = τ(B(τ)∩ (T × U0 ×A)) = τ(T × U0 ×A) = τU(A�T)

(U0) = λ(I0). So

ρ(B(τ)) = τ0(B(τ))+ ρ1(B(τ)) = λ(I0)+ λ(I1)= 1. Thus, ρ ∈ NED(μ′).
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Therefore, we can now appeal to the argument in the first paragraph of the proof to
assert that there exists f ∈ NE(H ) such that λ(H � f )−1 	 ρ since μ′ is atomless. From
the construction, it is obvious that H and G have the same set of NE. So f ∈ NE(G ). Let
τ∗ = λ(G � f )−1. By Lemma 1, we know that τ∗ ∈ NED(μ). Furthermore, since it follows
from the construction that τ∗

T×A = λ(α� f )−1 = ρT×A = τT×A, we also have that τ∗ 	 τ.
We have now proved that (i) implies (ii).

We next show that (ii) implies (i). Suppose (i) does not hold. Then either A or T

is uncountable. If A is uncountable, then one can always construct a counterexample
(see, for example, Keisler and Sun 2009) in which an LIG having A as its action set does
not have any equilibrium. So A must be countable. If T is uncountable, then one can
construct a counterexample (see, for example, Qiao et al. 2016) in which an LIG having
T as its space of traits does not have any equilibrium. This suggests that T must be
countable too. The proof is now complete. �

Proof of Theorem 3. Let G ∈ Meas(I;T × U(A�T)) be an LIG that saturatedly repre-
sents an LDG μ, and let τ be an NED of μ. Since λG −1 = μ = τT×U(A�T)

, the fact that

(I�I �λ) has the saturated property for τ implies that τ = λ(G � f )−1 for a measurable
function f : I −→A. Lemma 1 yields that f is an NE of G . �

Proof of Lemma 3. Suppose that τ ∈ SNED(μ). Then as in the proof of Theorem 1,
one can construct f ∈ NE(G ) such that τ = λ(G � f )−1. It is easy to verify that f in that
proof is σ(G )-measurable.

Next suppose that τ = λ(G � f )−1 for a σ(G )-measurable NE f of G . Lemma 1 shows
that τ ∈ NED(μ). From Aliprantis and Border (2006, Theorem 4.41), f = h ◦ G for some
measurable function h from T × U(A�T) to A. (Note that we have replaced the range
space R in the cited result by A, because every Borel subset of a complete separa-
ble metric space is isomorphic to a Borel subset of the Cantor set; see Parthasarathy
1967, Theorem I.2.3.) It remains to show that τ(graph of h) = 1. Since τ = λ(G � f )−1,
τ(graph of h) = λ(G � f )−1(graph of h) = λ({i ∈ I : (G (i)� f (i)) ∈ graph of h}) = λ({i ∈ I :
(G (i)�h(G (i))) ∈ graph of h}) = λ({i ∈ I : G (i) ∈ T × U(A�T)}) = 1. So τ ∈ SNED(μ). �

Proof of Lemma 4. Let L′ be a Borel subset of [0�1] such that �(L′) = 1 and G is one-
to-one on L′. We can assume without loss of generality that both G and f are constant
on L \ L′. If f is an NE of G , then Lemma 1 shows that �(G � f )−1 ∈ NED(μ). We will
show that it is symmetric. For a Borel subset B of A, let C = f−1(B) ∩ L′. Since f is
measurable, C is measurable. By Parthasarathy (1967, Theorem I.3.9), G (C) is a Borel
subset of T × U(A�T), so C ∈ σ(G ). Lemma 3 implies that �(G � f )−1 ∈ SNED(μ). �
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