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Serial dictatorship: The unique optimal allocation rule when
information is endogenous

Sophie Bade
Department of Economics, Royal Holloway College, London and Max Planck Institut, Bonn

The study of matching problems typically assumes that agents precisely know
their preferences over the goods to be assigned. Within applied contexts, this as-
sumption stands out as particularly counterfactual. Parents typically do invest a
large amount of time and resources to find the best school for their children; doc-
tors run costly tests to establish the best kidney for a given patient. In this paper,
I introduce the assumption of endogenous information acquisition into otherwise
standard house allocation problems. I find that there is a unique ex ante Pareto-
optimal, strategy-proof, and nonbossy allocation mechanism: serial dictatorship.
This stands in sharp contrast to the very large set of such mechanisms for house
allocation problems without endogenous information acquisition.
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1. Introduction

Many allocation problems of indivisible goods have to be solved without explicit mar-
kets. For some such goods, be it school slots or kidneys, the use of markets to determine
allocations is perceived as immoral or repugnant. In many cases markets are explicitly
forbidden. A prospering subfield of mechanism design questions how to best allocate
such objects to recipients; many mechanisms that are optimal according to a host of dif-
ferent criteria have been found. These mechanisms have usually been designed for the
case of agents precisely knowing their preferences over the goods to be assigned. How-
ever, this assumption seems counterfactual in many of the areas in which such mecha-
nisms are used. Parents typically invest a significant amount of time on school choice;
doctors need to run costly tests on kidneys to figure out which would be best for a given
patient.

This paper sets out to study the allocative properties of mechanisms in conjunction
with their impact on the agents’ incentives to acquire information. To this end, I modify
the standard model of house allocation problems in which a set of agents needs to be
matched to a set of equally many objects, henceforth called houses, allowing for costly
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information acquisition on these houses. The goal is to characterize the set of strategy-
proof, nonbossy, and Pareto-optimal mechanisms in this environment.

Over the years, various classes of such mechanisms have been identified for the
standard case of known preferences. Pycia and Ünver (2013) and Bade (2014) charac-
terize the very large set of all such mechanisms. Lots of room remains to impose addi-
tional requirements to select among these mechanisms. The case of housing problems
with endogenous information acquisition differs sharply. In that case, there is a unique
strategy-proof, nonbossy, and ex ante Pareto-optimal mechanism: serial dictatorship.
The following example illustrates the outstanding role of serial dictatorship.

Example 1. Two agents called 1 and 2 start out owning two houses, k and g, respec-
tively; this initial allocation only changes if both agents agree to exchange houses.1

In an environment without endogenous learning, this mechanism is strategy-proof,
nonbossy, and Pareto optimal. To see that this mechanism can be Pareto dominated
when agents have a choice to learn, consider the following setup. Neither agent knows
whether he values house k at 8 or at 0: the agents’ valuations of this house are indepen-
dent draws from a distribution according to which the two possible values are equally
likely. Both agents value house g at 2. Agent 1 has to pay 0�8 to learn his value of house k;
learning is free for agent 2. Both agents need to announce simultaneously whether or
not they would like to swap.

Now let us consider agent 1’s decision problem. If he does not learn the value of
house k, he prefers to keep it (expected value of 4 vs. 2, the known value of g). If he
learns the value, he prefers to swap houses if and only if he values house k at 0. Agent 2,
in turn, is willing to swap with a probability of 1

2 .2 If agent 1 learns his value of house k,
he obtains an expected utility of 1

2 × 8 + 1
2(

1
2 × 2 + 1

2 × 0) − 0�8 = 3�7, with the last term
reflecting agent 1’s cost of learning. So agent 1 prefers to keep house k without learning,
implying that in equilibrium agent 2 is stuck with house g, yielding an ex ante utility
profile of (4�2).

The serial dictatorship with agent 1 as the first dictator ex ante Pareto-dominates
the given mechanism. For agent 1 as the first dictator, it is worthwhile to learn the
value of house k and to choose it if and only if he finds it of high value (expected utility:
1
2 × 8 + 1

2 × 2 − 0�8 = 4�2). So agent 2 is matched to his ex ante preferred house with a
probability of 1

2 . The profile of ex ante utilities is (4�2�3). ♦

This example shows that some of the bedrock of matching theory starts to crumble if
one allows for endogenous information acquisition. Both mechanisms described in the
example—the top trading cycles mechanism and serial dictatorship—are Pareto opti-
mal, strategy-proof, and nonbossy in an environment without endogenous information
acquisition. Either one of these mechanisms traces out the full set of Pareto-optimal

1This mechanism is Gale’s top trading cycles mechanism for two agents and two houses; a formal defi-
nition can be found in Section 2.2.

2Since learning is costless, agent 2 will be willing to exchange with agent 1 if and only if he values house k

at 8, which happens with probability 1
2 .
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matchings when one allows for all possible orderings of dictators or for all possible ini-
tial allocations, respectively. With endogenous information acquisition, something very
different happens. In that case, serial dictatorship may ex ante Pareto-dominate Gale’s
top trading cycles mechanism as shown in Example 1. The main result of the paper
significantly generalizes this observation. I show that for any nonbossy and strategy-
proof mechanism that is not a serial dictatorship, one can find a housing problem and
a (path-dependent) serial dictatorship, such that the serial dictatorship strictly ex ante
Pareto-dominates the named mechanism in the given housing problem. Conversely,
serial dictatorships are never dominated in this way.

The essential difference between the two mechanisms in Example 1 is that the strong
incentives for learning under serial dictatorship are dampened under top trading cy-
cles. While agent 1’s knowledge of the value of house k is always useful under serial
dictatorship, the same knowledge is irrelevant in half of all cases under the alternative
mechanism. Serial dictatorship stands out as the only mechanism that always com-
bines optimal learning incentives with optimal allocation incentives. It is well known
that serial dictatorship sets the “right” incentives for allocations: it belongs to the set
of strategy-proof, nonbossy and Pareto-optimal mechanisms. What distinguishes serial
dictatorship is that it is the only mechanism in this set that also sets the right incentives
for information acquisition: given that any agent knows his exact choice set when he de-
cides to learn, no information is ever wastefully acquired. This paper gives two variants
of the uniqueness statement on serial dictatorship pertaining to the case of sequential
and simultaneous learning, Theorems 1 and 2.

The set of information structures considered in this article is constrained in two
ways: first, the agents’ preferences are independent draws, implying that agents never
wish to delegate their choices to better informed agents. Second, in line with the liter-
ature on standard housing problems, a no-indifference condition ensures that at least
some mechanisms work optimally. With these two constraints in place, we can be sure
that the suboptimality of mechanisms other than serial dictatorship is due to the agents’
ability to acquire information. Serial dictatorship might outperform other mechanisms
in matching problems with indifferences or correlated preferences. Still, the domina-
tion of serial dictatorship in the present article cannot be attributed to such arguments
as these classical “trouble-makers” have been ruled out. The uniqueness result of the
article is indeed driven by the assumption of endogenous information acquisition.

The compromise between the quality of information acquisition and of allocations
is one of the main themes of the growing literature on mechanism design with en-
dogenous information acquisition. Mechanisms are often characterized in terms of
an optimal trade-off between informative and allocative efficiency. Gerardi and Yariv
(2008) and Bergemann and Välimäki (2006), respectively, illustrate this trade-off in vot-
ing and auctions environments. This trade-off is relevant in the present paper: simple
serial dictatorship is the one mechanism under which allocative and informative effi-
ciency coexist. For any other mechanism, we have to face the trade-off between the two
kinds of efficiency. The optimality of sequential learning is another theme of the liter-
ature on mechanisms with endogenous learning that is echoed in the present paper.
Gershkov and Szentes (2009) as well as Smorodinsky and Tennenholtz (2006) present
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voting models in which the voters’ optimal acquisition of information is sequential.
Similarly, for auctions, Compte and Jehiel (2007) find that ascending price auctions can
dominate sealed bid auctions in terms of expected welfare. In this vein the present pa-
per shows the unique optimality of sequential simple serial dictatorship when allowing
for any sequence of information elicitation.

In Section 2, I provide formal definitions of the housing problems and mechanisms
under study. There I define Example 2 to argue that sequential elicitation procedures
might outperform simultaneous ones in the present context. With all the relevant termi-
nology in hand, I state the two main results of the article, Theorems 1 and 2, in Section 3.
The proof of these two theorems revolves around three examples: Example 2, which is
presented in Section 2; the introductory Example 1, which is revisited in Section 4; Ex-
ample 5, which is presented in Section 4. To extend the arguments gleaned from these
examples to the case of large housing problems, I rely on Pycia and Ünver’s (2013) and
Bade’s (2014) “trading and braiding” mechanisms (Section 6). The proof of the two re-
sults is contained in Section 7. The presentation of trading and braiding mechanisms
and the proof are preceded by Section 5 which sheds light on possible extensions and
limits of the unique ex ante Pareto optimality of serial dictatorship.

2. The model

2.1 Agents, houses, and values

Fix two sets of agents I = {1� � � � � n}, and houses H with equally many elements (|H| = n)
and generic elements i� j ∈ N and h�d�g�k ∈ H. There is a finite state space � that con-
sists of profiles of values ω := (ωi

h)h∈H�i∈I , where ωi
h is the value that agent i assigns to

house h and ωi := (ωi
h)h∈H is the vector of agent i’s valuations. Denote the set of all

partitions of � by P . The state ω ∈ � is drawn from the probability distribution π, with
π(ω) > 0 for all ω ∈ �. The prior π is common knowledge among the designer and all
agents.

A vector c := (ci)i∈N of cost functions ci :P →R
+
0 ∪{∞} describes the agents’ learning

technologies, where ci(P) is agent i’s nonnegative (and possibly infinite) cost to learn
P . Staying ignorant is free in the sense that ci({��∅}) = 0 holds for all i. Adopt the
understanding that ω̂i

h not only denotes agent i’s value of house h in state ω̂, but also
the event {ω | ωi

h = ω̂i
h} that agent i values house h at ω̂i

h. Define ζi as the algebra on �

that is generated by all events ω̂i
h. It is assumed that no agent can learn anything about

any other agent’s preferences: formally, ci(P) = ∞ holds for all P �⊂ ζi. An agent who
has acquired the partition P knows the event P(ω) at state ω. The partition according to

which agent i knows his value for each of the houses is called P
i
.3

To ensure comparability of the present model to standard housing models, I impose
two further assumptions. First, the agents’ preferences are drawn independently; for-
mally, π(Ei ∩Ej) = π(Ei)π(Ej) holds for all Ei ∈ ζi and Ej ∈ ζj . The assumption implies
that agent i’s posterior value of a house does not change if he finds out what some other
agent knows. To see this, define ωi

h(E) as agent i’s expected value of house h when he

3So P
i

is the finest partition P with the feature P ⊂ ζi, P
i
(ω) = ωi holds for all ω ∈ �.
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knows event E. Observe that ωi
h(E) = ωi

h(E ∩ G) holds when E ∈ ζi and G = ⋂
j �=i G

j

with Gj ∈ ζj , since

ωi
h(E ∩G) =

∑
ωi
h⊂E π(ωi

h ∩G)ωi
h

π(E ∩G)
=

∑
ωi
h⊂E π(ωi

h)π(G)ωi
h

π(E)π(G)
=ωi

h(E)�

where the crucial equality follows from the independence of any event ωi
h and G.4 With-

out the assumption of independence, some agents might find it beneficial to delegate
their decision; there would also be scope for signaling.

Second, to avoid the difficulties that arise in housing problems with indifferences,
I assume that any agent i who is faced with the nonstrategic problem of choosing a
house from some subset S ⊂H has a unique optimal plan of action that consists of a par-
tition P together with a choice function C :� → S that prescribes a unique choice from
S for every cell of P , so C(ω) = C(ω′) for ω ∈ P(ω′). The condition is satisfied if ωi

h(E) �=
ωi

g(E) holds for any h �= g and any E that is an element of a partition P with ci(P) < ∞
and if for every S ⊂ H, there is a unique P that maximizes

∑
E∈P maxh∈S ωi

h(E)− ci(P).5

The two assumptions of independence and no indifference imply that the following re-
sults are indeed driven by the novel assumption of endogenous information acquisi-
tion. The outstanding role of serial dictatorship cannot be attributed to an appearance
of weak or correlated preferences under the guise of endogenous information acquisi-
tion. The two assumptions are discussed at length in Section 5.

The vector H = (I�H���π� c) of sets of agents I and houses H, a state space �, a
probability distribution π on �, and cost functions c that all satisfy the assumptions dis-
cussed above constitutes a housing problem (with endogenous information acquisition).

A matching is a bijection μ : I → H. A submatching σ : Iσ → Hσ is a bijection with
Iσ ⊂ I and Hσ ⊂ H. The set of all submatchings that are not matchings is denoted by
M. For any particular submatching σ , the sets of unmatched agents and houses are
denoted by Iσ and Hσ . The house assigned to agent i under the submatching σ is σ(i).
Submatchings σ are also interpreted as sets, where a pair (i�h) belongs to the set σ if
and only if σ(i) = h under the interpretation of σ as a function.

An outcome function f :� → M×Pn maps any state ω to a matching μ[ω] ∈ M and
profile of information partitions (Pi[ω])i∈I . Outcome functions describe the different
matchings achieved and the learning undertaken at all states ω. At ω, agent i knows
the event Pi[ω](ω) when he acquires the partition Pi[ω] as prescribed by the outcome
function f . The ex ante utility Ui of agent i associated with a given outcome function
f :� → M×Pn is defined as

Ui(f ) =
∑
ω∈�

π(ω)
(
ωi

μ[ω](i) − ci(Pi[ω]))�
One outcome function f is said to (ex ante Pareto) dominate another outcome func-

tion f ′ if Ui(f ) ≥Ui(f ′) holds for all i ∈ I and if Uj(f ) > Uj(f ′) holds for some j ∈ I.

4Note that any E ∈ ζi can be represented as the union of events ωi
h ⊂ E.

5Since P �⊂ ζi implies ci(P) = ∞, agent i’s unique utility maximizing partition P must be ζi-measurable.
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2.2 Standard housing problems

A housing problem H = (I�H���π� c) is a standard housing problem if � is a singleton.
Dropping I and H, and omitting π and c, which are irrelevant when � is a singleton,
I denote a standard housing problem by ω, the profile of preferences (that is known to
occur). In a standard housing problem, an agent i has a unique optimal plan of action
for every choice set S ⊂ H if and only if his preference over any two different houses
is strict (ωi

h �= ωi
g for all h �= g and i). So in the subset of standard housing problems,

the no-indifference condition of the present article is equivalent to the standard condi-
tion of strict preferences. The condition of independently drawn preferences is trivially
satisfied in standard housing problems. The set of all standard housing problems is de-
noted by 	 := {ω | ωi

h �= ωi
g for all h �= g and i}. An outcome function f :� → M × Pn

for a standard housing problem maps the only state ω ∈ � to a matching μ[ω] ∈ M and
the trivial partition {∅��} for every agent. Within the set of standard housing prob-
lems 	, any outcome for a particular problem ω can, consequently, be identified with
the matching μ[ω].

A (direct) mechanism is a function ϕ :	 → M mapping profiles of preferences ω ∈	

to matchings ϕ(ω) ∈ M. Such a mechanism is considered strategy-proof if the truth-
ful revelation of preferences is a weakly dominant strategy. It is nonbossy (as defined
by Satterthwaite and Sonnenschein 1981) if an agent can only change the allocation of
some other agent if he also changes his own allocation. This implies that any misreport
of preferences that does not change the agent’s own assignment does not change anyone
else’s assignment. The mechanism ϕ is considered Pareto optimal if ϕ(ω) is Pareto opti-
mal for any ω. The following three canonical mechanisms are strategy-proof, nonbossy,
and Pareto optimal.

According to a simple serial dictatorship, one agent, the first dictator, is matched
to the best house out of H according to his stated preferences.6 Next, another agent,
the second dictator, is matched to his most preferred house out of the remainder, and
so forth, until all houses are matched. I denote a simple serial dictatorship as a direct
mechanism by δ :	 → M. The simple serial dictatorship in which agent i is the ith dic-
tator is called δ∗. The reason for the qualifier “simple” arises since path-dependent serial
dictatorships, denoted by γ :	 → M, also play a role in the present paper. This type of
serial dictatorship generalizes simple serial dictatorships insofar as that the identity of
any current dictator is allowed to depend on all preceding dictators’ choices.7

Gale’s top trading cycles, the third canonical mechanism,8 starts out with a matching
μ called the initial endowment. Each agent points to the agent who has been endowed
with the house he likes best according to his stated preferences. At least one cycle forms.
All agents in such cycles are assigned the houses that they point to. The procedure is
repeated with the remaining houses and agents until all houses are assigned.9

6Simple serial dictatorship has been characterized by Svensson (1999).
7Path-dependent serial dictatorships where introduced by Pápai (2001) under the name of sequential

dictatorship.
8This mechanism was first defined by Shapley and Scarf (1974), who attribute it to David Gale.
9These three mechanisms are well defined when any agent has a unique most preferred house in any

set of houses, as is the case for any ω ∈ 	. If we allow for indifferences, the mechanisms cease to be well
defined.
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2.3 Dynamic direct revelation mechanisms

In this section, I define the grand set of mechanisms considered in the present arti-
cle together with a list of canonical examples. Let me first argue that the sequence
of preference announcements matters in mechanisms with endogenous information
acquisition.

Example 2. Two different dynamic versions of the serial dictatorship δ∗ stand out: the
designer might either simultaneously elicit the preferences of all agents; alternatively,
the designer might elicit the preferences of all agents in order of their index i and thereby
allow each agent to tailor his information acquisition to his actual choice set. To see that
this difference matters, let Hb = (I�H���π� c) with H = {d�g�k} and three a priori iden-
tical agents. Each agent assigns value 8 or 0 (with probability 1

2 ) to house d. The values
of houses g and k are known to be 5 and 2, respectively. Assume that it costs each agent
c = 0�1 to learn his type. If the designer simultaneously elicits preferences, it is worth-
while for agents 1 and 2 to learn their type. However, if the designer elicits preferences
sequentially, then agent 2 will only learn his type if agent 1 did not choose house d.
The sequential mechanism ex ante Pareto-dominates the mechanism of simultaneous
elicitation, as the second dictator will not spend the cost c = 0�1 when learning is of no
consequence to his decision. ♦

In a dynamic (direct) mechanism the designer can fix any order of the agents’ an-
nouncements. A rooted tree t, called a c-tree, describes the agents’ communication to
the designer. The initial node of a c-tree is labeled with the first agent to declare a pref-
erence. The next agent to declare a preference is allowed to depend on the declaration
of the prior agent(s); branches terminate when all agents have declared their type. The
designer can freely choose the sequencing of announcements as well as the information
sets on the c-tree t. An agent’s information set on a c-tree determines what he knows
about the preceding announcements when it is his turn to reveal his type to the de-
signer. The dynamic mechanism induced by the c-tree t and the direct mechanism ϕ is
denoted as 〈ϕ� t〉.

Applying the dynamic mechanism 〈ϕ� t〉 to a housing problem H, one obtains the
extensive form game 〈ϕ� t〉(H). This game starts with a chance node in which nature
draws the state ω from π. Agents get to declare their preferences in the order determined
by the c-tree t. Any agent gets to choose an information partition right before the node
in which he declares his preference. The information sets in the extensive form game
reflect the privacy of learning as well as the revelations implied by the c-tree t. Agent i’s
utility in an end node is calculated as the difference between his value of the house he is
assigned and the learning cost he incurred on the path to the node.

Of course, in many contexts, sequential learning might be impractical. This is the
case when learning takes up much time or when there is a large number of agents.
I therefore also study the class of mechanisms in which the designer simultaneously
elicits all preferences. Formally a mechanism 〈ϕ� ts〉 is defined as a simultaneous (direct)
mechanism where ts is the c-tree according to which no agent knows anything about the
other agents’ announcements when he announces his own preferences.
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A sequential simple serial dictatorship or 3S dictatorship is defined as the dynamic
direct revelation mechanism 〈δ� tδ〉, where tδ is the c-tree, according to which any dic-
tator knows the preference announcement of all preceding dictators when it is his turn
to announce his preferences. When considering the simple serial dictatorship δ∗ (where
agent i is the ith dictator), I let tδ

∗ = t∗. Analogously a dynamic direct revelation mech-
anism is a sequential path-dependent serial dictatorship 〈γ� tγ〉, where tγ is such that
agents publicly announce their preferences in the sequence in which they become
dictators.

2.4 Equilibria and implementation

A (mixed) strategy profile in 〈ϕ� t〉(H) is considered an equilibrium if it is a perfect
Bayesian equilibrium and if agents truthfully announce their types in the sense that any
agent i reveals his (true) ex post preferences ωi to the designer. In the standard case
there exists at most one equilibrium. In that case, each agent knows his ranking ωi and
the question is just whether telling it is a best reply. My next example demonstrates that
matching mechanisms with endogenous information acquisition might have multiple
equilibria.

Example 3. Consider a housing problem H = (I�H���π� c) as follows: n = 2, H =
{k�g}, and � has four equiprobable states. Agent 1’s valuation of house k might be ei-
ther 8 or 0; he is sure to value house g at 3. Conversely, agent 2’s valuation of house g

might be either 8 or 0; he is sure to value house k at 3. It costs each agent 0�1 to find
out his preference. Let ϕ be Gale’s top trading cycles mechanism where agent 1 starts
out owning house k. The game 〈ϕ� ts〉(H) (in which both agents need to announce their
rankings simultaneously) has two equilibria. According to the first, neither agent learns
anything and always points to the house he was endowed with. According to the other,
both agents learn their true values and point to the house they find to be of higher value.
Note that in either one of these equilibria, the agents tell the truth. ♦

Every strategy profile in the game 〈ϕ� t〉(H) is associated with an outcome function
f :� → M × Pn in the sense that the matching μ[ω] and the set of partitions (Pi[ω])i∈I
(so f (ω) = (μ[ω]� (Pi[ω])i∈I)) obtain at state ω when agents follow the strategy profile.
A mechanism 〈ϕ� t〉 is said to implement a vector of ex ante utilities (U1(f ); � � � ;Un(f )) in
the housing problem H if 〈ϕ� t〉(H) has an equilibrium strategy profile that is associated
with the outcome function f . If all utility vectors implemented by 〈ϕ� t〉(H) dominate all
utility vectors implemented by a different dynamic direct revelation mechanism 〈ϕ′� t ′〉
in H, then 〈ϕ� t〉 is said to (ex ante Pareto) dominate 〈ϕ′� t ′〉 at H, which is denoted by
〈ϕ� t〉(H) �∗ 〈ϕ′� t ′〉(H). I say that a mechanism 〈ϕ� t〉 is (ex ante) Pareto optimal in a set of
mechanisms if this set contains no alternative mechanism 〈ϕ′� t ′〉 such that 〈ϕ′� t ′〉(H) �∗
〈ϕ� t〉(H) holds for some housing problems H.

Note that the set of Pareto-optimal mechanisms might be empty. This is the case if
for every 〈ϕ� t〉, there exists an alternative mechanism 〈ϕ′� t ′〉 and a housing problem H
such that 〈ϕ′� t ′〉(H) �∗ 〈ϕ� t〉(H). Restricted to the set of standard housing problems 	,
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the present notion of a Pareto-optimal mechanism coincides with the standard notion
given in Section 2.2. To see this, consider a direct mechanism ϕ :	 → M that is Pareto
optimal according to the notion just defined.10 This implies that there is no alterna-
tive mechanism ϕ′ and no housing problem ω such that the matching ϕ′(ω) Pareto-
dominates the matching ϕ(ω). But ϕ′ might be any mechanism, including a constant
one that maps all ω to the same matching μ. So ϕ is Pareto optimal according to the no-
tion defined here if and only if there exists no profile of preferences ω such that ϕ(ω) is
dominated by some matching μ. In sum, ϕ satisfies the standard definition of a Pareto-
optimal mechanism.

3. The uniqueness of serial dictatorship

It is the goal of this article to characterize all strategy-proof and nonbossy mechanisms ϕ
with c-trees t such that the dynamic direct revelation mechanism 〈ϕ� t〉 is ex ante Pareto
optimal. The next two theorems show that simple serial dictatorship is the only such
mechanism whether one allows for all dynamic direct revelation mechanisms or only
for the simultaneous ones.

Theorem 1. A mechanism 〈ϕ◦� t◦〉 is Pareto optimal in the set of all mechanisms 〈ϕ� t〉
with ϕ nonbossy and strategy-proof if and only if 〈ϕ◦� t◦〉 is a 3S dictatorship.

A very similar observation holds when one restricts attention to the set of simulta-
neous matching mechanisms.

Theorem 2. A simultaneous mechanism 〈ϕ◦� ts〉 is Pareto optimal in the set of all si-
multaneous mechanisms 〈ϕ� ts〉 with ϕ nonbossy and strategy-proof if and only if ϕ◦ is a
simple serial dictatorship.

Serial dictatorships have another outstanding welfare property: any mechanism that
is not a simple serial dictatorship is dominated by a path-dependent serial dictatorship
in some housing problem. Since this observation holds for dynamic as well as simulta-
neous mechanisms, I state only one remark that covers both cases.

Remark 1. Fix any mechanism in the set of dynamic (simultaneous), strategy-proof,
nonbossy direct revelation mechanisms that are not a 3S (simultaneous simple serial)
dictatorship. There exists a housing problem in which this mechanism is dominated by
a dynamic (simultaneous) path-dependent serial dictatorship.

So for any strategy-proof and nonbossy ϕ that is not a simple serial dictatorship and
any c-tree t, there exist path-dependent serial dictatorships γ, γ′ and housing problems
H, H′ such that 〈γ� tγ〉 dominates 〈ϕ� t〉 at H and 〈γ′� ts〉 dominates 〈ϕ� ts〉 at H′. In the
Appendix, I show that Remark 1 cannot be strengthened by replacing path-dependent
dictatorships with simple serial dictatorships. The next section contains two examples
with n≤ 3 that do not just illustrate the two theorems; they serve as the backbone of the
proof.

10I omit t here, which does not matter given that no agent can learn in a standard problem.
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4. Small housing problems

With just two agents there is only one strategy-proof and Pareto-optimal mechanism
other than serial dictatorship: Gale’s top trading cycles mechanism. Let us revisit Ex-
ample 1 to see that the “only if” part of Theorems 1 and 2 as well as Remark 1 hold for
n = 2.

Example 4. Let n = 2 and H = {g�k}. Fix 〈ϕ� t〉 with ϕ Gale’s top trading cycles mech-
anism in which agents 1 and 2 start out owning house k and g, respectively. Accord-
ing to t, at least one agent, say agent 1, has to declare his preferences before know-
ing the preference of the other. Reconsider the housing problem defined in Exam-
ple 1, which can now be defined succinctly as Ha = (I�H���π� c) with n= 2, H = {k�g},

π(ωi
k = 8) = π(ωi

k = 0) = 1
2 , and π(ωi

g = 2) = 1 for i = 1�2, c1(P
1
) = 0�8, and c2(P

2
) = 0.

As argued in the Introduction, agent 1’s costs outweigh his benefit of learning; since
agent 1 ex ante prefers house k, there is no exchange in equilibrium, yielding the ex ante
utility profile (4�2). Conversely, if agent 1 is the first dictator, learning is worthwhile for
him; in this case, agent 2 has a chance to obtain his ex ante preferred house g and the ex
ante utility profile implemented by 〈δ∗� t∗〉(H) is (4�2;3). ♦

There was only one reference to the sequence of announcements: according to t,
(at least) one agent has to announce his preferences before knowing the preferences of
the other. As this holds for simultaneous and sequential versions of the mechanism and
as the outcome of serial dictatorship depends on only one announcement when there
are just two agents, the above scenario shows the “only if” part of Theorems 1 and 2 for
n = 2. Since any simple serial dictatorship is path-dependent, Example 4 also proves
Remark 1 for the case that n = 2.

To see that the “if” part of Theorem 1 holds when n = 2, I fix an arbitrary housing
problem H with H = {g�k}. I first show that agent 1 (weakly) prefers any equilibrium
of 〈δ∗� t∗〉(H) to any equilibrium of any other mechanism 〈ϕ� t〉(H). As the first dictator,
agent 1 obtains the utility

U∗ := max
P⊂ζ1

(∑
E∈P

π(E) max
h∈{g�k}

ω1
h(E)− c1(P)

)
≥ max{ω1

g(�)�ω1
k(�)}�

where the lower bound represents the utility of not learning and then choosing the ex
ante preferred house.

Now fix an arbitrary strategy for agent 2 in 〈ϕ� t〉(H). Observe that this strategy might
determine whether agent 1 gets to choose from {g�k} or whether he is matched to g or k.
Abusing notation, I denote the event that agent 1 gets to choose from S given agent 2’s
fixed equilibrium strategy by S as well. Any such event must be an element of ζ2, given
that these are the only events on which agent 2 can condition his strategy.11 Agent 2’s
strategy implies a distribution ρ over agent 1’s choice sets S ∈ {{g�k}� {g}� {k}}.

11It was assumed that c2(P) = ∞ for P �⊂ ζ2.
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Since the agents’ preferences are independently drawn, the expected value that
agent 1 assigns to any house does not vary with his knowledge of any event in ζ2. Un-
der 〈ϕ� t〉, agent 1 might have to declare (and therefore learn) his preferences before he
knows whether he has any choice (S = {g�k}) or not (S = {g} or {k}). Since agent 1’s utility
can only increase when he may condition his choice to learn on the event S, the expres-
sion ρ({g�k})U∗ + ρ({g})ω1

g(�)+ ρ({k})ω1
k(�)≤U∗ yields an upper bound on agent 1’s

expected utility in 〈ϕ� t〉(H) for the fixed strategy of agent 2.
Consequently, for 〈ϕ� t〉(H) to have an equilibrium that Pareto-dominates the equi-

libria of 〈δ∗� t∗〉(H), agent 1 must obtain the utility U∗ under the equilibrium of 〈ϕ� t〉(H).
However, the no-indifference condition implies that

max
P⊂ζ1

∑
E∈P

π(E) max
h∈{g�k}

ω1
h(E)− c1(P)

is uniquely maximized by a partition P∗ and a function μ[·](1) :� → {g�k} that maps
every state ω to a house μ[ω](1) for agent 1. This uniqueness implies that agent 1’s
matches must also be described by μ[·](1) for agent 1 to obtain U∗ under the equilibrium
of 〈ϕ� t〉(H). Since there are only two agents, there is no leeway with respect to agent
2’s matches. For agent 1 to obtain utility U∗ in 〈ϕ� t〉(H), agent 2 must—in every state
ω—be matched with the house μ[ω](2) ∈ {g�k} that is not μ[ω](1). Since the function
μ[·](2) also describes agent 2’s matches under the equilibrium of 〈δ∗� t∗〉(H), we can
conclude that 〈ϕ� t〉(H) cannot have an equilibrium that Pareto-dominates the unique
equilibrium of 〈δ∗� t∗〉(H).

The “if” part of Theorem 2 follows from the same arguments as the announcement
of a single agent (the first dictator) determines the outcome of a serial dictatorship with
just two agents, so 〈δ∗� t∗〉 and 〈δ∗� ts〉 are identical for n = 2. The treatment of the case
that n = 2 already contains most arguments of the proof for any n. However, when n = 2,
all serial dictatorships are simple. Therefore, some example with n > 2 is in order to
preview the arguments pertaining to path-dependent serial dictatorships. Next I show
that path-dependent serial dictatorships can be dominated by other path-dependent
serial dictatorships.

Example 5. Take n = 3 and H = {g�k�d}. Consider the sequential path-dependent se-
rial dictatorship 〈γ� tγ〉 with agent 1 as the first dictator. If he chooses g, then agent 2 gets
to choose from {k�d}; otherwise, agent 3 becomes the next dictator. Define the housing
problem Hc such that agent 1’s utility vector for the three houses is either (2�1�0) or
(0�2�1), each with probability 1

2 .12 Agent 1 faces a cost of 0�1 to learn his type. The utility
vectors of agents 2 and 3 are known to be ω2 = (10�2�0) and ω3 = (2�10�0), respectively.
The unique equilibrium of 〈γ� tγ〉(Hc) yields the vector (1�9;1;1) of expected utilities to
agents 1, 2, and 3.

Now consider the alternative sequential path-dependent serial dictatorship 〈γ′� tγ′ 〉
that also starts with agent 1 as the first dictator, but then continues with 3 as the next

12Note that the a correlation of values of houses does not conflict with the independence assumption,
which only requires that the preferences of different agents are drawn independently.
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dictator if agent 1 chooses g and with agent 2 otherwise. The vector of ex ante utilities
implemented by 〈γ′� tγ′ 〉(Hc) is (1�9;5;5). The crucial difference between 〈γ� tγ〉(Hc) and
〈γ′� tγ′ 〉(Hc) is that under the latter, agents 2 and 3 get to choose from sets where they
face a utility differential of 10. Conversely, under 〈γ� tγ〉(Hc), agents 2 and 3 get to choose
only in situations of relatively minor relevance: when either one is called to choose, he
faces a utility differential of just 2.

Since there is only one agent in Hc who has any information to acquire, the tim-
ing of announcements does not matter in Example 5; the equilibrium sets of the games
〈ϕ� t〉(Hc) and 〈ϕ� ts〉(Hc) are identical for any t. Any path-dependent serial dictator-
ship with just three agents that is not a simple serial dictatorship is—up to renaming—
identical to γ. In sum, the example shows that the “only if” part of Theorems 1 and 2
as well as Remark 1 are true when one only considers the case of path-dependent serial
dictatorships and n = 3. ♦

5. Limitations and extensions

The “if” part of Theorem 1 states that 3S dictatorship is Pareto optimal. The “only if”
part together with Remark 1 states that for each mechanism 〈ϕ� t〉 that is not a 3S dic-
tatorship, there exists a housing problem H and a path-dependent serial dictatorship
such that the latter dominates 〈ϕ� t〉 at the housing problem H. So the “if” part could
be strengthened by showing that it holds for a yet larger domain of housing problems
than the one defined in Section 2. Conversely the “only if” part (together with Remark 1)
could be strengthened by showing that it holds on a subdomain. Here I show that one
cannot enlarge the domain by much and have the “if” part continue to hold. On the
other hand, the “only if” part also holds on a much smaller domain.

The domain of housing problems could be enlarged by dropping the condition of
no indifference or of independently drawn preferences, or by allowing for there to be
more or less houses than agents. Dropping the no-indifference condition is problematic
since serial dictatorships cease to be well defined when we allow for indifferences: the
truthful revelation of preferences need not imply unique choices from sets of houses.
To circumvent this problem, I modify the notion of (path-dependent and simple) serial
dictatorship in housing problems with indifferences. Letting m be the number of some
dictator’s most preferred houses in the set of houses from which he is entitled to choose,
I require that this dictator faces a probability of 1/m to be matched to any one of these m

houses. Without indifferences, this notion of serial dictatorship reduces to the standard
notion. The following example13 shows that 3S dictatorship can be dominated when we
drop the no-indifference condition.

Example 6. Consider a housing problem H = (I�H���π� c) with n = 2 and H = {k�g}.
Let � have four equiprobable states, where each agent’s utility schedule might be either
(1�2) or (2�1). Agent 1’s cost of learning his own preference is 3; agent 2’s is 0. As the first
dictator, agent 1 optimally stays ignorant, assigns a value of 1�5 to each house, and, con-
sequently, obtains either one of the two houses with probability 1

2 . Facing a probability

13I would like to thank one of the referees for this example.
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1
2 to be matched to either house, agent 2 also obtains a utility of 1�5. On the other hand,
agent 2 as the first dictator chooses the house that gives him a utility of 2, implying a
utility vector of (1�5;2). So the serial dictatorship with agent 2 moving first dominates
the serial dictatorship with agent 1 moving first. ♦

Example 6 shows that serial dictatorship may be dominated by another mechanism
in housing problems in which agents are indifferent between choices. Agent 1 does not
have a unique optimal plan of action for the choice set H; not learning and choosing k,
and not learning and choosing g, as well as any mixture thereof are all optimal. To see
that similar issues arise in the standard model with indifferences, consider a variation
of Example 6 in which agent 1’s and agent 2’s utility schedules are known to be (1�5�1�5)
and (1�2), respectively. The serial dictatorship with agent 2 as the first dictator yields
a utility vector of (1�5;2) and, therefore, Pareto-dominates the other serial dictatorship,
which yields a utility vector of (1�5;1�5), given that agent 1 as the first dictator is equally
likely to be matched to either one of the two—indifferent—houses.

Ehlers (2002) showed that the set of Pareto-optimal, strategy-proof, and nonbossy
mechanisms is empty when the domain of preference profiles includes indifferences.
So we certainly need to impose some condition of no-indifference on housing prob-
lems with endogenous information acquisition for such mechanisms to exist. Applied
to standard housing problems, this no-indifference condition has to imply that prefer-
ences over different houses are strict.

The no-indifference condition defined in Section 5 is not the only one that satis-
fies the requirement just mentioned: the strictness of preferences in standard housing
problems is also ensured if no agent is indifferent between any two houses according
to any ω in the support of π. However, Example 6 shows that this alternative condition
does not suffice for the existence of an ex ante Pareto-optimal, strategy-proof, and non-
bossy mechanism.14 The same example furthermore shows that the alternative condi-
tion does not imply the no-indifference condition I impose. To see that the converse
implication does not hold either, modify the housing problem defined in Example 4
such that agent 1 is, with a small probability, indifferent between the two houses, and
such that his preferences are, with the complementary probability, determined as in the
description of Example 4. Assume furthermore that the acquisition of any partition ac-
cording to which agent 1 learns whether he is indifferent or not has infinite cost. Keep
all other aspects of Example 4 fixed. The no-indifference condition defined in Section 5
holds since agents 1 and 2 each have unique optimal plans when faced with the choice
between house g and house k.

Finally observe that, in parallel to the standard case, the no-indifference condition
holds generically. It is violated if an agent who learned some partition at a cost below
infinity is ex post indifferent between two houses or if an agent is indifferent between
learning two different partitions when he faces the problem to choose a house from

14By Theorem 1, we know that for any mechanism 〈ϕ� t〉 that is not a 3S dictatorship, we can find a
housing problem and a mechanism 〈ϕ′� t ′〉 such that 〈ϕ� t〉 is dominated by 〈ϕ′� t ′〉 at the given housing
problem. Now fix any 3S dictatorship 〈δ� tδ〉 and allow for indifferences. Following Example 6, we can then
construct a housing problem H and an alternative 3S dictatorship 〈δ′� tδ′ 〉 that dominates 〈δ� tδ〉 at H.
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some set S. Mathematically, if we consider R
ν to be the parameter space,15 then the

parameters at which indifferences obtain are defined by a finite set of linear equalities
and, thus, form a set of Lebesgue measure 0.

To see that the Pareto optimality of serial dictatorship also fails when we allow for
correlated preferences, consider the following example.16

Example 7. Consider a housing problem H = (I�H���π� c) with n = 2, H = {g�k},
� consisting of two equiprobable states ω̃ and ω̂ with ω̃1 = (2�0) = ω̂2 and ω̂1 =
(0�4) = ω̃2, and c1(P

1
) = 0�1 and c2(P

2
) = ∞. So agent 1 prefers house g whenever

agent 2 prefers house k and vice versa. Moreover, while learning is cheap for agent 1,
it is prohibitive for agent 2. Agent 2 therefore always likes to cede the choice to agent 1.
At the given housing problem with correlated preferences, the serial dictatorship with
2 as the first dictator is Pareto-dominated by the serial dictatorship with agent 1 as the
first dictator (the respective vectors of ex ante utilities are (2;2) for the first kind of serial
dictatorship and (2�9;3) for the second). ♦

There is yet a further problem in environments with correlated preferences: even
simple serial dictatorships need not have truth-telling equilibria for all c-trees t.17 In
sum, we can say that the “if” part of Theorem 1 (and 2) fails if we drop the conditions of
no-indifference and/or of independence. While it might be possible to relax these con-
ditions somewhat, the search for the maximal domain of housing problems for which 3S
dictatorship is ex ante Pareto optimal goes beyond the scope of this paper. Let me just
say that the case of |I| �= |H| can easily be accommodated. If there are less agents than
houses, the proof of the optimality of 3S dictatorship (and the analogous simultaneous
case) goes through unchanged. If there are more agents than houses, we can only allow
for some trivial changes: any optimal mechanism has to start out as a serial dictatorship.
Once all (real) houses have been assigned and only dummy houses remain, we can use
any mechanism.

Without stating a result on the minimal domain on which the “only if” part of The-
orems 1 and 2 and Remark 1 are valid, let me argue that these results also hold on a
much smaller domain of housing problems. To this end restrict the domain of housing
problems as follows. First, any house has at most two different values for each agent, so
ωi

h ∈ {ωi
h�ω

i
h} holds for all i, h and all ω ∈ �. Second, for each agent i, there is at most

one nontrivial partition P̃i �= {∅��} such that ci(P̃i) < ∞. So there does not need to be
much uncertainty in the housing problem: it suffices for each agent i to know that house
h is either of some high value ωi

h or some low value ωi
h. Moreover, just one informational

choice per agent, either learn P̃i or remain ignorant ({��∅}), is sufficient. Since these
two additional restrictions are satisfied by all examples used to prove the “only if” part
of Theorems 1 and 2 as well as Remark 1, these results are also valid for the restricted
domain.

15For a fixed number of states in the space �, the following parameters need to be determined to describe
a housing problem: a value ωi

h ∈ R for each agent, each house, and each state, a probability vector π ∈ �|�|
on the state space, and a finite set of cost values ci(Pi) ∈R∪ {∞}, assigning a cost for every partition Pi ⊂ ζi

on � for every agent i.
16I would like to thank one of the referees for this example.
17An example is available on request.
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6. Trading and braiding mechanisms

The set of all strategy-proof, nonbossy, and Pareto-optimal direct revelation mecha-
nisms ϕ has been characterized by Pycia and Ünver (2013) and Bade (2014) as the set of
trading and braiding mechanisms. In trading and braiding mechanisms, just as in Gale’s
top trading cycles mechanism, there is an initial allocation of all houses to the agents,
and assignments are then determined through trade in cycles. Trading and braiding
mechanisms generalize Gale’s top trading cycles mechanism in three ways: First of all,
agents can own more than one house before they leave with their assignment. Once an
owner of multiple houses leaves the mechanism, his as of yet unmatched houses are
passed on to the remaining agents via a fixed inheritance rule. Ownership of multiple
houses was introduced by Pápai (2000). Second, in addition to ownership there is a new
form of control called brokerage. Brokerage was introduced by Pycia and Ünver (2013).
Third, a trading and braiding mechanism might terminate with a braid. Braids are de-
signed to match three agents and houses with the goal to avoid one particular matching.
Braids were introduced by Bade (2014).

A trading and braiding mechanism is defined using a set of control rights functions.
A control rights function at some submatching σ cσ :Hσ → Iσ × {o�b} assigns control
rights over any unmatched house to some unmatched agent and specifies a type of con-
trol. If cσ(h) = (i�x), then agent i controls house h at σ . If x = o, then i owns h; if x = b

he brokers h. Control rights functions satisfy the following three criteria:

(C1) If more than one house is brokered, then there are exactly three houses and they
are brokered by three different agents.

(C2) If exactly one house is brokered then there are at least two owners.

(C3) No broker owns a house.

A general control rights structure c maps a set of submatchings σ to control rights
functions cσ . For now just assume that c is defined for sufficiently many submatchings
to ensure that the following algorithm is well defined for any fixed ω.

Initialize with r = 1, σ1 = ∅

Round r: Only consider the remaining houses and agents Hσr and Nσr .

Braiding : If more than one house is brokered under cσr let B be the braid defined (be-
low) by the avoidance matching ν with cσr (ν(i)) = (i� b). Terminate the process
with the matching σr ∪B(ω) where ω is the restriction of ω to Hσr and Iσr . If not,
go on to the next step.

Pointing : Each house points to the agent who controls it, so h ∈ Hσr points to i ∈ Iσr

with cσr (h) = (i� ·). Each owner points to his most preferred house. Each broker
points to his most preferred owned house.

Cycles: Select at least one cycle. Define σ◦ such that σ◦(i) := h if i points to h in one
of the selected cycles.
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Continuation: Define σr+1 := σr ∪σ◦. If σr+1 is a matching terminate the process with
σr+1. If not, continue with round r + 1.

A submatching σ is reachable under c at ω if some round of a trading and braid-
ing process can start with σ . A submatching σ is c-relevant if it is reachable under c at
some ω.18 A submatching σ ′ is a direct c-successor of of some c-relevant σ if there exists
a profile of preferences ω such that σ is reachable under c(ω) and σ ′ arises out of match-
ing a single cycle at σ . A control rights structure c maps any c-relevant submatching σ

to a control rights function cσ and satisfies requirements (C4), (C5), and (C6).
Fix a c-relevant submatching σ◦ together with a direct c-successor σ .

(C4) If i /∈Nσ owns h at σ◦ then i owns h at σ .

(C5) If at least two owners at σ◦ remain unmatched at σ and if i /∈ Nσ brokers h at σ◦
then i brokers h at σ .

(C6) If i owns h at σ◦ and σ , and if i′ /∈ Nσ brokers h′ at σ◦ but not at σ , then i owns h′
at σ and i′ owns h at σ ∪ {(i�h′)}.

The braid B is a Pareto optimal, strategy-proof, and nonbossy mechanism for a prob-
lem with exactly three houses and three agents.19 It is fully defined through an avoidance
matching ν. Matchings B(ω) are chosen to avoid matching i to ν(i). For any ω let PO(ω)

be the set of Pareto optima μ. If minμ∈PO(ω) |{i : μ(i) = ν(i)}| is attained at a unique μ∗
then let B(ω) = μ∗. If not, at least two agents must rank some house h∗ = ν(i∗) at the top
and the pair (i∗�h∗) is decisive in the following sense. If only one agent j �= i∗ ranks h∗
at the top then B(ω) is the unique minimizer that matches j to h∗. If both agents i �= i∗
rank h∗ at the top, then B(ω) is agent i∗’s preferred minimizer.

The trading and braiding mechanism defined by the control rights structure c is also
denoted c and c(ω) is the outcome of the trading and braiding mechanism c at the pro-
file of preferences ω. Any Pareto optimal, strategy-proof, and nonbossy mechanism
has a unique representation as a trading and braiding mechanism and any trading and
braiding mechanism has these three properties.

The canonical mechanisms introduced at the end of Section 2.2 can now be repre-
sented as special cases of trading and braiding mechanisms. Path-dependent serial dic-
tatorships require that for each c-relevant σ , there exists an iσ such that cσ(h) = (iσ �o)

for all h ∈ Hσ , and simple serial dictatorships are special cases of path-dependent se-
rial dictatorships with iσ = iσ ′ if |σ | = |σ ′|; a control rights structure c defines Gale’s top
trading cycles mechanism if there exists a matching μ such that c∅(h) = (μ−1(h)�o) for
all h ∈H.

18Consider a control rights structure c with three agents {1�2�3} and 4 houses {e�g�k�h′}, where agent
1 starts out owning house e and g and agent 2 starts out owning the remaining houses. Suppose ω is such
that ω1

e ≥ ω1
h and ω2

h′ ≥ ω2
h holds for all h ∈ H. Then {(1� e)}� {(2�h′)} and {(1� e)� (2�h′)} are examples of

submatchings that are reachable under c(ω). The submatching {(1� g)} is c-relevant since agent 1 could
appropriate house g, but not it is not reachable under c(ω) given that 1 prefers e to g. The submatching
{(3� e)} is not c-relevant since 3 does not own any house at the start of the mechanism.

19Bade (2014) defines braids for housing problems with three houses and at least as many agents. I state
a simpler definition here, since the present paper is only concerned with housing problems with equally
many agents and houses.
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7. Proofs

To prove that 3S dictatorship cannot be ex ante Pareto-dominated (the “if” part of The-
orem 1), suppose the 3S dictatorhip 〈δ∗� t∗〉 was dominated by some 〈ϕ� t〉 at some hous-
ing problem H. Under 〈δ∗� t∗〉(H), agent 1 obtains the ex ante utility20

max
P⊂ζ1

(∑
E∈P

π(E)max
h∈H

ωi
h(E)− c1(P)

)
�

Pick an equilibrium of 〈ϕ� t〉(H) and fix the strategies of agents {2� � � � � n} to the ones
prescribed by that equilibrium. Agent 1’s problem then consists of announcing prefer-
ences that determine choices from a set {H1� � � � �HL} of choice sets that are possible
according to all other agents’ strategies. The strategies of agents 2� � � � � n imply a dis-
tribution ρ on {H1� � � � �HL}. Let Hl not only denote a choice set for agent 1, but also
the event that agent 1 gets to choose from Hl. Since the strategies of agents 2 through
n determine the set Hl that agent 1 gets to choose from and since any agent i can only
condition his strategy on events in ζi, any event Hl can be represented as

⋂n
i=2 E

l
i for

some events El
i ∈ ζi for all i = 2� � � � � n.

Agent 1 may have to announce (and learn) his preferences before he knows which
choice set he is facing. Since agent 1’s utility can only increase, as he gets to choose
a separate information partition for every choice set Hl, his ex ante utility in the fixed
equilibrium of 〈ϕ� t〉(H) cannot be higher than

L∑
l=1

ρ(Hl) max
P⊂ζ1

(∑
E∈P

π(E|Hl) max
h∈Hl

ω1
h(E ∩Hl)− c1(P)

)

=
L∑
l=1

ρ(Hl) max
P⊂ζ1

(∑
E∈P

π(E) max
h∈Hl

ω1
h(E)− c1(P)

)

≤ max
P⊂ζ1

(∑
E∈P

π(E)max
h∈H

ω1
h(E)− c1(P)

)
�

The equality holds since all agents’ preferences are drawn independently, which, in turn,
implies that ω1

h(E) = ω1
h(E ∩ Hl) holds for all h ∈ H and all 1 ≤ l ≤ L. The inequality

holds since the maximum in some set S ⊂ R cannot be smaller than the maximum in
any subset of S. So we can conclude that agent 1’s utility in the fixed equilibrium of
〈ϕ� t〉(H) is no higher than his utility as the first dictator.

Due to the no-indifference condition, agent 1’s optimal choices as the first dictator
imply a unique match for him for every state ω. These matches can be described by
the function μ[·](1) :� → H. For agent 1 to be at least as well off under the equilib-
rium of 〈ϕ� t〉(H) as under 〈δ∗� t∗〉(H), the house that agent 1 is matched with under the
equilibrium of 〈ϕ� t〉(H) must also be described by μ[·](1).

20Note that agent 1 here maximizes over all partitions P ∈ P that are subsets of ζ1. This is without loss of
generality since c1(P) = ∞ holds for any partition P with P �⊂ ζ1.
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Fixing a house h∗ that agent 1 chooses for some state ω as the first dictator, com-
pare agent 2’s utility in the event E := {ω | μ[ω](1) = h∗} under serial dictatorship and
under the equilibrium of 〈ϕ� t〉(H). Since agent 1 can only base his decision on a par-
tition P ⊂ ζ1, the event E that agent 1 picks h∗ is an element of ζ1. The independence
assumption implies that knowing this event E has no impact on the assessment of any
event that is relevant for the other agents’ decisions; formally, π(ωi

h|E) = π(ωi
h) holds

for all i ∈ {2� � � � � n} and all h ∈ H. Under serial dictatorship, agent 2 gets to choose from
the set H \ {h∗}. He (weakly) prefers this choice to any other mechanism that matches
the houses H \ {h∗} to the agents {2� � � � � n}. This preference follows the same arguments
given for agent 1’s preference to be the first dictator. Since h∗ was chosen arbitrarily,
these observations hold for any possible choice by agent 1 as the first dictator.

We can conclude that conditioning on agent 1 being at least as well off as the first
dictator in 〈ϕ� t〉(H), agent 2 cannot be made any better off under 〈ϕ� t〉(H) than un-
der 〈δ∗� t∗〉(H). The claim then follows by an inductive application of these arguments
to all consecutive dictators. The “if” part of Theorem 2 can be shown using a minor
modification of the above arguments. I postpone this proof to the Appendix.

The proof of the “only if” part of Theorem 1 together with Remark 1 starts with the
observation that for any mechanisms 〈ϕ◦� t◦〉 to be Pareto optimal in the sets of dynamic
mechanisms, the direct revelation mechanism ϕ◦ must itself be Pareto optimal. Oth-
erwise 〈ϕ◦� t◦〉 is dominated by some constant mechanism at some standard housing
problem ω. Pycia and Ünver’s (2013) and Bade’s (2014) characterization then implies
that ϕ◦ can be represented as a unique trading and braiding mechanism c. I subdivide
the set of dynamic direct mechanisms 〈c� t〉 that are not 3S dictatorships into three cate-
gories: (I) c is not a path-dependent serial dictatorship; (II) c is a path-dependent serial
dictatorship without being a simple serial dictatorship; (III) c is a simple serial dictator-
ship δ, but t is not equal to tδ. Lemmas 1, 2, and 3 then show that the “only if” part of
Theorem 1 holds restricted to mechanisms belonging to categories I, II, and III, respec-
tively. All proofs can be found in the Appendix.

Lemma 1. Fix any trading and braiding mechanism c that is not a path-dependent serial
dictatorship and fix any c-tree t. There exists a housing problem HA and a simple serial
dictatorship δ such that 〈c� t〉 is dominated by 〈δ� tδ〉 at HA.

The proof of this lemma for the case of n = 2 is contained in Example 1, which
demonstrates the domination of Gale’s top trading cycles by a serial dictatorship in some
housing problems with two agents. To extend this idea of proof to Lemma 1 (for any n),
situations similar to Gale’s top trading cycles with just two agents need to be identified
in any trading and braiding mechanism that is not a path-dependent serial dictatorship.

Fix any c that is not a path-dependent serial dictatorship. By the definition of trading
and braiding mechanisms there must exist a c-relevant submatching σ∗ with either two
owners or two brokers. Say agents 1 and 2 own houses k and g respectively, or say that
agent 1 brokers g and agent 2 brokers k. Restricted to agents 1 and 2, and houses g

and k, let HA be identical to the problem defined in Example 1. The preferences of all
other agents are known. Define a matching μ such that μ(1) = k, μ(2) = g, and σ∗ ⊂ μ.
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Assume that any agent i �= 1�2 prefers his match under μ to all other houses. Note that
σ∗ is reached in any equilibrium of 〈c� t〉(HA). Once σ∗ is reached, we face a housing
problem that is strategically identical to Example 1; consequently, the mechanism 〈c� t〉
is dominated by a 3S dictatorship at HA. The next two lemmas state the “only if” part of
Theorem 1 and Remark 1 for the categories II and III.

Lemma 2. Fix any path-dependent serial dictatorship γ that is not a serial dictatorship
and fix any c-tree t. There exist a housing problem HC and a path-dependent serial dic-
tatorship γ′ such that 〈γ� t〉 is dominated by 〈γ′� tγ′ 〉 at HC .

Lemma 3. Fix a serial dictatorship δ together with a c-tree t �= tδ. There exists a hous-
ing problem HB such that the sequential serial dictatorship 〈δ� t〉 is dominated by the 3S
dictatorship 〈δ� tδ〉 at HB.

Lemmas 2 and 3 were proven by Examples 5 and 2, respectively, for the case of n = 3.
The proof of these lemmas for larger n consists of embedding these examples into hous-
ing problems with n houses and agents. Jointly Lemmas 2 and 3 constitute the proof
of the “only if” part of Theorem 1 and the relevant portion of Remark 1: they show that
for any conceivable deviation from 3S dictatorship, there exists a housing problem such
that some path-dependent serial dictatorship dominates that mechanism at this hous-
ing problem.

Some tweaking of the preceding proof suffices to show the “only if” part of Theo-
rem 2 (and the relevant portion of Remark 1). The reason is that the sequentiality of
announcements matters neither for the arguments brought forward with respect to Ex-
amples 4 and 5 nor for their embedding in larger housing problems. The housing prob-
lems H chosen to prove Lemmas 1 and 2 are defined such that at most one agent learns
in any of the equilibria that are relevant for the proofs. But any equilibrium of a game
〈ϕ� t〉(H) in which at most one agent learns is an equilibrium of the game 〈ϕ� ts〉(H),
implying that some minor translation work is needed to make the proof of Theorem 1
applicable to Theorem 2; the details can be found in the Appendix.

8. Conclusion

If one allows for endogenous information acquisition in housing problems, simple se-
rial dictatorships stand out from the large set of strategy-proof, nonbossy, and Pareto-
optimal mechanisms. Whether one looks at mechanisms that dynamically elicit prefer-
ences or only at the subset of mechanisms in which preferences are elicited simultane-
ously, simple serial dictatorships are the only ex ante Pareto-optimal mechanisms.

Within the set of strategy-proof and nonbossy mechanisms, serial dictatorships are
unique in the sense that they always provide optimal learning incentives. In a 3S dicta-
torship, each agent knows his choice set when it is his turn to learn and choose. Agents
can, therefore, perfectly tailor their learning to fit the questions at stake. Example 1
shows that this is not the case for Gale’s top trading cycles mechanism with just two
agents: in this case, one agent, say agent 1, needs to decide what to learn when he
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only knows the distribution over his possible choice sets. That example was constructed
such that this agent avoids learning and, therefore, refuses any exchange. In addition,
agent 2 would rather award dictator rights to agent 1 to get agent 1 to learn, than to keep
the house he is initially endowed with. The main argument of the proof was that any
strategy-proof, nonbossy, and Pareto-optimal direct choice mechanism that is not a se-
rial dictatorship in a sense embeds Gale’s top trading cycles mechanism with just two
agents.

Abdulkadiroğlu and Sönmez (1998) show that serial dictatorship with the order of
dictators randomly drawn from a uniform distribution is equivalent to Gale’s top trad-
ing cycles mechanism with the endowment drawn from a uniform distribution. To see
that this equivalence result does not hold for the case of endogenous information ac-
quisition, reconsider the housing problem Ha defined and discussed in Example 1. Sup-
pose each agent is assigned each of the roles (first or second dictator and owner of g
or k, respectively) with probability 1

2 . The agents get to know the role they are assigned
before they decide whether to acquire information about the houses. The expected util-
ity profiles for the two different serial dictatorships are (3�5) and (4�2�3), whereas for
Gale’s top trading cycles mechanism, they are (3�5) and (4�2). So the vectors of expected
utilities for serial dictatorship with a random order of dictators and for Gale’s top trad-
ing cycles mechanism with random endowments are 1

2(3;5) + 1
2(4�2;3) = (3�6;4) and

1
2(3;5) + 1

2(4;2) = (3�5;3�5). We can conclude that randomization of serial dictatorship
Pareto-dominates the randomization of Gale’s top trading cycles in the present example.

There is another question relating to random matching mechanisms: could sequen-
tial serial dictatorships be replaced by random matching mechanisms in Remark 1? Ex-
ample 5 suggests that this is not possible. Recall the arguments brought forward to show
that agent 1 would have to be the first dictator in any mechanism that dominates the
path-dependent serial dictatorship of Example 5. Applying the same arguments to the
present case, we obtain that agent 1 would have to obtain the same matches as he does
as the first dictator in any dominating random matching mechanism. So the random-
ization can only concern agents 2 and 3. But it is preferable that agents 2 and 3 are
not randomly assigned to choose from the set that remains after agent 1 appropriated a
house. For each agent, there is one set in which his choice matters much to him (high
utility differential between the remaining houses) and another set in which his choice
matters less (low utility differential between the remaining houses).

It could also be interesting to study ex ante Pareto optimality without the assumption
of endogenous learning. This study could be couched in a version of the model consid-
ered here with ci(P) = 0 for any partition P containing only elements E ∈ ζi, meaning
that agents face no cost of learning their own types. Observe that the cost of learning in
Example 5 played no role, so the argument that any path-dependent serial dictatorship
is dominated by another path-dependent serial dictatorship for some housing problem
H also applies to this special case.

Example 5 can be reinterpreted as an illustration of conflict between bossiness and
ex ante Pareto optimality. To see this, change the mechanism γ defined in that example
to a very similar type of bossy serial dictatorship in which the identity of the second dic-
tator does not depend on whether agent 1 chooses house g or k, but rather on whether
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he ranks house d at the bottom or not. Say agent 2 becomes the second dictator if and
only if agent 1 ranks house d at the bottom. This is a bossy mechanism, since agent
1’s assignment does not change when announcing either (2�1�0) or (2�0�1). However,
the assignments to the following two dictators will vary with agent 1’s announcement if
their preferences are aligned. Now observe that for Hc , the housing problem given in
Example 5, this bossy mechanism is essentially identical to the path-dependent serial
dictatorship defined there: Hc is defined such that agent 1 chooses house g if and only
if he ranks house d lowest. Consequently, for Hc the given form of bossy serial dicta-
torship is dominated by the alternative path-dependent serial dictatorship γ′ defined
in the same example. This is but one example; it is not known whether ex ante Pareto
optimality generally conflicts with bossiness.

Finally, let me say that a relaxation of the restrictions I imposed on the domain of
housing problems might lead to a wealth of interesting results on matching with en-
dogenous information acquisition. One stylized fact about matching mechanisms used
in practice is that they often do not allow the participants to submit complete rankings;
instead, they only permit short lists of a few top choices. Maybe such mechanisms fare
better than classical matching mechanisms in housing problems in which agents are in-
different over all “ex ante unknown” objects. So a theory of matching with endogenous
information acquisition and ex ante indifference could explain why such mechanisms
are so common in practical applications. Alternatively, a theory of matching problems
under endogenous information acquisition with correlated values could serve to ana-
lyze (and possibly optimize) the institutions through which agents share information
before submitting their preferences to matching mechanisms.

Appendix

For any fixed trading and braiding mechanism c and c-relevant submatching σ∗, the
mechanism c′ defined through c′

σ = cσ∗∪σ for all submatchings σ such that σ∗ ∪ σ is c-
relevant is called the submechanism of c at σ∗. This mechanism matches the agents in
Iσ∗ to the houses in Hσ∗ .

Proof of Lemma 1. Since c is not a path dependent serial dictatorship one can fix a
minimal c-relevant σ∗ such that there exists no single agent who owns all houses Hσ∗

at σ∗. Assume first that cσ∗(k) = (1�o) and cσ∗(g) = (2�o) holds for houses k�g ∈ Hσ∗ ,
and that agent 1 has to announce his preferences before he learns the announcement of
agent 2 according to the c-tree t.

Define the housing problem HA as follows. Fix a matching μ such that μ(1) = k,
μ(2) = g, and σ∗ ⊂ μ. The preferences of all agents i /∈ {1�2} are known. For any agent i �=
1�2 and any h �= μ(i) assume ωi

μ(i) = 1 >ωi
h. The values 0 >ωi

h that agents i = 1�2 assign
to houses h other than g and k are known. Restricted to agents 1, 2 and houses k, g, the
housing problem HA is identical to the housing problem Ha as defined in Example 4.

No agent learns in the unique equilibrium of 〈c� t〉(HA). To see this, I show first that
μ obtains when all agents reveal their ex ante preferences. Since ωi

σ∗(i) = 1 ≥ωi
h holds
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for all h ∈ H and all i ∈ Iσ∗ , and since σ∗ is c-relevant, it must be reached.21 Once σ∗ is
reached, agents 1 and 2 are endowed with houses k and g, respectively. Since agent 1
points to house k at σ∗ the submatching σ∗ ∪ {(1�k)} is reached next. By (C4), agent
2 continues to own house g at σ∗ ∪ {(1�k)}. The submatching σ∗ ∪ {(1�k)� (2� g)} is
reached since agent 2 points to house g. The Pareto optimality of the submechanism
of c at σ∗ ∪ {(1�k)� (2� g)}, implies that all remaining agents are matched in accordance
with μ.

Consider any agent i ∈ Iσ∗ , fix the strategies of all other agents in Iσ∗ to truth-telling,
and fix the strategies of the agents in Iσ∗ arbitrarily. To see that telling the truth is a
best reply for agent i, observe that the submatching σ∗ is reached if i tells the truth and
all other agents follow the fixed strategy profile. So if agent i tells the truth, he obtains
house σ∗(i), his most preferred house among all houses in H. In sum, truth-telling is a
best response for all agents in Iσ∗ no matter what we assume about the strategies of the
agents in Iσ∗ . Given that no i ∈ Iσ∗ has the choice to learn, the submatching σ∗ must be
reached in any equilibrium of 〈c� t〉(HA).

Next consider the submechanism of c at σ∗. The strategic situation faced by agents
1 and 2 in that submechanism is nearly identical to the one they face in the top trad-
ing cycles mechanism constructed in Example 4. The only difference is that they have
some additional strategies in the present mechanism: pointing to houses other than g

or k. However, all these additional strategies are dominated for any outcome of learning
given that according to HA, ωi

k�ω
i
g > ωi

h holds for i = 1�2, all h ∈H \{g�k}, and all ω ∈�.
The fact that not learning is the unique equilibrium in Example 4 implies that condi-
tioning on all agents in Iσ∗ telling the truth, agents 1 and 2 best respond by not learning
and truthfully revealing their ex ante preferences, so the submatching σ∗ ∪{(1�k)� (2� g)}
must be reached in any equilibrium.

The submechanism of c at σ∗ ∪ {(1�k)� (2� g)} is a trading and braiding mechanism
and, therefore, is strategy-proof. This implies that the truthful revelation of their known
preferences is a best reply for any agent in Iσ∗ \ {1�2}, given that the agents in Iσ∗ ∪
{1�2} follow the best reply strategies described so far. In sum, we can conclude that not
learning and telling the truth is the unique equilibrium of 〈c� t〉(HA). So the profile of ex
ante utilities implemented by 〈c� t〉 in HA is (4;2;1; � � � ;1).

If there are no two different owners at σ∗, there must be two brokers, say cσ∗(g) =
(1� b) and cσ∗(k) = (2� b). With two brokers at σ∗, the submechanism prescribed by c

at σ∗ must be a braid. Without loss of generality (w.l.o.g.) we have Iσ∗ = {1�2�3} and
Hσ∗ = {g�k�e}. Given that 3 prefers μ(3) = e to g, k and given that 1 and 2 prefer g and
k to e, agent 3 is matched with μ(3) = e under 〈c� t〉. The situation faced by 1 and 2 is
strategically identical to the situation they face in Example 4. So also in this case 〈c� t〉
implements the profile of ex ante utilities (4;2;1; � � � ;1) in HA.

Now consider the serial dictatorship 〈δ∗� t∗〉(HA). Since agents 1 and 2 are the first
two dictators under δ∗, and since they prefer houses k and g to all other houses in any

21For σ∗ to be c-relevant, one agent i∅ ∈ Iσ∗ must be the initial dictator. Since this initial agent prefers
σ∗(i∅) to all other houses, he appropriates σ∗(i∅). The c-relevance of σ∗ then requires that at the sub-
matching {(i∅�σ∗(i∅))}, an agent i ∈ Iσ∗ \ {i∅} turns into the next dictator. The fact that σ∗ is reached
follows by induction.
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state ω, their equilibrium behavior is the same as in the serial dictatorship discussed
in Example 4. The submechanism after the assignment of 1 and 2 is a serial dictator-
ship that matches each of the remaining agents i with μ(i), since each i of these agents
prefers μ(i) to all remaining houses. So the unique profile of expected utilities imple-
mented by 〈δ∗� t∗〉(HA) is (4�2;3;1; � � � ;1), which Pareto-dominates the unique outcome
of 〈c� t〉(HA). �

Proof of Lemma 2. Fix a path-dependent serial dictatorship γ̃ = c that is not a simple
serial dictatorship. Let σ∗ be a minimal c-relevant submatching such that the dictator
at the following submatching depends on the choice of the current dictator. Formally,
assume that there exist g�k�d ∈ Hσ∗ such that cσ∗(h) = (1�o) for all h ∈ Hσ∗ , cσ̃ (h) =
(2�o) for all h ∈ Hσ̃ where σ̃ = σ∗ ∪ {(1� g)}, and cσ̂ (h) = (3�o) for all h ∈ Hσ̂ , where
σ̂ = σ∗ ∪ {(1�k)}.22

Define the housing problem HC as follows. Fix a submatching σ ′ such that σ∗ ⊂ σ ′,
Iσ ′ = I \ {1�2�3}, and Hσ ′ = H \ {g�k�d}. The preferences of all agents i �= 1�2�3 are
known with ωi

σ ′(i) = 1 ≥ωi
h holding for all h ∈H. The values 0 >ωi

h that agents i = 1�2�3
assign to houses h other than g, k, and d are known. Restricted to agents 1, 2, 3 and
houses g, k, d, the housing problem HC is identical to the housing problem Hc as de-
fined in Example 5.

The proof that the truth-telling strategy profile according to which agent 1 learns is
the only equilibrium is nearly identical to its counterpart for the preceding lemma. All
agents but agent 1 know their preferences and, therefore, have a unique truth-telling
strategy. Following the arguments in the preceding proof (all agents in Iσ∗ best respond
by telling the truth), σ∗ must be reached in any equilibrium of 〈γ̃� t〉(HC). At σ∗, agent 1
becomes the dictator. His choice problem is nearly identical to that in 〈γ� tγ〉(Hc): in
addition to {g�k�d} (his choice set in 〈γ� tγ〉(Hc)), there might be some more houses
in Hσ∗ ; however, agent 1 strictly prefers g, k, and d to any of these additional houses for
any state ω ∈ �. So agent 1’s optimal behavior in 〈γ̃� t〉(HC) is implied by his optimal
behavior in 〈γ� tγ〉(Hc) in Example 5: agent 1 is better off learning his preferences than
not. The preferences of all remaining agents are known; therefore, truth-telling is a best
reply for them in the submechanism following agent 1’s choice. The ex ante utilities of
the agents are (1�9;1; � � � ;1).

Just as in Example 5, it would be a Pareto improvement for agents 2 and 3 to “switch.”
So the alternative path-dependent serial dictatorship 〈γ̃′� tγ̃′ 〉, where γ̃ and γ̃′ are iden-
tical except that agents 2 and 3 switch roles (formally, γ̃′ = c′ with cσ(h) = (2�o) ⇒
c′
σ(h) = (3�o), cσ(h) = (3�o) ⇒ c′

σ(h) = (2�o), cσ(h) = c′
σ(h) for all other h), ex ante

Pareto-dominates the given mechanism 〈γ̃� t〉 at the housing problem HC and the game
〈γ̃′� tγ̃′ 〉(HC) yields the expected utilities (1�9;5�5�1; � � � ;1) to all players. �

Proof of Lemma 3. Consider the set of all relevant submatchings σ for which t pre-
scribes that the agents in Iσ announce their preferences in the order in which they be-
come dictators. Let σ∗ be maximal in this set. This implies that if the first Iσ∗ agents’

22I omit the definition of the second component bσ since in a path-dependent serial dictatorship, we
have that bσ(h) = ow for all reachable σ . Since agents 2 and 3 have a choice, there must be at least one
house other than g and k.
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declarations lead to the submatching σ∗, then t prescribes that some agent i, say 2, who
is not the dictator at σ∗ must according to t reveal his preference before learning the
announcement of the dictator at σ∗, say 1. Since both 1 and 2 need to declare their
preferences, their choices must be followed by at least one more agent, say 3. Define
the housing problem HB like HC in the preceding proof with the one exception that re-
stricted to agents 1, 2, 3 and houses k, g, d, the housing problem HB is identical to the
housing problem Hb as defined in Example 2.

Given the parallel setup of the preceding and the current mechanism, truth-telling
is a best reply for all agents in Iσ ′ in 〈δ� t〉(HB). This implies that σ∗ must be reached in
any equilibrium of 〈δ� t〉(HB). The problem faced by agents 1, 2, and 3 at σ∗ is nearly
identical to that in Example 2, the only difference being the availability of some inferior
houses Hσ∗ \ {g�k�d}. Agents 1 and 2 will, therefore, both learn their value of house d in
the unique equilibrium of 〈δ� t〉(HB).

To see that 〈δ∗� t∗〉 dominates 〈δ� t〉 at HB observe that, just as in Example 2, agent 2
will only acquire information in 〈δ∗� t∗〉(HB) when it is relevant to his decision. So agent
2 will only become informed when agent 1 does not choose house d. The equilibria of
〈δ� t〉(HB) and 〈δ∗� t∗〉(HB) induce the identical mappings from states ω to matchings μ.
The equilibrium outcome functions differ only in one respect: there are some states ω

under which agent 2 acquires information in the unique equilibrium of 〈δ� t〉(HB) but
does not do so in the unique equilibrium of 〈δ∗� t∗〉(HB). So all agents but agent 2 obtain
the same ex ante utility in the respective equilibria of 〈δ� t〉(HB) and 〈δ∗� t∗〉(HB). The
3S dictatorship 〈δ∗� t∗〉 Pareto-dominates 〈δ� t〉 at HB since agent 2’s expected cost of
information acquisition is lower in the equilibrium of the former. �

Proof of Theorem 2 and the “simultaneous” part of Remark 1. This proof con-
sists in a few amendments of the proof of Theorem 1. The solution concept, which re-
quires that all agents’ ex post preferences lead to unique choices of houses from sets,
remains well defined: by assumption, any (possible) ex post preferences of any agent
strictly rank any two different houses. However, simple serial dictatorship might not
have a unique equilibrium when all agents are forced to learn simultaneously. Some
agents might have multiple optimal partitions, given all other agents’ learning choices.
To show that 〈δ∗� ts〉 cannot be dominated by any 〈ϕ� ts〉 at any housing problem H,
I show that a selected equilibrium of 〈δ∗� ts〉(H) cannot be dominated by any of the equi-
libria of 〈ϕ� ts〉(H).

This equilibrium is selected as follows. Let i be the first dictator, who strictly prefers
some equilibrium of 〈δ∗� ts〉(H) to another. Discard all equilibria that are inferior accord-
ing to i’s preference.23 If only one equilibrium survives, terminate the process; if not, use
the preferences of the next dictator, who strictly ranks any two of the remaining equilib-
ria to reduce the set yet further. Continue this process until only a single equilibrium
survives or until all agents are indifferent between all surviving equilibria. The appli-
cation of the proof of the “if” part of Theorem 1 to the selected equilibrium yields the

23This first dictator i cannot be agent 1, since the no-indifference condition implies that he has a unique
optimal plan of choice from the set H.



Theoretical Economics 10 (2015) Serial dictatorship 409

desired result: simultaneous simple serial dictatorship is Pareto optimal in the set of all
simultaneous matching mechanisms.

To prove the “only if” part of Theorem 2 fix any 〈c� ts〉 such that c is not a path-
dependent serial dictatorship and define HA as in the proof of Lemma 1. Since only
one agent learns in the unique equilibrium of 〈δ∗� t∗〉(HA), this strategy profile is also
the unique equilibrium of 〈δ∗� ts〉(HA). This, together with the observation that 〈δ∗� t∗〉
dominates 〈c� ts〉 at HA, implies that 〈δ∗� ts〉 dominates 〈c� ts〉 at HA. The proof of
Lemma 2, which shows that any path-dependent but not simple serial dictatorship is
dominated by a 3S dictatorship at some housing problem, directly applies to the si-
multaneous case. The reason is that only one agent has the choice to learn in HC , the
housing problem constructed to prove Lemma 2, so 〈c� t〉(HC) = 〈c� ts〉(HC) holds for all
mechanisms 〈c� t〉. In sum, we have that for any c not a simple serial dictatorship, there
exists a housing problem H and a path-dependent serial dictatorship γ such that 〈c� ts〉
is dominated by 〈γ� ts〉 at H, proving the “only if” part of Theorem 2 as well as the part of
Remark 1 that pertains to simultaneous mechanisms. �

Let me finally reconsider the strengthening of Remark 1 to the claim that the domi-
nating mechanism can always be a simple serial dictatorship. To this end, suppose that
the path-dependent serial dictatorship 〈γ� tγ〉 as defined in Example 5 was dominated
by a 3S dictatorship 〈δ� tδ〉 in some housing problem H. Following the arguments in the
proof that serial dictatorship cannot be dominated (Section 7), agent 1 would have to be
the first dictator under δ to keep his utility at least as high as under γ.24

Now consider the case with agent 2 as the second dictator under δ. In set {k�d},
agent 2 will choose just as he does under 〈γ� tγ〉. If he replicates the outcome of 〈γ� tγ〉(H)

for the other two choice sets {g�k} and {g�d}, then 〈δ� tδ〉(H) leads to exactly the same
matchings as 〈γ� tγ〉(H) and can, therefore, not be dominating. So agent 2’s choices in
these two sets must lead to different matchings. Agent 3 would consequently some-
times obtain a house he would not have chosen. Given that the agents’ preferences are
independently drawn, agent 3 would be made worse off. The alternative 3S dictatorship
with agent 3 as the second dictator can be ruled out mutatis mutandis. In sum, there
is no housing problem such that the path-dependent serial dictatorship 〈γ� tγ〉 is dom-
inated by a simple serial dictatorship 〈δ� tδ〉 at that housing problem. Remark 1 cannot
be strengthened in the conjectured way in the case of dynamic mechanisms. The same
applies to the case of simultaneous mechanisms given that all of the above arguments
continue to hold if we replace tγ and tδ by ts throughout the preceding paragraph.

References
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