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Abstract

We prove the existence of a pure-strategy trembling-hand perfect equi-
librium in upper semicontinuous potential games, and we show that
generic potential games possess pure-strategy strictly perfect and es-
sential equilibria. We also establish a more powerful result: the set of
maximizers of an upper semicontinuous potential contains a strategi-
cally stable set of pure-strategy Nash equilibria.
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1 Introduction

A strategic-form game is a potential game if the incentive of all players to
change their strategy can be expressed in one global function, called the
game’s potential. Potential games have many applications in Economics and
other disciplines (cf. Rosenthal [24], Monderer and Shapley [18], Ostrovsky
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and Schwarz [21], Armstrong and Vickers [3], Myatt and Wallace [19], inter
alia). Potential games have a distinct computational advantage in that any
maximizer of a potential is a pure-strategy Nash equilibrium. Therefore, the
computation of an equilibrium is reduced to the solution of an optimization
problem, thus obviating the need for computational fixed point theory. A
Nash equilibrium need not maximize the potential function so the set of
maximizers provides a natural equilibrium selection device. Given the focus
on the set of maximizers of a potential, it would be helpful to know if any
maximizers are “robust” as Nash equilibria, and it is this issue that we study
in this paper.

Structurally, we work with games in which each player’s strategy set is a
nonempty, compact metric space and for which there exists an upper semicon-
tinuous potential. Consequently, we are working in a framework substantially
more general than the case of finite strategy spaces, and the upper semicon-
tinuity assumption adds extra flexibility in applications. Furthermore, the
upper semicontinuity assumption allows us to use some basic machinery from
variational analysis.1

We begin by proving the existence of a pure-strategy trembling-hand
perfect equilibrium in upper semicontinuous potential games. In particular,
Theorem 1 proves that the set of maximizers of an upper semicontinuous
potential contains a pure-strategy trembling-hand perfect equilibrium, de-
fined according to an extension of the standard notion of perfection for finite
strategic-form games (cf. Selten [25]) to infinite strategic-form games (cf. Si-
mon and Stinchcombe [26], Al-Najjar [2], and Carbonell-Nicolau [7, 8, 9, 10]).
Example 1 shows that this result is tight: assuming the existence of a max-
imizer for the potential (rather than imposing upper semicontinuity) need
not imply even the existence of a trembling-hand perfect equilibrium.

In Theorem 2, we establish a more powerful result: the set of maximizers
of an upper semicontinuous potential contains a strategically stable set of
pure-strategy Nash equilibria in the sense of Kohlberg and Mertens [17]. In
Example 2, we present a game without strictly perfect equilibria and for
which the unique strategically stable set is a proper subset of the set of
maximizers of the potential.

In the last section of the paper we present results for generic games. We
begin with Proposition 1 showing that, in the class of games that admit

1The existence of pure-strategy trembling-hand perfect equilibria in general (possibly
discontinuous) strategic-form games requires more structure (cf. Carbonell-Nicolau [7]).

2



an upper semicontinuous potential, the set of games whose potential has a
unique maximizer is dense. If strategy sets are finite, we show in Proposition
2 that the set of games whose potential has a unique maximizer is open and
dense. This set, however, need not be open when strategy sets are not finite,
as we demonstrate by means of an example.

Using the notion of essential equilibrium, we show in Proposition 3 that in
the class of games that admit an upper semicontinuous potential, there exists
a dense, residual set of games for which every maximizer of the potential is
a pure-strategy essential equilibrium, hence a strictly perfect equilibrium.

Finite potential games (i.e., games with finite strategy sets) are special
cases of upper semicontinuous (in fact, continuous) games and all of the re-
sults in this paper are evidently applicable to the finite case. In Proposition
2 we show that potential games with finite action spaces whose correspond-
ing potentials have unique maximizers exhibit strong robustness properties.
These properties complement the robustness properties of unique maximizers
in finite potential games studied by Hofbauer and Sorger [14] and Ui [27], as
discussed at the end of Section 5.

The paper concludes with an economic application that illustrates the
main results. We formulate a discontinuous, potential investment game for
which the set of trembling-hand perfect equilibria that maximize the poten-
tial is a strict subset of the set of maximizers of the potential.

2 Preliminaries

A strategic-form game is a tuple G = (Xi, ui)
N
i=1, where N is a finite

number of players, Xi is a nonempty set of actions for player i, and ui is a
real-valued payoff function defined on X := ×Ni=1Xi. A game G = (Xi, ui)

N
i=1

is a compact metric game if it satisfies the following assumptions:

(i) Each Xi is a compact metric space.

(ii) Each ui is bounded and Borel measurable.

In this paper, we assume that all games are compact, metric games.
These games will be referred to simply as games. We will however make
further assumptions later regarding, e.g., continuity of the payoffs.

Throughout the paper, we will view a payoff profile u = (u1, .., u2) as an
element of the complete metric space (B(X)N , d), where B(X) denotes the
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space of bounded real-valued functions on X and the metric d : B(X)N ×
B(X)N → R is defined by

d ((f1, ..., fN), (g1, ..., gN)) :=
N∑
i=1

sup
x∈X
|fi(x)− gi(x)|.

Let X−i := ×j 6=iXj for each i. Given i and (xi, x−i) ∈ Xi × X−i, we
employ the standard convention and write (x1, ..., xN) in X as (xi, x−i). As
usual, X is endowed with the product metric topology.

2.1 Potential games

Given G = (Xi, ui)
N
i=1, a map P : X → R is a potential for G if for each i

and every x−i ∈ X−i,

ui(xi, x−i)− ui(yi, x−i) = P (xi, x−i)− P (yi, x−i), for all {xi, yi} ⊆ Xi.

Definition 1. A game is a potential game if it admits a potential. A
game is an upper semicontinuous potential game if it admits an upper
semicontinuous potential.

Potential games possess an important and convenient feature: a maxi-
mizer of a potential function is a pure-strategy Nash equilibrium. Stability
of certain equilibria can now be defined in terms of stability of optimizers
and we will exploit this in our treatment of equilibrium refinements.

2.2 Perfect and strictly perfect equilibrium

If Xi is a compact metric space, let ∆(Xi) represent the set of regular Borel
probability measures on Xi, endowed with the topology of weak convergence.
Since each Xi is a compact metric space, it follows that the topology of
weak convergence is metrizable and that ∆(Xi) is a compact metric space.
In particular, a sequence in ∆(Xi) is weakly convergent if and only if the
sequence is convergent with respect to the Prokhorov metric.

Next, extend ui to ∆(X) := ×Ni=1∆(Xi) in the usual manner by using Fu-
bini’s Theorem (recall that ui is bounded and Borel measurable) and defining

ui(µ) :=

∫
X

uid(µ1 ⊗ · · · ⊗ µN) =

∫
X1

· · ·
∫
XN

uidµ1 · · · dµN .
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The usual mixed extension of G is the strategic-form game

G = (∆(Xi), ui)
N
i=1 .

For each pure strategy xi ∈ Xi, let νi{xi} denote the corresponding Dirac

measure in ∆(Xi). For each x = (x1, .., xN) ∈ X, let

ν(x) := (ν1
{x1}, .., ν

N
{xN})

and note that the mapping ν : X → ∆(X) is an embedding (Theorem 15.8

in Aliprantis and Border [1]). If I ⊆ N̂ := {1, .., N}, xi ∈ Xi for each
i ∈ I, µi = νi{xi} for each i ∈ I, and µi ∈ ∆(Xi) for each i /∈ I, we will write

ui(µ) = ui(xI , µN̂\I)

so that, as usual, ui(x1, .., xN) = ui(ν
1
{x1}, .., ν

N
{xN}).

Let πX(u) denote the set of pure-strategy Nash equilibria of the game
G = (Xi, ui)

N
i=1 and let ξX(u) denote the set of mixed-strategy Nash equilibria

of G, i.e., the Nash equilibria of the mixed extension G = (∆(Xi), ui)
N
i=1.

Let Bε(x) denote the open ball centered at x ∈ X with radius ε > 0
(defined with respect to the product metric on X) and let B∆

ε (σ) denote
the open ball of radius ε centered at σ ∈ ∆(X) (defined with respect to the
product Prokhorov metric on ∆(X)).

Let M+(Xi) denote the set of all regular measures defined on the Borel
sets in Xi. A measure µi ∈ M+(Xi) is strictly positive if µi(U) > 0 for
every nonempty open set U in Xi. Let M++(Xi) denote the set of all strictly

positive measures in M+(Xi), let ∆̂(Xi) denote the set of all strictly positive

probability measures in M+(Xi), and let ∆̂(X) := ×Ni=1∆̂(Xi). Given δ =

(δ1, ..., δN) ∈ (0, 1)N and µ = (µ1, ..., µN) ∈ ∆̂(X), define u
(δ,µ)
i : X → R as

u
(δ,µ)
i (x) := ui

(
(1− δ1)ν1

{x1} + δ1µ1, ..., (1− δN)νN{xN} + δNµN
)
.

Note that u
(δ,µ)
i is bounded and Borel measurable as a consequence of Fubini’s

Theorem. Let G(δ,µ) denote the game defined as

G(δ,µ) := (Xi, u
(δ,µ)
i )Ni=1.

Using the notational convention established above, πX(u(δ,µ)) denotes the

set of pure-strategy Nash equilibria of the game G(δ,µ) = (Xi, u
(δ,µ)
i )Ni=1 and

ξX(u(δ,µ)) denotes the set of mixed-strategy Nash equilibria of G(δ,µ), i.e., the

Nash equilibria of the mixed extension G(δ,µ) = (∆(Xi), u
(δ,µ)
i )Ni=1.
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Definition 2 (Selten [25]). A strategy profile σ ∈ ξ(u) is a trembling-hand
perfect equilibrium in G = (Xi, u)Ni=1 if there exist sequences (δn), (µn),

and (σn) such that (0, 1)N 3 δn → 0, µn ∈ ∆̂(X), σn → σ, and σn ∈
ξX(u(δn,µn)) for each n.

Definition 3 (Okada [20]). A strategy profile σ ∈ ξX(u) is a strictly per-
fect equilibrium in G = (Xi, u)Ni=1 if for all sequences (δn) and (µn) such

that (0, 1)N 3 δn → 0 and µn ∈ ∆̂(X), there exists a sequence (σn) satisfying
σn ∈ ξX(u(δn,µn)) for each n and σn → σ.

Every strictly perfect equilibrium is a trembling-hand perfect equilib-
rium. For alternative, equivalent definitions of trembling hand perfection,
the reader is referred to Carbonell-Nicolau [9].

Throughout the paper, we will not generally distinguish between the pro-
file (x1, .., xN) ∈ X and the corresponding profile (ν1

{x1}, .., ν
N
{xN}) ∈ ∆(X).

Consequently, we will refer to (x1, .., xN) ∈ X as a trembling-hand perfect
or strictly perfect equilibrium when we mean that the corresponding profile
(ν1
{x1}, .., ν

N
{xN}) is a trembling-hand perfect or strictly perfect equilibrium.

3 Perfect equilibrium

We begin with two results that are essential for the proof of Theorem 1.
Their proofs are relegated to Section 7. Lemma 1 asserts that the perturbed
game G(δ,µ) is an upper semicontinuous potential game if the original game
G is an upper semicontinuous potential game, and that an upper semicon-
tinuous potential for G(δ,µ) can be constructed in a natural way from an
upper semicontinuous potential for G. Lemma 2 states that the optimizer
correspondence for upper semicontinuous functions exhibits continuity with
respect to uniform perturbations of the objective function.

Lemma 1. Suppose that G = (Xi, ui)
N
i=1 is an upper semicontinuous poten-

tial game with upper semicontinuous potential P and suppose that (δ, µ) ∈
(0, 1)N × ∆̂(X). For each x = (x1, .., xN) ∈ X, define qxii ∈ ∆(Xi) as

qxii := (1− δi)νi{xi} + δiµi.

Then P (δ,µ) : X → R defined as

P (δ,µ)(x1, ..., xN) :=

∫
X

Pdqx11 · · · dq
xN
N
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is an upper semicontinuous potential for G(δ,µ). Therefore, G(δ,µ) has a pure-
strategy Nash equilibrium, i.e., πX(u(δ,µ)) 6= ∅.

Lemma 2. Suppose that S is a metric space and suppose that (fn) is a
uniformly convergent sequence of upper semicontinuous real-valued functions
on S with uniform limit f . If xn ∈ arg maxx∈X f

n(x) for each n and xn → x,
then x ∈ arg maxx∈X f(x).

We now state our main result for trembling-hand perfect equilibria.

Theorem 1. Suppose that G = (Xi, ui)
N
i=1 is an upper semicontinuous po-

tential game with upper semicontinuous potential P . Then G possesses a
pure-strategy trembling-hand perfect equilibrium in arg maxx∈X P (x).

Proof. Suppose that P is an upper semicontinuous potential for the game
G = (Xi, ui)

N
i=1. Choose µ ∈ ∆̂(X) and a sequence δn = (δn1 , .., δ

n
N) ∈ (0, 1)N

with δn → 0. Applying Lemma 1, it follows that P (δn,µ) is an upper semi-
continuous potential for G(δn,µ), implying that arg maxx∈X P

(δn,µ)(x) 6= ∅ for
each n. Applying Lemma 5 in Subsection 7.1, we conclude that P is the
uniform limit of the sequence (P (δn,µ)). For each n, choose

xn ∈ arg max
x∈X

P (δn,µ)(x).

Then xn is a pure-strategy equilibrium in G(δn,µ), i.e., ν(xn) ∈ πX(u(δn,µ)).
Since X is compact, there exists a subsequence (xnk) of (xn) and a pure-
strategy profile x ∈ X such that xnk → x. From Lemma 2, we conclude
that

x ∈ arg max
y∈X

P (y),

from which it follows that x is a pure-strategy equilibrium in G, i.e., ν(x)
∈ πX(u). Finally, note that since ν(xnk) ∈ πX(u(δnk ,µ)), δnk → 0 and ν : X →
∆(X) is an embedding (hence continuous), we conclude that ν(xnk)→ ν(x)
implying that x is a pure-strategy trembling-hand perfect equilibrium in G.
�

We conclude this section by noting that one cannot drop upper semicon-
tinuity of the potential in the hypothesis of Theorem 1. In fact, Example 1
below presents a game whose potential has a unique maximizer and whose
set of pure-strategy trembling hand perfect equilibria is empty.
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Assuming that the potential of G is upper semicontinuous ensures that
the corresponding potentials for perturbed games of the form G(δ,µ) are up-
per semicontinuous, and this, in turn, guarantees the existence of a global
maximizer for the potentials of the perturbations. Simply assuming that G
admits a potential that can be maximized will generally not be sufficient for
perturbations of the form G(δ,µ) to have potentials that attain a maximum.
In fact, while the game G in Example 1 (below) does not admit an upper
semicontinuous potential, the game does admit a potential that attains a
maximum in X. Nevertheless, no sequence (G(δn,µn)) of perturbations (with

(0, 1)N 3 δn → 0 and µn ∈ ∆̂(X)) can be obtained such that each G(δn,µn)

admits a potential that can be maximized.

Example 1. For each k ≥ 1, let αk = k+1
k+2

. Consider the game G = (Xi, ui)
2
i=1

where X1 := {1} ∪ {αk : k ≥ 1}, X2 := [0, 1], and u1 := u2 := u, where

u(x1, x2) :=


1 if (x1, x2) = (1, 0),

0 if x1 = 1 and x2 6= 0,

αk if (x1, x2) = (αk, 0),
1
2

if x1 = αk and x2 6= 0,

Note that each Xi is compact in the Euclidean metric topology. Since
u1 = u2, it follows that G is a potential game with potential P = u. From
Lemma 2.7 in Monderer and Shapley [18], it follows that if P̂ is any other

potential for G, then P̂ = P + c = u + c for some constant c. The payoff
function u is not upper semicontinuous since (αn, 1)→ (1, 1) but

lim sup
n→∞

u(αn, 1) = 1
2
> 0 = u(1, 1).

Therefore, G has a potential but no potential for G is upper semicontinuous.
To see that no equilibrium in G is trembling-hand perfect, first observe that
x2 = 0 is a (strictly) dominant strategy for player 2 in G implying that the
pure-strategy profile (x1, x2) = (1, 0) is the unique equilibrium in G. Fur-
thermore, (x1, x2) = (1, 0) is the unique maximizer of any potential function
for G. Next, choose sequences (δn) and (µn) with δn ∈ (0, 1)2 and δn → (0, 0)

and µn ∈ ∆̂(X).
First, we claim that x2 = 0 is also the unique best response (pure or

mixed) of player 2 in the game G(δn,µn). To see this, note first that if x1 = 1
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and 0 < y2 ≤ 1, then u2(x1, y2) = 0 and 1
2
< αk for every k so that

u2((1− δn1 )ν1
{x1} + δn1µ

n
1 , 0)

= (1− δn1 )u2(1, 0) + δn1u2(µn1 , 0)

= (1− δn1 ) + δn1

[∑
k

u2(αk, 0)µn1 (αk) + u2(1, 0)µn1 (1)

]

= (1− δn1 ) + δn1

[∑
k

αkµn1 (αk) + µn1 (1)

]

> 0 + δn1

[∑
k

1
2
µn1 (αk) + 0

]

= (1− δn1 )u2(1, y2) + δn1

[∑
k

u2(αk, y2)µn1 (αk) + u2(1, y2)µn1 (1)

]
= u2((1− δn1 )ν1

{x1} + δn1µ
n
1 , y2).

If, on the other hand, x1 = αm for some m and 0 < y2 ≤ 1, then u2(x1, y2) =
1
2
< αk for every k so that

u2((1− δn1 )ν1
{x1} + δn1µ

n
1 , 0)

= (1− δn1 )u2(αm, 0) + δn1u2(µn1 , 0)

= (1− δn1 )αm + δn1

[∑
k

u2(αk, 0)µn1 (αk) + u2(1, 0)µn1 (1)

]

= (1− δn1 )αm + δn1

[∑
k

αkµn1 (αk) + µn1 (1)

]

> (1− δn1 )1
2

+ δn1

[∑
k

1
2
µn1 (αk) + 0

]

= (1− δn1 )u2(αk, y2) + δn1

[∑
k

u2(αk, y2)µn1 (αk) + u2(1, y2)µn1 (1)

]
= u2((1− δn1 )ν1

{x1} + δn1µ
n
1 , y2).

From these observations, it follows that x2 = 0 is the unique best response
of player 2 in the game G(δn,µn). To complete the argument, we show that
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player 1 has no best response (pure or mixed) to x2 = 0 in the game G(δn,µn),
implying that the game G(δn,µn) does not have an equilibrium. First, note
that

u1(αm, µn2 ) =

∫
{0}
u1(αm, y2)dµn2 +

∫
(0,1]

u1(αm, y2)dµn2

= u1(αm, 0)µn2 ({0}) +

∫
(0,1]

1
2
dµn2

= αmµn2 ({0}) + 1
2
µn2 ((0, 1]).

Therefore,
u1(αm, µn2 ) ≤ u1(αm+1, µn2 )

for each m, implying that

u1((1− δn1 )ν1
{αm} + δn1µ

n
1 , (1− δn2 )ν2

{0} + δn2µ
n
2 )

= (1− δn1 )u1(αm, (1− δn2 )ν2
{0} + δn2µ

n
2 ) + δn1u1(µn1 , (1− δn2 )ν2

{0} + δn2µ
n
2 )

= (1− δn1 ) [(1− δn2 )u1(αm, 0) + δn2u1(αm, µn2 )] + δn1u1(µn1 , (1− δn2 )ν2
{0} + δn2µ

n
2 )

= (1− δn1 ) [(1− δn2 )αm + δn2u1(αm, µn2 )] + δn1u1(µn1 , (1− δn2 )ν2
{0} + δn2µ

n
2 )

< (1− δn1 )
[
(1− δn2 )αm+1 + δn2u1(αm+1, µn2 )

]
+ δn1u1(µn1 , (1− δn2 )ν2

{0} + δn2µ
n
2 )

= (1− δn1 )
[
(1− δn2 )u1(αm+1, 0) + δn2u1(αm+1, µn2 )

]
+ δn1u1(µn1 , (1− δn2 )ν2

{0} + δn2µ
n
2 )

= u1((1− δn1 )ν1
{αm+1} + δn1µ

n
1 , (1− δn2 )ν2

{0} + δn2µ
n
2 ).

Therefore, u
(δn,µn)
1 (αm, 0) < u

(δn,µn)
1 (αm+1, 0), implying that there does not

exist an m such that αm is best response to x2 = 0 in G(δn,µn). Next, observe
that

u1(1, µn2 ) =

∫
{0}
u1(1, y2)dµn2 +

∫
(0,1]

u1(1, y2)dµn2 = u1(1, 0)µn2 ({0}) = µn2 ({0}).

Furthermore, (0, 1] is open in X2 and µn2 ∈ ∆̂(X2), implying that µn2 ((0, 1]) >
0. Since µn2 ((0, 1]) > 0 and αm → 1, there exists an m̂ such that

(1− δn2 )(1) + δn2µ
n
2 ({0}) < (1− δn2 )αm̂ + δn2α

m̂µn2 ({0}) + δn2
1
2
µn2 ((0, 1]).

Rearranging this expression we obtain

(1− δn2 )(1) + δn2µ
n
2 ({0}) < (1− δn2 )αm̂ + δn2

[
αm̂µn2 ({0}) + 1

2
µn2 ((0, 1])

]
,
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and this implies that

u1(1, (1− δn2 )ν2
{0} + δn1µ

n
2 ) = (1− δn2 )u1(1, 0) + δn2u1(1, µn2 )

= (1− δn2 )(1) + δn2µ
n
2 ({0})

< (1− δn2 )αm̂ + δn2
[
αm̂µn2 ({0}) + 1

2
µn2 ((0, 1])

]
= (1− δn2 )αm̂ + δn2

[
αm̂µn2 ({0}) + 1

2
µn2 ((0, 1])

]
= (1− δn2 )u1(αm̂, 0) + δn2u1(αm̂, µn2 )

= u1(αm̂, (1− δn2 )ν2
{0} + δn1µ

n
2 ).

Therefore,

u
(δn,µn)
1 (1, 0) = δn1u1(1, (1− δn2 )ν2

{0} + δn1µ
n
2 ) + (1− δn)u1(µn1 , (1− δn2 )ν2

{0} + δn1µ
n
2 )

< δn1u1(αm̂, (1− δn2 )ν2
{0} + δn1µ

n
2 ) + (1− δn)u1(µn1 , (1− δn2 )ν2

{0} + δn1µ
n
2 )

= u
(δn,µn)
1 (αm̂, 0),

implying that x1 = 1 is not best response to x2 = 0 in G(δn,µn). This proves
that the game G(δn,µn) has no Nash equilibrium and we conclude that G has
no trembling-hand perfect equilibrium.

4 Stable sets of equilibria

If G = (Xi, ui)
N
i=1 is a potential game with potential P , then

arg max
x∈X

P (x) ⊆ πX(u),

i.e., every maximizer of P is a pure-strategy Nash equilibrium in G. There-
fore, arg maxx∈X P (x) defines a refinement of the set of equilibria. We
have shown that arg maxx∈X P (x) contains a pure-strategy trembling-hand
perfect equilibrium and it is our goal to provide a relationship between
arg maxx∈X P (x) and strategically stable sets.

Definition 4 (Kohlberg and Mertens [17]). Suppose that G = (Xi, ui)
N
i=1

is a game. A subset E ⊆ ξX(u) is KM prestable if E is closed and the
following condition is satisfied: for every open set U containing E, there
exists a κ > 0 such that, for every δ = (δ1, .., δN) with 0 < δi < κ and for

every µ = (µ1, .., µN) with µi ∈ ∆̂(Xi) for each i,

ξX(u(δ,µ)) ∩ U 6= ∅.
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A subset E ⊆ ξX(u) is a KM stable set if E is a minimal (with respect to
set inclusion) KM prestable set.

Remark 1. As a consequence of Lemma 3 in Section 7, an equilibrium
σ ∈ ξ(u) is strictly perfect if and only if the set E = {σ} is a KM stable set.

In the next result, we show that the set of maximizers of the potential
contains a KM stable set.

Theorem 2. Suppose that G = (Xi, ui)
N
i=1 is an upper semicontinuous po-

tential game with upper semicontinuous potential P . Then

A :=

{
(ν1
{x1}, .., ν

N
{xN}) ∈ ∆(X) : (x1, .., xN) ∈ arg max

y∈X
P (y)

}
contains a KM stable set for G.

Proof. For each (δ, µ) ∈ (0, 1)N × ∆̂(X), let G(δ,µ) be the game defined in
Section 2.2 as

G(δ,µ) = (Xi, u
(δ,µ)
i )Ni=1,

where u
(δ,µ)
i : X → R is given by

u
(δ,µ)
i (x) := ui

(
(1− δ1)ν1

{x1} + δ1µ1, ..., (1− δN)νN{xN} + δNµN
)
.

Let A be defined as in the statement of the theorem and let

A(δ,µ) :=

{
(ν1
{x1}, .., ν

N
{xN}) ∈ ∆(X) : (x1, .., xN) ∈ arg max

y∈X
P (δ,µ)(y)

}
.

To show that A is KM prestable, first note that arg maxy∈X P (y) is closed
(since P is upper semicontinuous) in X, implying that arg maxy∈X P (y)
is compact in X. Since each νi : Xi → ∆(Xi) is continuous (in fact an
embedding, see Theorem 15.8 in Aliprantis and Border [1]) it follows that
ν : X → ∆(X) is continuous. Therefore, A is compact in ∆(X) hence closed
in ∆(X) since ∆(X) is a metric space. To complete the proof that A is KM
prestable, note that A(δ,µ) ⊆ πX(u(δ,µ)) ⊆ ξX(u(δ,µ)) so it suffices to prove
that, for every open set U containing A, there exists a κ > 0 such that the
following condition holds: for every (δ1, .., δN) with 0 < δi < κ for each i and

for every (µ1, .., µN) with µi ∈ ∆̂(Xi) for each i,

A(δ,µ) ∩ U 6= ∅.
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To see this, suppose not. Then there exists an open set U containing A
and, for each n, there exist numbers 0 < δni <

1
n

and probability measures

µni ∈ ∆̂(Xi) such that A(δn,µn) ∩ U = ∅. Since P is the uniform limit of the
sequence (P (δn,µn)) (apply Lemma 5 in Subsection 7.1) and X is compact,
we can apply the same argument as that used in the proof of Theorem 1 and
conclude that there exists a subsequence (P (δnk ,µnk )) and a sequence xk ∈
arg maxx∈X P

(δnk ,µnk )(x) such that ν(xk) → ν(x) and x ∈ arg maxy∈X P (y).
This contradiction establishes the claim and we conclude that A is KM
prestable.

To complete the proof, we show that A contains a minimal KM prestable
set by applying Zorn’s Lemma in a standard way. Let F be defined as the
collection of sets E of Nash equilibria of G satisfying (i) E ⊆ A and (ii) E
is KM prestable in G. Next, suppose that F is ordered by set inclusion and
suppose that C is a totally ordered subcollection of F . The collection C has
the finite intersection property. Therefore, S := ∩{E :E ∈ C} is compact
and nonempty since each member of C is closed and A is compact. To show
that S is KM prestable, suppose that U is open and S ⊆ U. Then there exist
E ′ ∈ C such that E ′ ⊆ U. Otherwise, {E\U :E ∈ C} is a collection of closed
subsets of A satisfying the finite intersection property. This implies that
S\U = ∩{E\U : E ∈ C} 6= ∅, an impossibility. Since E ′ is KM prestable,
it follows that S is KM prestable. The existence of a minimal KM prestable
set in G contained in A now follows from Zorn’s Lemma. �

While arg maxx∈X P (x) contains a KM stable set, the next example shows
that arg maxx∈X P (x) itself need not be KM stable. This game is (trivially)
continuous and also demonstrates that a continuous potential game need not
have a strictly perfect equilibrium. In addition, the unique stable set of this
game is a proper subset of the set of trembling-hand perfect equilibria, and
the set of pure-strategy trembling-hand perfect equilibria is a proper subset
of the set of maximizers of the potential.

Example 2. Consider the finite two-player game G defined as follows.

L C R
T 1, 1 1, 1 0, 0
B 1, 1 0, 0 1, 1

The game G is a potential game and the value of the potential P at each
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strategy pair is indicated in the table below.

L C R
T 1 1 0
B 1 0 1

In this example

arg max
x∈X

P (x) = {(T, L), (T,C), (B,L), (B,R)}.

The set of trembling-hand perfect equilibria consists of strategy pairs in which
player 2 chooses L and player 1 randomizes arbitrarily over T and B. How-
ever, the unique KM stable set for G is {(T, L), (B,L)}, which coincides with
the set of pure-strategy trembling-hand perfect equilibria. Finally, we note
that G has no strictly perfect equilibria.

To complete the discussion of strategic stability, we show that a strate-
gically stable set contained in arg maxx∈X P (x) consists of trembling-hand
perfect pure-strategy equilibria.

Theorem 3. Suppose that G = (Xi, ui)
N
i=1 is a game with upper semicontin-

uous potential P . If E ⊆ arg maxx∈X P (x) and if

S :=
{

(ν1
{x1}, .., ν

N
{xN}) ∈ ∆(X) : (x1, .., xN) ∈ E

}
is a KM stable set, then each element of E is a pure-strategy trembling-hand
perfect equilibrium.

Proof. Let S be as defined in the statement of the Theorem and suppose
that S is KM stable. If |E| = 1, then the one member of S is a strictly
perfect equilibrium, hence a trembling-hand perfect equilibrium. So suppose
that |E| > 1. Choose ε > 0 so that S\B∆

ε (ν(x)) 6= ∅. Since S is KM stable
and S\B∆

ε (ν(x)) is closed and nonempty, it follows from minimality that
S\B∆

ε (ν(x)) is not KM prestable. Therefore, there exists an open set U ⊆
∆(X) containing S\B∆

ε (ν(x)) such that, for every k, there exist 0 < δki <
1
k

and µk ∈ ∆̂(X) such that ξX(u(δk,µk)) ∩ U = ∅. Next, note that S ⊆ U ∪
B∆
ε (ν(x)) and U ∪ B∆

ε (ν(x)) is open. Since S is prestable, it follows that
ξX(u(δk,µk)) ∩ [U ∪ B∆

ε (ν(x))] 6= ∅ for sufficiently large k. In particular,
ξX(u(δk,µk))∩B∆

ε (ν(x)) 6= ∅ for sufficiently large k and we conclude that x is
trembling-hand perfect. �
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Remark 2. Results on the existence of trembling-hand perfect equilibria
and stable sets in general discontinuous infinite strategic-form games have
been furnished elsewhere, and the reader may wonder whether Theorem 1
and Theorem 2 follow from extant results. Existence results regarding the
existence of (pure and mixed) trembling-hand perfect equilibria and stable
sets in strategic-form games (e.g., Carbonell-Nicolau [7, 8, 9, 10]) require con-
ditions stronger than the notion of better-reply security introduced in Reny
[22]. As the following example demonstrates, there are upper semicontinu-
ous potential games that fail even better-reply security, implying that upper
semicontinuous potential games cannot be handled by known results.

The following definitions are needed for the formal definition of better-
reply security. The graph of a metric game G = (Xi, ui)

N
i=1 is the set

ΓG :=
{

(x, α) ∈ X × RN : ui(x) = αi, for all i ∈ {1, ..., N}
}
.

The closure of ΓG is denoted by ΓG. A metric game G = (Xi, ui)
N
i=1 is better-

reply secure if for every (x, α) ∈ ΓG such that x is not a Nash equilibrium of
G, there exist i, yi ∈ Xi, β ∈ R, and a neighborhood Vx−i

of x−i such that

ui(yi, y−i) ≥ β > αi, for all y−i ∈ Vx−i
.

Consider the two-player, upper semicontinuous potential game

G = ([0, 1], [0, 1], u1, u2),

where

u1(x1, x2) := u2(x1, x2) := P (x1, x2), for all (x1, x2) ∈ [0, 1]2,

and where P : [0, 1]2 → R is defined by

P (x1, x2) :=


1 if x1 = 1 and x2 ∈ (0, 1],

2 if (x1, x2) = (1, 0),

0 otherwise.

Clearly, ((1, 1), (1, 1)) ∈ ΓG and (1, 1) is not a Nash equilibrium of G. More-
over, for each i and each yi ∈ [0, 1], and for every neighborhood V of 1, there
exists y−i ∈ V such that ui(yi, y−i) ≤ 1, implying that G is not better-reply
secure.
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The game G is quasiconcave (i.e., the map xi 7→ ui(xi, x−i) defined on Xi

is quasiconcave for every x−i ∈ X−i). Since the results on the existence of
pure-strategy trembling-hand perfect equilibria proved in Carbonell-Nicolau
[7] require conditions stronger than better-reply security and quasiconcavity,
the current example also illustrates that our results do not follow from known
results even if one confines attention to quasiconcave potential games.

5 Results for generic games

Given the geometry of maximization, it is reasonable to conjecture that
“most” upper semicontinuous functions have a unique maximizer. Therefore,
it is also reasonable to conjecture that the potential function for “most” up-
per semicontinuous potential games will have a unique maximizer. In this
final section of the paper, we examine this conjecture and a related genericity
result in the case of finite and general potential games.

Recall that each Xi is a compact metric space. Define P(X) to be the
set of payoff profiles u = (u1, .., uN) such that (Xi, ui)

N
i=1 is an upper semi-

continuous potential game. We view P(X) as a subset of the metric space
(B(X)N , d), as defined in Section 2. Suppose that u = (u1, .., uN) ∈ P(X),
let P be a potential for u and define

ϕX(u) := arg max
x∈X

P (x).

This definition is unambiguous since two potentials for u give rise to the
same set of maximizers. Recalling that πX(u) (resp. ξX(u)) denotes the set
of pure-strategy Nash equilibria (resp. mixed-strategy Nash equilibria) for u,
it is clear that ϕX(u) ⊆ πX(u) ⊆ ξX(u).

To begin, let

Y (X) := {u ∈ P(X) : |ϕX(u)| = 1} ,

i.e., each u ∈ Y (X) defines an upper semicontinuous potential game G for
which any potential has a unique maximizer (which must be the same for
all potentials representing a given game). The next result provides a sense
in which a potential for “most” upper semicontinuous potential games has
a unique maximizer where “most” is translated as “dense.” The proof of
Proposition 1 is given in Section 7.
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Proposition 1. The set Y (X) is dense in P(X). If u ∈ Y (X), then
|ϕX(u)| = 1, the profile x∗ ∈ ϕX(u) is a strictly perfect equilibrium, and {x∗}
is a singleton stable set.

A stronger result would be obtained if we could also show that Y (X)
is open in P(X). However, the following example demonstrates that this
stronger result is not generally true.

Example 3. Let X1 := [−1, 1] =: X2 and

u1(x1, x2) = u2(x1, x2) = P (x1, x2) := −(x2
1 + x2

2).

Then x = 0 is the unique maximizer of the upper semicontinuous potential
P . Now let un1 (x1, x2) = un2 (x1, x2) = P n(x1, x2), where

P n(x1, x2) :=

{
0 if − 1

n
≤ xi ≤ 1

n
for each i ∈ {1, 2},

−(x2
1 + x2

2) otherwise.

Note that for each n, P n is an upper semicontinuous potential with infinitely
many maximizers. In addition, |P n(x1, x2)− P (x1, x2)| ≤ 2

n2 for each x ∈ X
implying that (P n) is uniformly convergent with limit P . Therefore, (un) is
uniformly convergent with limit u and consequently, any open set containing
u also contains a v with infinitely many maximizers. This establishes that
Y (X) is not open in P(X).

The strategy sets of Example 3 above are not finite. If each Xi is finite,
then Y (X) is both open and dense. Furthermore, x∗ ∈ Y (X) is a strict
equilibrium in (Xi, ui)

N
i=1, i.e., x∗i is the unique (mixed strategy) best response

to x∗−i. Strictness is arguably the strongest refinement concept for finite
strategic form games. In particular, every strict equilibrium is regular hence
strictly perfect (see Section 2.5, particularly Corollary 2.5.3, in van Damme
[28]). These observations are summarized in the next result.

Proposition 2. Suppose that each Xi is finite. Then Y (X) is open and
dense in P(X). If u ∈ Y (X), then |ϕX(u)| = 1, the profile x∗ ∈ ϕX(u) is a
strict equilibrium hence a strictly perfect equilibrium, and {x∗} is a singleton
stable set.

Since every open dense set is residual, Proposition 2 implies that Y (X)
is dense and residual when each Xi is finite. In the general case, we will
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show that Y (X) can be replaced by a dense residual set Z of payoff profiles
in P(X) with the property that, for each u ∈ Z, every element of ϕX(u) is
strictly perfect hence a singleton stable set. To prove the genericity result
for general compact metric strategy sets, we need the notion of essential
equilibrium.

Definition 5 (Wu and Jiang [29]). Suppose that u ∈ P(X). An equilibrium
σ ∈ ξX(u) is essential if the following condition is satisfied: for every ε > 0
there exists a δ > 0 such that ξX(v) ∩ B∆

ε (σ) 6= ∅ whenever v ∈ P(X) and
d(v, u) < δ.

We note here that every essential equilibrium of an upper semicontinuous
potential game is a strictly perfect equilibrium (see Lemma 7 in Section 7).
To show that all members of ϕX(u) are essential for all u in a “topologi-
cally large” subset of P(X), we exploit the relationship between essentiality
and lower hemicontinuity. In particular, all members of ϕX(u) are essential
equilibria for any u ∈ P(X) at which the correspondence ϕ : P(X) ⇒ X is
lower hemicontinuous. The key result for establishing our genericity theorem
is a classic result of Fort [12] which, informally stated, says that an upper
hemicontinuous correspondence is generically lower hemicontinuous. Fort’s
theorem has been used is a number of papers to establish genericity of essen-
tial equilibria and essential components of equilibria in strategic-form games
(e.g., Zhou et al. [30] and the references cited there, and Carbonell-Nicolau
[6]). As an application of Fort’s Theorem, we obtain the following result
whose proof is relegated to Section 7.

Proposition 3. There exists a dense, residual subset Z ⊆ P(X) such that
ϕX : P(X) ⇒ X is lower hemicontinuous at each u ∈ Z. If u ∈ Z, then each
x ∈ ϕX(u) is an essential equilibrium, hence a strictly perfect equilibrium and
{x} is a singleton stable set.

In this paper, we have studied the robustness of equilibria that are maxi-
mizers of an upper semicontinuous potential with respect to perturbations of
strategy sets (strict perfection) and payoffs (essentiality). When a potential
for a finite game has a unique maximizer, that maximizer is robust in both
of these senses (since the unique maximizer is strictly perfect and strict).
Several other authors have studied potential games with finite action spaces
whose corresponding potentials have unique maximizers and have shown that
this unique maximizer exhibits robustness properties that complement those
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presented in Proposition 2. Ui [27] considers robustness with respect to in-
complete information as defined in Kajii and Morris [15, 16]. Formally, Ui
shows that, if G = (Xi, ui)

N
i=1 is a finite potential game with potential P and

if x∗ is the unique maximizer of P , then x∗ is robust to canonical elabora-
tions. Informally, this means that in each incomplete information game (in
the special class of canonical elaborations) sufficiently close to G, there exists
a Bayes-Nash equilibrium whose outcome assigns nearly all probability mass
to the pure strategy profile x∗. Hofbauer and Sorger [14] consider the class
of finite, two-player symmetric potential games and define a special (contin-
uous) symmetric potential function Q derived from the mixed extension of
these finite games. Hofbauer and Sorger show that if x∗ is the unique max-
imizer of Q, then x∗ defines a symmetric mixed-strategy equilibrium of the
underlying finite game and that x∗ is dynamically robust. In particular, x∗

is approachable along a perfect foresight path.

6 Application

The set of potential maximizers contains a KM stable set (Theorem 2). In
general, KM stable sets contained in the set of potential maximizers need
not coincide with the set of potential maximizers. In this section, we present
an investment game with externalities that admits an upper semicontinuous
potential and has the following property: the set of trembling-hand perfect
equilibria in the set of potential maximizers is a strict subset of the set of
potential maximizers.

There are two agents. Agent i’s endowment is wi > 0. Each agent
can invest in two projects. For each i, let ai (resp. bi) denote agent i’s
investment level in project A (resp. project B). A vector of investments
(a, b) = ((a1, b1), (a2, b2)) generates a payoff of F (a, b) for both agents. Note
that this setting allows for external effects across projects.

The agents simultaneously choose investment levels. Agent i’s invest-
ments (ai, bi) are selected from the set

Xi :=
{

(x, y) ∈ R2
+ : x+ y ≤ wi

}
.

Let X := X1×X2. We assume that F is upper semicontinuous. Unlike conti-
nuity, upper semicontinuity of F is a natural assumption when the projects’
technology exhibits indivisibilities: investment levels above certain thresholds
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suffice to generate significantly higher returns. We consider the following in-
vestment game G := (Xi, ui)

N
i=1 , where for each i, ui : X → R is defined

by
ui((a1, b1), (a2, b2)) := F ((a1, b1), (a2, b2)) + vi(wi − ai − bi),

where vi : R+ → R is strictly increasing.
Define P : X → R by

P ((a1, b1), (a2, b2)) := F ((a1, b1), (a2, b2)) +
2∑
i=1

vi(wi − ai − bi).

It is routine to verify that P is an upper semicontinuous potential for G. By
Theorem 2, therefore, arg maxx∈X P (x) contains a KM stable set.

Monderer and Shapley [18] already pointed out that the set of maximizers
of a potential refines the set of Nash equilibria. The game G may well exhibit
Nash equilibria that do not maximize the potential.

On the other hand, G may have maximizers that are not trembling-hand
perfect. Let τ(u) represent the set of trembling-hand perfect equilibria of G.
We provide an example illustrating that for the game G, one can have

arg max
x∈X

P (x) %
(

arg max
x∈X

P (x)

)
∩ τ(u). (1)

Let w1 = w2 = 1. Let vi(x) :=
√
x for all x ∈ R+ and for each i, and

assume that F takes the following form:

F ((a1, b1), (a2, b2)) :=

{
a1 + a2 + b1 + b2 if a1 + a2 ≥ c,
a1
2

+ a2 + b1 + b2 if a1 + a2 < c,

where c ∈ (0, 1). This technology can be given the following interpretation:
both projects yield the same returns above a certain investment threshold c,
but project A’s returns are lower for investment levels below c.

If c ∈ (3
4
, 1), then the strategy profile(

(3
4
, 0), (3

4
, 0)
)

belongs to arg maxx∈X P (x). In addition, if c ∈ (3
4
, 1), this profile is not

trembling-hand perfect. To see this, choose ε ∈ (0, c − 3
4
) and note that for
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each (a2, b2) ∈ X2, and for every z1 ∈ (3
4
− ε, 3

4
+ ε) and z2 ∈ [0, ε) with

z1 + z2 ≤ 1,

u1((0, z1 + z2), (a2, b2)) ≥ u1((z1, z2), (a2, b2)).

In addition, observe that because 3
4
− ε > 0, there exists β > 0 such that for

each (a2, b2) ∈ X2 with a2 ∈ [0, c − 3
4
− ε), and for every z1 ∈ (3

4
− ε, 3

4
+ ε)

and z2 ∈ [0, ε) with z1 + z2 ≤ 1,

u1((0, z1 + z2), (a2, b2))− u1((z1, z2), (a2, b2)) ≥ β.

This implies that if player 2 “trembles” at (3
4
, 0), player 1 will not choose

a strategy in a neighborhood of (3
4
, 0), implying that

(
(3

4
, 0), (3

4
, 0)
)

is not
trembling-hand perfect.

More precisely, let (δn) be a sequence in (0, 1)2 with δn → 0, and choose a

sequence (µn) with µn ∈ ∆̂(X) for each n. Let (σn) be a sequence satisfying
σn = (σn1 , σ

n
2 ))→ ((3

4
, 0), (3

4
, 0)) and σn ∈ ξX(u(δn,µn)) for each n.

Step 1. Since σn ∈ ξX(u(δn,µn)) for each n, we claim that

u1(z1, (1− δn2 )σn2 + δn2µ
n
2 ) = u1(σn1 , (1− δn2 )σn2 + δn2µ

n
2 ) for each z1 ∈ supp(σn1 ).

This result is well-known when payoffs are continuous. In our upper semi-
continuous case, suppose that z∗1 ∈ supp(σn1 ) but

u1(z∗1 , (1− δn2 )σn2 + δn2µ
n
2 ) ≤ u1(σn1 , (1− δn2 )σn2 + δn2µ

n
2 )− α

for some α > 0. Since z1 7→ u1(z1, (1−δn2 )σn2 +δn2µ
n
2 ) is upper semicontinuous,

there exists an open set U∗ in X1 such that z∗1 ∈ U∗ and

u1(z1, (1− δn2 )σn2 + δn2µ
n
2 ) < u1(z∗1 , (1− δn2 )σn2 + δn2µ

n
2 ) + α

≤ u1(σn1 , (1− δn2 )σn2 + δn2µ
n
2 ), for all z1 ∈ U∗.

This implies that σn1 (U∗) = 0. Therefore, X1\U∗ is a closed set with σn1 (X1\U∗) =
1 implying that z∗1 /∈ supp(σn1 ), a contradiction. This establishes that

u1(z1, (1− δn2 )σn2 + δn2µ
n
2 ) ≥ u1(σn1 , (1− δn2 )σn2 + δn2µ

n
2 ) for all z1 ∈ supp(σn1 ),

and since

u1(z1, (1− δn2 )σn2 + δn2µ
n
2 ) ≤ u1(σn1 , (1− δn2 )σn2 + δn2µ

n
2 ) for all z1 ∈ X1,
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the desired result is obtained.
Step 2. Next, we claim that there exists a subsequence (σnk

1 ) and a se-
quence (zk1 ) such that zk1 → (3

4
, 0) and

zk1 ∈ supp(σnk
1 ), for each k.

To see this, we need the following result from Carbonell-Nicolau and McLean
([11], Lemma 2): Let X be a compact metric space and suppose that (µn)
is a sequence in ∆(X) weakly converging to µ ∈ ∆(X). Then there exists a
subsequence (µnk) and a set S ⊆ X such that supp(µ) ⊆ S and (supp(µnk))
is convergent in the Hausdorff metric topology with limit S. Applying this
result, there exists a subsequence (σnk

1 ) and a set S ⊆ X1 such that (3
4
, 0) ∈ S

and (supp(µnk)) is convergent in the Hausdorff metric topology (see, e.g.,
Beer [4]) with limit S. Defining (the Kuratowski-Painlevé topological limit
inferior of supp(σnk

1 ))

Li supp(σnk
1 ) := {y ∈ X1 : yk → y and yk ∈ supp(σnk

1 ) for each k},

it follows from Corollary 5.1.11 and Theorem 5.2.6 in Beer [4] that Li supp(σnk) =
S. Therefore, (3

4
, 0) ∈ Li supp(σnk) and the claim is proved.

Step 3. Since zk1 → (3
4
, 0), it follows that, for all sufficiently large k, we

can express zk1 as zk1 = (zk11, z
k
12) where zk11 ∈ (3

4
− ε, 3

4
+ ε), zk12 ∈ [0, ε) and

zk11 + zk12 ≤ 1. Defining yk1 := (0, zk11 + zk12) and

C :=
{

(x, y) ∈ R2
+ : x+ y ≤ 1 and x ∈ [0, c− 3

4
− ε)

}
,

we conclude that, since C has a nonempty interior and µn ∈ ∆̂(X) for each
n,

u1(yk1 , (1− δ
nk
2 )σnk

2 + δnk
2 µnk

2 )− u1(zk1 , (1−δ
nk
2 )σnk

2 + δnk
2 µnk

2 )

≥ β [(1− δnk
2 )σnk

2 (C) + δnk
2 µnk

2 (C)]

> 0.

Together with Step 1, this implies that for all large enough k,

u1(yk1 , (1− δ
nk
2 )σnk

2 + δnk
2 µnk

2 ) > u1(zk1 , (1− δ
nk
2 )σnk

2 + δnk
2 µnk

2 )

= u1(σnk
1 , (1− δnk

2 )σnk
2 + δnk

2 µnk
2 ),

contradicting the assumption that σnk ∈ ξX(u(δnk ,µnk )) for each k. Therefore,
((3

4
, 0), (3

4
, 0)) is not trembling-hand perfect.
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Because
(
(3

4
, 0), (3

4
, 0)
)

is not trembling-hand perfect and maximizes the
potential,

arg max
x∈X

P (x) 6=
(

arg max
x∈X

P (x)

)
∩ τ(u).

Consequently, Theorem 1 implies the containment in (1). We note that the
strategy profile

(
(0, 3

4
), (0, 3

4
)
)

belongs to arg maxx∈X P (x) and is trembling-
hand perfect.

7 Appendix

7.1 Preliminary lemmata

First, we record a useful characterization of strict perfection.

Lemma 3. Let G = (Xi, ui)
N
i=1 be a game and let σ ∈ ξX(u) be a strategy

profile. The following are equivalent:

(i) The profile σ is a strictly perfect equilibrium in G.

(ii) For every ε > 0, there exists a κ > 0 such that the following holds: if

0 < δi < κ for each i and if µ ∈ ∆̂(X), then ξ(u(δ,µ)) ∩B∆
ε (σ) 6= ∅.

Lemma 4. If G = (Xi, ui)
N
i=1 is a potential game with potential P : X → R,

then P is bounded and Borel measurable.

Proof. Suppose G = (Xi, ui)
N
i=1 is potential game with potential P : X → R.

Fix x = (x1, .., xn) ∈ X. It is straightforward to verify that P ∗ : X → R
defined as

P ∗(x) := P (x)− P (x)

is also a potential for G. Writing

P ∗(x1, .., xN) =
N∑
i=1

[P (x1, .., xi, xi+1, .., xN)− P (x1, ..xi−1, xi, .., xN)]

=
N∑
i=1

[ui(x1, .., xi, xi+1, .., xN)− ui(x1, ..xi−1, xi, .., xN)] ,

it follows that P ∗ is bounded and measurable since each ui is bounded and
measurable. Consequently, P is bounded and measurable. �

The following lemma is used in the proof of Theorem 1.
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Lemma 5. Suppose that G = (Xi, ui)
N
i=1 is an upper semicontinuous poten-

tial game with upper semicontinuous potential P . For every ε > 0 there exists
a κ ∈ (0, 1) such that the following condition holds: for every (δ1, .., δN) with

0 < δi < κ for each i, and for every (µ1, .., µN) with µi ∈ ∆̂(Xi) for each i,

sup
x∈X
|P (x)− P (δ,µ)(x)| < ε.

Proof. Let N̂ = {1, ..., N}. Applying an induction argument, it follows that

P (δ,µ)(z) =
∑
I⊆N̂

∏
i∈I

(1− δi)
∏
i∈N̂\I

δi

P (zI , µN̂\I)

so that

P (δ,µ)(z) =

∏
i∈N̂

(1− δi)

P (z) +
∑
I⊆N̂
:I 6=N̂

∏
i∈I

(1− δi)
∏
i∈N̂\I

δi

P (zI , µN̂\I).

Let M = supx∈X |P (x)| (P is bounded by Lemma 4 in Section 7), choose
ε > 0 and choose κ ∈ (0, 1) so that[[

1− (1− κ)N
]

+ κ(2N − 1)
]
M < ε.

If I 6= N̂ , then there exists a j ∈ N̂\I such that

∏
i∈I

(1− δi)
∏
i∈N̂\I

δi = δj

∏
i∈I

(1− δi)
∏

i∈N̂\(I∪{j})

δi

 ,
implying (since 0 < δi < κ < 1 for each i) that

∏
i∈I

(1− δi)
∏
i∈N̂\I

δi = δj

∏
i∈I

(1− δi)
∏

i∈N̂\(I∪{j})

δi

 < δj < κ.
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Then for each z ∈ X, it follows that

|P (z)− P (δ,µ)(z)|

≤

1−
∏
i∈N̂

(1− δi)

 |P (z)|+
∑
I⊆N̂
:I 6=N̂

∏
i∈I

(1− δi)
∏
i∈N̂\I

δi

 |P (zI , µN̂\I)|

≤


1−

∏
i∈N̂

(1− δi)

+
∑
I⊆N̂
:I 6=N̂

∏
i∈I

(1− δi)
∏
i∈N̂\I

δi


M

≤
[[

1− (1− κ)N
]

+ κ(2N − 1)
]
M < ε,

as desired. �

7.2 Proof of Lemma 1

Lemma 1. Suppose that G = (Xi, ui)
N
i=1 is an upper semicontinuous poten-

tial game with upper semicontinuous potential P and suppose that (δ, µ) ∈
(0, 1)N × ∆̂(X). For each x = (x1, .., xN) ∈ X, define qxii ∈ ∆(Xi) as

qxii := (1− δi)νi{xi} + δiµi.

Then P (δ,µ) : X → R defined as

P (δ,µ)(x1, ..., xN) :=

∫
X

Pdqx11 · · · dq
xN
N

is an upper semicontinuous potential for G(δ,µ). Therefore, G(δ,µ) has a pure-
strategy Nash equilibrium, i.e., πX(u(δ,µ)) 6= ∅.

Proof. Suppose that G = (Xi, ui)
N
i=1 is an upper semicontinuous poten-

tial game with upper semicontinuous potential P and suppose that (δ, µ) ∈
(0, 1)N × ∆̂(X). Define qxii and P : X → R as in the statement of the lemma
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and let q
x−i

−i = ⊗j 6=iq
xj
j . Given i, z−i ∈ X−i, and {xi, yi} ⊆ Xi, we have

ui((1− δi)νi{xi} + δiµi, z−i)− ui((1− δi)νi{yi} + δiµi, z−i)

= (1− δi)ui(xi, z−i) + δiui(µi, z−i)− (1− δi)ui(yi, z−i)− δiui(µi, z−i)
= (1− δi)(ui(xi, z−i)− ui(yi, z−i))
= (1− δi)(P (xi, z−i)− P (yi, z−i))

= (1− δi)(P (xi, z−i)− P (yi, z−i)) + δi

(∫
Xi

P (·, z−i)dµi −
∫
Xi

P (·, z−i)dµi
)

=

[
(1− δi)P (xi, z−i) + δi

∫
Xi

P (·, z−i)dµi
]

−
[
(1− δi)P (yi, z−i) + δi

∫
Xi

P (·, z−i)dµi
]

= P ((1− δi)νi{xi} + δiµi, z−i)− P ((1− δi)νi{yi} + δiµi, z−i).

Consequently,

u
(δ,µ)
i (xi, x−i)−u(δ,µ)

i (yi, x−i)

=

∫
X−i

[ui((1− δi)νi{xi} + δiµi, ·)− ui((1− δi)νi{yi} + δiµi, ·)]dqx−i

−i

=

∫
X−i

[
P ((1− δi)νi{xi} + δiµi, ·)− P ((1− δi)νi{yi} + δiµi, ·)

]
dq

x−i

−i

= P (δ,µ)(xi, x−i)− P (δ,µ)(yi, x−i),

implying that P (δ,µ) is a potential for G(δ,µ).
To see that P (δ,µ) is upper semicontinuous, suppose that

xn = (xn1 , .., x
n
N)→ (x1, .., xN) = x.

Then q
xni
i → qxii in the topology of weak convergence on ∆(Xi). Conse-

quently, (q
xn1
1 , .., q

xnN
N ) → (qx11 , .., q

xN
N ) in the product topology on ∆(X). Ap-

plying Theorem 1 in Glycopantis and Muir [13] or Theorem 3.2 in Billingsley
[5] for example, we conclude that

q
xn1
1 ⊗ · · · ⊗ q

xnN
N → qx11 ⊗ · · · ⊗ q

xN
N ,
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so applying Fubini’s Theorem and Theorem 15.5 in Aliprantis and Border
[1], we obtain

lim sup
n→∞

P (δ,µ)(xn1 , ..., x
n
N) = lim sup

n→∞

∫
X

Pdq
xn1
1 · · · dq

xnN
N

= lim sup
n→∞

∫
X

Pd(q
xn1
1 ⊗ · · · ⊗ q

xnN
N )

≤
∫
X

Pd(qx11 ⊗ · · · ⊗ q
xN
N )

=

∫
X

Pdqx11 · · · dq
xN
N

= P (δ,µ)(x1, ..., xN).

Since P (δ,µ) is an upper semicontinuous potential for G(δ,µ), P
(δ,µ) attains

a maximum at a pure-strategy Nash equilibrium of G(δ,µ). �

7.3 Proof of Lemma 2

We require a few basic results from variational analysis that we record here.

Definition 6. Suppose that S is a metric space. A sequence (fn) of real-
valued functions on S is hypoconvergent with hypo-limit f if for each x ∈ S,
the following conditions hold:

(i) There exists a sequence (zn) such that zn → x and

f(x) = lim
n→∞

fn(zn).

(ii) For every sequence (xn) such that xn → x, we have

lim sup
n→∞

fn(xn) ≤ f(x).

The next lemma is proved for S ⊆ Rk in Rockafellar and Wets [23] (Propo-
sition 7.15) and we include a simple direct proof when S is a metric space
for the sake of completeness.

Lemma 6. Suppose that S is a metric space and suppose that (fn) is a
uniformly convergent sequence of upper semicontinuous real-valued functions
on S with uniform limit f . Then f is upper semicontinuous and (fn) is
hypoconvergent with hypo-limit f .
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Proof. Choose x ∈ S and suppose that (xn) is convergent in S with limit x
and choose ε > 0. Uniform convergence implies that there exists an m such
that

|fm(x)− f(x)| < ε
2

for all x ∈ X. Since fm is upper semicontinuous, there exists an n̂ such that

fm(xn) < f(x) + ε
2

whenever n > n̂. Therefore, n > n̂ implies that

f(xn)− f(x) = [f(xn)− fm(xn)] + [fm(xn)− f(x)] < ε

and we conclude that f is upper semicontinuous. Next, note that uniform
convergence implies that, for each ε > 0, there exists an n∗ such that

|fn(xn)− f(xn)| < ε

for all n > n∗. Therefore,

fn(xn) < f(xn) + ε

whenever n > n∗. The upper semicontinuity of f implies that

lim sup
n→∞

fn(xn) ≤ lim sup
n→∞

f(xn) + ε ≤ f(x) + ε

and it follows that
lim sup
n→∞

fn(xn) ≤ f(x).

Therefore, condition (ii) in the definition of hypoconvergence is satisfied. To
show that condition (i) is satisfied, define zn = x for all n. Noting that
uniform convergence implies pointwise convergence, it follows that

f(x) = lim fn(x) = lim fn(zn),

proving that (fn) is hypoconvergent with hypo-limit f . �

Lemma 2. Suppose that S is a metric space and suppose that (fn) is a
uniformly convergent sequence of upper semicontinuous real-valued functions
on S with uniform limit f . If xn ∈ arg maxx∈X f

n(x) for each n and xn → x,
then x ∈ arg maxx∈X f(x).

Proof. Suppose that (fn) is a uniformly convergent sequence of upper semi-
continuous real-valued functions on S with uniform limit f and suppose that
xn ∈ arg maxx∈X f

n(x) for each n and xn → x. Applying Lemma 6, it follows
that (fn) is hypoconvergent with hypo-limit f . Applying Theorems 5.3.5 and
5.3.6 in Beer [4], we conclude that x ∈ arg maxx∈X f(x). �
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7.4 Proof of Propositions 1, 2, and 3

We first state and prove a number of preliminary results.

Lemma 7. Suppose that u ∈ P(X). If σ ∈ ξX(u) is an essential equilibrium
in G = (Xi, ui)

N
i=1, then σ is a strictly perfect equilibrium.

Proof. Suppose that σ ∈ ξX(u) is an essential equilibrium in G = (Xi, ui)
N
i=1.

Fix ε > 0. Then there exists a θ > 0 such that ξX(v) ∩B∆
ε (σ) 6= ∅ whenever

v ∈ P(X) and d(v, u) < θ. Next, we can duplicate the proof of Lemma

5 (with ui replacing P and u
(δ,µ)
i replacing P (δ,µ)) and conclude that there

exists a κ > 0 such that the following condition holds for each player i: for
every (δ1, .., δN) with 0 < δi < κ for each i, and for every (µ1, .., µN) with

µi ∈ ∆̂(Xi) for each i,

sup
x∈X
|ui(x)− u(δ,µ)

i (x)| < θ
n
.

Since u ∈ P(X) admits at least one upper semicontinuous potential P , it
follows that u(δ,µ) ∈ P(X) since P (δ,µ) is an upper semicontinuous potential
for u(δ,µ) as a consequence of Lemma 1. Consequently, u(δ,µ) ∈ P(X) and

d(u(δ,µ), u) < θ whenever µ ∈ ∆̂(X) and 0 < δi < κ for each i. Therefore,
ξX(u(δ,µ)) ∩ B∆

ε (σ) 6= ∅, and we deduce from Lemma 3 that σ is strictly
perfect.

Proposition 1. The set Y (X) is dense in P(X). If u ∈ Y (X), then
|ϕX(u)| = 1, the profile x∗ ∈ ϕX(u) is a strictly perfect equilibrium, and {x∗}
is a singleton stable set.

Proof. Choose u ∈ P(X), a potential P for u, and x∗ ∈ ϕX(u). Next, define
for each n a function P n : X → R as follows:

P n(x) :=

{
P (x) if x 6= x∗,

P (x∗) + 1
n

if x = x∗.

In addition, define for each i and n, a function uni : X → R as follows:

uni (x) :=

{
ui(x) if x 6= x∗,

ui(x
∗) + 1

n
if x = x∗.
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We claim that P n is a potential for (Xi, u
n
i )Ni=1. To see this, choose i, x−i ∈

X−i and {x′i, x′′i } ⊆ Xi. If x−i 6= x∗−i, then

uni (x′i, x−i)− uni (x′′i , x−i) = ui(x
′
i, x−i)− ui(x′′i , x−i)

= P (x′i, x−i)− P (x′′i , x−i)

= P n(x′i, x−i)− P n(x′′i , x−i).

If x−i = x∗−i, x
′
i = x∗i and x′′i 6= x∗i , then

uni (x′i, x−i)− uni (x′′i , x−i) = ui(x
∗
i , x
∗
−i) + 1

n
− ui(x′′i , x∗−i)

= P (x∗i , x
∗
−i) + 1

n
− P (x′′i , x

∗
−i)

= P n(x∗i , x
∗
−i)− P n(x′′i , x

∗
−i)

= P n(x′i, x−i)− P n(x′′i , x−i).

If x−i = x∗−i and x′i = x∗i = x′′i , then

uni (x′i, x−i)− uni (x′′i , x−i) = 0 = P n(x′i, x−i)− P n(x′′i , x−i).

Furthermore, P n is upper semicontinuous, and |ϕX(un)| = 1 since x∗ is the
unique maximizer of P n. Since un ∈ Y (X) for each n and (un) converges
uniformly with limit u, we conclude that Y (X) is dense in P(X). �

Let USC(X) denote the space of upper semicontinuous real-valued func-
tions on X = X1×· · ·×XN and recall that P(X) is the set of payoff profiles
u = (u1, .., uN) such that (Xi, ui)

N
i=1 is an upper semicontinuous potential

game. Since a given potential game can be identified with an equivalence
class of potentials that only differ by a constant, it will be convenient to
specify a particular normalized potential with each u ∈ P(X). Fix x ∈ X.
For each u ∈ P(X), let F (u) ∈ USC(X) denote the potential for u defined
as

F (u)(x1, .., xN) =
N∑
i=1

[ui(x1, .., xi, xi+1, .., xN)− ui(x1, ..xi−1, xi, .., xN)] .

Consequently,
ϕX(u) = arg max

x∈X
F (u)(x).

We will suppress the dependence of F on x to lighten the notation.
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Lemma 8. The mapping F : P(X) → USC(X) is uniformly continuous.

Proof. Choose ε > 0, choose 0 < δ < ε
2

and suppose that {u, v} ⊆ P(X) and
d(v, u) < δ. Then for each (x1, .., xN) ∈ X, we have

|F (u)(x1, .., xN)− F (v)(x1, .., xN)|

≤
N∑
i=1

|ui(x1, .., xi, xi+1, .., xN)− vi(x1,..,xi, xi+1, .., xN)|

+
N∑
i=1

|vi(x1, .., xi−1, xi, .., xN)− ui(x1,..,xi−1, xi, .., xN)|

≤ 2δ

< ε,

so F is uniformly continuous. �

Lemma 9 (Fort [12]). Suppose that S is a topological space and Y is a metric
space. If the correspondence ψ : S ⇒ Y is nonempty-valued, compact-valued
and upper hemicontinuous, then ψ is lower hemicontinuous at all all points
in a residual subset of S.

Proposition 2. Suppose that each Xi is finite. Then Y (X) is open and
dense in P(X). If u ∈ Y (X), then |ϕX(u)| = 1, the profile x∗ ∈ ϕX(u) is a
strict equilibrium hence a strictly perfect equilibrium, and {x∗} is a singleton
stable set.

Proof. Given Proposition 1, we must show that Y (X) is open in P(X).
Choose u ∈ P(X), suppose that {x∗} = ϕX(u). Since X is finite and x∗ is
the unique maximizer of the potential function F (u), there exists ε > 0 such
that F (u)(x∗)−F (u)(x) ≥ ε for all x 6= x∗. Applying Lemma 8, there exists
a δ > 0 such |F (u)(x)− F (v)(x)| < ε

3
for all x ∈ X whenever v ∈ P(X) and

d(v, u) < δ. We claim that |ϕX(v)| = 1 if d(v, u) < δ proving that Y (X) is
open. To see this, choose v satisfying d(v, u) < δ. It suffices to show that x∗

is the unique maximizer for F (v). If x ∈ X, then

F (v)(x∗)− F (v)(x) = [F (v)(x∗)− F (u)(x∗)]

+ [F (u)(x∗)− F (u)(x)] + [F (u)(x)− F (v)(x)]

>
(
− ε

3

)
+ ε+

(
− ε

3

)
= ε

3
,
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and we conclude that x∗ is the unique maximizer for F (v). If u ∈ Y (X)
and ϕX(u) = {x∗}, then x∗ is a strict equilibrium in (Xi, ui)

N
i=1, i.e., x∗i is

the unique (mixed strategy) best response to x∗−i. Applying Corollary 2.5.3,
Theorem 2.5.5, Corollary 2.4.5, and Theorem 2.4.3 in van Damme [28], we
conclude that x∗ is a strictly perfect equilibrium and a KM stable singleton
set. �

Proposition 3. There exists a dense, residual subset Z ⊆ P(X) such that
ϕX : P(X) ⇒ X is lower hemicontinuous at each u ∈ Z. If u ∈ Z, then each
x ∈ ϕX(u) is an essential equilibrium, hence a strictly perfect equilibrium and
{x} is a singleton stable set.

Proof. Obviously, ϕX(u) = arg maxx∈X F (u)(x) is nonempty and compact
for each u ∈ P(X). Next, we claim that the correspondence ϕX : P(X) ⇒ X
is upper hemicontinuous. Since X is compact, it suffices to show that ϕX
has closed graph. To see this, suppose that un → u, xn → x and xn ∈
ϕX(un) = arg maxy∈X F (un)(y) for each n. Applying Lemma 8, it follows
that F (un) → F (u) uniformly on X, so from Lemma 2 we conclude that
x ∈ ϕX(u). Applying Lemma 9 to the upper hemicontinuous correspondence
ϕX , there exists a residual subset Z ⊆ P(X) such that ϕX : P(X) ⇒ X is
lower hemicontinuous at each u ∈ Z. Suppose that u ∈ Z, x ∈ ϕX(u) and
choose ε > 0. We must show that there exists a δ > 0 such that ξX(v) ∩
B∆
ε (ν(x)) 6= ∅ whenever v ∈ P(X) and d(v, u) < δ. Since each νi : Xi →

∆(Xi) is an embedding, it follows that ν : X → ∆(X) is continuous and
injective. Since ν(x) ∈ ν(ϕX(u))∩B∆

ε (ν(x)) and ν is injective, it follows that
x ∈ ν−1[ν(ϕX(u)) ∩ B∆

ε (ν(x))] = ϕX(u) ∩ ν−1[B∆
ε (ν(x))]. Since B∆

ε (ν(x)) is
open in ∆(X) and ν is continuous and, since ϕX is lower hemicontinuous at
u, we conclude that there exists a δ > 0 such that ϕX(v)∩ν−1[B∆

ε (ν(x))] 6= ∅
whenever v ∈ P(X) and d(v, u) < δ. Therefore, ν injective implies that

∅ 6= ν(ϕX(v) ∩ ν−1[B∆
ε (ν(x))]) ⊆ ν(ϕX(v)) ∩B∆

ε (ν(x)) ⊆ ξX(v) ∩B∆
ε (ν(x))

whenever v ∈ P(X) and d(v, u) < δ. It follows that every member of ϕX(u)
is an essential equilibrium, and hence a strictly perfect equilibrium (Lemma
7). To complete the proof, we show that Z is dense. From Lemma 6, we
conclude that P(X) is a closed subset of the Banach space [B(X)]N , implying
that P(X) is a complete metric space. Therefore, Z is dense as a consequence
of the Baire category theorem. �

32



References

[1] Aliprantis, Charalambos D., and Kim C. Border (2006), Infinite Dimen-
sional Analysis. Springer, Berlin.

[2] Al-Najjar, Nabil (1995), “Strategically stable equilibria in games with
infinitely many pure strategies,” Mathematical Social Sciences, 29, 151-
164.

[3] Armstrong, Mark, and John Vickers (2001), “Competitive price discrim-
ination,” Rand Journal of Economics, 32, 579-605.

[4] Beer, Gerald (1993), Topologies on Closed and Closed Convex Sets,
Kluwer Academic Publishers, Norwell, MA.

[5] Billingsley, Patrick (1968), Convergence of Probability Measures. New
York: John Wiley.

[6] Carbonell-Nicolau, O. (2010), “Essential equilibria in normal-form
games,” Journal of Economic Theory, 145, 421-431.

[7] Carbonell-Nicolau, Oriol (2011), “On the existence of pure-strategy per-
fect equilibrium in discontinuous games,” Games and Economic Behav-
ior, 71, 23-48.

[8] Carbonell-Nicolau, Oriol (2011), “The existence of perfect equilibrium
in discontinuous games,” Games, 2, 235-256.

[9] Carbonell-Nicolau, Oriol (2011), “Perfect and limit admissible perfect
equilibrium in discontinuous games,” Journal of Mathematical Eco-
nomics, 47, 531-540.

[10] Carbonell-Nicolau, Oriol (2011), “On strategic stability in discontinuous
games,” Economics Letters, 113, 120-123.

[11] Carbonell-Nicolau, Oriol and Richard P. McLean, “Approximation re-
sults for discontinuous games with an application to equilibrium refine-
ment,” Economic Theory, forthcoming.

[12] Fort, Marion K. (1951), “Points of continuity of semi-continuous func-
tions,” Publicationes Mathematicae Debrecen, 2, 100-102.

33



[13] Glycopantis, Dionysius, and Allan Muir (2000), “Continuity of the pay-
off Functions,” Economic Theory, 16, 239-244.

[14] Hofbauer, Josef, and Gerhard Sorger (1999), “Perfect foresight and equi-
librium selection in symmetric potential games,” Journal of Economic
Theory, 85, 1-23.

[15] Kajii, Atsushi, and Stephen Morris (1997), “Refinements and higher
order beliefs: a unified survey,” mimeo.

[16] Kajii, Atsushi, and Stephen Morris (1997), “The robustness of equilibria
to incomplete information,” Econometrica, 65, 1283-1309.

[17] Kohlberg, Elon, and Jean-François Mertens (1986), “On the strategic
stability of equilibria,” Econometrica, 54, 1003-1038.

[18] Monderer, Dov, and Lloyd S. Shapley (1996), “Potential games,” Games
and Economic Behavior, 14, 124-143.

[19] Myatt, David P., and Chris Wallace (2009), “Evolution, teamwork and
collective action: production targets in the private provision of public
goods,” Economic Journal, 119, 61-90.

[20] Okada, Akira (1984), “Strictly perfect equilibrium points of bimatrix
games,” International Journal Of Game Theory, 13, 145-154.

[21] Ostrovsky, Michael, and Michael Schwarz (2005), “Adoption of stan-
dards under uncertainty,” Rand Journal of Economics, 36, 816-832.

[22] Reny, Philip J. (1999), “On the existence of pure and mixed strategy
Nash equilibria in discontinuous games,” Econometrica, 67, 1029-1056.

[23] Rockafellar, R. Tyrrell, and Roger J.-B. Wets (2009), Variational Anal-
ysis. Springer, Berlin.

[24] Rosenthal, Robert W. (1973), “A class of games possessing pure-strategy
Nash equilibria,” International Journal of Game Theory, 2, 65-67.

[25] Selten, Reinhard (1975), “Reexamination of the perfectness concept for
equilibrium points in extensive games,” International Journal of Game
Theory, 4, 25-55.

34



[26] Simon, Leo K., and Maxwell B. Stinchcombe (1995), “Equilibrium re-
finement for infinite normal-form games,” Econometrica, 63, 1421-1443.

[27] Ui, Takashi (2001), “Robust equilibria of potential games,” Econom-
cetrica, 69, 1373-1380.

[28] van Damme, Eric E. C. (1991), Stability and Perfection of Nash Equi-
libria. Heidelberg: Springer-Berlag.

[29] Wu, Wen-Tsun, and Jia-He Jiang (1962), “Essential equilibrium points
of n-person non-cooperative games,” Scientia Sinica, 11, 1307-1322.

[30] Zhou, Yong-Hui, Jian Yu, and Shu-Wen Xiang (2007), “Essential stabil-
ity in games with infinitely many pure strategies,” International Journal
of Game Theory, 35, 493-503.

35


