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A Optimal wedge comparative statics

The derivations of the first-order conditions for the two- and three-period economy are
subsumed in the infinite horizon economy and will not be repeated here. Consider the
comparative statics that we perform by using the optimal wedge (10) and the resource
constraint (1) which are repeated here for convenience,

(
v′(1− h)− u′(c)

)
(1 +m∗ξ̃ + Φm∗) = Φm∗[u′′(c)c+ v′′(1− h)h

]
c+ g = h.

Given g and Φ, this system of equations is defining implicitly consumption and labor as
functions of m∗ and ξ̃, c = c(m∗, ξ̃) and h = h(m∗, ξ̃). We will sign the partial derivatives of
these functions. Note at first that the resource constraint is immediately implying that ci =
hi, i = ξ̃, m∗, where the subscript denotes the partial derivative. Differentiating implicitly
the optimal wedge equation with respect to m∗ delivers

cm∗ = hm∗ =

(
v′(1− h)− u′(c)

)
(ξ̃ + Φ)− Φ

[
u′′(c)c+ v′′(1− h)h

]
K

,

where

K ≡
(
u′′(c) + v′′(1− h)

)
(1 +m∗ξ̃ + 2Φm∗) + Φm∗[u′′′(c)c− v′′′(1− h)h

]
. (A.1)

The numerator of cm∗ can be further simplified by using the optimal wedge equation to
finally get,

cm∗ = hm∗ =

(
u′(c)− v′(1− h)

)
/m∗

K
. (A.2)

Similarly, implicitly differentiating with respect to ξ̃ delivers

cξ̃ = hξ̃ =
m∗(v′(1− h)− u′(c)

)
K

. (A.3)

As we showed in the text, u′ > v′ (which implies a positive tax rate). We will work
under the assumption that K < 0. Then, cm∗ = hm∗ < 0 and cξ̃ = hξ̃ > 0, as claimed

in the text. Furthermore, we can express the tax rate as a function of (m∗, ξ̃), τ(m∗, ξ̃) =
1− v′(1− h(m∗, ξ̃))/u′(c(m∗, ξ̃)). Differentiating with respect to m∗ and ξ̃ delivers
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τi =
u′′(c)v′(1− h) + v′′(1− h)u′(c)(

u′(c)
)2 ci, i = m∗, ξ̃.

Thus, since cm∗ < 0 and cξ̃ > 0, we have τm∗ > 0 and τξ̃ < 0.

Sign of K. We worked under the assumption that K < 0. It is convenient to decompose
K as

K = Kc +Kh,

where

Kc ≡ u′′(c)(1 +m∗ξ̃ + 2Φm∗) + Φm∗u′′′(c)c

Kh ≡ v′′(1− h)(1 +m∗ξ̃ + 2Φm∗)− Φm∗v′′′(1− h)h.

We will show that K < 0 for a power utility function of consumption, u(c) = c1−ρ−1
1−ρ

, and

either convex marginal utility of leisure (v′′′ > 0) or constant Frisch elasticity, v(1 − h) =

−ah
h1+ϕh

1+ϕh
. Consider first Kc, which becomes

Kc = −ρc−ρ−1
(
1 +m∗ξ̃ + Φm∗(1− ρ)

)
.

Note though that for this utility function, the first-order condition of the policy problem
with respect to consumption takes the form

1 +m∗ξ̃ + Φm∗(1− ρ) = λcρ > 0

Therefore, Kc < 0. Furthermore, if v′′′ > 0, then Kh < 0, since 1+m∗ξ̃+Φm∗ > 0, as shown
in footnote 12. Thus, K = Kc +Kh < 0.

Consider now the case of constant Frisch elasticity, for which the third derivative is not
positive, unless ϕh > 1, since v′′′(1− h) = ahϕh(ϕh − 1)hϕh−2. However, Kh becomes

Kh = −ahϕhh
ϕh−1

[
1 +m∗ξ̃ + Φm∗(1 + ϕh)

]
< 0,

which again delivers the desired sign of K.

Non-separable case. In the infinite horizon economy we treat also the non-separable case.
Obviously, our comparative statics results for the separable case hold also there, by consid-
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ering the derivative of consumption (labor) with respect to M∗ and ξ̃ (which captures now
the cumulative innovation in debt). Implicitly differentiating the optimal wedge equation
for non-separable utility functions (42) and the resource constraint with respect to (M∗, ξ̃)
delivers

cM∗ = hM∗ =
(Uc − Ul)/M

∗

Knon

(A.4)

cξ̃ = hξ̃ =
M∗(Ul − Uc)

Knon

, (A.5)

where Knon the corresponding expression for the non-separable case,

Knon ≡
(
Ucc − 2Ucl + Ull

)(
1 +M∗ξ̃ + 2ΦM∗)

+ΦM∗[Ucccc− Uccl(2c+ h) + Ucll(c+ 2h)− Ulllh
]
. (A.6)

Again, we will assume that our utility functions are such that Knon < 0. If there is
a positive tax rate (a sufficient condition for that would be Ucl ≥ 0), then Uc > Ul and
therefore cM∗ = hM∗ < 0 and cξ̃ = hξ̃ > 0. The tax rate derivatives in the non-separable
case are

τi =
UccUl + UllUc − Ucl(Uc + Ul)

U2
c

ci, i = M∗, ξ̃. (A.7)

Under Ucl ≥ 0 we have cM∗ < 0 and cξ̃ > 0 and the term that multiplies the consumption
derivatives ci in (A.7) is negative. Therefore, τM∗ > 0 and τξ̃ < 0.

What needs further discussion in the non-separable case is the negative sign ofKnon. Note
that when we turn off the doubts of the household by setting σ = 0 we get (M∗, ξ̃) = (1, 0).
Thus, Knon at (1, 0) becomes Knon(1, 0) =

(
Ucc−2Ucl+Ull

)(
1+2Φ

)
+Φ

[
Ucccc−Uccl(2c+h)+

Ucll(c+2h)−Ulllh
]
. This would be just the second derivative of the Lagrangian of the Lucas

and Stokey (1983) problem for the proper value of Φ. In that case, Knon(1, 0) < 0 imposes
local concavity of the Lagrangian, satisfying therefore the sufficient second-order conditions
of the policy problem with full confidence in the model. Therefore, for small doubts about
the model and a Φ close enough to the cost of distortionary taxation of Lucas and Stokey,
we could justify Knon < 0 as a sufficient condition for the satisfaction of the second-order
conditions of the full confidence problem. Obviously, the same argument can be made for
the separable case. Note though that for the utility functions that we used before (power
in consumption and convex marginal utility of leisure or constant Frisch), we showed that
K < 0 for any doubts about the model.
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B Household’s inner problem and optimality condi-

tions of the fiscal authority’s problem

B.1 Inner problem in 3.4

Assign multipliers βt+1πt+1(g
t+1)ρt+1(g

t+1) and βtπt(g
t)νt(g

t) on constraints (22) and (23)
respectively and remember that M0 ≡ 1 and π0(g0) = 1. Form the Lagrangian

L =
∞∑
t=0

∑
gt

βtπt(g
t){Mt(g

t)[Ut(g
t) + θβ

∑
gt+1

πt+1(gt+1|gt)mt+1(g
t+1) lnmt+1(g

t+1)]

−
∑
gt+1

βπt+1(gt+1|gt)ρt+1(g
t+1)[Mt+1(g

t+1)−mt+1(g
t+1)Mt(g

t)]

−νt(g
t)[
∑
gt+1

πt+1(gt+1|gt)mt+1(g
t+1)− 1]}.

First-order necessary conditions for an interior solution are

mt+1(g
t+1), t ≥ 0 : νt(g

t) = βθMt(g
t)[1 + lnmt+1(g

t+1)] + βρt+1(g
t+1)Mt(g

t) (B.1)

Mt(g
t), t ≥ 1 : ρt(g

t) = Ut(g
t) + β

[∑
gt+1

πt+1(gt+1|gt)mt+1(g
t+1)ρt+1(g

t+1)

+θ
∑
gt+1

πt+1(gt+1|gt)mt+1(g
t+1) lnmt+1(g

t+1)
]
. (B.2)

The above conditions can be simplified as follows. Rearrange (B.1) to get

lnmt+1(g
t+1) = −ρt+1(g

t+1)

θ
+
( νt(g

t)

βθMt(gt)
− 1

)
or

mt+1(g
t+1) = exp

(
−ρt+1(g

t+1)

θ

)
exp

( νt(g
t)

βθMt(gt)
− 1

)
.

Taking conditional expectation of mt+1 and using (23) allows us to eliminate νt(g
t) and get

m∗
t+1(g

t+1) =
exp

(
−ρ∗t+1(g

t+1)

θ

)
∑

gt+1
πt+1(gt+1|gt) exp

(
−ρ∗t+1(g

t+1)

θ

) , (B.3)

where the asterisks denote optimal values. Furthermore, solving forward (B.2) and imposing
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the transversality condition limk→∞ βkEtM
∗
t+kρ

∗
t+k = 0 delivers

ρ∗t (g
t) =

∞∑
i=0

∑
gt+i|gt

βiπt+i(g
t+i|gt)

M∗
t+i(g

t+i)

M∗
t (g

t)

[
U(gt+i) +

βθ
∑

gt+i+1|gt+i

πt+i+1(gt+i+1|gt+i)m∗
t+i+1(g

t+i+1) lnm∗
t+i+1(g

t+i+1)
]
, t ≥ 1.

As is clear from the above condition, ρ∗t (g
t) represents the household’s utility at history gt,

ρ∗t (g
t) = Vt(g

t). This fact, together with recursion (B.2) and the formula for the optimal
conditional distortion (B.3), deliver the conditions in the text.

B.2 First-order conditions of the policy problem

The Lagrangian of the policy problem is

L =
∞∑
t=0

∑
gt

βtπt(g
t)
{
U(ct(g

t), 1− ht(g
t)) + ΦM∗

t (g
t)Ω(ct(g

t), ht(g
t))− λt(g

t)
[
ct(g

t) + gt − ht(g
t)
]

−
∑
gt+1

βπt+1(gt+1|gt)µt+1(g
t+1)

[
M∗

t+1(g
t+1)− exp(σVt+1(g

t+1))∑
gt+1

πt+1(gt+1|gt) exp(σVt+1(gt+1))
M∗

t (g
t)
]

−ξt(g
t)
[
Vt(g

t)− U(ct(g
t), 1− ht(g

t))− β

σ
ln
∑
gt+1

πt+1(gt+1|gt) exp(σVt+1(g
t+1))

]}
−ΦUc(c0, 1− h0)b0,

with ξ0 = 0, M0 = 1 and g0 given.
Apart from first-order condition (39), the rest of the first-order conditions of the govern-

ment’s maximization problem can be derived in a straightforward fashion. Differentiate now
the Lagrangian with respect to Vt(g

t) to get

Vt, t ≥ 1 : πt(gt|gt−1)ξt(g
t) = M∗

t−1(g
t−1)

∂

∂Vt(gt)

{∑
gt
πt(gt|gt−1) exp

(
σVt(g

t)
)
µt(g

t)∑
gt
πt(gt|gt−1) exp

(
σVt(gt)

) }

+
ξt−1

σ

∂

∂Vt(gt)

{
ln
∑
gt+1

πt(gt|gt−1) exp
(
σVt(g

t)
)}

.

Note that
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∂

∂Vt(gt)

{∑
gt
πt(gt|gt−1) exp

(
σVt(g

t)
)
µt(g

t)∑
gt
πt(gt|gt−1) exp

(
σVt(gt)

) }
= πt(gt|gt−1)σ

exp
(
σVt(g

t)
)∑

gt
πt(gt|gt−1) exp

(
σVt(gt)

)
·

[
µt(g

t)−
∑
gt

πt(gt|gt−1)
exp

(
σVt(g

t)
)∑

gt
πt(gt|gt−1) exp

(
σVt(gt)

)µt(g
t)

]
= πt(gt|gt−1)σm∗

t (g
t)
[
µt(gt)−

∑
gt

πt(gt|gt−1)m∗
t (g

t)µt(g
t)
]
,

and

∂

∂Vt(gt)

{
ln
∑
gt+1

πt(gt|gt−1) exp
(
σVt(g

t)
)}

= πt(gt|gt−1)σ
exp

(
σVt(g

t)
)∑

gt
πt(gt|gt−1) exp

(
σVt(gt)

)
= πt(gt|gt−1)σm∗

t (g
t),

where we used formula (24) for the household’s conditional distortion. Plugging the two
derivatives back to the optimality condition and simplifying delivers (39) in the text.

C Recursive formulation

First we will give an expanded version of proposition 3 in the text.

Proposition. Let the approximating model of government expenditures be Markov. Then the
fiscal authority’s problem from period one onward can be represented recursively by keeping
as a state variable the vector (gt,M

∗
t , ξt). The likelihood ratio M∗

t and the multiplier ξt follow
laws of motion

M∗
t = M∗(gt, gt−1,M

∗
t−1, ξt−1; Φ)

ξt = ξ(gt, gt−1,M
∗
t−1, ξt−1; Φ),

with initial values (M0, ξ0) = (1, 0). The policy functions for consumption, household utility
and debt for t ≥ 1 are

ct = c(gt,M
∗
t , ξt; Φ),

Vt = V (gt,M
∗
t , ξt; Φ),

bt = b(gt,M
∗
t , ξt; Φ).

A similar recursive formulation can be achieved in terms of (gt,M
∗
t , ξ̃t) with initial value

of the state (g0, 1, 0).
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C.1 State variables (M ∗
t , ξt)

Assume that a sequential saddle-point that solves the policy problem exists.2 Our objec-
tive is to transform the sequential saddle-point into a recursive saddle-point along the lines
of Marcet and Marimon (2009). To achieve that, we augment the state space and modify
properly the period return function associated with the sequential saddle-point.

Fix the multiplier on the implementability constraint (32) to a positive value, Φ > 0, and
form the partial Lagrangian L̃0

L̃0 ≡ U(g0) + ΦΩ0(g0)− ΦUc(g0)b0 + βL̃,

where

L̃ ≡ E0

∞∑
t=1

βt−1
{
Ut + ΦM∗

t Ωt − ξt
[
Vt − Ut − β(Etm

∗
t+1Vt+1 + θEtm

∗
t+1 lnm

∗
t+1)

]}
.

Note that we are not including in the partial Lagrangian the law of motion of the likeli-
hood ratio M∗

t (which is the reason why we distinguish in notation between L̃0 in this section
from L in section B.2) and that we have already expressed labor in terms of consumption
ht = ct + gt in L̃0. Furthermore, we are differentiating between the initial period and the
rest of the periods due to the presence of initial debt and the realization of uncertainty at
t = 0.

Bear in mind that we have not substituted for the optimal value of the conditional
likelihood ratio m∗

t (24) in the household’s utility recursion, which retains linearity with
respect to the approximating model π in L̃. This allows us to apply the Law of Iterated
Expectations and rewrite L̃ in terms of current and lagged values of ξt,

L̃ = E0

∞∑
t=1

βt−1
[
Ut + ΦM∗

t Ωt − ξt
(
Vt − Ut

)
+ ξt−1

(
m∗

tVt + θm∗
t lnm

∗
t

)]
. (C.1)

Consider the saddle-point problem from period one onward,

Problem 1.

min
ξt,t≥1

max
ct,m∗

t ,M
∗
t ,Vt,t≥1

L̃

2The existence of a sequential saddle-point is not guaranteed due to the non-convexity of the government’s
problem. However, if it exists, it solves the policy problem. See Marcet and Marimon (2009).
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subject to

M∗
t (g

t) = m∗
t (g

t)M∗
t−1(g

t−1), t ≥ 1

m∗
t (g

t) =
exp(−Vt(gt)

θ
)

Et−1 exp(−Vt(gt)
θ

)
, t ≥ 1,

with initial values M0 = 1, ξ0 = 0 and g0 given.

The modified return function in (C.1) does not depend on expectations of future vari-
ables, but only on the controls (ct,m

∗
t , Vt, ξt) and the lagged values (M∗

t−1, ξt−1), which will
serve as state variables. The object of interest is the value function of problem 1, which will
be a solution to a saddle-point functional equation.

More precisely, assume that the approximating model of government expenditures is
Markov with transition probabilities πg|g− ≡ Prob(gt = g|gt−1 = g−) and let the vector
Xt ≡ (gt,M

∗
t , ξt) denote the state. Let W (X−; Φ) denote the corresponding value function of

the saddle-point problem when the state is X−, where the underscore “ ” stands for previous
period, i.e. z− ≡ zt−1 for any random variable z. The value of problem 1 is W (g0, 1, 0; Φ).
Φ > 0 is treated as a parameter in the value function. Then

Bellman equation I. W (·; Φ) satisfies the Bellman equation

W (g−,M
∗
−, ξ−; Φ) = min

ξg
max

cg ,m∗
g ,Vg

∑
g

πg|g−

{
U(cg, 1− cg − g) + Φm∗

gM
∗
−Ωg

−ξg(Vg − U(cg, 1− cg − g)) + ξ−(m
∗
gVg + θm∗

g lnm
∗
g) + βW (g,m∗

gM
∗
−, ξg; Φ)

}
where

Ωg ≡ [Uc(cg, 1− cg − g)− Ul(cg, 1− cg − g)]cg − Ul(cg, 1− cg − g)g

and

m∗
g =

exp
(
−Vg

θ

)
∑

g πg|g− exp
(
−Vg

θ

) , ∀g.

Time zero problem. The planner’s problem at time zero takes the form

W0(g0, b0; Φ) = max
c0

{U(c0, 1− c0 − g0) +ΦΩ0(c0)−ΦUc(c0, 1− c0 − g0)b0 + βW (g0, 1, 0; Φ)},
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which is effectively the static problem

max
c0

U(c0, 1− c0 − g0) + ΦΩ0(c0)− ΦUc(c0, 1− c0 − g0)b0.

From the problem above, we get the initial period consumption, c0(g0, b0; Φ).

Envelope conditions. The envelope conditions are

WM∗(g−,M
∗
−, ξ−; Φ) =

∑
g

πg|g−m
∗
g

[
ΦΩg + βWM∗(g,M∗

g , ξg; Φ)
]
, (C.2)

Wξ(g−,M
∗
−, ξ−; Φ) =

∑
g

πg|g−
[
m∗

gVg + θm∗
g lnm

∗
g

]
. (C.3)

Condition (C.3) exposes the connection between the shadow value ξ of manipulating the
worst-case model and the promised utility to the household. Furthermore, solving (C.2)
forward and converting to sequence notation allows us to conclude that

WM∗(gt−1,M
∗
t−1, ξt−1; Φ) = ΦEt−1

∞∑
i=0

βiM
∗
t+i

M∗
t−1

Ωt+i

= ΦEt−1m
∗
t [Et

∞∑
i=0

βiM
∗
t+i

M∗
t

Ωt+i]

= ΦEt−1m
∗
tUctbt, (C.4)

where in the last line we recognized the relationship between the present value of gov-
ernment surpluses and debt.

First-order conditions. For completeness, we are going to derive the first-order con-
ditions of the functional equation, in order to verify that they match with the first-order
conditions of the sequential Lagrangian formulation. Assign the multiplier πg|g−µ̃g on the
optimal distortion m∗

g and get the following first-order conditions

cg : (Ul,g − Uc,g)
(
1 + ξg + Φm∗

gM
∗
−
)
= Φm∗

gM
∗
−
[
(Ucc − 2Ucl,g + Ull,g)cg

+(Ull,g − Ucl,g)g
]

(C.5)

m∗
g : µ̃g = ΦM∗

−
[
Ωg + βWM∗(g,M∗

g , ξg; Φ)
]
+ ξ−[Vg + θ(1 + lnm∗

g)] (C.6)

Vg : ξg = σm∗
g[µ̃g −

∑
g

πg|g−m
∗
gµ̃g] +m∗

gξ− (C.7)

ξg : Vg = Ug + βWξ(g,M
∗
g , ξg; Φ). (C.8)

Equation (C.5) represents the familiar optimal wedge, with hg = cg + g. Furthermore,
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using the envelope condition with respect to ξ (C.3) in optimality condition (C.8) delivers the
household’s utility recursion (35). It remains to show that (C.7) describes the appropriate
law of motion of the multiplier ξt. For that consider at first (C.6) in sequence notation and
use the fact that lnm∗

t = −Vt

θ
− lnEt−1 exp

(
−Vt

θ

)
to get

µ̃t = M∗
t−1

[
ΦΩt + βWM∗(g,M∗

t , ξt; Φ)
]
+ ξt−1θ

[
1− lnEt−1 exp(−

Vt

θ
)

]
.

Using (C.4), we see that ΦΩt+βWM∗(gt,M
∗
t , ξt; Φ) = Φ(Ωt+βEtm

∗
t+1Uc,t+1bt+1) = ΦUctbt.

Thus

µ̃t = M∗
t−1ΦUctbt + ξt−1θ

[
1− lnEt−1 exp(−

Vt

θ
)

]
,

with innovation

µ̃t − Et−1m
∗
t µ̃t = M∗

t−1Φ(Uctbt − Et−1m
∗
tUctbt),

since the term multiplying ξt−1 is known with respect to information at t− 1. Plugging the
innovation of µ̃ in in (C.7) delivers the law of motion (44).

Policy functions and debt. Given the recursive representation of the government’s prob-
lem, we attain a time invariant representation of the policy functions as functions of the state,
e.g. the optimal policy function for consumption is cg = cg(g−,M

∗
−, ξ−; Φ). In the case of

an i.i.d. approximating model, we could drop the dependence on g−. Note though that
(C.5) shows that (g,M∗

g , ξg) is sufficient to determine c. Thus, the vector of state variables
(g−,M

∗
−, ξ−) is affecting the optimal policy for consumption at g by determining the value

of the current state (g,M∗
g , ξg) and consequently cg = cg(g−,M

∗
−, ξ−; Φ) = c(g,M∗

g , ξg; Φ).
Therefore labor and the optimal tax rate will also depend on the current values of the
state. Note also that (C.8) allows us to use the same logic with the household’s utility, so
Vg = V (g,M∗

g , ξg; Φ). Turning to debt, using (C.4) allows us to determine the optimal debt
position as a function of the current state bt = b(gt,M

∗
t , ξt; Φ), since

bt =
Ωt

Uct

+
β

ΦUct

WM∗(gt,M
∗
t , ξt; Φ).

To conclude, remember that the recursive formulation has been contingent on the value
Φ > 0. After the initial period problem and the functional problem are solved, Φ has to be
adjusted so that the intertemporal budget constraint is satisfied. The expression that we
derived for optimal debt suggests the use of the derivative WM∗ for that purpose: Increase
(decrease) Φ if Ω0

Uc0
+ β

ΦUc0
WM∗(g0, 1, 0; Φ) − b0 < (>)0. This procedure has to be repeated

and the initial period problem and the functional equation have to be resolved till the
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intertemporal budget constraint holds with equality.

C.2 Normalized multiplier ξ̃t

The same methodology allows us to derive a recursive representation in terms of the nor-
malized multiplier ξ̃t. Form the partial Lagrangian by multiplying the household’s utility
recursion (35) with M∗

t and assign to this constraint the multiplier βtπtξ̃t, with ξ̃0 ≡ 0.
Follow now similar steps as in the previous subsection to get the functional equation:

Bellman equation II.

J(g−,M
∗
−, ξ̃−; Φ) = min

ξ̃g

max
cg ,m∗

g ,Vg

∑
g

πg|g−

[
U(cg, 1− cg − g) + Φm∗

gM
∗
−Ωg

−m∗
gM

∗
−ξ̃g(Vg − U(cg, 1− cg − g)) + ξ̃−M

∗
−(m

∗
gVg + θm∗

g lnm
∗
g) + βJ(g,m∗

gM
∗
−, ξ̃g; Φ)

]
,

where Ωg and m∗
g as before.

Envelope conditions.

JM∗(g−,M
∗
−, ξ̃−; Φ) =

∑
g

πg|g−

[
Φm∗

gΩg −m∗
g ξ̃g(Vg − Ug) + ξ̃−(m

∗
gVg + θm∗

g lnm
∗
g)

+βm∗
gJM∗(g,M∗

g , ξ̃g; Φ)
]
, (C.9)

Jξ̃(g−,M
∗
−, ξ̃−; Φ) = M∗

−

∑
g

πg|g−(m
∗
gVg + θm∗

g lnm
∗
g) (C.10)

Matching first-order conditions. Assign multiplier πg|g−µ̂g on the conditional distortion
of the household m∗

g and derive the first-order conditions:

cg : (Ul,g − Uc,g)(1/M
∗
g + ξ̃g + Φ) = Φ

[
(Ucc,g − 2Ucl,g + Ull,g)cg

+(Ull,g − Ucl,g)g
]

(C.11)

m∗
g : µ̂g = M∗

−

[
ΦΩg − ξ̃g(Vg − Ug) + ξ̃−(Vg + θ(lnm∗

g + 1))

+βJ∗
M(g,M∗

g , ξ̃g; Φ)
]

(C.12)

Vg : ξ̃gM
∗
− = σ(µ̂g −

∑
g

πg|g−m
∗
gµ̂g) + ξ̃−M

∗
− (C.13)

ξ̃g : m∗
gM

∗
−Vg = m∗

gM
∗
−Ug + βJξ̃(g,M

∗
g , ξ̃g; Φ) (C.14)

Condition (C.11) describes the familiar optimal wedge. Turn now into sequence notation,
update the envelope condition (C.10) one period, substitute in (C.14) and simplify to get
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the household’s utility recursion,

Vt = Ut + β(Etm
∗
t+1Vt+1 + θEtm

∗
t+1 lnm

∗
t+1).

There is some work needed in order to derive the law of motion of the multiplier ξ̃t in the
text. Consider the envelope condition (C.9) and solve it forward to get

JM∗(gt−1,M
∗
t−1, ξ̃t−1; Φ) = ΦEt−1

∞∑
i=0

βiM
∗
t+i

M∗
t−1

Ωt+i

−Et−1

∞∑
i=0

βiM
∗
t+i

M∗
t−1

ξ̃t+i(Vt+i − Ut+i)

+Et−1

∞∑
i=0

βiM
∗
t+i−1

M∗
t−1

ξ̃t+i−1(m
∗
t+iVt+i + θm∗

t+i lnm
∗
t+i).

The last sum in the third line can be rewritten as

Et−1

∞∑
i=0

βiM
∗
t+i−1

M∗
t−1

ξ̃t+i−1(m
∗
t+iVt+i + θm∗

t+i lnm
∗
t+i) = ξ̃t−1Et−1(m

∗
tVt + θm∗

t lnm
∗
t )

+Et−1

∞∑
i=0

βiξ̃t+iβ(m
∗
t+i+1Vt+i+1 + θm∗

t+i+1 lnm
∗
t+i+1).

Thus the derivative of the value function with respect to the likelihood ratio M∗ becomes

JM∗(gt−1,M
∗
t−1, ξ̃t−1; Φ) = ΦEt−1

∞∑
i=0

βiM
∗
t+i

M∗
t−1

Ωt+i + ξ̃t−1Et−1(m
∗
tVt + θm∗

t lnm
∗
t )

−Et−1

∞∑
i=0

βiM
∗
t+i

M∗
t−1

ξ̃t+i

(
Vt+i − Ut+i − βEt+i

(
m∗

t+i+1Vt+i+1 + θm∗
t+i+1 lnm

∗
t+i+1

))
= ΦEt−1m

∗
tUctbt + ξ̃t−1Et−1(m

∗
tVt + θm∗

t lnm
∗
t ),

by using the household’s utility recursion and the relationship between debt and the present
value of future government surpluses.

Update JM∗ one period and plug it in the first-order condition (C.12) to get
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µ̂t = M∗
t−1

[
Φ
(
Ωt + βEtm

∗
t+1Uc,t+1bt+1

)
−ξ̃t

(
Vt − Ut − β(Etm

∗
t+1Vt+1 + θEtm

∗
t+1 lnm

∗
t+1)

)
+ξ̃t−1

(
Vt + θ(lnm∗

t + 1)
)]

= M∗
t−1

[
Φ
(
Ωt + βEtm

∗
t+1Uc,t+1bt+1

)
+ ξ̃t−1

(
Vt + θ(lnm∗

t + 1)
)]
,

using again the household’s utility recursion. Note that Ωt + βEtm
∗
t+1Uc,t+1bt+1 = Uctbt.

Use now the expression for the conditional distortion m∗
t to finally get

µ̂t = M∗
t−1

[
ΦUctbt + ξ̃t−1θ(1− lnEt−1 exp(σVt))

]
.

Therefore, the innovation in µ̂t becomes µ̂t − Et−1m
∗
t µ̂t = ΦM∗

t−1

[
Uctbt − Et−1m

∗
tUctbt

]
.

Plugging the innovation in (C.13) and simplifying delivers the law of motion of the normalized
multiplier (46).
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