Supplementary material for: "Dynamic Choice under Ambiguity", Theoretical Economics 6(3)

Marciano Siniscalchi*

July 1, 2011

1 Proof of Proposition 1

Assume (1). That each $\succeq_{t,\omega}$ is complete and transitive is immediate; also, it is enough to verify that Axiom 4.1 (DC) holds for $a,b\in A_t(\omega)$ that agree everywhere except at a node $(t+1,\omega^+)$ that follows (t,ω) : that is, $a(\omega')=b(\omega')$ for all $\omega'\in \mathscr{F}_t(\omega)\setminus \mathscr{F}_{t+1}(\omega^+)$, with $\omega^+\in \mathscr{F}_t(\omega)$. Thus, suppose that $a(\omega^+)\succeq_{t+1,\omega^+}b(\omega^+)$; an easy induction argument then implies that DC holds for general $a,b\in A_t(\omega)$. By Bayesian updating, there is $p\in F_0^p$ such that $a(\omega^+)_{t+1,\omega^+}p\succeq b(\omega^+)_{t+1,\omega^+}p$; by Axiom 5.2 (Postulate P2), $\{a\}_{t,\omega}p=a(\omega^+)_{t+1,\omega^+}(\{a\}_{t,\omega}p)\succeq b(\omega^+)_{t+1,\omega^+}(\{a\}_{t,\omega}p)=\{b\}_{t,\omega}p$, where the second equality follows from the assumption that $a(\omega')=b(\omega')$ for $\omega'\in \mathscr{F}_t(\omega)\setminus \mathscr{F}_{t+1}(\omega^+)$. But then, by Bayesian updating, $\{a\}\succeq_{t,\omega}\{b\}$. Now the assertion of Postulate P2 also holds with \succeq replaced by \succeq (if not, exchange the role of q and p to obtain a contradiction). Hence, the argument just given also shows that $a(\omega^+)\succeq_{t+1,\omega^+}b(\omega^+)$ implies $\{a\}\succeq_{t,\omega}\{b\}$. Hence (2) holds.

Conversely, assume that (2) holds. I first show that Axiom 4.2 (Postulate P2) and Bayesian updating hold for t=1. If $r,s\in F_1^p(\omega)$ and $p=\{c\}\in F_0^p$, with $c\in A_1$, then there are $a,b\in A_0$ such that $a(\omega')=r$ and $b(\omega')=s$ for $\omega'\in \mathscr{F}_1(\omega)$, and $a(\omega')=b(\omega')=c(\omega')$ for $\omega'\in \Omega\setminus \mathscr{F}_1(\omega)$.

 $^{{\}rm *Economics\ Department,\ Northwestern\ University,\ Evanston,\ IL\ 60208;\ marciano@northwestern\ .\ edu.}$

Thus, if $r \succcurlyeq_{1,\omega} s$, DC implies that $r_{1,\omega}p \succcurlyeq s_{1,\omega}p$; conversely, if $r_{1,\omega}p \succcurlyeq s_{1,\omega}p$, then DC implies that $r \prec_{1,\omega} s$ would lead to a contradiction. Hence, Bayesian updating holds. Furthermore, suppose $r_{1,\omega}p \succcurlyeq s_{1,\omega}p$, so $r \succcurlyeq_{1,\omega} s$; consider $p' = \{c'\} \in F_0^p$ and $a',b' \in A_0$ such that $a'(\omega') = r$, $b'(\omega') = s$ if $\omega' \in \mathscr{F}_1(\omega)$ and $a'(\omega') = b'(\omega') = c'(\omega')$ otherwise. Then DC implies that $r_{1,\omega}q \succcurlyeq s_{1,\omega}q$, i.e. P2 also holds.

Now note that the above argument goes through if \succeq and $\succeq_{1,\omega}$ are replaced with $\succeq_{t,\omega}$ and \succeq_{t+1,ω^+} respectively, where $\omega^+ \in \mathscr{F}_t(\omega)$: hence, DC implies that "one-step-ahead" versions of P2 and Bayesian updating hold for every $t=0,\ldots,T-2$. Now consider an arbitrary node (t,ω) , and plans $r,s\in F_t^p(\omega)$ and $p,q\in F_0^p$. First, denote by $[t,\omega,(a_0,\ldots,a_{t-1})]$ and $[t,\omega,(b_0,\ldots,b_{t-1})]$ the unique histories in $t_{t,\omega}$ and $t_{t,\omega}$ corresponding to $t_{t,\omega}$. Note that $t_{t,\omega}$ are replaced with $t_{t,\omega}$, and $t_{t,\omega}$ are replaced with $t_{t,\omega}$ and $t_{t,\omega}$ are replaced with $t_{t,\omega}$