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We present a theoretical explanation of inefficient early matching in matching
markets. Our explanation is based on strategic complementarities and strategic
unraveling. We identify a negative externality imposed on the rest of the market
by agents who make early offers. As a consequence, an agent may make an early
offer because she is concerned that others are making early offers. Yet other agents
make early offers because they are concerned that others worry about early offers,
and so on and so forth. The end result is that any given agent is more likely to
make an early offer than a late offer.
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1. Introduction

We study unraveling in labor markets and in matching markets in general. Unraveling
is a phenomenon by which matches are made too early. They are made at a point in
time when there is too little information about the quality of a match. The literature has
documented many episodes of unraveling: the market for medical interns is a famous
example in which labor contracts for interns were signed two years before the future
interns would graduate (see Roth 1984 or Roth and Oliveira Sotomayor 1990). Other ex-
amples of unraveling include the market for federal court clerks (Avery et al. 2001, Roth
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2013), for gastroenterology fellows (Niederle and Roth 2003, 2004), for college football
games (Fréchette et al. 2007, Roth 2012), and for placement in sororities (Mongell and
Roth 1991).

We explain unraveling of the timing of offers as the result of strategic unraveling.
If some agents go early, it becomes more attractive for other agents to go early, which
makes it more attractive for even more agents to go early. Our explanation is remi-
niscent of models of bank runs, where strategic complementarity makes agents under-
take an inefficient action because they are concerned that others may take this ineffi-
cient action (Diamond and Dybvig 1983). Our theory of unraveling also relies crucially
on strategic complementarities, but the matching environment is quite different from
models of bank runs. The basic logic of strategic unraveling is, however, similar to bank
runs.

Strategic unraveling in our model proceeds as follows. There is a loss in efficiency
when some agents go early: Information about the quality of the matches arrives late,
so it is better for efficiency to wait until the information has arrived to make a match. If
some agents go early anyway, the strategic complementaries built into our model force
later matches to be less efficient (and a quantification of this effect is the main techni-
cal result of this paper). The consequence is a negative externality that makes it more
tempting for all agents to go early. So the negative externality may push some addi-
tional agents over the threshold by which they decide to go early. In turn, these addi-
tional agents going early makes it even more tempting to go early—and so on and so
forth.

It should be intuitive that the negative externality causes unraveling, but how far
does it go? In our model, we can precisely calculate the extent to which strategic unrav-
eling pushes agents to go early. It turns out that unraveling goes all the way to making
each individual more likely to go early than to go late.

Our model assumes that there are two periods, and that there is incomplete informa-
tion over the agents’ discount factor. If an agent goes early, she has no information about
the quality of a match. If an agent goes late, then all information has been released and
matching is assortative on the quality of an agent as a partner (highest quality agents
match with each other, the second highest match with each other, and so on).

Incomplete information about the discount factor is how we “seed” unraveling. It
makes some agents go early, which makes other agents go early, and so on. We need to
motivate this role of the discount factor, i.e., to explain what the assumed uncertainty
over the discount factor corresponds to in actual instances of unraveling in matching
markets. There are two possible explanations.

The first explanation is that the discount factor captures a pure preference for going
early. It could be that agents start to produce as soon as they are matched, but in many
matching markets, early matching is not associated with producing earlier. Further-
more, we do not assume that all information about match qualities are resolved earlier.
A pure preference for early matching is, however, reasonable even if there is no early pro-
duction and even if match qualities are not resolved earlier. A pure preference for early
matching could reflect a preference for early resolution of uncertainty as in Kreps and
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Porteus (1978).1 Such preferences could result from the ability to make relationship-
specific investments, such as arranging to move cities or learning new skills. Match-
ing early allows agents to undertake match-specific investments that can only be un-
dertaken once the identity of the match partner is resolved. Doctors may learn about
the particular techniques or personnel at a hospital once they learn where they will
be matched. Investments take time to realize, and matching early is therefore valu-
able. Finally, a desire to smooth consumption would mean that the early elimination
of uncertainty about income, for example, could be beneficial to credit constrained
agents.

The second explanation is that we use incomplete information purely as a modeling
device. Equilibrium theory requires that agents be sure of the behavior of others. We
use incomplete information to introduce uncertainty over others’ actions (even though,
in equilibrium, they know everyone’s strategies). In this interpretation, our model says
that when agents are not totally sure of the actions of other agents, then unraveling is
likely to result.

A more precise statement of our results follows. We first assume that only firms are
strategic. Workers always accept the offers they receive. In this environment, we show
that there is always a full unraveling Bayesian Nash equilibrium in which all firms make
early offers. Further, in any symmetric Bayesian Nash equilibrium, a firm makes an early
offer with probability at least 3

4 .
If we assume that the prior over discount factors is uniform, we can say more. There

are exactly two symmetric equilibria when the size of the market is at least 11. One is
the full unraveling equilibrium, but it is unstable. In the second equilibrium, which is
stable, agents go early with probability larger than 3

4 . As the size of the market grows,
the probability of going early in the second equilibrium converges to 3

4 . If the number of
agents is lower than or equal to 10, the unique symmetric Bayesian Nash equilibrium is
the full unraveling equilibrium.

We then consider a version of the model in which both sides are strategic. Our results
continue to apply (there is actually not a substantial conceptual difference between the
two models). Among other things, we prove that in any symmetric Bayesian Nash equi-
librium, the expected proportion of agents who match early is at least 1

2 .
Our results reveal that there may exist an equilibrium pattern of adherence and non-

adherence to the hiring dates. The market may become divided in equilibrium, with one
segment hiring early and the other waiting to match in the final period with full infor-
mation about agents’ qualities. We demonstrate that a mixed level of adherence can be
sustainable in an equilibrium, which is consistent with the empirical evidence (Avery
et al. 2001).

1As anyone who has gone through the job market in economics know, there is a value to early resolution
of uncertainty, even if all jobs start in the Fall of the next academic year. The same is true of academic
departments as well, not only of job candidates: If we know early on that we have hired in one field, we
can use our slots to hire in other fields. One can think of uncertainty in our model as being resolved when
agents match, even if production occurs later in time.
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Finally, we should emphasize that there are ways in which our model is rigged
against unraveling. It makes late matching particularly attractive and rules out unravel-
ing purely as the result of coordination failure (see Section 4). Yet the model produces
early contracting as the modal outcome.2

We should also emphasize that the notion of efficiency used in the paper reflects the
standard use of the term in discussions of unraveling in labor market. It is efficient for all
agents to wait and match late. Strictly speaking, the presence of time discounting may
entail some agents going early even in an efficient outcome. The negative externality
identified in our paper means, however, that the equilibrium outcomes will in any case
involve inefficiently many agents going early.

1.1 Related literature

Ours is the first theoretical study that identifies strategic complementarities as the main
force behind the unraveling of matching markets. One empirical investigation of the
market for medical interns also attributes unraveling to strategic complementarities:
Wetz et al. (2010) write that early contracting is motivated by concerns over losing in-
terns to other programs that operate outside of the centralized algorithm. Their expla-
nation, based on agents’ observed behavior in the market, is essentially what we have
tried to capture formally in the present paper.

The best known episode of unraveling is the case of the market for hospital interns
before 1945 (Roth 1984, 2002, Roth and Oliveira Sotomayor 1990). There is evidence that
unraveling still exists in this market: Wetz et al. (2010) study out-of-match residency of-
fers during the year 2007. In the market for interns, some interns are allowed to take
outside-the-match offers (for instance, osteopathic medical students and international
medical graduates). Wetz et al. (2010) find that 15�7% of the total number of postgrad-
uate year-1 positions available in the three primary care and four procedural and/or
lifestyle-oriented specialities studied, were offered outside the match. The authors con-
clude that about one in five positions in nonprocedural, primary care specialties were
offered outside the match and, thus, the situation is similar to that which existed before
1952.

One classic explanation of unraveling is the “stability hypothesis” as formulated by
Roth (1991) and Kagel and Roth (2000). This hypothesis affirms that unraveling will be
prevented if once the relevant information is revealed, a stable matching is implemented
through a clearinghouse. The idea is that, in some sense, the market is trying to establish
a stable matching. It simply may be doing so in an inefficient manner. Our paper pro-
vides some justification for central clearinghouses. There is a clear efficiency gain from
late contracting in our model, and late contracting equals a stable matching. The agents’

2Continuing with the similarity with bank runs, the result is reminiscent of the literature on global games,
where basic assumptions on the structure of signals give a precise calculation of how far iterated elimina-
tion of dominated strategies will go (Frankel et al. 2003). There is, however, a clear difference with the
literature on bank runs. A run can be explained purely by coordination failure. Agents’ payoffs in our model
are biased against unraveling, and coordination failure alone would not suffice to make agents unravel (see
Section 4 for a discussion of this issue).
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strategic behavior prevents the market from reaching this stable matching and makes
the market unravel.

A handful of other papers provide theoretical explanations for unraveling. They fo-
cus on different mechanisms than the one we study here.

Li and Rosen (1998) and Li and Suen (2000) study a model with transfers (a model
based on Shapley and Shubik’s (1972) assignment game) in which early contracting pro-
vides insurance. They show that unraveling may occur among workers who appear to
be most promising a priori before full information is revealed. In a similar framework, Li
and Suen (2004) allow for unproductive firms and find multiple equilibria with unravel-
ing. They show that more firms and workers will contract early if the uncertainty about
the number of productive workers is higher and the more risk-adverse agents are. As we
explain in Section 4, our model does not have an insurance motive for early contracting
and focuses on a different explanation for unraveling.

Damiano et al. (2005) present an explanation of unraveling that is based on search
and matching. Agents know their qualities, so there is no informational gain from
matching late, but an agent may not meet a partner of sufficiently high quality in a given
period. If there are costs to searching, then there is unraveling in how willing agents are
to accept a partner. In Damiano et al. (2005), unraveling is triggered by search costs. In
our model, it is triggered by incomplete information.

Du and Livne (2014) consider the role of transfers in unraveling. They show that in
the absence of transfers and in the limit as the market size grows, a substantial number
of agents will contract early. Unraveling in their paper happens because new agents
arrive over time, and agents who are in relatively high positions may want to contract
early because the new arrivals may be of higher match qualities. In contrast, in a flexible-
transfer regime, agents will not unravel.

Niederle et al. (2013) explain unraveling as the result of an imbalance between de-
mand and supply. Unraveling arises when there is a surplus of applicants, but a shortage
of high quality applicants. When a worker does not know if she will be in the long or
short side of the market, she may find early offers made by low quality firms attractive.
For such firms, early offers is the only way to employ high quality workers.

Hałaburda (2010) proposes that the key to explaining unraveling is the similarity of
firms’ preferences. Workers’ preferences for firms are identical, and known from the
start, but firms learn their preferences for workers in the second period. If firms’ pref-
erences are similar, then firms tend to prefer the same workers. Thus, worse firms may
have better chances to hire their most preferred candidates if they make early offers.
So, if firms’ preferences are sufficiently similar, it is likely that some firms will go early.
In our model, although preferences are identical, this feature does not explain unrav-
eling. An agent may be concerned about being one of the worst agents in the market,
but she would still prefer to wait and contract in the second period. Early contracting
in our model is inefficient for every agent. As we show below, the uncertainty over how
many other agents go early is the main mechanism behind incentives for some agents
to match early.
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2. The model and results

We present a model of one-to-one matching between workers and firms. In describ-
ing the model, we adopt the language of the medical interns market. The workers are
doctors and the firms are hospitals.

Let H and D be two finite and disjoint sets: H is the set of hospitals and D is the
set of doctors. Suppose that |H| = |D| = n, so we can identify H and D with (copies of)
{1� � � � � n}.

A matching is a function μ :H ∪D →H ∪D such that, for all h ∈H and d ∈D,

(a) μ(h) ∈D∪ {h} and μ(d) ∈H ∪ {d}
(b) d = μ(h) if and only if h = μ(d).

The meaning of μ(h) = h is that the position of hospital h remains unfilled, and μ(d) = d

means that doctor d does not find a job.
Each doctor d and hospital h is assigned a quality

πD(d) ∈ {1� � � � � n} and πH(h) ∈ {1� � � � � n}�
Suppose that πH and πD are permutations of {1� � � � � n}, so we can think of quality as the
rank of a hospital or doctor in the market. The highest ranked hospital is h such that
πH(h) = n, for example. If doctor d is hired by hospital h, then they obtain utilities that
depend on their qualities: ud(πD(d)�πH(h)) is the utility to d and uh(π

D(d)�πH(h)) is
the utility to h. If an agent remains unmatched, then she obtains a utility of zero.

A matching μ is stable if there is no pair (h�d) such that

ud(π
D(d)�πH(h)) > ud(π

D(d)�πH(μ(d)))

uh(π
D(d)�πH(h)) > uh(π

D(μ(h))�πH(h))�

We assume that ud and uh are multiplicative, that is, ud(i� j) = uh(i� j) = ij.

Remark 1. There is a unique stable matching—the matching defined as μ(d) = h if and
only if πD(d) = πH(h) (the identity matching).

2.1 Matching over time: Early or late offers

The model is a stylized environment with two periods. In the first period, match qual-
ities πH and πD are not known. In the second period, a pair (πH�πD) is drawn at ran-
dom, uniformly and independently. A match is formed among the agents who wish to
match in period t = 0: all agents are identical at that point, so the matching is purely
random. In the second period, when match qualities are known, a stable matching is
formed among the agents who did not match in the first period.

Our purpose is to focus on the strategic motivations for going early. We begin with a
simultaneous-move game in which only hospitals decide whether to go early and match
at time t = 0 or to wait and match at time t = 1. In particular, we assume that only
hospitals are strategic and that matchings are automatic. In period t = 1, the matching
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is assortative among the agents who have not matched in period t = 0; the assortative
matching is the unique stable matching under our assumptions. In period t = 0, match-
ing is random because no agent has any information on match qualities.

In Section 3, we present results where both doctors and hospitals are strategic. Our
results essentially continue to hold when both sides are strategic, but we choose to
present first the model in which only hospitals are strategic. The reason is twofold.
First, there is no deep conceptual difference between the two cases. Indeed, we use
the results in this section to prove the results of Section 3. Second, the discussion of un-
raveling in Roth (1984) suggests that in the hospital–interns market, only hospitals are
strategic.

Each agent i ∈H∪D has a discount factor δi. The utility at t = 0 when h and d match
in period t is given by

δthuh(π
D(d)�πH(h)) = δthπ

D(d)πH(h)

δtdud(π
D(d)�πH(h)) = δtdπ

D(d)πH(h)�

to h and d, respectively.3

The following time line describes how events unfold:

δi drawn t = 0 offers π realized t = 1 offers

We proceed to describe the payoffs from making an early versus a late offer to match.
At time t = 0, qualities are purely random. So if a hospital h matches in period 0, its
expected utility is Ue = (1/n2)

∑n
i=1

∑n
j=1 ij, the expected value of the product ij when i

and j are random.
In period 1, agents have learned the values of πD and πH . The matching will be

assortative among the agents who have not matched early. Assortative means that the
doctor with the highest value of πD(d) will match with the hospital with the highest
value of πH(h), the doctor with the next-highest value of πD(d) will match with the
hospital with the next-highest value of πH(h), and so on.

Now, it is complicated to calculate the expected utility of going late because the cal-
culation depends on how many agents go early. If m agents have left the market in time
t = 0, then the assortative matching matches the highest available hospital and doctor,
but the actual highest quality matches may have left early. The problem is compounded
as we consider the second-highest qualities, the third-highest, and so on.

One special case is simple to calculate. Consider a given hospital h. If all other hos-
pitals wait to make offers in period t = 1, then the expected utility to hospital h in period
0 of waiting for period 1 is δh(1/n)

∑n
i=1 i

2.
In general, if m hospitals have left the market, we write Um for the expected value

of πH(h)πD(μ̃(h)), where πH and πD are random, and μ̃ is the (random) assortative

3As discussed in the Introduction, the discount factor is simply a modeling device to seed the strategic
complementarities over agents going early. It reflects individual-level heterogeneity in pure preferences for
going early.
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matching in period 1. The matching μ̃ is determined by the realization of match quali-
ties πH and πD, including the qualities of the m hospitals, with corresponding doctors,
who have left the market. That is, when m hospitals exit the market at t = 0, Um is the
expected utility to a hospital of waiting for t = 1.

The following is an important technical result in our paper.

Lemma 1. We have

Um = (n+ 1)2(2(n−m)+ 1)
6(n−m+ 1)

�

An important consequence of Lemma 1 is that Um > Um+1. The difference Um+1 −Um

is the negative externality imposed by a hospital–doctor pair who match early on the
agents who decide to match late, when m pairs have already decided to go early. It is
important to note that the negative externality, that is, Um+1 − Um, increases with m, so
that additional agents going early increase the incentives of any given agent to go early.
This effect vanishes as the market grows large, which helps to stabilize the number of
agents who go early in a large market (see the discussion after Corollary 3).

Section 5 gives a precise definition of the quantity Um and presents a proof of
Lemma 1.

2.2 Complete information

As a simple benchmark, consider the model when δi = 1 for all i ∈ H ∪ D. Note that
the expected utility of an early offer is Ue = 1

4(n+ 1)2, and the expected utility of waiting
when m hospitals go early is Um, with m ∈ {0� � � � � n − 1}. In particular, if all hospitals
decide to go early, the expected utility of waiting is Un−1 = Ue. When δ = 1, given that
Um is decreasing, we have that Ue ≤ ∑n−1

i=0 P(m = i)Ui. So it is a weakly dominant strategy
to wait. Alternatively, when all hospitals decide to go early, the hospital is indifferent
between going early or waiting (in both cases it receives Ue = Un−1).

Thus, when δ = 1, all hospitals waiting to match is an equilibrium, but there is also
an “unraveling” equilibrium in which all agents match early. This unraveling, or early
matching, equilibrium is in weakly dominant strategies and is unstable, but it illustrates
the effect of strategic complementarities on agents’ incentives to wait or to match early.
We shall see that when we introduce uncertainty into the game, then unraveling be-
comes unavoidable in equilibrium.

2.3 Incomplete information

We now introduce a Bayesian game in which hospitals may make early offers due to the
uncertainty over how many other hospitals go early.

We assume that δh ∈ [0�1] is the private information of hospital h. The type of an
agent h is therefore δh. All agents share the prior that the different δh are drawn inde-
pendently from a distribution over [0�1] with cumulative distribution function (c.d.f.) F .
We assume that x≤ F(x) for all x ∈ [0�1]: the assumption is satisfied for any distribution
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with a concave c.d.f. For example, the uniform, or truncated normal, distributions on
[0�1] satisfy our assumption.

A strategy for a hospital h is a function

sh : [0�1] → {0�1}�

where sh(δh) is the period in which hospital h makes its offer. In our model, there is no
decision to be made other than when to match.4

Given a profile of strategies s = (s1� � � � � sn), we write s−h for the profile of strategies of
hospitals other than h. Given a profile s−h, for each realization of δ−h, s−h determines m,
the number of hospitals, other than h, that go early. Thus, s−h defines a probability dis-
tribution for m. Given a profile s−h, m is a random variable, and so is Um with a dis-
tribution defined by F . Then we can compute the expected value of Um given s−h (see
Lemma 1), which is denoted by Es−h

Um. We write δhEs−h
Um for the expected utility at

time 0, to hospital h, of waiting for t = 1 to make an offer, if all hospitals other than h

have the profile of strategies s−h: Es−h
Um = ∑n−1

i=0 Pr(m = i)Ui, where as we just noted,
Pr(m = i) is calculated from s−h and F .

Given a profile s−h, a hospital h will decide to go early if and only if

Ue ≥ δhEs−h
Um (1)

(recall that Ue is the expected utility of making an early offer). So a strategy sh is a best
response to s−h if for every δh, sh(δh)= 0 if and only if (1) is satisfied.

A profile of strategies s = (s1� � � � � sn) is a Bayesian Nash equilibrium (BNE) if (1) is
satisfied for each h ∈ H. A BNE is symmetric if sh = sh′ for all h�h′ ∈ H. A BNE is full
unraveling if sh = 0 for all h ∈ H. Thus, in a full unraveling BNE, all agents go early no
matter their type.

Theorem 1. If n ≤ 10, then the unique symmetric BNE is the full unraveling BNE. If
n > 10, then there is at least one symmetric BNE, namely the full unraveling BNE; more-
over, in any symmetric BNE s = (s1� � � � � sn), we have that

Pr(sh = 0) ≥ F
(

3
4

)
≥ 3

4

for all h ∈H, where Pr(sh = 0) is the probability that a hospital decides to match early.

Theorem 1 says that any hospital in any symmetric BNE is more likely to go early
than late. The equilibrium probability of going early is at least 3

4 . The following corollary
is therefore immediate.

Corollary 1. In any symmetric BNE, the expected number of hospitals that go early is
at least nF( 3

4) ≥ 3
4n.

4We focus on pure strategies. Mixed strategy equilibria tend to be unstable in games of strategic comple-
mentarities (Echenique and Edlin 2004).
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2.4 Stability of BNE: Uniform F

In this section, we entertain an additional assumption. We suppose that the prior distri-
bution F is the uniform c.d.f. In this case, we can make more precise statements about
the set of BNE in our game. We can also talk about the stability of equilibria.

As we shall see, for large n, in the unique stable equilibrium, the market is divided.
Most of the market ( 3

4 of all hospitals) go early, while the rest wait and contract late. Thus
our results with a uniform F can explain some of the empirical findings where only part
of the market unravels.

Theorem 2. Let F be the uniform c.d.f. If n ≤ 10, then the unique symmetric BNE is the
full unraveling BNE. If n > 10, then there are exactly two symmetric BNE. One is the full
unraveling BNE. The second is a BNE sn = (sn1 � � � � � s

n
n) in which, for every h ∈H,

Pr(snh = 0) ≥ 3
4 = lim

n→∞ Pr(snh = 0)�

where Pr(snh = 0) is the probability that a hospital decides to match early.

Remark 2. The proof of Theorem 1 actually follows from Theorem 2. We lay out the
details in Section 7.

We discuss a notion of stability of BNE. Stability allows us to select a symmetric BNE
in the cases in which there is more than one. It turns out that the full unraveling BNE is
stable when n ≤ 10, and the equilibrium denoted by sn in Theorem 2 is the unique stable
symmetric BNE when n > 10.

A strategy sh satisfying (1) is characterized by a threshold δ̄h ∈ [0�1] such that
sh(δh) = 0 if δh ≤ δ̄h and sh(δh) = 1 if δh > δ̄h. Given identical thresholds δ̄−h = δ̄ for
all hospitals other than h, we can let βn(δ̄) be the threshold for hospital h defined by (1).

A symmetric BNE is then described by a single δ̄ ∈ [0�1] with the property that

δ̄= βn(δ̄)�

The function βn is the best-response function of our game. The symmetric BNE are
the fixed points of βn. Figure 1 presents the graph of βn for n = 3�7�11�15�17, and, as we
will show, in general it holds that βn ≥ βm if n ≤m.

A symmetric BNE δ̄ is stable if there is an open interval I of δ̄ in [0�1] such that for all
δ ∈ I

(a) δ < βn(δ) when δ < δ̄

(b) δ > βn(δ) when δ > δ̄.

A symmetric BNE that is not stable is unstable.
In the examples in Figure 1, it is evident that the full unraveling BNE is stable when

it is unique. For larger n, we have two BNEs. The smaller BNE is stable, while the full un-
raveling BNE is unstable. The picture that emerges from Figure 1 holds more generally.
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Figure 1. The graph of βn for n= 3�7�11�15�17 and y = x.

Remark 3. Let F be the uniform c.d.f. If n ≤ 10, then the full unraveling BNE is stable.
If n > 10, then the symmetric BNE denoted by sn in Theorem 2 is stable while the full
unraveling BNE is unstable.

3. Strategic doctors

We now assume that doctors are strategic as well. We consider the simultaneous-move
game in which the players are H ∪ D. Each agent has to decide whether to match in
period t = 0 or t = 1. When doctors are strategic, the probability that m agents go early
is the probability that the minimum between the hospitals and the doctors that make
offers at period t = 0 equals m. Thus early matchings are rationed by the side with the
shortest number of agents who go early. For the side with the most number of agents
who go early, a random subset of them are indeed matched early, while the rest must
stay and match late.

The set of available actions is {0�1} to each player. Agents’ strategies are functions
si : [0�1] → {0�1}, with i ∈ H ∪ D. For any profile of strategies s and any realization of
types (δi), the number of agents who exit the market is the minimum of two quantities:
the number of hospitals h with sh(δh) = 0 and the number of doctors d with sd(δd)= 0.
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Thus, given a profile of strategies of all agents other than h, the expected value of
Um, Es−h

Um, involves the probability distribution of the minimum of two indepen-
dent binomial random variables instead of a single binomial random variable as in the
previous case. The number m is drawn according to the minimum of two binomial
distributions.

The calculations performed in the proof of Theorem 1 are still sufficient to give us
the following result.

Theorem 3. There is at least one symmetric BNE, namely the full unraveling BNE. In any
symmetric BNE s = (si)i∈H∪D for every i ∈ H ∪D, we have that

Pr(si = 0)≥ F
(

1
2

)
≥ 1

2 �

Corollary 2. In any symmetric BNE, the expected number of agents who go early is at
least nF( 1

2) ≥ 1
2n.

The results in Section 2.4 extend to the case when doctors are strategic. We obtain
the following result.

Theorem 4. Let F be the uniform c.d.f. If n > 10, then there are at least two symmet-
ric BNE. One is the full unraveling BNE, which is unstable. The second is a stable BNE
s = (si)i∈H∪D such that Pr(si = 0) ≥ 1

2 for every i ∈H ∪D.

Theorem 3 in fact follows from Theorem 4. So we present the proof of Theorem 4
(see Section 8) before that of Theorem 3.

4. A discussion of our model

Our model has two specific assumptions that merit some additional discussion.
Payoffs. We assume that payoffs are multiplicative, a common assumption in ap-

plied matching theory (see, e.g., Bulow and Levin 2006, Damiano et al. 2005, and many
other papers). In our particular case, there are two reasons for working with multiplica-
tive payoffs. First, a parametric assumption about payoffs is unavoidable when we are
trying to precisely calculate the probability that an agent will go early. As such, the mul-
tiplicative form is natural.

The multiplicative assumption also makes sense as a way to abstract from other pos-
sible explanations of unraveling. We did not want an explanation of unraveling that was
based on the insurance value of going early (an avenue explored by Li and Rosen 1998).
We assume payoffs for which there is a clear advantage to going late, not early. In our
model, agents are risk neutral. The multiplicative model implies that even though an
agent may be concerned about a bad draw of their quality, the gains from matching
assortatively outweigh the temptation to match to an average partner in t = 0.

One might be concerned about the robustness of the results to the specification of
multiplicative payoffs. We carried out a simulation for a constant elasticity of substitu-
tion (CES) specification f (π(h)�π(d)) = (π(h)ρ +π(d)ρ)1/ρ in which we assumed mod-
est levels of complementarities for agents’ decisions. The simulation uses the algorithm



Theoretical Economics 11 (2016) Strategic complementarities and unraveling 13

described in Proposition 1. The qualitative features of our results are preserved in our
simulations: see the discussion at the end of Section 5 for details.

Roth (1984) suggests that unraveling is the result of a prisoners’ dilemma game
among the hospitals. The implication is that it is a dominant strategy for the hospi-
tals to go early. Our focus is on the strategic channel, whereby agents go early because
of their concerns that others go early (and the consequent negative externality). By our
assumptions on preferences, we rule out that it is dominant for agents to go early.

It is still possible to generate unraveling by way of a coordination failure, as in the
literature on bank runs (Diamond and Dybvig 1983). In our model, however, and in
contrast to the model of bank runs, such unraveling is unstable. Only when all agents
are certain that all other agents want to go early are they willing to go early. This would
be an unstable situation: It is easy to rule out such an outcome if agents’ beliefs may
depart from certainty that everyone goes early. In contrast, we show that there is in our
model a stable equilibrium in which agents are more likely to go early than to go late.
Coordination failure is still present in that equilibrium, but unraveling arises through
the channel of strategic unraveling.

Finally, the multiplicative model also captures the negative externality imposed by
agents who go early on the rest of the market. There is an efficiency loss when some
agents go early; they hurt the rest of the agents (even in a model without transfers like
ours).

Information. The second assumption that deserves mention is our informational
assumption. We assume that agents are completely ignorant about match qualities at
date t = 0. The assumption is extreme, and it is meant to focus the model on the trade-
off between the value of the information revealed at t = 1 and the incentives to go early.
By assuming that there is no information at time t = 0 and full information at t = 1, we
have biased the model against the unraveling outcome.

That said, it may not be an unrealistic assumption. Roth and Xing (1994) claim that
“offers are being made so early that there are serious difficulties in distinguishing among
the candidates.” So our assumption of complete ignorance over match qualities may
reflect the actual situation in the markets where we observe unraveling.

Finally, we use an assumption of the c.d.f. F that allows us to exploit the results ob-
tained in the case when F is uniform. The assumption that x ≤ F(x) means that F is
smaller in the sense of first-order stochastic dominance than the uniform distribution.
Again, we need the uniform distribution to make precise calculations, and then the in-
equality on F allows us to obtain bounds. As we remarked above, the assumption on F

is satisfied when F is concave.
Amplification. There is an “amplification” of incentives to going early due to the un-

certainty in how many other agents go early. The reason is that the payoffs to going late
are concave in the number of agents who go early (even though, as we have emphasized,
agents are risk neutral in the model).

Compare the equilibrium probability that an agent goes early with the probability
that she goes early if a given number m of agents go early. We take this given number of
agents to equal the expected number of agents in equilibrium. The calculations are as
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follows. The function x 	→ Ux = 1
6(n + 1)2([2(n − x) + 1]/(n − x + 1)) is strictly concave

because its derivative is 1
6(n+ 1)2((−1)/(n−x+ 1)2), which is decreasing. Then Jensen’s

inequality means that EUm < Um̄, where m̄ = Em and we are taking expectations with
respect to the equilibrium distribution over agents who exit the market. Therefore, the
cutoff resulting from a known number m̄ of agents who exit the market is

δm̄ = Ue

Um̄
<

Ue

EUm
= δ∗�

meaning that the equilibrium cutoff δ∗ is always above the cutoff that results from a
known number m̄ of agents exiting the market. The difference between these two mag-
nitudes illustrates the amplification inherent in our model. It illustrates how uncertainty
over the number of agents to exit the market induces any given agent to want to leave
the market early.

5. Proof of Lemma 1

In this section, we present, in the first place, a formula for U1 that clarifies the meaning
of this quantity. Then an algorithm to compute Um in the general case is introduced
(Proposition 1). Lemmas 2 and 3 deduce a simple formula for Um.

Recall that U0 is the expected utility from waiting when all other hospitals wait. Then

U0 = 1
n

n∑
i=1

i2 = (n+ 1)(2n+ 1)
6

�

5.1 Computing U1

We compute the expected utility from waiting when only one pair of hospital–doctor
goes early. In period 1, after permutations πH and πD are drawn, sets H and D can
be ordered according to agents’ quality. Then consider the sets H and D described as
H = {1�2� � � � � n} and D = {1�2� � � � � n}, where the first agent is the lowest quality agent,
and the last agent is the highest quality agent.

First, conditional on being of quality i, the leaving hospital is of a higher quality
than i with probability (n − i)/(n − 1) and is of a lower quality than i with probability
(i− 1)/(n− 1). This is deduced from the fact that there are n − 1 possible qualities for
the hospital that leaves early, (n − i) of those are higher than i, and (i − 1) are lower
than i.

If the leaving hospital is of a higher quality than i, this means that hospital i is better
off unless the doctor who leaves with the hospital is also a “good” doctor—unless the
doctor who leaves is one who would be matched in the second period with a hospital
better than i (in which case the leaving hospital does not affect i). This happens with
probability (n− i)/n. With the complementary probability, i/n, hospital i is better off by
the better hospital leaving. Being better off means that hospital i will be matched in the
second period with a doctor with a quality 1 unit higher than i (i.e., a doctor of quality
(i+ 1)), which is worth i to a hospital of quality i.
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If the leaving hospital is of a lower quality than i, then this does not affect hospital
i and it gets i2, unless the doctor who leaves used to be with a better hospital or with i,
in which case hospital i goes down one step. To a hospital of quality i, losing one step
is worth −i. So in the event that a hospital of lower quality than i leaves (which has
probability (i− 1)/(n− 1)), it gets i2 for sure but it loses −i with probability (n− i+ 1)/n,
the probability that the partner of the hospital that goes early is of a quality greater than
or equal to i.

So

U1 = 1
n

n∑
i=1

{
n− i

n− 1

[
i2 + i

n
i

]
+ i− 1

n− 1

[
i2 − n− i+ 1

n
i

]}
�

Since the terms that multiply i2 add to 1, this gives

U1 = 1
n

n∑
i=1

[
i2 + i

n(n− 1)
(n− 2i+ 1)

]
= (2n− 1)(n+ 1)2

6n
�

Note that U1 can be also expressed as

U1 = U0 + 1
n

n∑
i=1

[
(n− i)

(n− 1)
i

n
i− (i− 1)

(n− 1)
(n− i+ 1)

n
i

]
= U0 − n+ 1

6n
�

The intuition behind this equation is the following. Notice that with probability
(n− i)/(n− 1), the hospital that leaves early is of a higher quality than i and with proba-
bility (i− 1)/(n− 1) is of a lower quality than i. Then ((n− i)/(n− 1))(i/n) is the proba-
bility that the hospital that leaves early is of a higher quality than i and the doctor it hires
is of a quality lower than or equal to i. In this event, hospital i increases its utility by i. If
the hospital that goes early is of quality lower than i and it hires a doctor of quality higher
than or equal to i, which happens with probability ((i − 1)/(n− 1))((n− i + 1)/n), then
hospital i decreases its utility by i. Therefore, U1 can be expressed as U0 plus the expected
utility derived from the leaving of a pair of hospital–doctor. Moreover, −(n + 1)/(6n) is
the negative externality imposed on the rest of the market by the first pair of hospital–
doctor that decides to match early.

Clearly, this argument is very hard to generalize if we consider more than one pair
of hospital–doctor that goes early. In the following section, we develop an algorithm to
compute the expected utility from waiting when m pairs of hospital–doctor leave the
market at t = 0.

5.2 An algorithm to compute Um

In this section, we introduce an algorithm to compute the value of Um in the general case.
First, we define the payoff matrix U as the element (i� j) of U is the utility that a doctor
of quality i has when she is hired by a hospital of quality j (which is also the utility of
the hospital). In particular, the elements of the first column of U are the utilities that the
hospital of quality 1 has if it hires a doctor of quality 1�2� � � � � n. Note that the elements
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of the main diagonal of U are 1�4� � � � � i2� � � � � n2, which are the payoffs that each agent
has when no pair of hospital–doctor leaves early. Thus, matrix U is

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 2 3 · · · (n− 1) n

2 4 6 · · · 2(n− 1) 2n
3 6 9 · · · 3(n− 1) 3n
���

(n− 1) 2(n− 1) 3(n− 1) · · · (n− 1)2 n(n− 1)
n 2n 3n · · · n(n− 1) n2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
�

When a hospital makes an offer at t = 0 and hires a doctor, both the hospital and
the doctor may be of any quality. So, to compute the expected utility of a hospital that
waits, we have to consider all possible qualities combinations. Assume that the hospital
who leaves is of quality j and the doctor who it hires is of quality i. If only this pair of
hospital–doctor leaves the market at t = 0, in the second period the utilities of hospitals
and doctors that do not leave the market are given by the assortative matching. Indeed,
the highest quality hospital (between those that remain in the market) will hire the high-
est quality doctor of those who do not exit the market. The same argument holds for all
agents.

Therefore, when doctor i is hired at t = 0 by hospital j, the utilities of hospitals and
doctors that remain in the market in the second period are the elements of the main di-
agonal of the submatrix of U that it is obtained from deleting the row i and the column j.
To consider all possible combinations for the quality of the hospital that leaves early and
the doctor who it hires, we have to go over all the elements of U. Thus, to compute the
expected utility from waiting when only one pair of hospital–doctor leaves at t = 0, we
have to compute all the submatrices of U obtained by deleting one row and one column,
for each one of these submatrices, we find its trace, we sum all these traces and, finally,
we have to divide the sum by n2(n − 1), since there are n2 possible pairs of qualities for
the hospital and the doctor that go early, and n− 1 possible qualities that a hospital that
waits may be assigned to in the second period.

If m hospitals make an offer at t = 0, we generalize the previous argument as follows.
Consider all submatrices of U that result when m rows and m columns are deleted. There
are

( n
m

) ( n
m

)
submatrices that can be found. In each case, there are (n − m) possible

qualities for a hospital that waits. Thus, for each submatrix, compute its trace; Um is
the sum of all the computed traces after dividing it by

( n
m

) ( n
m

)
(n − m) = (n2(n − 1)2 · · ·

(n−m+ 1)2/(m!)2)(n−m).
The following proposition states this result.5

Proposition 1. Let Um be the expected utility to a hospital of waiting for the second pe-
riod when m hospitals (with their respective doctors) have left the market at t = 0. Denote
by T(n�m) the sum of the traces of all submatrices of U when m rows and m columns are

5The algorithm can be also applied with other functions uh and ud whenever the functions are strictly
supermodular on the lattice {1�2� � � � � n}2.
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deleted. Then

Um = T(n�m)(m!)2

n2(n− 1)2 · · · (n−m+ 1)2
1

(n−m)
�

To come up with an expression for Um, the next step involves the computation of
T(n�m). The following lemma finds a formula for T(n�m). Then we obtain a reduced
expression of the formula by means of some combinatorial identities.

Lemma 2. Denote by T(n�m) the sum of the traces of all submatrices of U obtained by
deleting m rows and m columns. Then

T(n�m)

=
n∑

i=1

[
i2

m∑
k=0

((
i− 1
k

)(
n− i

m− k

))2]

+ 2
m∑
j=1

[n−j∑
i=1

i(i+ j)

(
m∑
k=j

(
i+ j − 1

k

)(
n− (i+ j)

m− k

)(
n− i

m− k+ j

)(
i− 1
k− j

))]
�

Proof. First we consider the elements of the main diagonal of U and then consider the
remaining elements.

The (ii) elements: Consider an element ii of the matrix, and suppose we delete m

rows and m columns. Note that there are i − 1 rows (columns) above (at the left of) the
element ii and n − i rows (columns) below (at the right). When we delete columns and
rows, the element ii remains in the main diagonal if the number of rows that are deleted
above ii is equal to the number of columns that are deleted from the left of ii. That is,
if we delete k rows above ii and m− k rows below, then we have to delete k columns at
the left and m − k columns at the right. Thus, the number of submatrices in which the
element ii is in the main diagonal is

m∑
k=0

((
i− 1
k

)(
n− i

m− k

))2

�

Since the element ii in the matrix is i2, the share of T(n�m) that corresponds to the
elements of the main diagonal of U is

n∑
i=1

[
i2

m∑
k=0

((
i− 1
k

)(
n− i

m− k

))2
]
�

The (ij) elements: Since U is a symmetric matrix, the trace of the submatrix that we
obtain by deleting rows i1� i2� � � � � im and columns j1� j2� � � � � jm is equal to the trace of the
submatrix obtained by deleting rows j1� j2� � � � � jm and columns i1� i2� � � � � im. Thus, we
only have to consider the elements i(i + j) for j > 0 and take two times the final result.
In particular, when only one row and one column are deleted, the elements that will be
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in the main diagonal of some submatrix are those of the form i(i + j) for i = 1� � � � � n− 1
and j = 1. When two rows and two columns are deleted, the elements to be considered
in T(n�m) are the previous elements and those of the form i(i + j) for i = 1� � � � � n − 2
and j = 2. In general, when m rows and m columns are deleted, we have to consider all
the elements that were contemplated when m−1 rows and m−1 columns were deleted,
and those of the form i(i+ j) for i = 1� � � � � n−m and j = m.

As we just noted, when we delete m rows and m columns, the elements that are in
the trace of some submatrix are those of the form i(i+ j) with j = 1�2� � � � �m. So consider
an element i(i + j). This element has i − 1 rows above and n− i below. Moreover, it has
i + j − 1 columns at the left and n − (i + j) columns at the right. Suppose we delete k

columns at the left of i(i + j) and m− (i + j) at the right. Now the element is in column
i + j − k. So as to be in the main diagonal of a submatrix, it should be that j − k ≤ 0.
Moreover, we have to delete k − j rows above the element i(i + j) to ensure that the
element is in the main diagonal of a submatrix.

Then the share of T(n�m) that corresponds to these elements is

2
m∑
j=1

[n−j∑
i=1

i(i+ j)

(
m∑
k=j

(
i+ j − 1

k

)(
n− (i+ j)

m− k

)(
i− 1
k− j

)(
n− i

m− (k− j)

))]
�

�

Lemma 3. For n ∈N and m ∈ 1�2� � � � � n− 1, it holds that

T(n�m) =
(
n+ 1
m

)2
(
n−m∑
i=1

i2

)
�

Proof. The proof was provided to us by Doron Zeilberger. It is organized in five claims.

Claim 1. The term T(n�m) can be written as

∑
i�j�k

i(i+ j)

(
i+ j − 1

k

)(
n− (i+ j)

m− k

)(
n− i

m− k+ j

)(
i− 1
k− j

)
�

where the summation range is over all triples (i� j�k), with the convention that the bino-
mial coefficient

( r
s

)
is zero if it is not the case that 0 ≤ s ≤ r.

Proof. In the proof of the last lemma, we found an expression for T(n�m) using the
symmetry of the matrix U. If we do not use the symmetry, we obtain the equivalent
expression

T(n�m) =
n∑

i=1

[
i2

m∑
k=0

((
i− 1
m− k

)(
n− i

k

))2
]

+
m∑
j=1

[n−j∑
i=1

i(i+ j)

(
m∑
k=j

(
i+ j − 1

k

)(
n− (i+ j)

m− k

)(
n− i

m− k+ j

)(
i− 1
k− j

))]

+
m∑
i=1

[
n−i∑
j=1

j(i+ j)

(
m∑
k=i

(
i+ j − 1

k

)(
n− (i+ j)

m− k

)(
n− j

m− k+ i

)(
j − 1
k− i

))]
�
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Note that for each j = 1� � � � �m, the range for i is 1 ≤ i ≤ n − j, and for each i = 1� � � � �m,
the range for j is 1 ≤ j ≤ n− i. Thus, we can write these conditions as 1 ≤ i ≤ n, 1 ≤ j ≤ n,
and 1 ≤ i+ j ≤ n. Now consider the sum

∑
i�j�k

i(i+ j)

(
i+ j − 1

k

)(
n− (i+ j)

m− k

)(
n− i

m− k+ j

)(
i− 1
k− j

)
�

The implicit range for each variable is j ≤ k ≤ m, 1 ≤ i ≤ n, 1 ≤ j ≤ n, and 1 ≤ i + j ≤ n.
This implies that both sums are equal. �

Claim 2. The sum of Claim 1 equals

n∑
a=1

a

min(a−1�m)∑
k=max(0�a−(n−m))

(
a− 1
k

)(
n− a

m− k

) a−k+m∑
i=a−k

i

(
n− i

m− k+ a− i

)(
i− 1

k− a+ i

)
�

Proof. Writing a = i + j (and leaving i as a discrete variable, but letting j = a − i), the
sum of the last claim is equal to

∑
a�k�i

ia

(
a− 1
k

)(
n− a

m− k

)(
n− i

m− k+ a− i

)(
i− 1

k− a+ i

)
�

Note that summation range of each variable is defined as follows:

(a) For a, 1 ≤ a≤ n.

(b) For k, 0 ≤ k ≤ m, 0 ≤ m − k + a − i ≤ n − i, and 0 ≤ k ≤ a − 1. This implies that
max(0� a− (n−m)) ≤ k≤ min(a− 1�m).

(c) For i, 1 ≤ i ≤ n, 0 ≤ m − k + a − i, and 0 ≤ k − a + i. This implies that a − k ≤ i ≤
m− k+ a.

Then the last sum equals the iterated summation

n∑
a=1

min(a−1�m)∑
k=max(0�a−(n−m))

a−k+m∑
i=a−k

ia

(
a− 1
k

)(
n− a

m− k

)(
n− i

m− k+ a− i

)(
i− 1

k− a+ i

)
�

which is equivalent to

n∑
a=1

a

min(a−1�m)∑
k=max(0�a−(n−m))

(
a− 1
k

)(
n− a

m− k

) a−k+m∑
i=a−k

i

(
n− i

m− k+ a− i

)(
i− 1

k− a+ i

)
�

�

Claim 3. The innermost sum is

a−k+m∑
i=a−k

i

(
n− i

m− k+ a− i

)(
i− 1

k− a+ i

)
= (a− k)

(
n+ 1
m

)
�
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Proof. First note that i
(

i−1
k−a+i

)
= (a− k)

(
i

a−k

)
. Then we have

a−k+m∑
i=a−k

i

(
n− i

m− k+ a− i

)(
i− 1

k− a+ i

)
= (a− k)

a−k+m∑
i=a−k

(
n− i

m− k+ a− i

)(
i

a− k

)
�

Now notice that

a−k+m∑
i=a−k

(
n− i

m− k+ a− i

)(
i

a− k

)
=

m∑
i=0

(
n− (a− k+ i)

m− i

)(
a− k+ i

a− k

)
�

Since
(
a−k+i
a−k

)
=

(
a−k+i

i

)
, the last sum can be written as

m∑
i=0

(
n− (a− k+ i)

m− i

)(
a− k+ i

i

)
�

which is equal to
m∑
i=0

(
(n−m− a+ k)+m− i

m− i

)(
a− k+ i

i

)
�

Finally, we use the Vandermonde–Chu identity (Sprugnoli 2012, p. 54):

n∑
k=0

(
x+ k

k

)(
y + n− k

n− k

)
=

(
x+ y + n+ 1

n

)
�

Defining x= a− k and y = (n−m− a+ k), we have

m∑
i=0

(
(n−m− a+ k)+m− i

m− i

)(
a− k+ i

i

)
=

(
x+ y + n+ 1

n

)
=

(
n+ 1
m

)
�

�

Claim 4. For the middle sum it holds that

min(a−1�m)∑
k=max(0�a−(n−m))

(a− k)

(
a− 1
k

)(
n− a

m− k

)
= a

(
n− 1
m

)
− (a− 1)

(
n− 2
m− 1

)
�

Proof. First, we divide the sum:

min(a−1�m)∑
k=max(0�a−(n−m))

(a− k)

(
a− 1
k

)(
n− a

m− k

)

= a

min(a−1�m)∑
k=max(0�a−(n−m))

(
a− 1
k

)(
n− a

m− k

)
−

min(a−1�m)∑
k=max(0�a−(n−m))

k

(
a− 1
k

)(
n− a

m− k

)
�

We use the Vandermonde–Chu identity (Sprugnoli 2012, p. 53):

n∑
k=0

(
x

k

)(
y

n− k

)
=

(
x+ y

n

)
�
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The first sum is6

a

min(a−1�m)∑
k=max(0�a−(n−m))

(
a− 1
k

)(
n− a

m− k

)
= a

(
n− 1
m

)
�

If we replace k
(
a−1
k

)
= (a− 1)

(
a−2
k−1

)
in the second sum, we have

(a− 1)
min(a−1�m)∑

k=max(0�a−(n−m))

(
a− 2
k− 1

)(
n− a

m− k

)
�

which is equal to

(a− 1)
m∑

k=0

(
a− 2

m− 1 − k

)(
n− a

k

)
�

By the Vandermonde–Chu identity, the sum is

(a− 1)
(
n− 2
m− 1

)
� �

Claim 5. Finally, we have

T(n�m) =
(
n+ 1
m

)2
(
n−m∑
i=1

i2

)
�

Proof. Since the last claims, we know that

T(n�m) =
(
n+ 1
m

)((
n− 1
m

)(
n∑

a=1

a2

)
−

(
n− 2
m− 1

)(
n∑

a=1

a(a− 1)

))
�

Then compute

(
n+ 1
m

)((
n− 1
m

)(
n∑

a=1

a2

)
−

(
n− 2
m− 1

)(
n∑

a=1

a(a− 1)

))

=
(
n+ 1
m

)(
(n− 1)!

m!(n−m− 1)!
n(n+ 1)(2n+ 1)

6

− (n− 2)!
(m− 1)!(n−m− 1)!

(n− 1)n(n+ 1)
3

)

=
(
n+ 1
m

)(
(n+ 1)!

m!(n−m− 1)!
(2n+ 1)

6
− (n+ 1)!

m!(n−m− 1)!
m

3

)

=
(
n+ 1
m

)
(n+ 1)!

m!(n−m− 1)!
(

2n+ 1
6

− m

3

)

6Note that max(0� a − (n − m)) = 0. Indeed, if (a − (n − m)) > 0, we have n − a − m − k < 0 and, thus,(
n−a
m−k

)
= 0. Also, we can write the sum up to k= m, because for k = a�a+ 1� � � � �m,

(
a−1
k

)
= 0.
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=
(
n+ 1
m

)
(n+ 1)!

m!(n−m− 1)!
2n− 2m+ 1

6

=
(
n+ 1
m

)
(n+ 1)!

m!(n−m+ 1)!
(n−m)(n−m+ 1)(2n− 2m+ 1)

6

=
(
n+ 1
m

)2 (n−m)(n−m+ 1)(2(n−m)+ 1)
6

=
(
n+ 1
m

)2 n−m∑
i=1

i2� �

This completes the proof of Lemma 3. �

Finally, we obtain the formula for Um. We know that

Um = T(n�m)( n
m

) ( n
m

)
(n−m)

�

First note that (
n+ 1
m

)2
=

[
n+ 1

n−m+ 1

]2 (
n

m

)2
�

Then, by replacing the last expression in Um, we obtain

Um = (n+ 1)2

(n−m+ 1)2(n−m)

(n−m)(n−m+ 1)(2(n−m)+ 1)
6

�

By simplifying the last equation, we prove the result:

Um = (n+ 1)2(2(n−m)+ 1)
6(n−m+ 1)

�

Note that Um increases with n, the number of agents. This means that if there are
more agents in the market, the expected utility of waiting when a fixed number of agents
leave the market at t = 0, increases.

The next result shows that Um decreases with m, a property that will be used in the
next section. Then the expected utility of waiting and match at t = 1 decreases as more
agents leave early.

Corollary 3. Let Um be expected utility of a hospital that decides to wait for the second
period when m pairs of hospital–doctor leave the market at t = 0. Then for n ∈ N and
m= 0�1�2� � � � � n− 1, we have

Um − Um+1 = (n+ 1)2

6(n−m)(n−m+ 1)
�

Note that Um+1 − Um represents the negative externality imposed on the rest of
the market by one pair of hospital–doctor that decides to go early, when m agents



Theoretical Economics 11 (2016) Strategic complementarities and unraveling 23

Figure 2. The Um for different degrees of complementarity of payoffs.

have already decided to match at t = 0. Since Um − Um+1 increases when m becomes
larger, the negative externality imposed by one more pair going early increases (in
absolute value) as more agents have decided to go early. Moreover, when the num-
ber of agents (that is, n) increases, the negative externality decreases. However, since
limn→∞ Um+1 − Um = 1

6 , it does not converge to zero as the market size goes to infinity.
Thus, the negative externality becomes neutral when n tends to infinity because it does
not depend on the number of agents who have previously decided to match early.

Finally, we use the algorithm described in Proposition 1 to study whether even mod-
est degrees of complementarity of payoffs would continue to imply that Um is decreasing
in m. Specifically, we assume a CES specification for the payoffs

f (π(h)�π(d)) = (π(h)ρ +π(d)ρ)1/ρ�

with ρ < 1, and we compute Um with m ∈ {0� � � � � n − 1} for n = 10 and n = 15, and for
different values of ρ. As Figure 2 shows, Um is decreasing in m for all the studied values
of ρ, which means that our result holds even for small degrees of complementarity.

6. Proof of Theorem 2

Recall that the best-response function of the game, βn, is defined by (1) in the following
way. Given identical thresholds δ−h = δ for all hospitals other than h, βn(δ) is given by
the equation

1
n2

n∑
i=1

n∑
j=1

ij = βn(δ)Es−h
Um�



24 Echenique and Pereyra Theoretical Economics 11 (2016)

where s−h is such that s
h̃

= 0 if δ
h̃

≤ δ and s
h̃

= 1 if δ
h̃
> δ for all h̃ �= h.

Note that

1
n2

n∑
i=1

n∑
j=1

ij = (n+ 1)2

4
�

When all hospitals other than h have the same threshold δ, the probability that m
hospitals make early offers is the probability that m hospitals have discount factors less
than or equal to δ, and that n − m hospitals have discount factors higher than δ. Since
discount factors are drawn independently from a uniform distribution on [0�1], the

probability that m hospitals leave at t = 0 is given by δm(1 − δ)n−1−m
(
n−1
m

)
. Therefore,

Es−h
Um =

n−1∑
m=0

δm(1 − δ)n−1−m

(
n− 1
m

)
Um�

Then βn is defined by

βn(δ) = (n+ 1)2

4
[∑n−1

m=0 δ
m(1 − δ)n−1−m

(
n−1
m

)
Um

] �
The symmetric BNE of our game are the fixed points of the best-response func-

tion βn. Since we know that Un−1 = 1
4(n + 1)2 from Lemma 1, then βn(1) = 1 for all n.

Thus, full unraveling is a BNE for all n. In this section, we investigate the existence of
other fixed points. In particular, Lemma 4 gives a simple formula for βn. Lemma 6 shows
that βn is a convex and increasing function of δ and βn(0) > 3

4 . Thus, βn may have, at
most, one fixed point different from δ= 1. Moreover, if it exists, the fixed point is higher
than 3

4 . Lemma 6 proves that δ = 1 is the unique fixed point of βn for all n ≤ 10, and
if n > 10, βn has exactly two fixed points. Finally, Lemma 8 studies the behavior of βn

when n tends to infinity.
It is worthwhile noting that the threshold at the BNE sn defined in Theorem 2 de-

creases as more agents are present in the market. This means that the probability that
a hospital makes early offers decreases as the number of agents increases. The intuition
of this result is straightforward since, as we noted before, the incentives to make early
offers when a fixed number of agents leave the market at t = 0 decreases with n.

Lemma 4. We have

βn(δ) = 3
2

(
2 − 1

n(n+ 1)

n∑
m=1

mδn−m

)−1

�

First we will prove the following lemma, which will be useful in the proof of Lemma 4.

Lemma 5. For any n ∈N and δ ∈R, it holds that

n∑
m=0

(1 − δ)n−mδm
( n
m

)
n−m+ 2

=
n∑

m=0

(m+ 1)δn−m

(n+ 1)(n+ 2)
�
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Proof.7 Consider the following polynomials of degree n:

p(δ) =
n∑

m=0

(1 − δ)n−mδm
( n
m

)
n−m+ 2

q(δ) =
n∑

m=0

(m+ 1)δn−m

(n+ 1)(n+ 2)
�

We want to prove that p = q, and to this end, we will show that all the derivatives
of p and q are equal at δ = 0. Denote by p(k) and q(k) the kth derivative of p and q,
respectively. It is straightforward to show that

q(k)(δ) =
n−k∑
m=0

1
(n+ 1)(n+ 2)

(m+ 1)(n−m)(n−m− 1) · · · (n−m− k+ 1)δn−m−k

for k= 1�2� � � � � n.
Then

q(k)(δ) =
n−k∑
m=0

1
(n+ 1)(n+ 2)

(m+ 1)
(n−m)!

(n−m− k)!δ
n−m−k�

When we evaluate at δ= 0, we have

q(k)(0) = (n− k+ 1)k!
(n+ 1)(n+ 2)

�

To compute the kth derivative of p, consider the functions

g1(δ) = (1 − δ)n−m

g2(δ) = δm�

Then

g(i)1 (δ) = (n−m)!
(n−m− i)!(−1)i(1 − δ)n−m−i

g(k−i)
2 (δ) = m!

(m− k+ i)!δ
m−(k−i)�

By the general Leibniz rule, we have, for k = 1�2� � � � � n,

(g1g2)
(k)(δ) =

k∑
i=0

(
k

i

)
(n−m)!

(n−m− i)!
m!

(m− k+ i)!(−1)i(1 − δ)n−m−iδm−(k−i)�

If m − k ≥ 0, then m − (k − i) ≥ 0 for all i and, thus, (g1g2)
(k)(0) = 0 Then supposing

m− k≤ 0, we have

(g1g2)
(k)(0) =

(
k

k−m

)
(n−m)!
(n− k)! m!(−1)k−m�

7We are very grateful to Andrés Sambarino for helpful comments on this proof.
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Thus, the kth derivative of p is

p(k)(0) =
n∑

m=0

(
n

m

)
1

(n+ 2 −m)

(
k

k−m

)
(n−m)!
(n− k)! (−1)k−mm!�

As we just noted, when m ≥ k, p(k)(0) = 0, then we can write the previous sum from
m= 0 to m= k.

We want to prove that p(k)(0) = q(k)(0) for all k= 1�2� � � � � n; that is,

k∑
m=0

(
n

m

)
1

(n+ 2 −m)

(
k

k−m

)
(n−m)!
(n− k)! (−1)k−mm! = (n− k+ 1)!k!

(n+ 1)(n+ 2)
�

Note that (
n

m

)
(n+ 1)(n+ 2)
(n+m− 2)

=
(
n+ 2
m

)
(n+ 1 −m)

(
k

k−m

)
(n−m)!
(n− k)! m! 1

(n− k+ 1)k!(n+ 1 −m) =
(
n+ 1 −m

n− k+ 1

)
�

Thus, we have to prove that

(−1)k
k∑

m=0

(
n+ 2
m

)(
n+ 1 −m

n− k+ 1

)
(−1)m = 1�

To finish the proof, we use the binomial identity (Riordan 1968, p. 8)

n∑
k=0

(−1)k
(
n

k

)(
x− k

r

)
=

(
x− n

r − n

)
=

(
x− n

x− r

)
�

Thus,

(−1)k
k∑

m=0

(
n+ 2
m

)(
n+ 1 −m

n− k+ 1

)
(−1)m = (−1)k

(−1
k

)
�

Finally, by the negation rule, we have
(−1

k

)
= (−1)k

(
1+k−1

k

)
= (−1)k, and then

(−1)k
k∑

m=0

(
n+ 2
m

)(
n+ 1 −m

n− k+ 1

)
(−1)m = (−1)2k = 1�

�

Proof of Lemma 4. We know that

βn(δ) = (n+ 1)2

4
[∑n−1

m=0(1 − δ)n−1−mδm
(
n−1
m

)
Um

]

Um = (n+ 1)2(2(n−m)+ 1)
6(n−m+ 1)
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for m= 0� � � � � n− 1.
We will use the two identities

2(n−m)+ 1
n−m+ 1

= 2 − 1
n−m+ 1

�

n−1∑
m=0

(1 − δ)n−1−mδm
(
n− 1
m

)
= 1�

Then, by substituting Um and since the last identities, we have

βn(δ) = 3

2
(

2 − ∑n−1
m=0

(1−δ)n−1−mδm
(
n−1
m

)
n−m+1

) �

By the previous lemma, we can write βn as

βn(δ) = 3

2
(
2 − ∑n−1

m=0
(m+1)
n(n+1)δ

n−1−m
) �

which is equivalent to

βn(δ) = 3

2
(
2 − 1

n(n+1)
∑n

m=1 mδn−m
) �

�

The following lemma gives more information on the nature of βn.

Lemma 6. We have

βn(δ) =
⎧⎨
⎩

3

2[2− 1
n(n+1) (

δn+1−(n+1)δ+n

(1−δ)2
)]

if δ ∈ (0�1)

1 if δ = 1.

Further, the following statements hold:

(a) The function βn is increasing for each n.

(b) The function βn(0) > 3
4 and βn(1) = 1 for all n.

(c) The function βn is convex.

(d) The function βn has, at most, two fixed points: δ = 1 is a fixed point of βn for all
n ∈N and it may have another fixed point that, if it exists, is higher than 3

4 .

Proof. When δ = 1, we have

βn(1) = 3

2
(
2 − 1

n(n+1)
∑n

m=1 m
) = 3

2
(
2 − 1

n(n+1)
n(n+1)

2

) = 1�

Then suppose δ ∈ (0�1) and note that

n∑
m=1

mδn−m = δn
n∑

m=1

m

(
1
δ

)m

�
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We use the following identity, which holds for x �= 1:

n∑
m=1

mxm = x(1 − (n+ 1)xn + nxn+1)

(1 − x)2 �

Finally, for δ ∈ (0�1), we have

n∑
m=1

mδn−m = δn+1 − (n+ 1)δ+ n

(1 − δ)2 �

To prove part (a), note that for all δ ∈ [0�1],
(

n∑
m=1

mδn−m

)′
=

n−1∑
m=1

m(n−m)δn−m−1 ≥ 0�

Then the expression
∑n

m=1 mδn−m increases with δ and, thus, βn is increasing.
For part (b), notice that βn(0) = (3(n+ 1))/(2(2n+ 1)) > 3

4 for all n≥ 1.
To prove part (c), note that βn(δ) = f (g(δ)), where g(δ) = ∑n

m=1 mδn−m and f (x) =
3/(2(2 − x/(n(n+ 1)))). Since f is an increasing and convex function, and g is a convex
function, then βn is a convex function.

To prove part (d), we know that δ = 1 is a fixed point of βn. Since βn(0) > 3
4 , βn is

convex, and βn is increasing, βn crosses the line y = x at, at most, one point different
from δ= 1. Thus, if it exists, the second fixed point is higher than 3

4 . �

Lemma 7. Consider the best-response function βn. Then the following statements hold:

(a) For each δ ∈ [0�1], it holds that βn(δ) ≥ βn+1(δ).

(b) For all n ≤ 10, δ= 1 is the unique fixed point of βn.

(c) For all n > 10, βn has two and only two fixed points.

Proof. (a) We will show that

δn+1 − (n+ 1)δ+ n

n(n+ 1)
≥ δn+2 − (n+ 2)δ+ (n+ 1)

(n+ 1)(n+ 2)

or, equivalently,

δn+1

n
− δ

n
− δn+2

n+ 2
+ 1

n+ 2
≥ 0�

Define

hn(δ) = δn+1

n
− δ

n
− δn+2

n+ 2
+ 1

n+ 2
�

It is straightforward to prove that hn is such that hn(0) = 1/(n+ 2), hn(1) = 0, and hn

is decreasing in [0�1). So, we have that hn(δ) ≥ 0.
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For (b) and (c), we have to study the solutions in [0�1] of the equation

βn(δ) = 3

2
(
2 − 1

n(n+1)
∑n

m=1 mδn−m
) = δ�

Since for each δ ∈ [0�1] it holds that βn(δ) ≥ βn+1(δ), if βn has two fixed points for
some n0, then βn has two fixed points for all n such that n ≥ n0. We know that δ = 1 is
one solution of the equation and there may be, at most, one more solution in [0�1]. The
equation is equivalent to

pn(δ) = δn + 2δn−1 + 3δn−2 + · · · + (n− 1)δ2 + (−2n2 − n)δ+ 3n(n+ 1)
2

= 0�

As we noted, δ= 1 is a root of pn. We also know that pn(0) = 3n(n+ 1)/2 > 0 and that
pn has, at most, one more root. Then we will prove that for some n0, p′

n0
(1) > 0, which

implies that for all n ≥ n0, pn has two fixed points in [0�1]. Then compute

p′
n(1) =

[
n−1∑
i=1

i(n− i+ 1)

]
+ (−2n2 − n)= n(n+ 1)(n− 10)

6
�

Thus, for all n such that 0 ≤ n ≤ 10, p′
n(1) ≤ 0 and, for all n > 10, p′

n(1) > 0. This
finishes the proof. �

6.1 Behavior as n → ∞
Lemma 8. For each δ ∈ [0�1],

lim
n→∞βn(δ) =

{ 3
4 if δ ∈ [0�1)
1 if δ= 1.

Proof. For δ = 1 we know that βn(1) = 1 for all n. Assume δ < 1. Then, by Lemma 6, it
is enough to show that

lim
n→+∞

1
n(n+ 1)

[
δn+1 − (n+ 1)δ+ n

(1 − δ)2

]
= 0�

The last expression is equivalent to

1
(1 − δ)2

[
δn+1

n+ 1
− δ

n
+ 1

n+ 1

]
�

Finally, it is straightforward to show that the limit of the last expression when n tends
to infinity is zero. �

Note that Lemma 8 implies that the best-response function βn converges to a dis-
continuous function as n→ ∞.
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Finally, note that in any symmetric BNE, the expected number of hospitals that go
early is given by

n∑
m=0

m(1 − δ∗)n−m(δ∗)m
(
n

m

)
�

where δ∗ is a fixed point of βn.
The last expression equals nδ∗. As we noted before, βn has, at most, two fixed points,

each one higher than 3
4 . Thus, in any symmetric BNE, the expected number of hospitals

that go early is at least 3
4n.

7. Proof of Theorem 1

When all agents share the prior that different δh are drawn independently from a distri-
bution over [0�1] with c.d.f. F , the best-response function is given by F(βn(x)). Since βn

is an increasing function and F(x) ≥ x, we have that βn(F(x)) ≥ βn(x). Finally, note that
F(1) = 1 and that βn(1) = 1. Then Theorem 1 follows directly from Theorem 2.

8. Proof of Theorem 4

Theorem 3 follows from Theorem 4, so we present the proof of Theorem 4 before that
of Theorem 3.

When both sides of the market are strategic, the game is analyzed in the same way as
in the previous sections. The difference is that now the probability that m agents leave
early is the probability that the minimum between the hospitals and the doctors that
play at t = 0 equals m. Then the expected value of Um involves the probability distribu-
tion of the minimum of two independent binomial random variables, one with param-
eters (δ�n− 1) and the other with parameters (δ�n).8

We introduce some additional notation. Let xm be the probability that a binomial
random variable with parameters (δ�n − 1) equals m, let ym be the probability that a
binomial random variable with parameters (δ�n) equals m, and let hm be the proba-
bility that the minimum of two independent such random variables equals m. Denote
by G and H the cumulative distribution function of a binomial random variable with
parameters (δ�n− 1) and (δ�n), respectively, and let Ḡ = 1 −G and H̄ = 1 −H.

Therefore, the best-response function is defined by

β̃n(δ) = (n+ 1)2

4[∑n−1
m=0 hmUm] �

We use the results of the previous sections to find a lower and upper bound for β̃n.
We first prove some properties of β̃n. In particular, Lemma 9 shows that δ = 1 is a fixed

8Note that the best-response function is defined from the perspective of a single player. Assume it is a
hospital. So the probability that Um happens is the probability that the minimum between a binomial ran-
dom variable with parameters (δ�n − 1), representing the (n − 1) hospitals, and an independent binomial
random variable with parameters (δ�n), representing all n doctors, equals m.
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point of β̃n for all n, that β̃n is an increasing function of δ, and that β̃n(δ) ≥ β̃n+1(δ) for
all n. Lemma 10 demonstrates that for each ε > 0, there exists n0 such that for all n ≥ n0

and δ ∈ [0�1], it holds that

βn(δ) ≥ β̃n(δ) ≥
3
4( 3

2 + ε
) �

Then limn→∞ β̃n(δ) ≥ 1
2 , and since β̃ decreases when n increases, we conclude that for

all n,

βn(δ) ≥ β̃n(δ) ≥ 1
2 �

Finally, given that βn has two fixed points when n > 10, we can conclude that β̃n has,
at least, two fixed points for n > 10.

Lemma 9. Consider the best-response function β̃n as defined before. Then the following
statements hold:

(a) We have β̃n(1) = 1 for all n.

(b) The function β̃n is an increasing function of δ.

(c) For each δ ∈ [0�1], β̃n(δ) ≥ β̃n+1(δ) for all n.

Proof. (a) Given that the cumulative distribution function of the minimum of two in-
dependent random variables with c.d.f. G and H is 1 − (1 −G)(1 −H), we have

hm = 1 − (1 −G(m))(1 −H(m))− (
1 − (1 −G(m− 1))(1 −H(m− 1))

)
= H(m)−H(m− 1)+G(m)−G(m− 1)+H(m− 1)G(m− 1)−H(m)G(m)

= xm + ym +H(m− 1)(G(m− 1)−G(m))+G(m)(H(m− 1)−H(m))

= xmH̄(m− 1)+ ymḠ(m)�

Thus,

β̃n(δ) = (n+ 1)2

4[∑n−1
m=0(xmH̄(m− 1)+ ymḠ(m))Um] �

When we compute β̃n(1), we obtain

β̃n(1) = (n+ 1)2

4[(H̄(n− 2))Un−1]
�

Given that Un−1 = 1
4(n− 1)2 and, for δ = 1, H̄(n− 2) = 1, we have that β̃n(1) = 1.

(b) Now let Ĝ and Ĥ be the cumulative distribution function of a binomial random
variable with parameters (δ̂� n − 1) and (δ̂� n), respectively, with δ̂ > δ. We know that
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Ĝ(m)≤ G(m) and Ĥ(m) ≤ H(m) for m ∈ {0� � � � � n− 1}; then 1 − (1 − Ĝ(m))(1 − Ĥ(m)) ≤
1 − (1 −G(m))(1 −H(m)). Let ĥm be the probability that the minimum of two indepen-
dent binomial random variables, one with parameters (δ̂� n − 1) and the other (δ̂� n),
equals m. Then, since Um decreases with m, we have that

n−1∑
m=0

ĥmUm ≤
n−1∑
m=0

hmUm�

Therefore, β̃n is an increasing function of δ.
(c) We know that Um = (n+ 1)2(2(n−m)+ 1)/(6(n−m+ 1)). Then the best-response

function can be written as

β̃n(δ) = 3

2
[
1 + ∑n−1

m=0
n−m

n−m+1hm
] �

Using a change of variable, k = n−m, we obtain

n−1∑
m=0

n−m

n−m+ 1
hm =

n∑
k=1

k

k+ 1
hn−k =

n∑
k=0

k

k+ 1
hn−k�

Consider two binomial random variables Xn
1 and Xn+1

2 . Each random variable is
defined on the same sample space, i.e., the space of an infinite number of Bernoulli
trials. For Xn

1 and Xn+1
2 , we count the number of successes in the first n and n + 1 such

trials, respectively. The sample spaces for Xn
1 and Xn+1

2 are independent.
Now, for each n, there are also the random variables Yn

1 and Yn+1
2 counting the num-

ber of failures. Note that Xn
1 +Yn

1 = n and Xn+1
2 +Yn+1

2 = n+ 1.
Let rk be the probability that max{Yn

1 �Y
n+1
2 − 1} = k. Observe that hn−k = rk. So we

have that
n−1∑
m=0

n−m

n−m+ 1
hm =

n∑
k=0

k

k+ 1
rk�

Since we have defined these random variables on the same sample space, it is true
that

{Yn
1 ≥ x} ⊆ {Yn+1

1 ≥ x}
and

{Yn+1
2 − 1 ≥ x} ⊆ {Yn+2

2 − 1 ≥ x}
for any x, because any time that we have at least x failures in the first n or n+ 1 Bernoulli
trials, we have at least x failures in the first n + 1 or n + 2 Bernoulli trials (past failures
cannot be undone).

By the same token,

{max{Yn
1 �Y

n+1
2 − 1} ≥ x} ⊆ {max{Yn+1

1 �Yn+2
2 − 1} ≥ x}�
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so that the probability distribution (rk) increases in the sense of first-order stochastic
dominance (it actually increases in a stronger sense).

The function k 	→ k/(k+ 1) is monotone increasing. Thus, the sum

n∑
k=0

k

k+ 1
rk

is increasing in n, as it is the expected value of a monotone increasing function and the
probability law is monotone increasing in n. �

Consider the function

αn(δ) = (n+ 1)2

4[∑n−1
m=0 jmUm] �

where jm is the probability that the minimum of two binomial independent random
variables with parameters (δ�n − 1) equals m. We will prove that there exists n0 such
that for all n ≥ n0, we have αn(δ) ≥ 3

4/(
3
2 + ε). Then, after showing that β̃n(δ) ≥ αn(δ) for

all δ, we deduce a lower bound of the best-response function.

Lemma 10. Let ε > 0. Then there exists n0 such that for all n ≥ n0, the function αn defined
previously satisfies

αn(δ) ≥
3
4( 3

2 + ε
) �

Proof. Since the cumulative distribution function of the minimum of two binomial
independent random variables with parameters (δ�n− 1) is 1 − (1 −G)2, we have

jm = (
1 − (1 −G(m))2) − (

1 − (1 −G(m− 1))2)
= (1 −G(m− 1))2 − (1 −G(m))2

= 2(G(m)−G(m− 1))+G(m− 1)2 −G(m)2

= 2xm + (G(m− 1)−G(m))(G(m)+G(m− 1))

= xm(2 −G(m− 1)−G(m))

= xm(Ḡ(m− 1)+ Ḡ(m))

≤ 2xmḠ(m− 1)�

Then
n−1∑
m=0

jmUm =
n−1∑
m=0

xm(Ḡ(m− 1)+ Ḡ(m))Um ≤
n−1∑
m=0

2xmḠ(m− 1)Um�

The median of a binomial distribution with parameter (δ�n−1) lies within the inter-
val [(n−1)δ�� �(n−1)δ�]. Moreover, if (n−1)δ is an integer, the median is (n−1)δ. So if
(n− 1)δ is an integer, we have that Ḡ((n− 1)δ) = Pr[xm ≥ (n− 1)δ+ 1] ≤ 1

2 . Otherwise, if
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(n− 1)δ is not an integer, Ḡ((n− 1)δ�) = Pr[xm > (n− 1)δ�] = Pr[xm ≥ �(n− 1)δ�] ≤ 1
2 .

Thus, if m≥ (n− 1)δ� + 1, we have that Ḡ(m− 1) ≤ Ḡ((n− 1)δ�) ≤ 1
2 . Then

n−1∑
m=0

jmUm ≤ 2

[(n−1)δ�∑
m=0

UmxmḠ(m− 1)+
n−1∑

m=(n−1)δ�+1

UmxmḠ(m− 1)

]

≤ 2

[(n−1)δ�∑
m=0

Umxm + 1
2

n−1∑
m=(n−1)δ�+1

Umxm

]

=
(n−1)δ�∑
m=0

Umxm +
n−1∑
m=0

Umxm = g(δ)+
(n−1)δ�∑
m=0

Umxm�

where g(δ) = ∑n−1
m=0 Umxm.

Now recall that

Um = (n+ 1)2(2(n−m)+ 1)
6(n−m+ 1)

�

So we obtain that

(n−1)δ�∑
m=0

Umxm = (n+ 1)2

6

(n−1)δ�∑
m=0

(2(n−m)+ 1)
n−m+ 1

xm

= (n+ 1)2

6

(n−1)δ�∑
m=0

(
1 + (n−m)

n−m+ 1

)
xm

≤ (n+ 1)2

6

(n−1)δ�∑
m=0

2xm

≤ (n+ 1)2

6
�

where, in the last inequality, we use that G((n− 1)δ�) ≤ 1
2 .

Therefore,

∑(n−1)δ�
m=0 Umxm

g(δ)
≤

(n+1)2

6
g(δ)

=
(

n−1∑
m=0

2(n−m)+ 1
n−m+ 1

xm

)−1

� (2)

Now let ε > 0. Choose ρ0�ρ1 ∈ (0�1) such that9

1
1 + ρ0ρ1

<
1
2

+ ε�

9Note that ρ0 and ρ1 exist since l(x) = 1/(1 + x) is a continuous and decreasing function in [0�1] with

l(0) = 1 and l(1) = 1
2 .
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Let n be large enough such that

Pr
(
M̃ ≤ n− ρ0

1 − ρ0

)
≥ ρ1�

where M̃ is a binomial random variable with parameters (n− 1� δ).
Clearly, the value of n that satisfies the last inequality depends on δ. Moreover, for

higher values of δ, we need to consider higher values of n. Then assume that δ ≤ 1
2 and

take n large enough such that the inequality holds. In the last step of the proof, we extend
the result for all values of δ.

Now m≤ n− ρ0/(1 − ρ0) if and only if ρ0 ≤ (1 − ρ0)(n−m) if and only if

ρ0 ≤ n−m

n−m+ 1
�

Noting that
∑n−1

m=0(2(n − m) + 1)/(n − m + 1)xm is the expectation of the random
variable (

2(n− M̃)+ 1

n− M̃ + 1

)
�

then we have

n−1∑
m=0

2(n−m)+ 1
n−m+ 1

xm = EM̃

(
2(n− M̃)+ 1

n− M̃ + 1

)
= EM̃1 +EM̃

(
n− M̃

n− M̃ + 1

)
�

Now note that

EM̃

(
n− M̃

n− M̃ + 1

)
=

n−1∑
m=0

(
n−m

n−m+ 1

)
xm

≥
n−ρ0/(1−ρ0)�∑

m=0

(
n−m

n−m+ 1

)
xm

≥ ρ0

n−ρ0/(1−ρ0)�∑
m=0

xm

= ρ0 Pr
(
M̃ ≤ n− ρ0

1 − ρ0

)
≥ ρ0ρ1�

Thus,

n−1∑
m=0

2(n−m)+ 1
n−m+ 1

xm ≥ 1 + ρ0ρ1�

Now, using (2) and the definition of ρ0 and ρ1, we obtain that

∑(n−1)δ�
m=0 Umxm

g(δ)
≤ 1

1 + ρ0ρ1
<

1
2

+ ε�
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Then
(n−1)δ�∑
m=0

Umxm <
(

1
2 + ε

)
g(δ)�

which implies that

n−1∑
m=0

jmUm ≤
(

3
2 + ε

)
g(δ)�

Finally, note that

αn(δ) = (n+ 1)2

4[∑n−1
m=0 jmUm]

≥ (n+ 1)2

4g(δ)
1( 3

2 + ε
)

= βn(δ)
1( 3

2 + ε
) �

Therefore, there exists n0 such that for all n ≥ n0,

αn(δ) ≥ βn(δ)
1( 3

2 + ε
) ≥

3
4( 3

2 + ε
)

for all δ≤ 1
2 .

By the same argument used in the previous lemma, it can be easily shown that αn(δ)

is an increasing function of δ. So if δ > 1
2 , then

αn(δ) ≥ αn
(

1
2

)
≥

3
4( 3

2 + ε
) � �

Lemma 11. Let ε > 0. Then there exists n0 such that for all n≥ n0,

βn(δ) ≥ β̃n(δ) ≥
3
4( 3

2 + ε
) �

Proof. First note that 1 − (1 − G(m))(1 − H(m)) ≥ 1 − (1 − G(m)) = G(m), and since
Um is decreasing in m, we have

n−1∑
m=0

Umhm ≥
n−1∑
m=0

Umxm�

Then

β̃n(δ) = (n+ 1)2

4[∑n−1
m=0 Umhm] ≤ (n+ 1)2

4[∑n−1
m=0 Umxm] = βn(δ)�
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Now recall that H is the cumulative distribution function of a binomial random vari-
able with parameters (δ�n). Given that H(m) ≤ G(m) for each m ∈ {0�1� � � � � n − 1}, we
have 1 − (1 −G(m))(1 −H(m)) ≤ 1 − (1 −G(m))2. Thus,

n−1∑
m=0

hmUm ≤
n−1∑
m=0

jmUm

and then β̃n(δ) ≥ αn(δ).
By the last lemma we know that there exists n0 such that for all n ≥ n0,

αn(δ) ≥
3
4( 3

2 + ε
) �

Thus,

βn(δ) ≥ β̃n(δ) ≥
3
4( 3

2 + ε
) �

The lower bond ( 3
2 + ε) is arbitrarily close to 3

2 . Then, for each δ, we have that

lim
n→∞ β̃n(δ) ≥ 1

2 �

Since by Lemma 9, β̃n decreases when n increases, we have that for all n,

βn ≥ β̃n ≥ 1
2 � �

Finally, note that the following statements hold:

(a) The term β̃n(δ) is an increasing function of δ.

(b) We have β̃n(1) = 1.

(c) Given that we are assuming the uniform distribution of discount factors, we know
that βn has exactly two fixed points if n > 10.

(d) We have βn ≥ β̃n ≥ 1
2 .

Then β̃n has, at least, two fixed point: δ= 1 and another stable and higher than 1
2 .

Thus, the expected number of agents who go early is at least 1
2n.

9. Proof of Theorem 3

Theorem 3 follows from Theorem 4 by observing that β̃n(F(δ)) ≥ β̃n(δ) and by employ-
ing the same argument used in Section 7.
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