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1. Introduction

A wide range of real-life resource allocation problems—student placement in public
schools, organ transplantation through live or deceased donors, on-campus housing
allocation, and course allocation at business schools—involves the assignment of indi-
visible objects without the use of monetary transfers.

Most of these markets rely on ordinal mechanisms, where participants reveal only
their preference rankings over given choices to the central authority rather than their
cardinal preferences. Ensuring fairness of a deterministic allocation can entail signif-
icant inefficiencies.1 Therefore, it has become commonplace to use random mecha-
nisms, which allow the allocation of divisible probabilities, to achieve fairness ex ante.2

In spite of this use of randomization, most such markets rely on ordinal mecha-
nisms: participants reveal only their preferences over objects, rather than their pref-
erences over random allocations of objects. However, from an agent’s ordinal ranking
�i over the set A of objects (assumed strict), one can define first-order stochastic domi-
nance (f.o.s.d.), which is a partial order ≥i over the set of random allocations (probability
measures on A). These partial orders can be used to evaluate random mechanisms. Us-
ing the prefix “sd-” to indicate f.o.s.d., we say that a random assignment P is sd-efficient
if it is Pareto efficient with respect to the f.o.s.d. orderings. We say that it is sd-envy-free
if Pi ≥i Pj for all i, j. Then we can make comparisons:

• Sd-efficiency is stronger than ex post efficiency, though not as strong as ex ante
efficiency would be if one had access to the complete von-Neumann–Morgenstern
(vNM) utilities.

• Sd-envy-freeness is weaker than ex post envy-freeness, though not as weak as ex
ante envy-freeness would be with the vNM utilities.

A common mechanism used in practice is the random serial dictatorship (RSD). Agents
are randomly ordered (with a uniform distribution over permutations) and then, in the
realized order, agents successively pick their favorite objects from those available. How-
ever, in spite of the apparent equal treatment of agents, the resulting random assign-
ment may not be sd-envy-free; neither need it be sd-efficient.

In a seminal paper, Bogomolnaia and Moulin (2001) (BM hereafter) proposed the
probabilistic serial mechanism (PS), which is sd-efficient and sd-envy-free. The out-
come of PS is defined by the simultaneous eating algorithm (SEA): Consider each object
as a continuum of probability shares. Agents simultaneously “eat away” from their fa-
vorite objects at the same speed; once an agent’s favorite object is gone, he turns to
his next favorite object, and so on. The amount of an object eaten away by an agent

1See, for example, Kesten and Yazıcı (2012).
2For example, the assignment mechanisms used in the context of student placement operate through

a collection of strict priority orders of schools over students. In practice, determining these orders often
involves randomization (Abdulkadiroğlu and Sönmez 2003b, Erdil and Ergin 2008, Pathak and Sethuraman
2011, Kesten and Ünver 2013). Similarly, in the exchange of live-donor kidneys among kidney patients for
transplantation, the egalitarian approach requires the design of a random mechanism (Roth et al. 2005).
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throughout the process is interpreted as the probability with which he is assigned this
object by PS.3

The purpose of this paper is to provide two axiomatizations of PS. Our first axioma-
tization is built around a new property, ordinal fairness. Fix a random assignment and
for any agent i and each a ∈ A, let Fi(a) be the probability that i obtains a or an object
better than a; this is called i’s surplus at a. The random assignment is ordinally fair if
for all i, j and a ∈ A such that j obtains a with a positive probability, i’s surplus at a is as
large as j’s surplus at a.

Though related in spirit, ordinal fairness and sd-envy-freeness are quite different, as
we illustrate with this example. Suppose there are two agents, i = 1�2, and two objects,
A = {a�b}. Agent 1 prefers a to b; agent 2 prefers b to a. Suppose we give each object
to each agent with an equal probability. Agent 1 does not wish he had agent 2’s random
allocation, yet he might envy the fact that agent 2 always gets an object that she likes at
least as much as a, whereas this happens to agent 1 only half of the time. The allocation
is not ordinally fair.

In this example, the random assignment is not sd-efficient. The only sd-efficient al-
location gives a to agent 1 for sure and b to agent 2 for sure, but then ordinal fairness
obtains. This suggests a link between ordinal fairness and both sd-efficiency and sd-
envy-freeness. In fact, we show that ordinal fairness implies both of these properties in
the BM setting in which the total supply of objects exactly equals the number of agents.
Furthermore, it provides a full characterization of PS in the same setting. (This is the
first redefinition of an algorithmic matching mechanism, that we are aware of, through
a single tight property.) In the more general setting when the total supply of objects ex-
ceeds the number of agents, it characterizes PS in combination with a mild assumption
called non-wastefulness (Theorem 1).

We obtain a second characterization of PS using sd-efficiency and sd-envy-freeness.
These are implied by PS, but do not fully characterize it. Our Theorem 2 and Corollary 2
show that a complete characterization is obtained by adding either weak invariance or
weak truncation robustness; these axioms impose invariance of the assignment to cer-
tain perturbations of the ordinal preferences.

1.1 Related literature

There are very few papers that discuss the random assignment problem prior to the new
millennium. The earliest account of the problem is due to Hylland and Zeckhauser
(1979), who propose a pseudo-market mechanism that relies on cardinal preferences
of agents. Much later, Zhou (1990) proves an important impossibility result for the car-
dinal domain: There exists no strategy-proof, Pareto-efficient, and symmetric mecha-
nism. A similar negative result is obtained by Chambers (2004) in the ordinal domain:

3However, RSD is sd-strategy-proof, unlike PS, which is sd-strategy-proof only in a weak sense. Never-
theless, Kojima and Manea (2010) show that in large but finite problems where each object has a sufficiently
large supply, PS regains sd-strategy-proofness. In related work, Che and Kojima (2010) show that in the limit
of discrete economies with finite object types, PS converges to RSD.
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all ex post consistent, symmetric, and strategy-proof mechanisms should coincide with
uniformly random assignment of objects.

Following the seminal work of BM that introduced PS, the literature on the random
assignment problem has grown rapidly. Contrary to the early literature, the new strand
of literature often restricts attention to the case when agents’ preferences are ordinal.4

The PS was initially proposed by Crès and Moulin (2001) for a simple model where
agents have the same rankings over objects. A characterization for this special context
is given by Bogomolnaia and Moulin (2002). Kojima and Manea (2010) show that PS
recovers strategy-proofness when the market size becomes sufficiently large. Manea
(2009) shows that ordinal inefficiency of RSD prevails even for large assignment prob-
lems. Katta and Sethuraman (2006) extend PS to the domain of weak preferences. Yılmaz
(2009, 2010) adapts it to environments where there may be initial property rights over
some of the objects. Athanassoglou and Sethuraman (2011) further extend this model
and the mechanism to the case with probabilistic endowments. Kojima (2009) offers a
generalization of PS to multiple assignment problems.

Abdulkadiroğlu and Sönmez (1998) show that RSD is equivalent to a core mecha-
nism that uniformly randomly selects an initial assignment of objects and then utilizes
Gale’s celebrated top trading cycles (Shapley and Scarf 1974) procedure. Sönmez and
Ünver (2005), Pathak and Sethuraman (2011), and Carroll (2013) extend this result to dif-
ferent random matching domains. Kesten (2009) shows a similar connection between
PS and the top trading cycles procedure: PS is equivalent to a particular top trading
cycles mechanism that initially endows each agent with an equal share of each object.
He also provides a “replicated” RSD mechanism that becomes equivalent to PS in the
limit. Budish et al. (2013) characterize the constraints on a random assignment that can
also be satisfied by each of the deterministic assignments in the support of a lottery that
induces it.

The compelling notion of sd-efficiency is also the focus of other related papers.
Abdulkadiroğlu and Sönmez (2003a) offer a characterization of ordinally efficient ran-
dom assignments. McLennan (2002) proves an interesting result on the relationship be-
tween sd-efficiency and ex ante efficiency. Manea (2008) provides a constructive proof
of this result.

The axiomatic characterization of PS for unrestricted preference domains began
with three independent studies: Hashimoto and Hirata (2011) (hereafter, HH), Heo
(2013), and Kesten et al. (2011) (hereafter, KKÜ).5 KKÜ is the paper that originally
presents Theorem 1 of this paper, and is the first paper that characterizes PS in the
general case using sd-efficiency and sd-envy-freeness. HH characterize the mechanism
with these axioms in the environment where the null object always exists. They also
provide an axiomatization based on the Rawlsian principle. Heo (2013) considers an
environment where agents may demand multiple units and shows that the generalized

4Three common justifications for the ordinal approach are as follows: First, since agents are bound-
edly rational, cardinal preferences are difficult to elicit. Second, ordinal mechanisms are relatively simpler
and more practical than cardinal mechanisms. Third, real-life matching markets function mostly through
elicitation of ordinal preferences.

5The first versions of the papers by Heo and KKÜ were circulated in 2010.
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PS mechanism is characterized by sd-efficiency, the proportional division lower bound,
and several auxiliary axioms.

In a more recent work, Bogomolnaia and Heo (2012) (hereafter, BH) replace the in-
variance axioms in KKÜ and HH with a weaker condition called bounded invariance and
offer new, shorter proofs in a unifying framework for the KKÜ and HH results. This proof
technique was based on the observations of Heo (2013) regarding PS and probabilistic
assignments in general. Our characterizations in this paper using sd-efficiency and sd-
envy-freeness (Theorem 2 and Corollary 2), which build on KKÜ and HH, are stronger
than all three previous results mentioned (HH Theorem 1, KKÜ Theorem 2, and BH The-
orem 2), as weak invariance is implied by both upper invariance of KKÜ and bounded
invariance of BH, in the general case when a null object does not necessarily exist; and
weak truncation robustness, when a null object exists, is implied by both truncation
robustness of HH and bounded invariance of BH.6,7,8

Most notably, whereas all the previously considered invariance conditions men-
tioned above require that whenever the preferences of an agent change with reference
to a fixed object in a specific way, all agents’ probability shares of the particular object
remain the same, weak invariance makes a much less demanding requirement: only the
particular agent’s probability share of the particular object should remain the same.9

Alternatively, Liu and Pycia (2011) look at large markets in which all types of agents
are represented. They show that in this case, there is a unique mechanism that is sd-
efficient and sd-envy-free, and that in the limit of large markets, uniformly random ver-
sions of many known deterministic mechanisms such as serial dictatorships, hierarchi-
cal exchange rules (Pápai 2000), and trading cycles mechanisms (Pycia and Ünver 2011)
coincide with this unique mechanism.

2. Model

Our object of study is a discrete resource allocation problem (cf. Hylland and Zeckhauser
1979, Shapley and Scarf 1974). Let N be the finite set {1� � � � � n} of agents to whom objects
are allocated. In BM, there are exactly n distinct objects to be allocated, one per agent.
We generalize this slightly: each agent still receives one object, but the pool of objects
to be distributed can include duplicates, that is, objects that are equivalent for all the
agents. We let A denote the set of types of objects and, for a ∈ A, let qa denote the quota
or supply of object a. There may be a surplus of objects:

∑
a∈A qa ≥ |N|.

6We thank an anonymous referee for suggesting that we weaken HH’s definition of truncation robust-
ness to the current definition (Definition 3). Upon showing that this new definition is strong enough to
characterize PS, we observed that the proof also extends to the general case where the null object may not
exist. This motivated us to obtain our second characterization result using the current definition of weak
invariance (Definition 2), which is the counterpart of Definition 3 in environments without the null object.

7Also, our proof immediately implies that we can weaken sd-efficiency in Theorem 2 and Corollary 2 as
in HH and BH.

8A more recent paper by Heo and Yılmaz (2012) extends the results of BH to the case with weak prefer-
ences for Katta and Sethuraman’s (2006) extended probabilistic serial correspondence.

9This axiom was previously introduced by Heo (2013) as one of her auxiliary axioms. She referred to it as
“limited invariance.”
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An assignment specifies an object for each agent such that for each a ∈ A, the num-
ber of agents receiving object a does not exceed qa. Let A refer to the set of possible
assignments. We assume objects can be allocated randomly. A lottery is a probability
distribution over assignments. Each agent i ∈ N cares only about his own random al-
location, that is, the resulting probability distribution Pi = [pi�a]a∈A over A, where pi�a

is the probability with which he receives object a. We refer to the matrix P = [Pi]i∈N of
random allocations, where each row Pi is the random allocation of an agent and each
column Pa allocates probability shares of an object a to the agents, as a random assign-
ment ; it has the property that

∑
i∈N pi�a ≤ qa for each a ∈ A and

∑
a∈Api�a = 1 for i ∈ N .

Let R refer to the set of possible random assignments. Each lottery induces such a ran-
dom assignment and each such random assignment is induced by some lottery (cf. von
Neumann 1953).10 Therefore, we can focus our attention on random assignments as the
outcome of a mechanism.

We require that a mechanism elicits only each agent i’s ordinal preference relation
�i over objects. This preference ordering is assumed to be strict. Although we implicitly
allow for some indifference by letting there be duplicates of each object, any indifference
must be shared by all agents. Let P be the set of such strict preferences. We sometimes
represent �i by the ordered list of objects; e.g., �i = (b� c�a) or �i = (bca) means that
b �i c �i a (here assuming that A= {a�b� c}).

Although agents’ preferences over random allocations are unspecified, we can con-
struct a partial order that can be used to compare random allocations based on (first-
order) stochastic dominance. Given a ∈ A and �i ∈ P for agent i, let U(�i� a) =
{b ∈ A | b �i a} be the upper contour set of object a at �i. Given a random allocation
Pi, let F(�i� a�Pi) = ∑

b∈U(�i�a)
pi�b be the probability that i is assigned an object at least

as good as a under Pi; we simply refer to it as i’s surplus at a under Pi. For agent i, given
�∈ PN and P�R ∈ R, Pi stochastically dominates Ri at �i if F(�i� a�Pi) ≥ F(�i� a�Ri) for
all a ∈A. In addition, P stochastically dominates R at � if Pi stochastically dominates Ri

at �i for all i ∈N .
Throughout the paper, whenever it is not ambiguous, we suppress N , A, and q, and

denote an allocation problem by a preference profile. Formally, a mechanism is a sys-
tematic way to find a random assignment for a given problem, that is, it is an allocation
rule φ : PN → R.

Our model is general enough to contain various interesting special cases:

(i) Unacceptable objects: There is a specific object referred to as the null object and
assigned a quota of at least |N|. By interpretation, agents who are assigned the
null object are viewed as taking their outside options or, using the matching jar-
gon, they remain unassigned. The objects ranked below the null object are called
unacceptable. This case models assignment under voluntary participation.11

10This classical result is also commonly credited to Garrett Birkhoff and referred to as the Birkhoff–von
Neumann Theorem.

11In this setting, the standard individual rationality requirement, i.e., that no agent be assigned an unac-
ceptable object with some positive probability, is implied by either efficiency property to be subsequently
introduced; namely, by either non-wastefulness or sd-efficiency.
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(ii) Perfect supply with unit quotas: Each object has a quota of 1 and there are exactly
|N| objects. This is the original setting of BM.12

Three properties of random assignments are essential in our characterizations. A ran-
dom assignment is sd-efficient if it is not stochastically dominated by another random
assignment.13

Next is a much weaker efficiency property. A random assignment is non-wasteful
if the surplus of no agent at any object can be raised through the use of an unassigned
probability share of some object. Formally, given �∈ PN , P ∈ R is non-wasteful at � if
for all i ∈ N and all a ∈ A such that pi�a > 0, we have

∑
j∈N pj�b = qb for all b ∈ A with

b �i a.
Our first fairness property is a fundamental principle in mechanism design theory

originally proposed by Foley (1967). A random assignment is sd-envy-free if each agent,
regardless of his vNM utilities, prefers his random allocation to that of any other agent.
Formally, given �∈ PN , P ∈ R is sd-envy-free at � if for all i ∈ N , Pi stochastically domi-
nates Pj for all j ∈N at �i.

A mechanism is said to satisfy a property if its outcome, for any problem, satisfies
that property.

3. Two new axioms

Our second fairness property, which is essential to our first characterization, is a nat-
ural and intuitive axiom for the random assignment setting. A random assignment is
ordinally fair if whenever an agent is assigned some object with positive probability, his
surplus at this object is no greater than that of any other agent at the same object. It
follows that whenever an agent is assigned some object x with zero probability, he must
be assigned a better object (for him) with a probability no less than any agent who is
assigned object x with positive probability.

Definition 1. Given �∈ PN , P ∈ R is ordinally fair at � if for all a ∈ A and all i� j ∈ N

with pi�a > 0, we have F(�i� a�Pi) ≤ F(�j� a�Pj).

One interpretation of the problem we are studying here is to entitle each agent to
an equal probability share of each object initially. Under such an interpretation, ordinal
fairness makes it possible for agents to efficiently redistribute their initial shares among
themselves so that every agent can enjoy a higher object-specific surplus, provided that
this surplus does not exceed that of another agent. In this sense, ordinal fairness can be
viewed as an analogue for the current setup of Varian’s fairness notion, which encom-
passes Pareto efficiency and envy-freeness in exchange economies with perfectly divis-
ible goods (cf. Varian 1974, 1975, 1976). Remarkably, ordinal fairness implies both sd-
efficiency and sd-envy-freeness, and it is implied by these two properties in conjunction

12In this setting, one of our properties—non-wastefulness—to be subsequently introduced, is satisfied
vacuously.

13Equivalently, under any alternative random assignment, the surplus of some agent at some object is
less than that under the original assignment.
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with a weak technical property when the total supply of objects is equal to the number
of agents.

We next introduce an auxiliary robustness axiom—weak invariance—that is essen-
tial to our second characterization. Given �−i, the axiom requires that the probability of
agent i getting object a depends only on i’s preference ranking down to a. When the null
object is available, we can interpret weak invariance as robustness against truncations,
which are practically important manipulations. We formalize this interpretation in Sec-
tion 6. Let �i|B be the restriction of �i ∈ P to B ⊆ A; that is, �i|B is a preference relation
over B such that for all a�b ∈ B, a�i|B b ⇔ a �i b.

Definition 2. A mechanism φ is weakly invariant if for all �∈ PN , i ∈ N , a ∈ A,
and �′

i ∈ P, φi�a(�) = φi�a(�′
i��−i) whenever U(�′

i� a) = U(�i� a) and �′
i|U(�′

i�a)
=

�i|U(�′
i�a)

.14

Most mechanisms studied in the literature are weakly invariant. Examples include
PS, the agent-proposing deferred acceptance mechanism, the Boston mechanism, and
hierarchical exchange rules (Pápai 2000), which include serial dictatorship and the top
trading cycles mechanism as special cases.15 The RSD is also weakly invariant since it is
a convex combination of weakly invariant mechanisms.

4. Probabilistic serial mechanism

BM introduced the probabilistic serial mechanism (PS), the outcome of which can be
computed via the following simultaneous eating algorithm (SEA):

Given a problem �, think of each object a as an infinitely divisible good with supply
qa that agents eat in the time interval [0�1].

Step 1. Each agent eats away from his favorite object at the same unit speed. Proceed
to the next step when an object is completely exhausted.

���

Step s (for s ∈ {2� � � � � S}). Each agent eats away from his remaining favorite object at
the same speed. Proceed to the next step when an object is completely exhausted.

The procedure terminates after S ≤ |N| steps when each agent has eaten exactly 1
total unit of objects (i.e., at time 1). The random allocation of an agent i by PS is then
given by the amount of each object he has eaten until the algorithm terminates. Let
PS(�) ∈ R denote the outcome of PS for problem �.

5. First characterization of probabilistic serial

In our first result, we establish that for each problem there is a unique ordinally fair and
non-wasteful random assignment and that this random assignment is the outcome of

14This property is weaker than both the upper invariance condition of KKÜ and the bounded invariance
condition of BH.

15The “object-proposing” deferred acceptance mechanism, however, violates weak invariance. This is
because agents may benefit from truncation (see, e.g., Example 2 of Roth and Rothblum 1999), which is not
possible under a weakly invariant mechanism.
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SEA. In other words, PS fully characterizes ordinal fairness with non-wastefulness and
vice versa.

Theorem 1. A mechanism is ordinally fair and non-wasteful if and only if it is PS.

Proof. Fix �∈ PN . We drop � from all arguments below. We reinterpret the SEA such
that at each step, at most one object is fully exhausted: If two objects a, b are exhausted
in a step according to the original definition, we order these objects arbitrarily and say
that one is exhausted first and the other one is exhausted in the next step. We rede-
fine step S as the first step when each agent has eaten exactly 1 total unit of objects.
Let h1� � � � �hS−1 denote the objects exhausted in Steps 1 to S − 1 and let the remaining
objects be arbitrarily ordered as hS� � � � �h|A|.

(⇐) PS is non-wasteful as it is sd-efficient. We show that PS is ordinally fair. First,
consider s < S: Each agent has eaten away weakly better objects than hs until s at the
same speed. Thus, for any i ∈ N who eats away hs at s and any j ∈ N who eats away
some bj �j h

s , since they continue eating at the same speed and bj is not exhausted
before hs , we have F(�i� h

s�PSi) ≤ F(�j� bj�PSj) ≤ F(�j�h
s�PSj). Next, consider s ≥ S:

At step S, each j ∈ N eats away some bj �j h
s . When SEA terminates after S, j’s surplus

at bj is 1 and, hence, F(�j�h
s�PSj) = 1. Thus, in either case ordinal fairness is satisfied

for hs.
(⇒) Let P ∈ R be ordinally fair and non-wasteful at the fixed �. We show that PS = P .

Define π(a) = mini F(�i� a�Pi) for all a ∈A. Relabel objects as a1� � � � � a|A| so that π(as)≤
π(as+1) for all s ≤ |A| − 1. Let A0 = ∅, let As = {a1� � � � � as}, and let As = A \ As be the
set complement of As . For all s ≥ 1 and all a ∈ As−1, let Ns(a) = {k ∈ N | a �k b for all

b ∈As−1}.
We argue by induction. Fix some s ≥ 1. Assume that for all t < s and all i ∈ Nt(at),

F(�i� a
t�Pi) = F(�i� a

t�PSi) = π(at); for all k /∈ Nt(at), pk�at = PSk�at = 0; and at is the
object exhausted at step t of SEA for t < S. Each statement in the inductive assumption
holds vacuously for s = 1. We prove that they also hold for step s and thus P = PS:

Step 1. We show that for all k /∈ Ns(as), pk�as = 0. For a contradiction, suppose for
some b ∈ As and k ∈ Ns(b), we have pk�as > 0. For an agent j with π(as) = F(�j� a

s�Pj),
we have F(�k�a

s�Pk) > F(�k�b�Pk) ≥ F(�j� a
s�Pj), where the last inequality follows

from the ordering of as before b through π. However, this inequality violates ordinal
fairness of P .

Step 2. We show that for all i ∈ Ns(as), F(�i� a
s�Pi) = π(as). Let i ∈ Ns(as). Either

pi�as > 0 or pi�as = 0. If pi�as > 0, then by ordinal fairness, for all j ∈ N , F(�i� a
s�Pi) ≤

F(�j� a
s�Pj) and, thus, F(�i� a

s�Pi) = π(as) by the definition of π(as). Suppose pi�as = 0.
Let t∗ be the earliest step t such that i ∈Nt(as). If t∗ = 1, then by pi�as = 0, F(�i� a

s�Pi) =
0 and, thus, F(�i� a

s�Pi) = π(as) by the definition of π(as). Next, suppose t∗ > 1. Then
i ∈ Nt∗−1(at

∗−1). By the inductive assumption (as t∗ ≤ s), π(at
∗−1) = F(�i� a

t∗−1�Pi).
Thus, as as is ranked just below at

∗−1 in �i and pi�as = 0, then F(�i� a
s�Pi) = π(at

∗−1).
Moreover, since as is ordered after at

∗−1 according to π, then π(as) ≥ π(at
∗−1). Thus, as

F(�i� a
s�Pi) ≥ π(as), F(�i� a

s�Pi)= π(as).
Step 3. We show that at step s of SEA for s < S, for any agent i ∈ Ns(as),

F(�i� a
s�PSi) ≥ π(as). By the inductive assumption, for each b ∈ As−1, at the end of step
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s − 1 of SEA, the amount that each i ∈ Ns(b) has eaten away from objects in U(�i� b) is
x = π(as−1) if s > 1 and is x = 0 if s = 1; moreover, all objects in U(�i� b) \ {b} are also
fully exhausted. For all j ∈ Ns(as), all b ∈ As−1, and all k ∈ Ns(b), we have π(as) ≤ π(b)

by the definition of as , and this, together with Step 2 and the definition of π, im-
plies F(�j� a

s�Pj) − x = π(as) − x ≤ π(b) − x ≤ F(�k�b�Pk) − x. Thus, the remaining
amount of object b is sufficiently large for each agent in Ns(b) so that when each agent
in Ns(as) has eaten away π(as) − x of as , no agent in Ns(b) has yet started eating an
object different from b. Therefore, each j ∈ Ns(as) eats away by the end of step s at
least (π(as) − x) + x = π(as), the total amount from objects in U(�j� a

s), implying that
π(as) ≤ F(�j� a

s�PSj).
Step 4. We show that for all j ∈ Ns(as), π(as) = F(�j� a

s�PSj) and that PSk�as = 0 for
all k /∈ Ns(as) for s < S. Proving the first claim is sufficient (by Step 3). Suppose, to the
contrary, for some i ∈Ns(as), F(�i� a

s�Pi) = π(as) < F(�i� a
s�PSi) ≤ 1; but then

∑
j

pj�as =
∑

j∈Ns(as)

{
F(�j� a

s�Pj)−
∑
b�jas

pj�b

}

<
∑

j∈Ns(as)

{
F(�j� a

s�PSj)−
∑
b�jas

PSj�b

}
=

∑
j∈Ns(as)

PSj�as ≤ qas �

where
∑

j∈Ns(as) F(�j� a
s�Pj) <

∑
j∈Ns(as) F(�j� a

s�PSj) by Steps 2 and 3 and the suppo-
sition, and pj�b = PSj�b for all j ∈Ns(as) and all b �j a

s by the inductive assumption. This
violates non-wastefulness of P . We have shown that for all j ∈ Ns(as), F(�i� a

s�PSi) =
π(as). Then step s of SEA ends when as is fully exhausted by Step 3 of the proof. More-
over, PSk�as = 0 for all k /∈ Ns(as) as none of these agents has started eating as before it
gets fully exhausted under SEA.

Step 5. We show that the rest of the inductive claim holds for s ≥ S. The SEA termi-
nates at step S when each agent has eaten exactly 1 total unit of objects. Any agent
i ∈ NS(a) eats away a ∈ AS−1 at step S of SEA. Thus, F(�i� a�PSi) = 1 and for any
k /∈ NS(a), PSi�a = 0. By non-wastefulness of P (through the same argument in Step 4
applied to a instead of as), for any i ∈Ns(a), F(�i� a�PSi)= π(a) = F(�i� a�Pi). �

Remarkably, ordinal fairness turns out to be a very powerful axiom as it can exclu-
sively characterize PS. Therefore, Theorem 1 offers a new perspective on this mechanism
for an appealing domain of problems that subsumes the original BM setting. Consider
problems in which the total supply of real objects is less than or equal to the number
of agents and all objects are acceptable. In this case, all random assignments are non-
wasteful. Hence, a random assignment is ordinally fair if and only if it is the PS outcome.

Corollary 1. In an environment in which all objects are acceptable and the total quota
of the objects does not exceed the number of agents, a mechanism is ordinally fair if and
only if it is PS.

This result is important as it shows that ordinal fairness offers a non-algorithmic def-
inition of PS. In the matching literature, almost all mechanisms are defined through al-
gorithmic procedures that have useful properties. This is in contrast to some well known
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mechanisms in other contexts such as the Walrasian market mechanism, whose concep-
tual definition preceded any of its algorithmic (or fixed-point) constructions. As far as
we are aware, ours is the first “redefinition” of a matching mechanism based on a single
property.

6. Second characterization of probabilistic serial

Sd-efficiency and sd-envy-freeness are among the most appealing properties of mech-
anisms. Our second result characterizes PS through these two fundamental properties
together with a mild robustness condition.

Theorem 2. A mechanism is sd-efficient, sd-envy-free, and weakly invariant if and only
if it is PS.16

Before giving a formal proof of Theorem 2, we provide an illustration in Example 1 of
our proof strategy for the necessity part. Although the actual proof is more subtle, much
of the intuition behind the proof can be grasped from this simple example.

Example 1. Suppose that there are three agents N = {1�2�3} and three objects A =
{a�b� c} each with unit quota. Consider preferences �= ((abc)� (abc)� (bca)) and �∗

3 =
(bac). Then the PS outcomes for � and (�∗

3��−3) are given as

PS(�) = PS(�∗
3��−3) =

a b c

1 1
2

1
6

1
3

2 1
2

1
6

1
3

3 0 2
3

1
3

�

This follows from the SEA as follows: Agents 1 and 2 initially start eating a and agent
3 starts eating b under either profile. At time τ = 1

2 , object a is fully consumed, giving 1
2

share of a to agents 1 and 2; thus, all agents continue with b. At this point only 1
2 of b is

available and this remainder is equally shared among the three agents giving 1
2 + 1

6 = 2
3

share of b to agent 3 and 1
6 share of b to agents 1 and 2. Finally, in the remaining time

each agent consumes 1
3 of c.

We demonstrate that if a mechanism φ is sd-efficient, sd-envy-free, and weakly in-
variant, then φ(�) = PS(�). We show this for each object following the order in which
objects are exhausted in SEA. In this example, for both � and (�∗

3��−3), object a is first
exhausted at time 1

2 , object b is second at time 2
3 , and then object c is third at time 1.

That is, we show φa(�) = PSa(�) first and then φb(�) = PSb(�). Note that in this case,
φc(�) = PSc(�) immediately follows from those two equalities and the feasibility con-
straint of random assignments.

16The sd-efficiency requirement in Theorem 2 can be weakened to the following condition (2-sd-
efficiency): For all �∈ PN , there exists no P �= φ(�) such that P stochastically dominates φ(�) at � and
|{i ∈ N | Pi �= φi(�)}| ≤ 2. See HH for more on this point.
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Let P = φ(�). First consider Pa. By sd-efficiency, p3�a = 0. Then sd-envy-freeness
(and non-wastefulness) implies p1�a = p2�a = 1

2 . Next, we examine the assignment of
object b, where we invoke weak invariance in addition to sd-efficiency and sd-envy-
freeness. To determine Pb, consider P∗ = φ(�∗

3��−3). For agents 1 and 3 not to envy
each other at �∗, we need p∗

1�a +p∗
1�b = p∗

3�b. Similarly, p∗
2�a +p∗

2�b = p∗
3�b must also hold.

Furthermore, by a similar argument to the case of Pa, it is easy to see P∗
a = ( 1

2 �
1
2 �0).

Hence, P∗
b = ( 1

6 �
1
6 �

2
3). Then by weak invariance, p3�b = p∗

3�b = 2
3 . Finally, by sd-envy-

freeness at �, we have p1�b = p2�b = 1
6 , i.e., Pb = PSb(�) as claimed. ♦

To prove the necessity part of Theorem 2, we first order objects according to the time
they are exhausted in SEA. Then we argue by induction on this order that an sd-efficient,
sd-envy-free, and weakly invariant mechanism φ assigns each agent each object with ex-
actly the same probability as PS. As we did above, we manipulate the preferences such
that the order in which objects are exhausted in SEA is unaffected while sd-efficiency
and sd-envy-freeness have enough bite to pin down the assignment probabilities un-
der φ. The above example is simple enough that we needed to manipulate only one
agent’s preferences, focusing only on one object. However, for the proof to apply in gen-
eral, one needs to iteratively consider several agents and several objects. Therefore, our
general proof warrants careful and tedious construction of new preference profiles while
keeping track of assignment probabilities.

Before the proof, we introduce some useful notation. For each �∈ PN and a ∈ A,
let τ�(a) = minj∈N F(�j� a�PSj(�)). If object a is exhausted in SEA under �, τ�(a) rep-
resents the time when it is exhausted. If it is not exhausted, τ�(a) is set to 1. Now fix
a complete strict order � on A independent of � and relabel the objects as a1(�)� � � � �

a|A|(�) ∈ A so that (i) τ�(a1(�)) ≤ · · · ≤ τ�(a|A|(�)) and (ii) τ�(ak(�)) = τ�(ak+1(�))

implies ak(�)� ak+1(�). Given �∈ PN , let A0(�) = ∅ and As(�) = {a1(�)� � � � � as(�)}.
Let A′ =A \A′ for all A′ ⊆A.

Proof of Theorem 2. (⇐) PS is sd-efficient and sd-envy-free. It thus suffices to
show that PS is weakly invariant. Let �∈ PN , i ∈ N , �′

i ∈ P, and a∗ ∈ A, and assume
U(�i� a

∗) = U(�′
i� a

∗) and �i|U(�i�a∗) = �′
i|U(�′

i�a
∗). Until time τ = F(�i� a

∗�PSi(�)),
SEA under (�′

i��−i) works in exactly the same way as under �. If τ = 1, this implies
PS(�) = PS(�′

i��−i). If τ < 1, any a ∈ U(�i� a
∗) is exhausted by time τ under (�′

i��−i)

as well as under �. Therefore, PSi�a(�′
i��−i) = PSi�a(�) for all a ∈ U(�i� a

∗).
(⇒) Suppose that φ is sd-efficient, sd-envy-free, and weakly invariant. We prove by

induction on s ∈ {0� � � � � |A|} that for each �∈ PN , φ(�)|As(�) = PS(�)|As(�). It is obvious
for s = 0, as As(�)= ∅. Fix s ≥ 1. Assume as our inductive assumption that for all �∈ PN ,
φ(�)|As−1(�) = PS(�)|As−1(�).

It suffices to prove from the inductive assumption that for all �∈ PN and i ∈ N ,
φi�as(�)(�) = PSi�as(�)(�). Fix arbitrary �∈ PN . We have two cases, depending on
whether as(�) is exhausted in SEA under �.

If as(�) is not fully exhausted, PS(�) is the only assignment that satisfies the induc-
tive assumption and non-wastefulness; hence, φ(�) = PS(�).
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Alternatively, if as(�) is fully exhausted in SEA under �, to prove the inductive hy-
pothesis at s, it suffices to show that

for all i ∈N� φi�as(�)(�) ≥ PSi�as(�)(�)� (1)

This claim follows from the following reasoning. Recall that
∑

i∈N PSi�as(�)(�) = qas(�)

as as(�) is exhausted under SEA. Therefore, the inequality (1) implies that for all i ∈N ,
φi�as(�)(�) = PSi�as(�)(�), for otherwise the feasibility constraint

∑
i∈N φi�as(�)(�) ≤

qas(�) is violated.
Our strategy to show (1) is as follows. We construct a sequence of preference profiles

�0� � � � ��T (where T is defined later) and show that φ(�T ) is wasteful if (1) does not
hold, which in turn leads to a contradiction.

First, we introduce some more notation. For any �′ ∈ PN , let a∗
i (�′) be i’s favorite

object in As−1(�′), i.e., a∗
i (�′) �i b for all b ∈As−1(�′). Also, let

Ns(a��′) = {i ∈N | a∗
i (�′) = a}�

Observe that by the definition of SEA, for all i ∈N ,

F(�′
i� a

∗
i (�′)�PSi(�′)) = τ�′(a∗

i (�′))� (2)

Define Qi as the set of �′
i ∈ P such that (i) U(�i� a

∗
i (�)) = U(�′

i� a
∗
i (�)) and

(ii) �i|U(�i�a
∗
i (�)) = �′

i|U(�i�a
∗
i (�)). That is, it is the set of preference relations whose rank-

ings coincide with �i down to a∗
i (�). Finally, let QN = ∏

i∈N Qi.

Claim 1. For all �′ ∈ QN , the following statements hold:

(i) For all r ∈ {1� � � � � s}, ar(�)= ar(�′).

(ii) For all r ∈ {1� � � � � s}, τ�(ar(�)) = τ�′(ar(�)).

(iii) We have PS(�)|As−1(�) = PS(�′)|As−1(�′) =φ(�)|As−1(�) =φ(�′)|As−1(�′).

(iv) For all i ∈ N and r ∈ {1� � � � � s − 1}, if a∗
i (�) �′

i a
r(�), then φi�ar(�)(�′) = 0.

Proof. Note that SEA under �′ works in exactly the same way as under � until
time τ = τ�(as(�)). This implies parts (i) and (ii). Also, As−1(�) = As−1(�′) and
PS(�)|As−1(�) = PS(�′)|As−1(�′). By the inductive assumption, φ(�)|As−1(�) =
PS(�)|As−1(�) and φ(�′)|As−1(�′) = PS(�′)|As−1(�′). These equalities imply part (iii).
Note that a∗

i (�) �′
i a

r(�) implies PSi�ar(�)(�′) = 0 by the definition of ar(·) and part (i).
Thus, part (iv) is a special case of part (iii). �

By Claim 1, the variables a1(·)� � � � � as(·), a∗
i (·), and A1(·)� � � � �As(·) remain constant

on QN . As we modify the original preference profile � only within QN , we omit the argu-
ments of these variables for simplicity. Also, Ns(a��′) remains constant for all �′∈ QN ,
so we simply write Ns(a).

Let

B = {a∗
i | i ∈N}�
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We order the elements of B as follows: For each b ∈ B, define

τmax(b)= qb + ∑
i∈Ns(b)[F(�′

i� b�PSi(�′))− PSi�b(�′)]
|Ns(b)| (3)

for all �′ ∈ QN . For each b ∈ B, τmax(b) is uniquely defined, since by Claim 1,∑
i∈Ns(b)[F(�′

i� b�PSi(�′)) − PSi�b(�′)] stays constant across all �′ ∈ QN . This term rep-
resents the hypothetical maximum time for object b to be exhausted in SEA, which is
the case if no agent i /∈ Ns(b) ever eats b and each agent i ∈ Ns(b) continues eating b

even after time 1. Then we order the elements of B as b1� � � � � b|B| so that b1 = as and
τmax(bt) ≤ τmax(bt+1) for each t ∈ {1� � � � � |B| − 1}.17

Next, we construct a sequence {�t}|B|
t=0 in QN . For each t ∈ {1� � � � � |B|}, let

Bt = {b1� � � � � bt} and Mt =Ns(b1)∪ · · · ∪Ns(bt)�

Set �0 = � and let �t = (�∗
Mt ��−Mt ) for each t ≥ 1, where �∗

i ∈ Qi is defined as18,19

�∗
i = (�i|U(�i�b1)��i|As−1\U(�i�b1)� b

2� � � � � b|B|��i|As−1\B)

for all i ∈ Ns(b1)

�∗
i = (�i|U(�i�bt )��i|As−1\U(�i�bt )

� b1� � � � � bt−1� bt+1� � � � � b|B|��i|As−1\B)

for all t ≥ 2� i ∈ Ns(bt)�

It is important in this construction that for each i and t = 0� � � � � |B|, there exists ai�t ∈ A

such that U(�∗
i � ai�t) = As−1 ∪ {a∗

i } ∪Bt , and, in particular, if also i ∈ Mt , we have a∗
i ∈ Bt

and, hence, U(�∗
i � ai�t) =As−1 ∪Bt . (For t = 0, define B0 = ∅.)

We show that if (1) does not hold, then φi�bt (�t ) < PSi�bt (�t ) for all t ∈ {1� � � � �T } and
i ∈ Ns(bt) (Claim 8), where

T = min
({
t ∈ {1� � � � � |B| − 1} | F(�t

j� b
t+1�φj(�t )) = 1 for all j ∈ Mt+1} ∪ {|B|})� (4)

To this end, we prove some auxiliary results (Claims 2–7). We say that b ∈ B is undersup-
plied to i ∈ Ns(b) at �′ ∈ QN if φi�b(�′) < PSi�b(�′), which can be equivalently written as
F(�′

i� b�φi(�′)) < F(�′
i� b�PSi(�′)) = τ�′(b), where the latter equality follows from (2).

Claim 2. For all t ∈ {1� � � � �T }, where T is defined in (4), if bt is undersupplied to some
agent in Ns(bt) at �t−1, then it is undersupplied to all agents in Ns(bt) at �t .

17By the definition of as and the assumption that as is fully exhausted in SEA, the entire probability share
of as is exhausted by the agents in Ns(as) during SEA under �, i.e., τmax(as) = τ�(as). Then if τmax(bt) <

τmax(as) for some t > 1, it follows that τ�(bt) < τ�(as), which contradicts the definition of as . Thus,
as ∈ arg minb∈B τmax(b).

18For each �∈ QN and N ′ ⊆ N , we write �N ′ = (�i)i∈N ′ and �−N ′ = (�i)i∈N\N ′ . If � is written as
(�′

N ′ ��′′
−N ′), then � is such that �i =�′

i if i ∈ N ′ and �i =�′′
i otherwise.

19Recall that we associate a vector (c1� � � � � cn) with the preference relation �i such that c1 �i · · · �i cn.
For example, �∗

i = (�i|{b2}��i|{a}� b1� b3��i|{e}) = (c�a�b�d� e) if A = {a�b� c�d� e}, As−1 = {a}, B = {b� c�d},

(b1� b2� b3)= (b� c�d), and �i = (c� e�d�b�a).
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Proof. To begin, note that for any N ′ ⊆ Ns(bt), if bt is undersupplied to some i ∈
Ns(bt) \ N ′ at �′ = (�∗

N ′��t−1
−N ′), then it is so also at �′′ = (�∗

N ′∪{i}��t−1
−(N ′∪{i})). This is

simply because φ and PS are both weakly invariant, and, thus, PSi�bt (�′) = PSi�bt (�′′)
and φi�bt (�′) =φi�bt (�′′). (Recall that the rankings of �t−1

i =�i and �∗
i coincide down to

bt = a∗
i .)

Next, we show that for any N ′ ⊆ Ns(bt), if bt is undersupplied to some i ∈ N ′
at �′ = (�t

N ′��t−1
−N ′), then it is undersupplied to all j ∈ Ns(bt) at �′. By the defini-

tion of �′
i =�t

i =�∗
i , there exists a ∈ A such that U(�′

i� a) = As−1 ∪ {bt}. Let j be
an arbitrary member of Ns(bt). First, as U(�′

j� b
t) ⊆ U(�′

i� a), F(�′
j� b

t�φj(�′)) ≤
F(�′

i� a�φj(�′)). Second, by sd-envy-freeness, F(�′
i� a�φj(�′)) ≤ F(�′

i� a�φi(�′)). Third,
by the assumption that bt is undersupplied to i, F(�′

i� a�φi(�′)) < F(�′
i� a�PSi(�′)) =

F(�′
i� b

t�PSi(�′)) = τ�′(bt), where the first equality follows from Claim 1(iv) and the
second equality follows from (2). Combining these three inequalities, we obtain
F(�′

j� b
t�φj(�′)) < τ�′(bt).

Therefore, if bt is undersupplied to i ∈ Ns(bt) at �t−1, we can expand N ′ from N ′ = ∅

to N ′ = Ns(bt) by repeatedly applying the above two arguments so that bt is under-
supplied to any j ∈ Ns(bt) at �t = (�∗

Ns(bt)
��t−1

−Ns(bt)
). This completes the proof of the

claim. �

Claim 3. For all t ∈ {0� � � � � |B| − 1}, τ�t (b1) ≤ · · · ≤ τ�t (bt+1) and τ�t (bt+1) ≤ τ�t (bu) for
all u ∈ {t + 2� � � � � |B|}.

Proof. We argue by induction on t. For t = 0, as b1 = as and �0 =�, we have τ�0(b1) ≤
τ�0(bu) for all u by the definition of as. Fix t ∈ {1� � � � � |B|}. Assume the claim is true
for t − 1 as our inductive assumption. By the definition of �t , SEA under �t works
in exactly the same way as under �t−1 until time τ∗ = τ�t−1(bt). In particular, for all
b ∈ Bt , τ�t−1(b) = τ�t (b) ≤ τ∗. Also, bt+1 is not exhausted before time τ∗ under �t−1

(and hence under �t ), for otherwise the claim does not hold for t − 1, contrary to the
inductive assumption. Therefore, τ�t (b1) ≤ · · · ≤ τ�t (bt+1). It remains to show that
τ�t (bt+1) ≤ τ�t (bu) for all u ∈ {t + 2� � � � � |B|}. Suppose, to the contrary, that τ�t (bu) <

τ�t (bt+1) for some u > t+1. Without loss of generality, suppose bu ∈ arg minb∈B\Bt τ�t (b).
Then it follows from the description of SEA that bu is eaten away only by the agents in
Ns(bu) under �t . Hence, τ�t (bu) = τmax(bu), where τmax(·) is given by (3). However,
τ�t (bt+1) ≤ τmax(bt+1) ≤ τmax(bu), where the second inequality follows by the construc-
tion of the sequence b1� � � � � b|B|. This in turn implies τ�t (bt+1) ≤ τ�t (bu), which is a
contradiction. �

Claim 4. For all t ∈ {1� � � � � |B|} and i ∈Mt , F(�t
i� b

t�PSi(�t )) = τ�t (bt).

Proof. Let t ∈ {1� � � � � |B|}. Fix j ∈ Ns(bt). Equation (2) implies F(�t
j� b

t�PSj(�t )) =
τ�t (bt). Fix u < t and i ∈ Ns(bu). In SEA under �t , by Claim 3 for all v ∈ {u� � � � � t}, ob-
ject bv is not fully exhausted before bv−1. Thus, by the construction of �t

i , once bu is
fully exhausted, agent i will turn to object bu+1 since objects in As−1 \ U(�t

i � b
u) have

already been exhausted. Then he will turn to bu+2� � � � , and then to bt in SEA under �t .
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Thus, at time τ�t (bt), i has just finished consuming an object bv with v ≤ t such that
τ�t (bv) = τ�t (bt) and, hence, if bv �= bt , i cannot consume any of the objects bv+1� � � � � bt .
Thus, F(�t

i � b
t�PSi(�t )) = τ�t (bt). �

Claim 5. For all t ∈ {1� � � � � |B|} and i� j ∈ Mt , if P ∈ R is sd-envy-free at �t , then∑
a∈As−1∪Bt pi�a = ∑

a∈As−1∪Bt pj�a.

Proof. Let i� j ∈ Mt . Thus, we have a∗
i � a

∗
j ∈ Bt . Hence, by the construction of �t , there

exist ai�aj ∈ A such that U(�t
i � ai) = U(�t

j� aj) = As−1 ∪ Bt . Thus,
∑

a∈As−1∪Bt pi�a =
F(�t

i � ai�Pi) = F(�t
j� aj�Pi) ≤ F(�t

j� aj�Pj) = ∑
a∈As−1∪Bt pj�a, where the inequality fol-

lows from sd-envy-freeness. Switching i and j, we obtain the opposite inequality. Thus,
we have the desired equality. �

Claim 6. For all t ∈ {1� � � � �T }, where T is defined as in (4),
∑

i∈Mt

∑
b∈Bt−1 φi�b(�t ) ≤∑

i∈Mt

∑
b∈Bt−1 PSi�b(�t ).

Proof. We consider two cases. First, suppose that τ�t (bt−1) < 1. In this case, by
Claim 3 and the construction of �t , all objects in Bt−1 are exhausted by the agents
in Mt−1 in SEA under �t . That is,

∑
i∈Mt−1 PSi�b(�t ) = ∑

i∈Mt PSi�b(�t ) = qb for all
b ∈ Bt−1, and the desired inequality immediately follows from feasibility. Second,
suppose that τ�t (bt−1) = 1. In this case, F(�t

i � b
t−1�PSi(�t )) = 1 for all i ∈ Mt . By

Claim 1, this implies
∑

b∈Bt−1 PSi�b(�t ) = 1 − ∑
a∈As−1 φi�a(�t ) for all i ∈ Mt . Therefore,

if
∑

i∈Mt

∑
b∈Bt−1 φi�b(�t ) >

∑
i∈Mt

∑
b∈Bt−1 PSi�b(�t ), there must exist j ∈ Mt−1 such that∑

a∈Aφj�a(�t ) > 1, which is a contradiction. �

Claim 7. For all t ∈ {1� � � � �T }, where T is defined as in (4), if bt is undersupplied to all
agents in Ns(bt) at �t , then

∑
a∈As−1∪Bt φi�a(�t ) < τ�t (bt) for all i ∈Mt .

Proof. We consider two cases. First, suppose that φk�bt (�t ) > 0 for some k ∈ Mt−1

and fix arbitrary j ∈ Ns(bt). Then, by sd-efficiency, φj�b(�t ) = 0 for all b ∈ Bt−1

because b �t
k bt and bt �t

j b by construction of �t . Since bt is undersupplied
to j at �t ,

∑
a∈As−1∪Bt φj�a(�t ) = F(�t

j� b
t�φj(�t )) < τ�t (bt). Then, by Claim 5,∑

a∈As−1∪Bt φi�a(�t ) < τ�t (bt) for all i ∈Mt .
Second, suppose that φk�bt (�t ) = 0 for all k ∈ Mt−1. This implies

∑
i∈Mt φi�bt (�t ) <∑

i∈Mt PSi�bt (�t ), because bt is undersupplied to all agents in Ns(bt). Also, recall that by
Claim 1, φi�a(�t ) = PSi�a(�t ) for all i ∈ Mt and a ∈ As−1. These arguments together with
Claim 6 and (2) imply

∑
i∈Mt

∑
b∈As−1∪Bt

φi�b(�t ) <
∑
i∈Mt

∑
b∈As−1∪Bt

PSi�b(�t ) = |Mt |τ�t (bt)�

Then Claim 5 implies that for all i ∈Mt ,

∑
b∈As−1∪Bt

φi�b(�t )= |Mt |−1
∑
k∈Mt

∑
b∈As−1∪Bt

φk�b(�t ) < τ�t (bt)�
�
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Claim 8. Suppose that as is undersupplied to some agent in Ns(as) at �. Then, for each
t ∈ {1� � � � �T }, bt is undersupplied to all agents in Ns(bt) at �t , where T is defined as in (4).

Proof. We argue by induction on t. For t = 1, it is immediate from Claim 2. We assume
that bt is undersupplied to all agents in Ns(bt) at �t , where t < T . By Claim 2, we need
to show that bt+1 is undersupplied to some agent in Ns(bt+1) at �t . Let P = φ(�t ) and
P ′ = PS(�t ). We consider three cases, where Cases 1 and 2 are not mutually exclusive.

Case 1. For some i ∈ Mt ,
∑

a∈As−1∪Bt+1 pi�a < τ�t (bt+1). Then, for all j ∈ Ns(bt+1),
by sd-envy-freeness and U(�t

j� b
t+1) ⊆ U(�t

i � b
t+1), we have F(�t

j� b
t+1�Pj) ≤

F(�t
i � b

t+1�Pj) ≤ F(�t
i � b

t+1�Pi) ≤ ∑
a∈As−1∪Bt+1 pi�a < τ�t (bt+1). Thus, bt+1 is undersup-

plied to j at �t .
Case 2. We have τ�t (bt+1) = 1. Since t < T , there exists i ∈ Mt+1 such that

F(�t
i � b

t+1�Pi) < 1 = τ�t (bt+1). If i ∈ Mt , then this case reduces to Case 1. Otherwise
i ∈Ns(bt+1), to whom bt+1 is undersupplied at �t .

Case 3. We have τ�t (bt+1) < 1 and for all i ∈ Mt ,
∑

a∈As−1∪Bt+1 pi�a ≥ τ�t (bt+1). Then,
since bt is undersupplied to all agents in Ns(bt) at �t , it follows from Claim 7 that for all
i ∈Mt ,

∑
a∈As−1∪Bt pi�a < τ�t (bt). Thus, by our assumption,

for all i ∈Mt�

pi�bt+1 =
∑

a∈As−1∪Bt+1

pi�a −
∑

a∈As−1∪Bt

pi�a > τ�t (bt+1)− τ�t (bt) = p′
i�bt+1�

(5)

where the last equality follows from the fact that by Claim 3, in SEA agent i ∈ Mt turns to
eating bt+1 at time τ�t (bt) until τ�t (bt+1).

Since τ�t (bt+1) < 1, bt+1 is fully consumed at �t in SEA, i.e.,
∑

i∈N p′
i�bt+1 = qbt+1 . Also,

since τ�t (bt+1) ≤ τ�t (bu) for all u > t + 1 by Claim 3, any agent i ∈N \Mt+1 does not eat
bt+1 in SEA, i.e., p′

i�bt+1 = 0. Thus,

∑
i∈Mt+1

p′
i�bt+1 = qbt+1 � (6)

Therefore, it follows from (5) and (6) that
∑

i∈Ns(bt+1) pi�bt+1 ≤ qbt+1 − ∑
i∈Mt pi�bt+1 <

qbt+1 −∑
i∈Mt p′

i�bt+1 = ∑
i∈Mt+1 p′

i�bt+1 −∑
i∈Mt p′

i�bt+1 = ∑
i∈Ns(bt+1) p

′
i�bt+1 . Thus, for some

i ∈Ns(bt+1), we have pi�bt+1 <p′
i�bt+1 . That is, bt+1 is undersupplied to i at �t . �

Finally, we are ready to derive a contradiction if (1) does not hold.
For notational simplicity, let

P =φ(�T ) and P ′ = PS(�T )�

Define

B∗ = {b ∈ B \BT | ∃i ∈ Ns(b) and a ∈ U(�T
i � b) s.t. pi�a > 0}

and

N∗ =
⋃
b∈B∗

Ns(b)�
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Suppose (1) does not hold. Then there exists some k ∈N such that φk�as (�) < PSk�as (�).
As PSk�as (�) > 0, k ∈ Ns(as), i.e., as is undersupplied to k at �. Our objective is to show
that

∑
i∈N∗

∑
a∈Api�a > |N∗|, which is a contradiction because

∑
i∈N∗

∑
a∈Api�a ≤ |N∗|

by the definition of a random assignment.
Step 1. We show for all i ∈ MT ,

∑
a∈As−1∪BT pi�a <

∑
a∈As−1∪BT p′

i�a = τ�T (bT )

and, thus,
∑

a∈BT pi�a <
∑

a∈BT p′
i�a. Fix i ∈ MT . First, by Claim 1(iii) and (iv),∑

a∈As−1∪BT p′
i�a = F(�T

i � b
T �P ′

i). Second, Claim 4 implies F(�T
i � b

T �P ′
i) = τ�T (bT ).

Third, as as is undersupplied to agent k ∈ Ns(as) at �, Claim 8 implies that bT is under-
supplied to all agents in Ns(bT ), which in turn implies by Claim 7 that

∑
a∈As−1∪BT pi�a <

τ�T (bT ). These three statements imply
∑

a∈As−1∪BT pi�a <
∑

a∈As−1∪BT p′
i�a. Finally,

Claim 1(iii) implies
∑

a∈BT pi�a <
∑

a∈BT p′
i�a.

Step 2. We show pi�a = 0 for all i ∈ N \ (MT ∪ N∗) and a ∈ U(�T
i � a

∗
i ). Suppose

i ∈N \MT and a ∈ U(�T
i � a

∗
i ). Then if pi�a > 0, we have a∗

i ∈ B∗ and, thus, i ∈ N∗. There-
fore, pi�a must be 0 if i /∈N∗.

Step 3. We show that there exist i∗ ∈ N∗ and b ∈ BT such that pi∗�b > 0. First note
that

∑
i∈N pi�b = qb for all b ∈ BT , since P is non-wasteful, and for all i ∈ MT , the objects

in As−1 ∪ BT are ranked highest under �T
i and

∑
a∈As−1∪BT pi�a <

∑
a∈As−1∪BT p′

i�a ≤ 1
by Step 1. There exist i∗ ∈ N \ MT and b ∈ BT such that pi∗�b > 0, for otherwise Step 1
implies

∑
a∈BT qa = ∑

i∈MT

∑
a∈BT pi�a <

∑
i∈MT

∑
a∈BT p′

i�a ≤ ∑
a∈BT qa, which is a con-

tradiction. Observe that b ∈U(�T
i∗� a

∗
i∗). Thus, i∗ ∈N∗ by Step 2.

Step 4. We show (i) T < |B|, (ii) for all i ∈ MT+1, F(�T
i � b

T+1�Pi) = 1, and
(iii) bT+1 ∈ B∗. Step 3 implies N∗ �= ∅. This in turn implies T < |B|, because N \MT = ∅

when T = |B|. Therefore, for all i ∈ MT+1, F(�T
i � b

T+1�Pi) = 1 by the definition of T . In
particular, F(�T

i � b
T+1�Pi) = 1 for all i ∈Ns(bT+1), which implies bT+1 ∈ B∗.

Step 5. We show that for all a ∈ B∗,
∑

i∈N∗ pi�a = qa. Fix a ∈ B∗. Observe that for

all i ∈ N \ (MT ∪ N∗), a ∈ U(�T
i � a

∗
i ) and, therefore, pi�a = 0 by Step 2. Moreover, for

all i ∈ MT , a ∈ U(�T
i � b

T+1) by Step 4(iii) and the construction of �T
i , and, therefore, by

Step 4(ii), pi�a = 0. Thus,
∑

i∈N∗ pi�a = ∑
i∈N pi�a. Alternatively, there exists some i ∈ N∗

with a = a∗
i and some b ∈ U(�T

i � a) such that pi�b > 0 by the definition of B∗ and N∗.
Hence,

∑
j∈N∗ pj�a = ∑

j∈N pj�a = qa, where the second equality follows from the non-
wastefulness of P .

Step 6. We show for all u > T , τ�T (bu)= 1:

qbT+1 ≥
∑

i∈MT+1

pi�bT+1

=
∑
i∈MT

(1 − F(�T
i � b

T �Pi))+
∑

i∈Ns(bT+1)

(
1 −

∑
a∈As−1

p′
i�a

)

by Step 4(ii) and Claim 1(iii)

≥
∑
i∈MT

(
1 −

∑
a∈As−1∪BT

pi�a

)
+

∑
i∈Ns(bT+1)

(
1 −

∑
a∈As−1

p′
i�a

)

since U(�T
i � b

T ) ⊆As−1 ∪BT
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>
∑
i∈MT

(
1 −

∑
a∈As−1∪BT

p′
i�a

)
+

∑
i∈Ns(bT+1)

(
1 −

∑
a∈As−1

p′
i�a

)
by Step 1

≥
∑

i∈MT+1

p′
i�bT+1�

No agent i ∈N \MT+1 ever eats bT+1 in SEA under �T , as a∗
i ∈ B \BT+1 is not exhausted

before bT+1 by Claim 3. Thus, qbT+1 >
∑

i∈N p′
i�bT+1 , i.e., bT+1 is not fully exhausted in

SEA. Hence, τ�T (bT+1)= 1. Again by Claim 3, for all u > T , τ�T (bu) = 1.
Step 7. We finally show

∑
i∈N∗

∑
a∈Api�a > |N∗|. First,

∑
a∈Api�a ≥ ∑

a∈B∗ pi�a +∑
a∈As−1 pi�a for all i ∈ N∗, and the inequality is strict if i = i∗ by Step 3. Thus∑
i∈N∗

∑
a∈Api�a >

∑
i∈N∗

∑
a∈B∗ pi�a + ∑

i∈N∗
∑

a∈As−1 pi�a. The first summation on
the right-hand side equals

∑
a∈B∗ qa by Step 5 and the second summation equals∑

i∈N∗
∑

a∈As−1 p′
i�a by Claim 1(iii). Therefore,

∑
i∈N∗

∑
a∈A

pi�a >
∑
a∈B∗

qa +
∑
i∈N∗

∑
a∈As−1

p′
i�a

≥
∑
i∈N∗

F(�T
i � a

∗
i � P

′
i)

=
∑
i∈N∗

τ�T (a∗
i ) by (2)

= |N∗| by a∗
i ∈ B \BT for all i ∈ N∗ and Step 6�

This completes the proof. �

We finally consider a special case of our model that assumes the existence of the
null object (i.e., an object that is always abundant in supply) and provide an interesting
corollary of Theorem 2 for this case. The null object represents an agent’s outside option
that depends on the specific context, i.e., the option of not being assigned a real object
from A. This special case of the model could be of important practical relevance since
it gives rise to some natural preference misrepresentations that may arise in practice.

For example, in many real-world assignment procedures, authorities often cap the
number of objects that agents can include in their preference lists.20 Even without caps,
it could be unrealistic and impractical to expect agents to evaluate and list all of their
acceptable objects, especially when the assignment problem involves a large number of
objects.21 Given that agents may need to shorten their preference lists, truncated lists

20For instance, freshmen at the University of Pennsylvania may list up to eight choices in their
campus-housing applications (http://www.business-services.upenn.edu/housing/assets/pdf/brochures/
freshman.pdf; retrieved on November 15, 2010). See Haeringer and Klijn (2009), Calsamiglia et al. (2010),
and Pathak and Sönmez (2013) for more examples and implications of caps.

21In the context of school choice, more than 500 programs participate in the New York City high
school match (Abdulkadiroğlu et al. 2005). It is possible that hundreds of programs are acceptable to
some students, but it is highly unlikely that they list all of their acceptable schools. In fact, Boston
Public Schools encourage families to list at least five school choices (“more is better”) when registering

http://www.business-services.upenn.edu/housing/assets/pdf/brochures/freshman.pdf
http://www.business-services.upenn.edu/housing/assets/pdf/brochures/freshman.pdf
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would be among the most natural and likely preference reports to observe in practice.
The resulting assignment is potentially volatile, depending on whether agents truncate
their lists or not, which would be unfavorable for authorities and potentially unfavorable
for agents as well. Hence, robustness against truncations is a desirable property of a
mechanism. This property is implied by weak invariance. As it turns out, for individually
rational mechanisms, the converse is also true. We introduce formally these next.

Let us denote the null object by ∅. A preference relation �′
i is called a truncation of

�i if U(�′
i�∅) ⊆ U(�i�∅) and �i|U(�′

i�∅) = �′
i|U(�′

i�∅) (Roth and Rothblum 1999). That
is, truncation �′

i is obtained from �i by shrinking the list of acceptable objects while
preserving the relative rankings of those objects that remain acceptable. The following
axiom asks that the probability with which an agent i receives an (real) object a stays the
same whenever his preferences are truncated, provided that a remains acceptable after
the truncation.

Definition 3. A mechanism φ is weakly truncation robust if for all �∈ PN , i ∈ N , and
a ∈A, φi�a(�)= φi�a(�′

i��−i) whenever a�′
i ∅ and �′

i is a truncation of �i.22

Definition 4. A mechanism φ is individually rational if for all �∈ PN , i ∈N , and a ∈A,
φi�a(�)= 0 whenever ∅ �i a.

By definition, if �′
i is a truncation of �i and a �′

i ∅, then the rankings of the two
preferences coincide down to a. Therefore, weak invariance immediately implies weak
truncation robustness. The converse statement is also true for individually rational
mechanisms.23

Proposition 1. Suppose that the null object exists. A mechanism is weakly truncation
robust if it is weakly invariant. The converse is true if the mechanism is individually
rational.

Proof. To see the first part, note that if �′
i is a truncation of �i and a �′

i ∅, then
U(�′

i� a) = U(�i� a) and �′
i|U(�′

i�a)
= �i|U(�′

i�a)
. To show the second part, suppose that a

(http://www.bostonpublicschools.org/node/169). Also, San Francisco Unified School District warns in
boldface that “[p]arents who do not list up to 7 choices run a higher risk of getting assigned to a school they
did not request” (http://portal.sfusd.edu/template/default.cfm?page=policy.placement.process). This
suggests that some families may not list the maximum number of choices even when that number is small.
Even though some of them might actually have a smaller number of acceptable schools than the maxi-
mum, still others might shorten their preference lists owing to a host of other reasons including various
costs involved in the application process. All the web pages were retrieved on November 15, 2010.

22In the context of deterministic assignments, Ehlers and Klaus (2009) propose an axiom called trunca-
tion invariance. It requires all agents’ assignments to remain the same as a result of agent i’s truncation,
as long as the object that agent i obtains before the truncation remains acceptable. Truncation invariance
would appear stronger than weak truncation robustness: The former imposes the invariance restriction for
all objects, whereas the latter only for a particular one. They are, in fact, incomparable, because the former
restricts the class of truncations but the latter does not.

23The following is an example of a mechanism that is weakly truncation robust but not weakly invariant.
For any �∈ PN , let φ(�) = P if there exist two distinct i� j ∈N such that �i =�j and ∅ �i a for all a ∈ A, and
let φ(�) = P ′ otherwise, where P and P ′ are two arbitrary but distinct random assignments.

http://www.bostonpublicschools.org/node/169
http://portal.sfusd.edu/template/default.cfm?page=policy.placement.process
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mechanism φ satisfies individual rationality and weak truncation robustness. Fix a ∈ A,
i ∈ N , and �∈ PN . Let �′

i be an arbitrary preference such that U(�i� a) = U(�′
i� a) and

�i|U(�i�a) = �′
i|U(�i�a). If ∅ �i a (and thus ∅ �′

i a), then φi�a(�) = φi�a(�′
i��−i) = 0 by

individual rationality. If a �i ∅ (and thus a �′
i ∅), let �′′

i be a truncation of �i such that
U(�′′

i �∅) = U(�i� a) ∪ {∅}. Then �′′
i is also a truncation of �′

i and, thus, φi�a(�i��−i) =
φi�a(�′′

i ��−i) =φi�a(�′
i��−i) by weak truncation robustness. If a=∅, then �i is a trunca-

tion of �′
i and, thus, φi�b(�) = φi�b(�′

i��−i) for each b �i ∅. Hence, by individual ratio-
nality, φi�∅(�i��−i)= 1 − ∑

b�i∅
φi�b(�) = 1 − ∑

b�i∅
φi�b(�′

i��−i) =φi�∅(�′
i��−i). �

It follows from Proposition 1 that weak truncation robustness can replace weak in-
variance in Theorem 2 if the null object is present.

Corollary 2. Suppose that the null object exists. A mechanism is sd-efficient, sd-envy-
free, and weakly truncation robust if and only if it is PS.24

7. Concluding remarks

Finally, we establish the logical independence of the axioms in Theorems 1 and 2. We
start with Theorem 1. An ordinally fair but wasteful mechanism is the following. When
the total quota of objects exceeds the number of agents,25 consider the following strat-
egy: Fix q′

a ≤ qa for all a ∈ A such that
∑

a∈A q′
a = |N|. The PS mechanism that assigns

objects according to the artificial quota vector (q′
a)a∈A is ordinally fair but wasteful. Al-

ternatively, a simple (deterministic) serial dictatorship is a non-wasteful but ordinally
unfair mechanism.

The independence of the axioms in Theorem 2 can be shown as follows. The PS
mechanism with an artificial quota vector defined above is sd-envy-free and weakly in-
variant but sd-inefficient. A serial dictatorship is an sd-efficient and weakly invariant
mechanism that induces sd-envy. The mechanism in Example 2 is sd-efficient and sd-
envy-free, but not weakly invariant.

Example 2. Suppose N = {1�2�3}, A= {a�b� c}, and qa = qb = qc = 1. Define preference
profile �∗ = ((abc)� (abc)� (bca)). Let mechanism φ be such that

φ(�∗)=

a b c

1 1
2

1
3

1
6

2 1
2

1
3

1
6

3 0 1
3

2
3

24As in HH’s Theorem 2, by slightly modifying the proof, we can weaken sd-envy-freeness to the condi-
tion

∑
a�i∅

φi�a(�)≥ ∑
a�i∅

φj�a(�) for all �∈ PN and i� j ∈ N .
25If the total quota of objects is equal to the number of agents, we have an assignment problem with

perfect supply. Thus, non-wastefulness holds vacuously.
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and for all � �=�∗, φ(�) = PS(�). Then φ(�) is sd-efficient and sd-envy-free for all �.
Note that26

PS3�b((abc)� (abc)� (bca)︸ ︷︷ ︸
=�∗

) = PS3�b((abc)� (abc)︸ ︷︷ ︸
=�∗

−3

� (bac)) = 2
3 �

However, the above definition of φ violates weak invariance because

φ3�b((abc)� (abc)� (bca)︸ ︷︷ ︸
=�∗

) = 1
3 �= 2

3 = φ3�b((abc)� (abc)︸ ︷︷ ︸
=�∗

−3

� (bac))�

♦

One may wonder whether sd-efficiency can be weakened to non-wastefulness in
Theorem 2. The answer is negative: Suppose that the total quota of objects is equal
to the number of agents. Then the uniform mechanism, which assigns φi�a(�) = qa/|N|
for all i ∈ N , a ∈ A, and �∈ PN , is non-wasteful, sd-envy-free, and weakly invariant, but
sd-inefficient. We can construct a counterexample in a similar spirit even if the null
object exists.
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Abdulkadiroğlu, Atila, Parag A. Pathak, and Alvin E. Roth (2005), “The New York City high
school match.” American Economic Review Papers and Proceedings, 95, 364–367. [271]
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