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On the consistency of data with bargaining theories
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We develop observable restrictions of well known theories of bargaining over
money. We suppose that we observe a finite data set of bargaining outcomes,
including data on allocations and disagreement points, but no information on
utility functions. We ask when a given theory could generate the data. We show
that if the disagreement point is fixed and symmetric, the Nash, utilitarian, and
egalitarian max-min bargaining solutions are all observationally equivalent. Data
compatible with these theories are, in turn, characterized by the property of co-
monotonicity of bargaining outcomes.

We establish different tests for each of the theories under consideration in the
case in which the disagreement point can be variable. Our results are readily ap-
plicable, outside of the bargaining framework, to testing the tax code for compli-
ance with the principle of equal loss.
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1. Introduction

This paper is an inquiry into the testable implications of bargaining theory. We have in
mind the allocation of a single-dimensional resource: we can essentially focus on the
allocation of money among a set of agents. We suppose that we have available certain
data on how money was divided among a fixed number of agents. The data describe final
allocations of money and the agents’ disagreement points, but include no information
on agents’ preferences or on the method (or protocol or extensive-form game) that led to
the division. We want to know when observed allocations are consistent with standard
bargaining theory.

Several well known theories could explain a given collection of data. We focus on the
utilitarian, Nash, and egalitarian models. The utilitarian model divides the resource so
as to maximize the sum of agents’ utilities. The Nash bargaining model (after Nash 1950)
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seeks to maximize the product of the gains from splitting the resource. Finally, the egal-
itarian solution (commonly identified with Rawls 1971) chooses a division to maximize
the utility of the worst off agent. Our goal here is to investigate the implications of these
theories for certain kinds of data sets.

Data sets consist of observations of how a resource is divided among a set of agents
and of the relevant “disagreement point.” That is, we observe how much money was at
stake, how it was divided among the agents, and which outcome would have prevailed if
the agents had failed to agree on a division. We do not, however, have any data on agents’
preferences or on the protocol (or underlying strategic interactions) that produced the
observed allocations.

Such data are used by Hamermesh (1973), for example. He uses data on union wage
bargaining. More generally, the data could be the outcome of bankruptcy liquidation
proceedings, or government subsidies. We investigate the restrictions that each of the
three models, utilitarian, Nash, and egalitarian, place on the allocations of money. Es-
sentially, we want to test the hypotheses that resources are allocated according to these
bargaining theories when utility functions are assumed to be increasing and concave,
but otherwise can differ across individuals.

We present two sets of results.
First, in Section 4, we assume that the disagreement points are fixed across observa-

tions and the same for all agents. A case in point is the wage bargaining data mentioned
above. We provide a joint test of the hypotheses that a particular bargaining protocol is
used and that the disagreement outcome is zero for all agents. We discover that the em-
pirical content of the three models is identical: No data set of the kind we assume allows
us to distinguish between them. A data set either refutes all three or is consistent with all
three.

Furthermore, the theories have very weak predictive power. The only empirical pre-
diction of any of these theories is that data should be perfectly strictly ordinally corre-
lated, or co-monotonic, and that each agent should get at least a positive amount of con-
sumption if any other agent does. This means that when the total amount of resource
increases, all agents must receive a higher amount of resource.

In fact, we show more. We show that with our assumption on data sets, co-
monotonicity characterizes the empirical content of theories based a large class of so-
cial welfare functions, namely, any that takes a generalized utilitarian form: that is,∑

i∈N g(ui(xi)). The utilitarian and Nash models are special cases. Our result implies a
rather strong form of observational equivalence. Whenever the data are consistent with
one of these theories (say Nash bargaining), then the same rationalizing utility func-
tions serve to rationalize the observed data as generated by any of the other theories.
As far as we know, our result is the first to document this strong form of observational
equivalence in the revealed preference literature. We are considering three “nonnested”
models and, given a rationalizable data set, we can find utility functions that serve to
rationalize the data using any of the three models.

Second, in Section 5, we turn to data in which the disagreement point can vary. We
observe here that the result from Section 4 readily extends to the utilitarian model and
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we present a simple result on the testable implications of the Nash bargaining solution.
The most interesting case, though, deals with the egalitarian model of bargaining.

Under the additional assumption that utility functions are the same, the egalitarian
model embodies the principle of “equal gain.” The increase in utility between the final
outcome and the disagreement point should be equal across agents.

An interesting empirical application is to taxation. Our formal model is character-
ized by the similar primitives as in axiomatic models of taxation (for example, Young
1988, 1990). There is a natural relation between the equal gains bargaining solution and
a classical egalitarian principle of taxation. We can interpret data on taxation (specifi-
cally, the tax code) as bargaining data: the disagreement point represents agents’ post-
tax incomes and the division of money represents the amount they earn before taxes.
Data of this kind can be readily inferred from the tax code.

The egalitarian theory we discuss is the “equal loss” principle (Young 1988). A tax
code is consistent with this principle if there is a utility function for which the “loss” to
all agents (as measured by the difference in utility between pre- and post-tax income)
is equalized. The principle of equal loss has a long history in the economics of taxa-
tion.1 We are concerned with the empirical problem of testing a tax code for compliance
with the principle of equal loss. The tax code is not (necessarily) a bargaining outcome,
but our model can be reinterpreted to fit tax data instead of bargaining. Formally, the
test coincides with our test for the equal gains bargaining solution by reinterpreting the
primitives appropriately.

We present a test of this theory in the case when utility is unknown. Young (1990)
studies the same problem, but using a parametric estimation approach to find the best-
fitting utility index to the tax code in the United States. We present instead a nonpara-
metric test, which can be applied to the data used by Young.

Section 5 discusses the case when utilities may differ among agents and presents an
extension to when utility is required to be concave, as it is in the rest of the paper. The re-
sults of Section 5 have an interesting by-product: the testable implications of Hotelling’s
model of spatial competition (Hotelling 1929). Section 5.8 demonstrates how this prob-
lem is a special case of the environment studied in Section 5.

1.1 Related literature

The closest papers to ours may be Cherchye et al. (2013) and Carvajal and González
(forthcoming). These are independently conducted investigations into the testable im-
plications of Nash bargaining.

Cherchye, Demuynck, and De Rock consider a model where a pair of agents bargain
over consumption decisions, so the framework is different from our focus on bargain-
ing over money. They assume that the disagreement points vary endogenously because
individual agents have the option of making consumption purchases on their own, and

1As Young (1990) notes, it was championed by John Stuart Mill and spawned a large literature on the
normative virtues of equal sacrifice.



140 Chambers and Echenique Theoretical Economics 9 (2014)

they characterize the rationalizable data as those that satisfy a system of quadratic in-
equalities. Recognizing that such a system is hard to solve, they provide a sufficient con-
dition and a necessary condition that can be operationalized computationally. Finally,
they carry out a laboratory experiment and show how one can use their tests.

Carvajal and González suppose that consumption is over monetary units (as we do)
and develop polynomial tests of the Nash bargaining model under various hypotheses
about the behavior of the disagreement point. Most of their tests characterize rational-
izable data as those that satisfy a system of quadratic inequalities. They use the Tarski–
Seidenberg algorithm to construct direct tests of rationalizability in terms of data alone.
A version of our Proposition 10 appears already in Carvajal and González.

The setup and methodology in both Cherchye et al. (2013) and Carvajal and
González (forthcoming) are distinct from ours and perhaps closest to our discussion
in Section 5.2. In fact, probably the method we suggest there can be applied in their
frameworks and vice versa. The boundary of the problems we can solve in revealed
preference analysis is given by polynomial problems, such as the ones they analyze. It is
interesting to see complementary approaches emerge.

The recent contribution of Chiappori et al. (2012) investigates the empirical con-
tent of Nash bargaining. There are several important differences between that work
and ours. The main difference is that their framework assumes disagreement points
are unobserved. Instead, they suppose that some vector of underlying, observable Eu-
clidean characteristics uniquely determines both the utility functions of agents and the
disagreement point. Without assuming any kind of structure on the joint dependence
of disagreement point and utility on these underlying characteristics, their model ob-
viously has no testable implications (this is their Proposition 2). To have any empirical
content, they must assume some structure on the dependence of the utility function
and disagreement point on these characteristics. They assume that this dependence is
known to satisfy certain properties (differentiability and “exclusion restrictions”) both
within and across characteristics. By contrast, in our model, disagreement point obser-
vations are part of the observed data, and this leads to the falsifiability of the model.

The other main distinction between their work and ours is that they are concerned
with understanding the testable implications of the model in a continuous sense—the
implications of the model if we could observe the division across all possible problems.
Our work, alternatively, assumes only that a finite number of possible division prob-
lems are observed (with their solutions). The distinction in the two approaches can be
best understood by considering the classical demand model: their approach is analo-
gous to characterizing rationalizability by conditions on the Slutsky matrix, while our
approach is analogous to Afriat’s (1967) discussion of finite data sets that are rational-
izable. Their work also notes that the testable implications of the Nash, utilitarian, and
max-min model are identical in certain frameworks.

de Clippel and Eliaz (2012) also provide an interesting study of the empirical con-
tent of a particular bargaining solution, which they call the fallback solution (which
shares some ideas with the max-min solution). Their framework is a general (“Arro-
vian”) choice environment, where two agents decide from a finite choice set. The paper
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by Kıbrıs (2012) also studies bargaining solutions (albeit in a claims framework) and de-
rives a revealed preference relation from the choices made by the solutions. Kıbrıs finds
conditions on the solutions so that the implied revealed preference relation is rational.

Earlier works that discuss the empirical content of Nash bargaining, usually assum-
ing all individuals are identical and risk neutral, include Hamermesh (1973) and Bowlby
and Schriver (1978). Svejnar (1980) provides a critique of these ideas.

As earlier noted, Young (1990) constructs a test of the max-min hypothesis using
empirical data on U.S. income taxes from 1957 to 1987. His approach is estimation
based and he finds that tax data are reasonably close to predicted data from the max-
min model in most years (there are exceptions). He assumes specific parametric forms
for the utility function. By contrast, we provide an exact test of the max-min model, as-
suming no parametric functional form. Young (1988) provides a kind of exact empirical
test of the max-min model, assuming the solutions to all possible problems are observed
and further assuming observations across different populations.

2. The theories

We consider the most commonly used (cooperative) theories of bargaining. We as-
sume an environment where some quantity m ∈ � of a single-dimensional resource (e.g.,
money) is available and a group of n agents needs to decide on an allocation of m. Each
problem possesses a disagreement point, which is the vector of outcomes received by
agents if negotiations break down. For each agent, di is the monetary value of this out-
come and the vector d = (d1� � � � � dn) is the disagreement point. The set

B(m�d) =
{
(x1� � � � � xn) ∈ �n+ :

n∑
i=1

xi ≤m and� for all i� xi ≥ di

}

represents all the allocations of m in which each agent gets at least their disagreement
points. The disagreement point is observed and known.

A bargaining theory uses information on agents’ preferences to predict an outcome
in B(m�d). Suppose that each agent i is described by a strictly increasing and concave
utility function ui :�+ → �.

The utilitarian theory says that m is divided so as to maximize the sum
∑n

i=1 ui(xi)

over B(m�d). We consider a generalization of the utilitarian theory, where for some func-
tion g :A⊂ � → �, the sum

∑n
i=1 g(ui(xi)− ui(di)) is maximized over B(m�d).2

The Nash bargaining theory predicts a choice in B(m�d) that maximizes the so-
called Nash product,

n∏
i=1

[ui(xi)− ui(di)]�

Note that the Nash bargaining theory is a special case of our generalization of the utili-
tarian theory, letting g = log.

2Note that this is indeed a generalization, as the problems of optimizing
∑n

i=1 ui(xi) and of optimizing∑n
i=1[ui(xi)− ui(di)] have the same solutions over B(m�d).
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Finally, the egalitarian (or max-min) theory says that x ∈ B(m�d) should be chosen
to maximize

min
i∈N

[ui(xi)− ui(di)]�

These three theories have both positive and normative interpretations. Under the
positive interpretation, it is evident that we may want to understand the empirical con-
tent of the theory. The theories are commonly assumed to predict an outcome in applied
economic models. Probably the most commonly used is the utilitarian model, but the
Nash solution also finds applications. From macroeconomics to contract theory and ap-
plied mechanism design, authors often use the Nash solution as a “reduced form” model
to capture the outcome of some bargaining stage.3

From the normative viewpoint, our three theories have know axiomatizations that
relate them to basic principles of justice or social welfare (see, for example, Thomson
1981, 2010, Lensberg 1987, Thomson and Lensberg 1989, Kalai 1977).

3. The data

We assume a finite collection of observations of bargaining outcomes. A data set is a set
D = {(dk�xk)}Kk=1. Each observation k specifies a pair (dk�xk) ∈ �2n, where xki ≥ dki for
all i and k. For each k, dk represents a disagreement point and xk represents an outcome
of bargaining. Let the set N = {1� � � � � n}.

Any study of the empirical content of a theory depends crucially on what one as-
sumes is observable. If we observe m, d, and agents’ utility functions, then the theories
we described in Section 2 are all testable and each one of them makes predictions that
are not made by the others.

In contrast, we assume that utility functions are not observable. Our assumption
follows the mainstream revealed preference view of preference and utility: utilities are
purely theoretical constructs and do not have any meaning beyond what they predict
about agents’ behavior—in this case joint behavior. Utilities are not observable or even
meant to be observable.

The revealed preference view is rooted in the use of field data in economics. Most
data sets in economics consist of field data and they do not normally contain informa-
tion on utility functions. In the particular case of bargaining theory, the econometric
studies of bargaining use data with no information on utility functions (see, for example,
Hamermesh 1973).

Experimental researchers can, and often do, collect partial information on utility
functions by the design of the experiment or by using supplementary surveys. Many ex-
perimentalists are, however, skeptical about the idea that one can control utility effec-
tively in the laboratory. In experiments specifically designed to test bargaining theory,
attempts have been made to assume as little as possible about agents’ preferences. Roth,
in a survey of the experimental literature on bargaining (see pp. 41–43 in Roth 1995),

3See, for example, Hart (1995) for the use of Nash bargaining in the literature on incomplete contracts;
see Rogerson et al. (2005) for macroeconomic search models.
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argues that experiments that assume a specific utility function are problematic, and he
describes designs that attempt to assume as little as possible about subjects’ preferences
(typically only that the subjects are expected utility maximizers, but nothing about the
form of the utility function). Our assumptions about data are obviously in line with such
experimental designs.

4. Fixed and symmetric disagreement point

In this section, we suppose that the disagreement point is fixed and symmetric. Our
result is that the only aspect of bargaining theory that can be tested is a basic solidarity
principle. A discussion of this solidarity principle in different economic environments
is presented in Sprumont (2008).

The punchline is twofold. First, the three models of Section 2 have identical testable
implications. Thus, for the kinds of data described in Section 3, if the disagreement point
is fixed and symmetric, then the three most popular models of cooperative bargaining
are observationally equivalent.

Second, the empirical predictions of these models are relatively weak: if one agent’s
consumption increases, then so does the consumption of all remaining agents.

With a fixed disagreement point, we assume that the disagreement point is normal-
ized to 0. A data set (Section 3) then takes the special form {xk}Kk=1, where xk ∈ �n+.
Importantly, the disagreement point must be the same for all observations.

Our assumption of a common disagreement can be justified when disagreement
points are observed to be fixed across observations, of course, but also when they are
unobserved. In the latter case, we may choose a disagreement point as part of the exer-
cise of constructing a rationalizing instance of the model: we are free to choose disagree-
ments just as we are free to construct rationalizing utility functions. Now, the assump-
tion that disagreement points can vary in arbitrary ways leads to an untestable theory;
one can choose disagreement points (and utilities) to rationalize any data using, for ex-
ample, Nash bargaining (Chiappori et al. 2012). So a researcher may want to assume that
the variability of the disagreement point is limited: the most natural such assumption
is that it is fixed (and can then be normalized to be zero; Hamermesh 1973 is a case in
point). Our test then becomes a joint test for the particular bargaining solution together
with the assumption of a fixed disagreement point at zero.4

We consider the general model described in Section 2. Let g : [0�∞) → � ∪ {−∞}
be a strictly increasing, smooth, and concave function. We say that data {xk}Kk=1
are g-rationalizable if there exist strictly increasing, smooth, and strictly concave
functions ui for which ui(0) = 0 and u′

i(0) = ∞ (Inada conditions), and for which∑
i∈N g(ui(x

k
i )) ≥ ∑

i∈N g(ui(yi)) for all allocations (y1� � � � � yn) ∈ B(
∑

i x
k
i �0) and k =

1� � � � �K. As we remarked in Section 2, the utilitarian and Nash models are special cases
of g-rationalizability.

Finally, data {xk}Kk=1 are max-min rationalizable if there exist strictly increasing and
strictly concave ui, normalized so that ui(0) = 0, for which mini∈N ui(x

k
i ) ≥ mini∈N ui(yi)

for all (y1� � � � � yn) ∈ B(
∑

i x
k
i �0) and k= 1� � � � �K.

4Of course, other assumptions on the disagreement point are possible, but they fall outside the scope of
our paper.
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Our result establishes a property of the data that is equivalent to rationalizability by
these theories: this property yields a nonparametric test for bargaining theory. We say
that data {xk}Kk=1 are co-monotonic if for all i� j ∈ N and all k� l, xki < xli implies xkj < xlj ,

and for all i� j ∈ N , xki = 0 if and only if xkj = 0. Co-monotonicity requires that outcomes
are perfectly strictly ordinally correlated (when 0 is also considered an outcome).

Theorem 1. Given data {xk}Kk=1 and a strictly increasing concave g, the following state-
ments are equivalent.

(i) The data are co-monotonic.

(ii) The data are g-rationalizable.

(iii) The data are max-min rationalizable.

Remark 2. Our original proof of this theorem establishes only the equivalence of the
utilitarian model, the Nash model, and the max-min model. An anonymous referee (at
the American Economic Review) showed us how to generalize the result to the one stated
above.

Remark 3. We fix g, thereby fixing a theory, and ask if there are utility functions that ra-
tionalize the observations. In principle, the rationalizing utility functions could depend
on the particular g under consideration. For example, the utilities that rationalize some
data set as coming from Nash bargaining may differ from the utilities that give a utilitar-
ian rationalization. Surprisingly, it turns out that the utilities we construct in the proof
serve to rationalize the data for any g. (This was shown to us by the anonymous referee
mentioned in Remark 2.)

In fact, it is evident from our proof that the constructed utilities also allow rational-
ization by any symmetric, increasing, and quasiconcave (even quasiconcavity can be
weakened) function ϕ :�n → �, independently of whether ϕ is additively separable.5

Thus the models we consider are observationally equivalent in a particularly strong
sense. Rationalizable data allow us to fix the unobservable utility functions in a way
that is consistent with any of the models under consideration. We cannot differentiate
one model from another in terms of their implied behavior about rationalizing utility
functions.

Remark 4. Dropping the hypothesis of smoothness of the ui functions and of g results
in a weaker notion of co-monotonicity. Dropping the hypothesis that u is strictly con-
cave can result in models with no testable implications on our class of data. For example
the utilitarian model with linear utility functions is not testable, as the theory allows for
any individually rational division of surplus.

5The converse statement, that any symmetric, increasing, and quasiconcave social welfare function gen-
erates co-monotonic data, is not true. It seems that the additive welfare functions we consider are the most
general ones with this property.
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Remark 5. Note that our notion of rationalizability requires utility functions to satisfy
an Inada condition. Without the Inada condition, the theories in Section 2 may pos-
sess noninterior solutions, and the resulting data may not be co-monotonic as we have
defined co-monotonicity (we would have a notion of co-monotonicity with weak in-
equalities instead of strict). The equivalence between g-rationalizability and max-min
rationalizability also fails without Inada conditions.

Remark 6. Suppose that our data {xk}Kk=1 are such that xk ∈ �n++ for all k. Then the
condition in the theorem is equivalent to the statement that for all i� j ∈ N and all k� l,
xki < xli implies xkj < xlj . Section 5.1 below exploits this idea further.

Remark 7. We could suppose that for each i ∈ N , there is di, potentially different from
zero, that serves as a fixed disagreement point and then test our theories with the cor-
responding di. Our rationalizations would be required to satisfy u′

i(di) = +∞, and co-
monotonicity would be redefined as xki = di for some i ∈ N implies that xkj = dj for all

j ∈ N . In particular, if we are given data that satisfy xki > xli if and only if xkj > xlj for
all i� j ∈ N and k� l, then we can always rationalize such data by fixing, for all i, some
di < minK

k=1 x
k
i and using any of the models previously discussed.

Remark 8. We could also ask about rationalization by “weighted” versions of the rules.
For example, with weights α ∈ �n++, a weighted g rule might be one that is chosen to
maximize

∑
i∈N g(αiui(xi)) over B(m�0), subject to the constraint that

∑
i∈N xi = m. By

Theorem 1, the only implication of the maximization of such rules is co-monotonicity.
This can be seen by finding ui functions that g-rationalize the data and then rescaling.
A similar statement holds for max-min rationalizability.

Proof. It follows from the first order conditions that if the data are either g-rational-
izable or max-min rationalizable, then they are co-monotonic.6

For the other direction, we show something slightly stronger: If the data are co-
monotonic, then there exist strictly concave, continuous, and increasing functions ui
such that if ϕ : [0�∞) → �∪{−∞} is a increasing, symmetric and quasiconcave function,
then ϕ(u1(x

k
1 )� � � � � un(x

k
n)) ≥ ϕ(u1(y1)� � � � � un(yn)) for all allocations (y1� � � � � yn) that sat-

isfy
∑

i∈N xki = ∑
i∈N yi.7 As a special case, we have ϕ(z1� � � � � zn) = ∑n

i=1 g(zi). Note the
order of the quantifiers used above: the same profile of utility functions u1� � � � � un works
across all ϕ.

6The argument for the utilitarian model is as follows: Suppose that all agents’ marginal utilities are equal-
ized at x ∈ B(m�0) and at x′ ∈ B(m′�0) with m = ∑

i xi and m′ = ∑
i x

′
i . (Note that this uses the Inada condi-

tions assumed on utilities.) Suppose that m<m′. Some agent i must have x′
i > xi; then all agents’ marginal

utilities must be smaller at the allocation x′ than at x and the concavity of utility implies that all x′
i > xi for

all i. The argument is almost identical for generalized g-utilitarianism. For the max-min model, it is clear
that all agents must have equal utility at a given allocation. Thus, if one agent’s utility goes up, so must all
others.

7Symmetry means that if σ is a permutation on {1� � � � � n}, then ϕ(xσ(1)� � � � � xσ(n)) = ϕ(x1� � � � � xn). In-
creasing here means that if xi > yi for all i, then ϕ(x1� � � � � xn) > ϕ(y1� � � � � yn).
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To this end, we suppose the data are co-monotonic and we ignore replications
as well as points where every agent consumes 0. Without loss of generality, let us
suppose that x1

i < x2
i < · · · < xKi for all i ∈ N (that this is possible follows from co-

monotonicity). Below we construct a profile of utility functions u1� � � � � un with the prop-
erty that for all k = 1� � � � �K,

∑
i∈N ui(x

k
i ) is maximal across all allocations y1� � � � � yn for

which
∑

i∈N xki = ∑
i∈N yi, and that mini∈N ui(x

k
i ) is also maximal across all such alloca-

tions; it follows that since each ui is strictly increasing, ui(xki )= uj(x
k
j ) for all i� j ∈N .

We first argue that such a construction suffices to establish the result: Let ϕ

be as above, and suppose, by way of contradiction, that there is a k and a fea-
sible allocation (y1� � � � � yn) for which ϕ(u1(y1)� � � � � un(yn)) > ϕ(u1(x

k
1 )� � � � � un(x

k
n)).

Note then, by symmetry of ϕ, that for any permutation of the agents σ :N → N ,
ϕ(uσ(1)(yσ(1))� � � � � uσ(n)(yσ(n))) = ϕ(u1(y1)� � � � � un(yn)). Quasiconcavity of ϕ then im-
plies that

ϕ

(∑
i∈N

ui(yi)

n
� � � � �

∑
i∈N

ui(yi)

n

)
>ϕ(u1(x

k
1 )� � � � � un(x

k
n))�

By strict increasingness of ϕ and using the fact that ui(xki ) = uj(x
k
j ) for all i� j ∈ N , this

implies that

∑
i∈N

ui(yi)

n
>

∑
i∈N

ui(x
k
i )

n
�

contradicting ∑
i∈N

ui(x
k
i )≥

∑
i∈N

ui(yi)

for all feasible allocations y1� � � � � yn.
We finish the proof by constructing, for each i, a strictly decreasing, continuous, and

positive function fi, with the property that if we set ui to be the integral of fi, then the
profile of utility functions (u1� � � � � un) works as required by the first part of the proof.

We proceed by induction. We ensure that, for each i ∈ N and each k, the following
equalities are true:

(i)
∫ xki

0 fi(x)dx = ∫ xkj
0 fj(x)dx

(ii) fi(x
k
i )= fj(x

k
j ).

In the first place, for k= 1, we define for each agent j, fj(0) = +∞. The construction
is done in a series of steps, labeled Step 1 to Step 6.

Step 1. For K, define fi(x
K
i ) = 1 for all i ∈N .

Step 2. For x > xKi , define fi(x) to be any strictly decreasing function, taking value ev-
erywhere less than 1 and rendering fi continuous.
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Step 3. Proceed by induction. Let k > 1 be arbitrary, and suppose that fi(x) has been
defined for all x≥ xki . We assume that for all k′ ≥ k, fi(xk

′
i ) = fj(x

k′
j ) and

∫ xKi

xki

fi(x)dx =
∫ xKj

xkj

fj(x)dx for all i� j ∈N�

Recall that we have x1
i < x2

i < · · · < xKi . We choose a finite fj(x
k−1
j ), but we must choose it

to be sufficiently large. Specifically, let z be large enough so that there is ε > 0 for which
z(xkj −xk−1

j )−ε > maxi∈N fi(x
k
i )(x

k
i −xk−1

i )+ε for all j. We can then set fj(x
k−1
j ) = z for

all j.

Step 4. Observe that, given fj(x
k−1
j ) and fj(x

k
j ), for any ε > 0 and any

y ∈ (fj(x
k
j )(x

k
j − xk−1

j )+ ε� fj(x
k−1
j )(xkj − xk−1

j )− ε)�

we can define fj continuous and decreasing on x ∈ (xk−1
j � xkj ) so that

∫ xkj

xk−1
j

fj(x)dx = y�

This follows as we can approximate the constant functions h(x) = fj(x
k−1
j )(xkj − xk−1

j )

and h∗(x) = fj(x
k
j )(x

k
j − xk−1

j ) arbitrarily closely pointwise by strictly decreasing and
continuous functions.

Step 5. Complete fj(x) on x ∈ (xk−1
j � xkj ) so that

∫ xkj

xk−1
j

fj(x)dx

is equalized across all agents, by picking

y ∈
⋂
i∈N

(fi(x
k
i )(x

k
i − xk−1

i )+ ε� fi(x
k−1
i )(xki − xk−1

i )− ε)

and choosing fj(x) on x ∈ (xk−1
j � xkj ) so that

∫ xkj

xk−1
j

fj(x)dx = y�

Step 6. In the case of k= 1, also maintain that

∫ x1
j

0
fj(x)dx <+∞�
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The functions fj so constructed satisfy the conditions we ask for: that for all k, fj(xkj )
is equalized across j and ∫ xkj

0
fj(x)dx

is equalized across j. By setting

uj(x) =
∫ x

0
fj(x)dx�

we have the required uj . �

Remark 9. An anonymous referee suggested to us the following explicit construction,
which works if we want to find rationalizations that do not necessarily satisfy the Inada
conditions:

Step 1. Set fi(xKi ) = 1 for all i ∈N .

Step 2. Complete fi above xKi with any continuous, strictly decreasing function.

Step 3. Pick any

zK−1 >

(
2

maxj∈N(xKj − xK−1
j )

minj∈N(xKj − xK−1
j )

− 1
)
�

and set fi(x
K−1
i ) = zK−1 for every i.

Step 4. Complete fi on (xiK−1�x
i
K) such that each fi is continuous and strictly de-

creasing, and
∫ xKi
xK−1
i

fi(x)dx is the same for every i. One way to do this is to pick

i∗ ∈ arg minj∈N(xKj − xK−1
j ) and set

fi(x) = zK−1 −
(

x− xK−1
i

xKi − xK−1
i

)αi

(zK−1 − zK)

with αi∗ = 1 and the other αi ≤ 1 chosen to equalize integrals (zK−1 was chosen high
enough so that such an αi exists for every i).

Step 5. Repeat Steps 3 and 4 for k = K − 1�K − 3, and so on. Once each fi has been
defined down to x1

i , let x0
i = 0, define z0 as above, and complete f on [0�x1

i ] in the same
way.

This results in a set of functions {fi} with fi(x
k
i ) = fj(x

k
j ) and

∫ xki
0 fi(x)dx =∫ xkj

0 fj(x)dx for every (i� j�k); setting ui(x) = ∫ x
0 fi(x)dx completes the construction.
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5. Variable disagreement point

We now turn to data as defined in Section 3, where the disagreement point is allowed to
vary from one observation to another.

5.1 The utilitarian model

Suppose that our data set satisfies xki > dki for all k and i. Then co-monotonicity of the x

variables is all that is required for utilitarian rationalizability. This is because there exist
utility functions that rationalize the data in the fictitious environment in which each
dki = 0; it is easily checked that these same utility functions therefore rationalize the
given data. Therefore, the equivalence between co-monotonicity and rationalizability
by the utilitarian theory extends to the case of a variable disagreement point.8,9

5.2 The Nash model

A data set D = {(dk�xk)}Kk=1, with variable disagreement point, is Nash rationalizable if
there are strictly increasing and concave ui for which∏

i∈N
[ui(xki )− ui(d

k
i )] ≥

∏
i∈N

[ui(yki )− ui(d
k
i )]

for all (y1� � � � � yn) ∈ B(
∑

i∈N xki �d
k). A version of the following result appears in Carvajal

and González (forthcoming).

Proposition 10. A data set D is Nash rationalizable if and only if for all i ∈ N , there are
numbers Ui(d

k
i ), Ui(x

k
i ), Mi(d

k
i ), Mi(x

k
i ) for k = 1� � � � �K that solve the following equa-

tions: for all i, j, and k,

Mi(x
k
i )

Ui(x
k
i )−Ui(d

k
i )

=
Mj(x

k
j )

Uj(x
k
j )−Uj(d

k
j )

�

and for all z� z′ ∈ ⋃N
i=1{dki �xki },{

Ui(z)−Ui(z
′) > 0 if z < z′

Mi(z
′)(z − z′) ≥Ui(z)−Ui(z

′)�

Proposition 10 is straightforward. It says simply that we need numbers Ui(z) to sig-
nify levels of utility and Mi(z) for supergradients or marginal utilities. The first system of
equalities ensures that the first-order conditions for the maximization of the Nash prod-
uct hold. The second set of inequalities makes sure that utility is increasing and that
marginal utilities are supergradients of the utilities.

8An alternative model with variable disagreement would be one that seeks to maximize the sum of utili-
ties ui(xi − di), but this is the same problem studied in Section 4.

9One may also be interested in data for which we may have xki = dki , basically allowing for corner solu-
tions in the maximization of utilitarian welfare. One can set up a result like that in Proposition 10 for this
case, based on writing the corresponding Kuhn–Tucker conditions.
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Proof of Proposition 10. We first show that if we are given increasing and concave
utility functions ui, then (xk1 � � � � � x

k
n) is a solution to max∑

i∈N xi=M
∏

i∈N [ui(xi)− ui(d
k
i )]

if and only if for each i, there is a supergradient μi of ui at xki for which

μi

Ui(x
k
i )−Ui(d

k
i )

= μj

Uj(x
k
j )−Uj(d

k
j )

�

To this end, define U = {(u1(x1) − u1(d
k
1 )� � � � � un(xn) − un(d

k
n)) :

∑
i∈N xi = xki �

xi ≥ dki for all i}. Consider maximizing the function f (y) = ∏
i∈N yi subject to y ∈ U .

A point u ∈ U maximizes f if and only if (
∏

i �=1 ui� � � � �
∏

i �=n ui) supports U at u (by defini-
tion). Because f is strictly convex, and since U is convex and compact, there is a unique
such maximizer u∗. It is clear that u∗

i > 0 for all i ∈N .
This states that there is a unique solution (xk1 � � � � � x

k
n) to the Nash problem for which

ui(x
k
i ) − ui(d

k
i ) = u∗

i for all i ∈ N . We define λj = ∏
i �=j[ui(xki ) − ui(d

k
i )]. We know that∑

i∈N λiui(xi) is maximized at xk1 � � � � � x
k
n across all xi for which

∑
i∈N xi = m. Our next

step is to show that this can happen if and only if the vector (1/λ1� � � � �1/λn) is propor-
tional to a vector of supergradients.

Since the constraints xi ≥ dki are not binding, we can set up the Lagrangian for the
problem, say L(x�μ) = ∑

i∈N λiui(xi) + μ(m − ∑
i∈N xi), and note that it is equal to

L(x�μ) = ∑
i∈N [λiui(xi) − μxi] + μm. We know the constraint

∑
i∈N xi = m is binding

so that the solution to the max-min problem features μ∗ > 0. For μ∗, we know that
maxx L(x�μ∗) is equal to the maximum Nash product subject to the constraint and has
the same solution. This is equivalent to saying that (λi/μ∗)ui(xki )−xki ≥ (λi/μ

∗)ui(xi)−
xi for all xi or, rewriting,

ui(xi)+ (μ∗/λi)(xki − xi) ≤ ui(x
k
i )�

This is equivalent to saying that (μ∗/λ1� � � � �μ
∗/λn) is a supergradient, or that the vector

(1/λ1� � � � �1/λn) is proportional to a supergradient.
Another way to say that (1/λ1� � � � �1/λn) is proportional to a supergradient is to say

that for all i ∈N , there is a supergradient Mi(x
k
i ) of ui at xki for which, for all i� j,

λi
λj

=
Mj(x

k
j )

Mi(x
k
i )

�

Writing out the explicit form of λ and eliminating terms, this is equivalent to saying that

Mi(x
k
i )

ui(x
k
i )− ui(d

k
i )

=
Mj(x

k
j )

uj(x
k
j )− uj(d

k
j )

�

which is precisely the condition in the theorem. The other conditions simply say that
Mi is a supergradient, and that ui is strictly increasing.

Conversely, the details of how to construct a utility function from these numbers es-
sentially follow from Afriat, defining ui(x) = inf

z∈⋃K
k=1{xki �dki } Ui(z)+Mi(z)(x− z), where

the infimum is taken over all data points. It is then simple to verify by construction
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that for all z ∈ ⋃K
k=1{xki �dki }, Mi(z) is a supergradient of ui at z. From this, the fact that

the equality in the statement of the theorem is solved implies that the Nash product is
maximized for this collection of utility functions (by the previous argument). �

For Proposition 10 to be useful, it must be accompanied by a procedure that one can
perform on a data set and decide whether the data are Nash rationalizable. Such a proce-
dure is discussed in Chambers and Echenique (2011); suffice it to say here that it is based
on a computational version of results in real algebraic geometry. There is a sort of “theo-
rem of the alternative” that applies to systems of polynomial inequalities. In Chambers
and Echenique (2011), we explain how these results can be used to operationalize the
test in Proposition 10.

5.3 The egalitarian model

Finally, we turn to the egalitarian, or max-min, model. A data set D is egalitarian ra-
tionalizable if there are continuous and strictly increasing utility functions ui :�+ → �
such that, for all k, i, and j,

ui(x
k
i )− ui(d

k
i ) = uj(x

k
j )− uj(d

k
j )�

We first discuss a strong version of the theory, called the equal gains theory, where
we require that all agents share the same utility function u.

We have emphasized that observations (xk�dk) should be interpreted as bargaining
outcomes, where dk is a disagreement point, but there are other interpretations. We can,
instead, think of xki as agent i’s pre-tax income and of dki as his income after taxes. This
interpretation is completely unrelated to bargaining, but leads to the same mathemati-
cal formalism. Then, to require that there be some increasing function u for which, for
all i� j,

u(xki )− u(dki ) = u(xkj )− u(dkj )�

says that the tax code is compatible with all agents sharing equally in the loss of utility
derived from taxation. Young (1990) studies the equal gains (or equal loss) model, un-
der the taxation interpretation. Young’s empirical results are of a parametric nature. In
contrast, we present a nonparametric test for the compliance of the tax code with the
principle of equal gains.

Our first result assumes only that u is increasing. Our second result requires u also
to be concave (as in the results of Section 4). Below we also discuss the (easy) extension
to when utility is allowed to differ across agents.

To begin to understand the empirical content of the equal gains model, let us sup-
pose we have two agents, so that N = {1�2}, and that we observe the two data points

d1 = (0�7)� x1 = (5�8) and d2 = (1�3)� x2 = (2�8)�

We claim that this data set cannot be rationalized. To see why, suppose that u is a utility
function that rationalizes these data using the equal gains model. Then we would have
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u(5) − u(0) = u(8) − u(7) and u(2) − u(1) = u(8) − u(3). Therefore, since u(5) − u(0) +
u(7)− u(8) = 0 and u(8)− u(3)+ u(1)− u(2) = 0, we must have

[u(7)− u(8)] + [u(8)− u(3)] + [u(5)− u(0)] + [u(1)− u(2)] = 0� (1)

But we can regroup terms in this expression, obtaining

[−u(2)+ u(7)] + [−u(8)+ u(8)] + [−u(3)+ u(5)] + [−u(0)+ u(1)] = 0� (2)

The contradiction arises because the increasingness of u implies that each term in
brackets in (2) is nonnegative, and at least one of them is strictly positive (in fact, each of
the terms [−u(2) + u(7)], [−u(3) + u(5)], and [−u(0) + u(1)] is strictly positive). There-
fore, the terms cannot add up to zero.

To develop a feeling for the kinds of data that are rationalizable, consider a somewhat
more involved example. The example helps to motivate the condition that we arrive at
in the next result. Consider the data

d1 = (1�8)� x1 = (3�9)

d2 = (2�8)� x2 = (5�9)

d3 = (2�9)� x3 = (4�10)

d4 = (0�9)� x4 = (4�10)�

A rationalizing utility u must satisfy u(3)− u(1) = u(9)− u(8), u(5)− u(2) = u(9)− u(8),
u(4) − u(2) = u(10) − u(9), and u(4) − u(0) = u(10) − u(9). By adding and subtracting,
we obtain([u(1)− u(3)] + [u(5)− u(2)] + [u(2)− u(4)] + [u(4)− u(0)])

+ ([u(8)− u(9)] + [u(9)− u(10)] + [u(10)− u(9)] + [u(9)− u(8)]) = 0�

But note again, by regrouping, we obtain([−u(0)+ u(1)] + [−u(3)+ u(5)] + [−u(2)+ u(2)] + [−u(4)+ u(4)])
+ ([−u(8)+ u(8)] + [−u(9)+ u(9)] + [−u(10)+ u(10)] + [−u(9)+ u(9)]) = 0�

And again, using the increasingness of u, each of the terms inside the brackets is non-
negative and some are strictly positive. This results in a contradiction.

In each of the two examples, we have taken data points that, if rationalizable, should
force a certain expression to add to zero. By regrouping the terms, the increasingness
of u forces a contradiction; the expression could not possibly add to zero if utility is in-
creasing. It turns out that the inability to regroup data in this sense is necessary and
sufficient for the data to be rationalizable. The inability to regroup data in the appropri-
ate way is a condition (or a nonparametric test) that is equivalent to rationalization by
the equal gains model.

To formalize our condition, we have to be more specific in what we mean by “re-
grouping data.” It is easiest to think of this in graph theoretic terms. In (1), we can think
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(7�8)

(8�3)

(5�0)

(1�2)

8 ≤ 8

3 ≤
5

1 ≥ 0
7 ≥

2

Figure 1. A cycle.

of edges pointing from 7 to 8, from 8 to 3, from 5 to 0, and from 1 to 2. Note that these
edges come in “pairs,” for example, the edge pointing up from 7 to 8 comes from the
data point (d1�x1) = ((0�7)� (5�8)) and is naturally paired with the edge pointing down
from 5 to 0. Likewise, the edge pointing up from 1 to 2 is naturally paired with the edge
pointing down from 8 to 3.

The interesting point is that when we put these edges together in the appropriate
sequence, they form a cycle: see Figure 1. Consider the “edges” (7�8), (8�3), (5�0), (1�2).
The endpoints of adjacent edges here are ordered, where we treat (1�2) and (7�8) as
adjacent. That is, the second number (number 8) of the node (7�8) is less than or equal
(in fact, equal) to the first number in (8�3) and so forth for each pair of adjacent edges. In
fact, the second number (3) of the node (8�3) is strictly less than the first number (5) in
(5�0). And returning to (2), we see that when we regroup the data, the term −u(3)+u(5)
appears.

We proceed to define our condition formally. First, we define a cycle to be a finite
sequence of ordered pairs of real numbers, {(z1

l � z
2
l )}Ll=1, for which for all l = 1� � � � �L− 1,

z2
l ≤ z1

l+1 and z2
L ≤ z1

1 . A strict cycle is a cycle {(z1
l � z

2
l )}Ll=1 for which for some l, z2

l < z1
l+1

or z2
L < z1

1 . A finite sequence {(z1
l � z

2
l )}Ll=1 defines a (strict) cycle if there exists a bi-

jection σ :L → L for which {(z1
σ(l)� z

2
σ(l))}Ll=1 is a (strict) cycle. Then the ordered pairs

{(7�8)� (8�3)� (5�0)� (1�2)} from our first example form a strict cycle.
We might conjecture that for data not to be rationalizable, we should be able to pair

“up” edges with “down” edges in a way that forms a strict cycle. But this is not quite
enough. If we look at the regrouping in the second example, we again pair up edges with
down edges, but we do not end up with a single cycle. In fact, we end up with two cycles,
only one of which is strict. Namely, the edges

{(1�3)� (5�2)� (2�4)� (4�0)� (8�9)� (9�10)� (10�9)� (9�8)}
do not themselves form a cycle, but the two sets of edges {(1�3)� (5�2)� (2�4)� (4�0)} and
{(8�9)� (9�10)� (10�9)� (9�8)} each form a cycle. Only the first cycle here is strict, but that
is all we need.

In general, we can see that there is no reason that a sequence of paired edges needs
to correspond to one, two, or even k cycles. All that we need to obtain a contradiction
is that data can be grouped into paired edges that can be partitioned into cycles, at least
one of which is strict. These observations motivate the following definitions.
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Let L be a natural number, and let {(al� bl)}Ll=1 and {(a′
l� b

′
l)}Ll=1 be two sequences of L

ordered pairs. Say that {(al� bl)}Ll=1 and {(a′
l� b

′
l)}Ll=1 can be partitioned into cycles if there

exists a natural number T and for each t ≤ T , there exists a collection of finite sequences
{(z1

tl� z
2
tl)}Lt

l=1 that define cycles (at least one cycle of which is strict) for which there exists
a bijection

f : {(t� l) : t ≤ T� l ≤Lt} → {(l� i) : l ≤L� i = {1�2}}
such that

(z1
tl� z

2
tl) =

{
(af1(t�l)� bf1(t�l)) if f2(t� l)= 1

(a′
f1(t�l)

� b′
f1(t�l)

) if f2(t� l)= 2�

The inability to partition paired data points into cycles is exactly the necessary and
sufficient condition needed to guarantee that data are rationalizable.

Proposition 11. The data set D = {(dk�xk) :k = 1� � � � �K} is rationalizable if and only
if there are no sequences (dl�xl)Ll=1 in D, and agents il �= jl for all l, such that (dlil � x

l
il
)Ll=1

and (xljl � d
l
jl
)Ll=1 can be partitioned into cycles, at least one of which is strict.

Two points are worth mentioning. The definition of cycle does not preclude repeti-
tion of elements; neither does the notion of “sequence of data points” referred to in the
statement of the proposition. As a result, it may not be obvious how to operationalize
the test.

An alternative, computationally viable, test to the condition in Proposition 11 is the
following. There is a rationalizing utility if and only if the following linear program has a
solution (u�e) with e > 0:

max
(e�u)∈�×�|X|

e

s.t.

{
(∀i� j�k) ((1xki

− 1dki
)+ (1dkj

− 1xkj
)) · u ≥ 0

(∀z� z′ ∈X) z < z′ ⇒ (1z′ − 1z) · u≥ e�

Here, X ⊆ �n is a finite set such that dk�xk ∈ X for all k. For any z ∈ X , 1z denotes the
vector in �|X| with a 0 in all its entries, except that corresponding to z. A vector u ∈ �|X| is
simply a utility function: it assigns a real number to each z ∈X . With this interpretation
in mind, the constraints

((1xki
− 1dki

)+ (1dkj
− 1xkj

)) · u≥ 0

in the program above simply recast the conditions of the egalitarian model (we have ex-
pressed the equality in the egalitarian model as two weak inequalities). The constraints
that

(1z′ − 1z) · u > 0
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when z < z′ express the fact that u is monotonically increasing. The scalar e is simply an
artifact to capture the existence of a solution: it is a (standard) way to write the problem
of the existence of a solution to a system of inequalities as an optimization problem.10

The relation between Proposition 11 and the linear program above is obvious from
the proof. In fact, the proof of Proposition 11 follows from using the following version of
a result in linear programming (Farkas’s lemma).

Lemma 12 (Integer-real Farkas). Let {Ai}Ki=1 be a finite collection of vectors in Qn. Let L
be an integer with 1 ≤L≤K. Then one and only one of the following statements is true:

(i) There exists y ∈ �n such that for all i = 1� � � � �L, Ai · y ≥ 0, and for all i =
L+ 1� � � � �K, Ai · y > 0.

(ii) There exists z ∈ ZK+ with
∑K

i=L+1 zi > 0 such that
∑K

i=1 ziAi = 0.

Proof. Statements (i) and (ii) cannot simultaneously hold. To see why, suppose that
there exist y and z as stated. Then Ai · y ≥ 0 for all i = 1� � � � �L and Ai · y > 0 for all i =
L+ 1� � � � �K. Consider

∑K
i=1 ziAi · y. Since

∑K
i=1 ziAi = 0, we know that

∑K
i=1 ziAi · y = 0.

Furthermore, since there is some j ∈ {L + 1� � � � �K} for which zjAj · y > 0, and for all i,
ziAi · y ≥ 0, we conclude that

∑K
i=1 ziAi · y > 0, a contradiction.

We now establish that if (ii) does not hold, then (i) holds. By Theorem 3.2 of Fishburn
(1973), if (ii) does not hold, there exists y ∈ Qn such that for all i = 1� � � � �L, Ai · y ≥ 0, and
for all i =L+ 1� � � � �K, Ai · q > 0. Since Qn ⊂ �n, then y ∈ �n. �

5.4 Proof of Proposition 11

Let X ⊆ �n be a finite set such that dk�xk ∈X for all k.
The notation 1x refers to a vector of 0’s and 1’s, with a 1 in the x coordinate and 0

elsewhere (an indicator function).
There is a rationalizing u if and only if there is a solution to the system of linear

inequalities

(∀i� j�k) ((1xki
− 1dki

)+ (1dkj
− 1xkj

)) · u ≥ 0 (3)

(∀z� z′ ∈X) z < z′ ⇒ (1z′ − 1z) · u > 0� (4)

Statement (3) defines a collection of inequalities, one for each i, j, and k. Statement (4)
defines another set of inequalities, one for each z′� z ∈X with z < z′.

Once a solution to the linear inequalities is obtained, the function u can be com-
pleted by linear interpolation.

By Lemma 12, there is no solution to system (3)–(4) if and only if there are vectors

λ ∈ ZKN2

+ and θ ∈ Z|X|2
+ with∑

k�i�j

λk�i�j((1xki
− 1dki

)+ (1dkj
− 1xkj

))+
∑

(z�z′):z′>z

θz�z′(1z′ − 1z) = 0

10We thank an anonymous referee for suggesting this formulation of the argument.
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and ∑
(z�z′):z′>z

θz�z′ > 0�

Without loss of generality, we can assume that dki �= dkj and xki �= xkj for all k and all

i �= j. To see this note that if dki = dkj , then xki < xkj implies that there is no rationalizing

increasing u; but then the intervals [dki �xki ] and [dkj �xkj ] define a strict cycle {(dki �xki )}
{(xkj �dkj )}. A similar result obtains if xkj < xki . Alternatively, xki = xkj implies that the
inequalities that correspond to k, i, and j in (3) are always satisfied. So these inequalities
are irrelevant to the existence of a rationalizing u. The argument is analogous when
dki �= dkj and xki = xkj .

Let the vectors (λk�i�j) and (θz�z′) be as above. Consider the following collections of
vectors in {−1�0�1}X : Let AD be the collection of vectors with λk�i�j copies of (1dkj

− 1xkj
)

and let AU be the collection with λk�i�j copies of (1xki
− 1dki

). Let f :AD → AU be the

bijection that associates each (1dkj
− 1xkj

) with a different copy of (1xki
− 1dki

). Such a

bijection exists given the way that AD and AU are constructed.
Let AM be the collection with θz�z′ copies of 1z′ − 1z for each z� z′ ∈ X with z′ > z. By

definition of λ and θ, we know that the sum of the elements of AD, AU , and AM equals
the null vector. We also have AM �= ∅.

Let G = (X�E) be the graph obtained by letting there be an edge pointing from x to
x′ if and only if there is a vector 1x′ − 1x in one of the collections AD, AU , or AM . By the
Poincaré–Veblen–Alexander theorem (see Berge 2001, p. 148, Theorem 5), since the sum
of the elements of the vectors in AD, AU , and AM equals the null vector, then G can
be partitioned into circuits C1� � � � �CT . Note that if e = (v� v′) ∈ AU ∪AM , then v ≤ v′. If
e= (v� v′) ∈AD, then v ≥ v′.

Consider the edges in circuit Ct : Let [dlil � xlil ], l = 1� � � � �LU
t be the set of intervals

defined by edges (dlil
� xlil

) ∈ AU and let [dljl � xljl ], l = 1� � � � �LD
t be the set of intervals de-

fined by edges (xljl � d
l
jl
) ∈ AD. For any edge e = (v� v′) ∈ AU ∪ AD in Ct , let (v′′� v′′′) be

the first edge in Ct after e that is in AU ∪ AD. Then either v′ = v′′ or there are edges in
AM between e and (v′′� v′′′) in Ct ; so v′ ≤ v′′. Hence, for any e = (v� v′) ∈ AU ∪ AD in Ct ,
the successor edge (v′′� v′′′) ∈AU ∪AD satisfies that v′ ≤ v′′. Hence the intervals (dlil � x

l
il
)

l = 1� � � � �LU
t and (xljl � d

l
jl
), l = 1� � � � �LD

t define a cycle.
In addition, since AM �= ∅, at least one of the sets of intervals defined by a circuit Ct

defines a strict cycle.
Finally, since there is a bijection between the edges in AU and in AD, we have∑

t L
U
t = ∑

t L
D
t = L. So if we let ([dlil � xlil ])Ll=1 collect the sequences [dlil � xlil ], l =

1� � � � �LU
t , and let ([xljl � dljl ])Ll=1 collect the sequences [dljl � xljl ], l = 1� � � � �LD

t , then we have
a sequence of intervals in the condition in the statement of the proposition.

5.5 Strengthening

The condition in Proposition 11 is necessary and sufficient for rationalizability by some
increasing utility function. In axiomatic bargaining, however, we often assume that
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utility functions are concave; this was our motivation in Theorem 1 of Section 4. We
now turn to ask for the additional testable implications of requiring the rationalizing u

to be concave in the egalitarian model.
The answer is not so difficult and is closely related to work of Afriat (1967), Richter

and Wong (2004), and Kalandrakis (2010). To simplify matters, we suppose in this sec-
tion that all observed data points are rational. Thus, say that a data set D is rational-
valued if all dki and all xki are elements of Q.

We say that a data set D is concave rationalizable if there is a strictly increasing, con-
tinuous, concave u :�+ → � for which for all k, i, and j,

u(xki )− u(dki ) = u(xkj )− u(dkj )�

Our first task is to describe an example whereby concave rationalizability fails. It is easy
to construct such an example: consider the two agent case and the one point data set

d1 = (0�2)� x1 = (2�3)�

How can we see that there is no concave u that concave-rationalizes this data set?
Clearly, if a concave u exists, it must be that u(2) ≥ (2/3)u(3) + (1/3)u(0) or 3u(2) ≥
2u(3)+u(0). This expression is obviously equivalent to 2[u(2)−u(3)]+ [u(2)−u(0)] ≥ 0.
Finally, we know that [u(3) − u(2)] + [u(0) − u(2)] = 0, so by adding the two terms, we
obtain [u(2)− u(3)] ≥ 0, which we know to be a contradiction to increasingness.

If we think in the context of the previous section, what we are doing is adding new
types of “edges” to our graph. In the previous section, we could add an edge from dki
to xki as long as we added a corresponding edge from some xkj to dkj . Now, we are also
allowed to add certain “collections” of edges, namely, any collection {(a1� b)� � � � � (an�b)}
for which nb = ∑n

l=1 al; that is, b is a rational convex combination of the al terms. This
is precisely what we did in the previous example. We have the collection of edges (3�2),
(3�2), (0�2), which comes from the fact that 2 = (2/3)3 + (1/3)0. To this, we add the
edges (2�3) and (2�0), which comes from the fact that we have equal gains. Combining
these together results in the cycles

((3�2)� (2�3))

((0�2)� (2�0))

and

(3�2)�

Note that the singleton element (3�2) is by itself a strict cycle.
To this end, we discuss the following generalization of the concept from the previous

section. We say a collection of ordered pairs {(a1� b)� � � � � (am�b)} is a convex collection if∑m
o=1 ao = mb. That is, b is a convex combination of the ao terms. Note that we do not

preclude the possibility of several ao terms being equal.
Let P be a natural number. For each p ≤ P , let Lp be a natural number and let

{(apl � bpl )}
Lp

l=1 be a sequence of ordered pairs. Say the sequences {(apl � bpl )}
Lp

l=1 can be par-
titioned into cycles if there exists a natural number T and for each t ≤ T , a collection
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of finite sequences {(z1
tl� z

2
tl)}Lt

l=1 that define cycles (at least one cycle of which is strict)
for which there exists a bijection f : {(t� l) : t ≤ T� l ≤Lt} → {(l� i) : l ≤Li� i ∈ {1� � � � �P}} for
which (z1

tl� z
2
tl) = (a

p
f1(t�l)

� b
p
f1(t�l)

) if f2(t� l)= p.

Proposition 13. The data D = {(dk�xk) :k = 1� � � � �K} are rationalizable if and only if
there are no sequences of data points (dl�xl)Ll=1 in D, agents il �= jl for all l, and Q convex

collections {(aqo�bqo)}mq

o=1, q = 1� � � � �Q, with

a
q
o�b

q
o ∈

⋃
i

⋃
k

{xki �dki }�

such that {(dlil � xlil )}Ll=1, {(xljl � dljl )}Ll=1, and {(aqo�bqo)}mq

o=1 can be partitioned into cycles, at

least one of which is strict.

Remark 14. The assumption in this section that the data are rational is not without loss
of generality. The reason has to do with our notion of “convex collection,” which allows
only for b to be a rational convex combination of the ao terms. However, a counterpart of
Proposition 13 that allows for irrational data could be presented in terms of graphs with
weighted edges (which would allow edges to have irrational weights), requiring conser-
vation of flow and precluding strict cycles. The case in Proposition 13 corresponds to
the case in which the weights of all edges are rational-valued.

5.6 Proof of Proposition 13

Let X ⊆ �n be a finite set such that dk�xk ∈ X for all k. We introduce two copies of
X , one whose indicator functions are written in the standard way (1x). The indicator
functions for the second copy are written 1′

x.
There is a rationalizing u if and only if there is a solution to the system of linear

inequalities in the X-dimensional variables u and α,

((1xki
− 1dki

)+ (1dkj
− 1xkj

)) · (u�α) ≥ 0 (5)

(1z′ − 1z) · (u�α) > 0 (6)

(1z′ − 1z)+ (z − z′)1′
z′ · (u�α) ≥ 0� (7)

where (6) is required for z and z′ with z′ > z.
To see why, suppose there is a rationalizing u. Without loss, we may suppose that u

is piecewise linear (if u concave-rationalizes the data, then so does the piecewise linear
function that takes the same values as u for every xki and dki ). Then u has a supergradient
α at every xki and dki . This is the content of (7). The other two inequalities are obviously
satisfied.

Conversely, suppose the three equations are satisfied. First, we claim that without
loss, each α term is greater than 0. For example, if we consider αx, where x < y for some
y ∈X , then by (7), it follows that αx(y − x)+ ux − uy > 0 or αx > (uy − ux)/(y − x) (since
uy > ux by (6)). Furthermore, if there is no y ∈ X for which y > x, then we can always
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redefine αx = miny∈X�x �=y(uy − ux)/(y − x) > 0, which results in another system of con-
sistent weights.

Then it is a standard trick, due to Afriat (1967), to define

u(y) = min
x∈X

ux + αx(y − x)�

and note that this function is concave, strictly increasing, and rationalizes the data.
Now, we can sketch the argument as to why the satisfaction of the system of inequal-

ities is equivalent to the absence of cycles as stated in Proposition 13. It is again an ap-
plication of Lemma 12. Equations (5)–(7) have no solution if and only if there are there

are vectors λ ∈ ZKN2

+ , θ ∈ Z|X|2
+ , and η ∈ Z|X|2

+ , with

∑
k�i�j

λk�i�j((1xki
− 1dki

)+ (1dkj
− 1xkj

))

+
∑

(z�z′):z′>z

θz�z′(1z′ − 1z)+
∑
(z�z′)

ηz�z′(1z′ − 1z)+ (z − z′)1′
z′ = 0

and
∑

(z�z′):z′>z θz�z′ > 0. Importantly, from this equation, we can infer that the two
equations∑

k�i�j

λk�i�j((1xki
− 1dki

)+ (1dkj
− 1xkj

))+
∑

(z�z′):z′>z

θz�z′(1z′ − 1z)+
∑
(z�z′)

ηz�z′(1z′ − 1z)= 0

and ∑
(z�z′)

ηz�z′(z − z′)1′
z′ = 0 (8)

are jointly satisfied.
The proof now proceeds in the same way as the proof of Proposition 11. There is

only one change. Now, we also consider a collection of X-dimensional vectors {−1�0�1},
which we call AC , that consists of ηz�z′ copies of each 1z − 1z′ . The graph G = (X�E) is
now constructed in the same way as in the proof of Proposition 11, letting there be one
edge from x to x′ for each copy of 1x′ − 1x in AD, AU , AM , or AC . Now, consider (8).
This equation implies, in particular, that for all z′,

∑
z ηz�z′(z − z′) = 0; in other words,

the collection of edges pointing to z′ in AC form a concave collection.

5.7 Generalization

We have asked for data to be rationalized by a single utility function, common to all
i ∈N . If, instead, we ask that for each i, there exists ui :� → � for which, for all i� j ∈N ,

ui(x
k
i )− ui(d

k
i ) = uj(x

k
j )− uj(d

k
j )�

we obviously get a weaker condition. The weakening required here is simply that when
partitioning data into cycles, each cycle can contain only edges that correspond to a
single agent. The proof is similar to the preceding proof and is hence omitted.
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5.8 An application to spatial competition

The result in Proposition 11 has a simple application to the testable implications of
Hotelling’s model of spatial competition (Hotelling 1929). Hotelling’s model concerns
the location of two vendors on a unidimensional space and a distribution of consumers.
Consumers always buy from the vendor closest to them (in the case of equidistant ven-
dors, half of the consumers go to one vendor and the other half to the other vendor) and
each vendor’s profit consists of how many consumers buy from him. The unique Nash
equilibrium of this game has both vendors locating at the median of the distribution of
consumers. Hotelling’s model is not about bargaining, but it seems potentially useful to
point out the application of our results.

In our version of Hotelling’s model, we observe a finite collection of closed intervals
{[ak�bk]}Kk=1 and for each observed interval, a location mk ∈ (ak�bk). We want to know,
when does there exist a full-support distribution μ of agents on [0�1] such that for each
k, mk is the median of μ conditional on [ak�bk]? This provides us with the testable
implications of the Hotelling model when the distribution of agents is unobserved, but
when the boundaries of spatial competition can vary.

The relation to Section 5 is as follows. A distribution μ that satisfies the properties
exists if and only if there is a strictly increasing F : [0�1] → � (a cumulative distribution
function (c.d.f.)) for which for all k, F(bk) − F(mk) = F(mk) − F(ak). Now, imagine
that in the previous section we had only two agents (|N| = 2), and dk = (mk�ak) and
xk = (bk�mk).

This leads us directly to the following corollary.

Corollary 15. A finite list of intervals [ak�bk] and locations mk is consistent with the
Hotelling model if and only if there are no sequences of intervals [al� bl]Ll=1� [al� bl]L

′
l=L+1 for

which {(al�ml)}Ll=1, {(bl�ml)}Ll=1, {(ml�al)}L′
l=L+1, and {(ml�bl)}L′

l=L+1 can be partitioned
into cycles.

6. Conclusion

We consider finite sets of observations of bargaining outcomes. Assuming that utility
function are unobservable, we develop testable implications of some of the best known
models in bargaining theory.

We consider two basic frameworks. Our results are sharpest for the case where we
assume that disagreement points are fixed across observations. We show that the utili-
tarian, Nash bargaining, and egalitarian max-min models are all observationally equiva-
lent. Furthermore, we show that a simple test for these models consists of checking that
the observed allocations are co-monotonic.

When disagreement points can vary, we present a characterization of the data that
are consistent with a form of egalitarianism, namely the model of equal gains/losses. By
appropriately interpreting the model, we can apply our results to data on the tax code:
we can check for consistency of the tax code with the principle of equal loss when the
utility function is unknown.
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