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Persuasion and dynamic communication

Itai Sher
Department of Economics, University of Minnesota

A speaker attempts to persuade a listener to accept a request by presenting evi-
dence. A persuasion rule specifies what evidence is persuasive. This paper com-
pares static and dynamic rules. We present a single linear program (i) whose
solution corresponds to the listener’s optimal dynamic rule and (ii) whose solu-
tion with additional integer constraints corresponds to the optimal static rule. We
present a condition—foresight—under which the optimal persuasion problem re-
duces to the classical maximum flow problem. This has various qualitative con-
sequences, including the coincidence of optimal dynamic and static persuasion
rules, elimination of the need for randomization, and symmetry of optimal static
rules.
Keywords. Communication, optimal persuasion rules, credibility, commitment,
evidence, maximum flow problem.
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1. Introduction

This paper compares two modes of persuasion: static persuasion and dynamic persua-
sion. In both scenarios, a speaker presents evidence to a listener to persuade the listener
to take the speaker’s preferred action. Static persuasion is one shot: the speaker simply
presents evidence and the listener responds with a decision. Dynamic persuasion in-
volves back-and-forth communication. The speaker makes an opening argument via
a cheap talk claim. The listener then requests some of the evidence that the speaker
claims to have. The speaker responds by presenting either the requested evidence or
some other evidence. Finally, the listener makes his decision. Through the compari-
son of static and dynamic persuasion, we aim to attain an enriched understanding (i) of
the determination of what evidence will be persuasive and (ii) of when and how dy-
namic back-and-forth cheap talk communication complements evidence production
in strategic persuasion.

Itai Sher: isher@umn.edu
A previous version of this paper circulated under the title “Persuasion and limited communication.” I am
very grateful to Eddie Dekel for many valuable comments and advice. I would also like to thank David
Austen-Smith, Marciano Siniscalchi, Asher Wolinsky, David Rahman, Ariel Rubinstein, Jesse Bull, Elchanan
Ben-Porath, Melissa Koenig, Peter Sher, Tomasz Strzalecki, Evsen Turkay, and Jan Werner. I am grateful to
Rakesh Vohra for suggesting the relation of the persuasion problem to the set cover problem. I thank Bart
Lipman and two anonymous referees for their helpful comments. Shihui Ma, Nyalleng Moorosi, and Ben-
jamin Segal provided valuable research assistance. I thank Kemal Badur for helping to construct the figures
for this paper. A grant-in-aid and single semester leave from the University of Minnesota are gratefully
acknowledged. All errors are mine.

Copyright © 2014 Itai Sher. Licensed under the Creative Commons Attribution-NonCommercial License
3.0. Available at http://econtheory.org.
DOI: 10.3982/TE683

http://econtheory.org/
mailto:isher@umn.edu
http://creativecommons.org/licenses/by-nc/3.0/
http://econtheory.org/
http://dx.doi.org/10.3982/TE683
http://creativecommons.org/licenses/by-nc/3.0/


100 Itai Sher Theoretical Economics 9 (2014)

Dynamic persuasion may outperform static persuasion when it is infeasible for the
speaker to present all evidence due to costs associated with presenting or processing
evidence. Then the opening argument guides the subsequent back-and-forth discus-
sion. For example, in a time-constrained interview, a job candidate must strategically
decide which qualifications to emphasize. If she emphasizes her leadership capacity,
the employer may ask her how she would lead certain projects and to provide evidence
of her past leadership. If she emphasizes her analytical ability, the employer may give
her a puzzle to solve. The job seeker may be afraid to make false claims for fear of being
asked for supporting evidence that she cannot supply. It often benefits the listener to
randomize her response to the speaker’s claims, because if the speaker can predict what
follow-up questions will be asked, she may lie about everything else.

This paper provides a unified framework for thinking about both static and dynamic
persuasion, and the relationship between the two. We focus on mechanisms—called
persuasion rules—that are optimal for the listener. Our main contributions are the
following:

1. We characterize the relation between optimal dynamic and static persuasion by
presenting a single linear program (i) whose solution corresponds to the opti-
mal dynamic persuasion rule and (ii) whose solution with additional integer con-
straints corresponds to the optimal static persuasion rule.

2. We present a condition with a natural interpretation—which we call foresight—
under which our linear program simplifies to the classical maximum flow prob-
lem. This leads to various qualitative consequences, including the coincidence of
optimal dynamic and static persuasion rules, elimination of the need for random-
ization, and symmetry of optimal static rules.

The remainder of the introduction elaborates on these two contributions. We discuss
the two results in turn.

1.1 Characterization of optimal persuasion

Our first main contribution is the exact simultaneous characterization of optimal static
and dynamic persuasion: Theorem 1 presents a linear programming characteriza-
tion of optimal dynamic persuasion, and Theorem 2 shows that by adding an integer
constraint, one obtains an integer programming characterization of optimal static per-
suasion. This result serves as a foundation for all of our other results, including the
credibility result described below and the stronger characterization under the additional
foresight assumption described in Section 1.2. Being an exact characterization, these
programs should serve as the starting point for future studies of the persuasion problem
or variants thereof.

Our characterization has an intuitive interpretation: it provides a precise sense in
which static persuasion equals dynamic persuasion minus randomization. While static
rules allow for randomization of the listener’s decision, randomization is only beneficial
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as part of a back-and-forth conversation.1 Conversely, such back-and-forth communi-
cation can be useful only if the listener’s questions are unpredictable. If a question is
predictable, it need not be asked; the speaker will know at the outset that she must an-
swer it. So a necessary and sufficient condition for dynamic communication to improve
on static communication is that the listener can benefit by randomizing his questions.

Glazer and Rubinstein (2004, 2006) initiated the study of optimal persuasion rules.2

Our results shed interesting light on the main results of Glazer and Rubinstein. Glazer
and Rubinstein use a constraint called the L-principle to analyze persuasion. We char-
acterize the circumstances in which the L-principle captures all of the incentive con-
straints involved in optimal persuasion, and show that the L-principle is not, in general,
sufficient for analyzing optimal dynamic persuasion. Our more general analysis then
allows us to extend an important result of Glazer and Rubinstein to a broader class of
persuasion problems. In particular, the optimal persuasion problem assumes listener
commitment, but we show that in the dynamic persuasion problem, commitment has
no value for the listener. In other words, there is a sequential equilibrium of the dynamic
persuasion game in which the listener cannot commit to his strategy up front and that
implements the same outcome as the optimal rule. This credibility result generalizes a
result of Glazer and Rubinstein (2004) beyond the case to which the L-principle applies.
The dual of the program in our result that characterizes optimal dynamic persuasion—
Theorem 1—is used to derive the speaker’s strategy in the credible implementation of
the optimal rule.

1.2 Foresight and Max Flow

Our second main contribution is a reduction of the optimal persuasion problem to the
classical maximum flow problem (Max Flow) under an intuitive and easily verifiable
condition that we call foresight (Theorem 6). Max Flow is a very extensively studied opti-
mization problem from the field of combinatorial optimization (see, for example, Ahuja
et al. 1993). Our reduction allows us to provide a condition under which optimal static
and dynamic rules coincide, randomization is not needed for optimal persuasion, and
optimal static rules are symmetric in the sense that similar evidence is treated similarly.
The reduction also generates monotone comparative statics for persuasion, which can
be found in an earlier version of this paper (Sher 2008). A fundamental theorem on the
maximum flow problem is the max-flow min-cut theorem (Ford and Fulkerson 1956),
which is a special case of linear programming duality. In Section 5.2, we illustrate how
the credibility result mentioned above (in Section 1.1) coincides with max-flow min-cut
duality under foresight.

1Glazer and Rubinstein (2006) provide an informal discussion that makes a similar point about the role
of randomization in the context of discussing a special case of the persuasion problem from Glazer and
Rubinstein (2004) that we call (1�2)-verification environments below.

2There is a broader literature on persuasion games (Milgrom and Roberts 1986, Shin 1994a, Glazer and
Rubinstein 2001, Chen and Olszewski 2011, Dziuda 2011). A different strand of the literature studied dy-
namic communication in pure cheap talk frameworks (Krishna and Morgan 2004, Aumann and Hart 2003).
The study of cheap talk was pioneered by Crawford and Sobel (1982). The optimal mechanism in a cheap
talk framework was studied by Goltsman et al. (2009).
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Foresight has a natural interpretation. The optimal persuasion problem contains
two types of states: accept states and reject states. The listener would like to be per-
suaded by the speaker only in accept states. Define evidence to be genuine whenever it
is presented in an accept state and forged whenever it is presented in a reject state. Fore-
sight means that at every accept state x, there is evidence mx that is maximally difficult
to forge (among evidence available at x) in the sense that mx is available least often in
reject states (measured by inclusion). We call the property foresight because in the dy-
namic communication protocol, the speaker should be able to foresee that if she claims
the state is x (an accept state), the listener would require evidence mx as support (if the
claim x has any chance of being persuasive). This contrasts with the general case in
which the speaker faces a lottery over evidence requests.

In the context of the persuasion environment studied here, foresight generalizes the
concept of normality from the literature on mechanism design with evidence (Bull and
Watson 2007). Closely related properties are studied by Green and Laffont (1986) and
Lipman and Seppi (1995). Remark 1 and the discussion following Corollary 1 in Sec-
tion 5 highlight the ways in which foresight is weaker than normality. In the conclusion
(Section 7), we explain how the basic idea underlying foresight can be extended to more
general mechanism design problems with evidence.

The organization of the paper is as follows. Section 2 presents the model. Section 3
presents the linear programming formulation of optimal persuasion. Section 4 uses this
formulation to attain a new credibility result. Section 5 studies the consequences of
foresight. Section 6 briefly provides some consequences of the preceding analysis for
the complexity of optimal rules. Section 7 concludes. The Appendix contains many of
the proofs.

2. Model

Section 2.1 presents the persuasion environment. Section 2.2 presents two modes of
persuasion: static and dynamic persuasion (Figures 1 and 2). The model of static per-
suasion is the model of Glazer and Rubinstein (2006) and the model of dynamic persua-
sion generalizes Glazer and Rubinstein (2004). Section 2.3 establishes the robustness of
the model of dynamic persuasion.

2.1 Environment

Let X be a finite set of states. A⊆ X is the set of accept states and R =X \A is the set of
reject states. For x ∈X , px > 0 is the probability of x. Let p = (px)x∈X .

A speaker wishes to persuade a listener to accept a request. For example, the speaker
may be attempting to persuade the listener to hire her. Alternatively, the speaker may be
a lobbyist attempting to persuade the listener, a legislator, to support some legislation.
The speaker always wants to be accepted regardless of the state. Ideally, the listener
would like to accept the speaker when the state is in A and to reject the speaker when
the state is in R. If the listener is uncertain about the state, he aims to minimize the error
probability, that is, the probability that he accepts in R or rejects in A.
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1. The true state x is realized according to probability distribution p and is known
only to the speaker.

2. The speaker sends a message m ∈ σ(x).

3. The listener accepts the speaker’s request with probability f (m).

Figure 1. Static communication protocol.

For every state x ∈X , there is a finite nonempty set σ(x) of statements that are avail-
able at x. We refer to σ is the message correspondence. Let M = ⋃

x∈X σ(x). There exists
m0 ∈ M such that for all x ∈ X , m0 ∈ σ(x). The message m0 is called the vacuous mes-
sage because it proves nothing about the state. The message m0 simplifies proofs but is
inessential to our results. We generally omit m0 in examples.

The message correspondence models a communication constraint. As different
messages are available at different states, the messages amount to evidence. Imagine,
for example, that an unqualified person interviews for a computer programmer posi-
tion. The interviewer asks how the interviewee would program a certain task. The
interviewee—being unqualified—is unable to answer. Were she qualified, she would
be able to answer.

An important aspect of the constraint encoded by σ is that the speaker may only
present one message m ∈ σ(x). This may be a time constraint. To see that this is essen-
tially without loss of generality, define

σn(x) := {S ⊆ σ(x) : |S| ≤ n}�

If we wanted to relax the time constraint and let the speaker present n messages instead
of just one, we could simply replace σ by the message correspondence σn.

2.2 Two modes of persuasion

We introduce static persuasion and dynamic persuasion. The static timing is given by
the static communication protocol (Figure 1). The listener’s strategy is determined by a
function f :M → [0�1], called a static persuasion rule; F is the set of such static rules.

While static persuasion is restrictive, Proposition 1 below shows that the dynamic
persuasion protocol (Figure 2) is canonical: The listener can minimize his error proba-
bility among all possible mechanisms via the dynamic communication protocol. A lis-
tener’s strategy specifies the probability that he requests various messages (step 3(a) of
Figure 2) and that he rejects the speaker’s request outright (step 3(b) of Figure 2). (The
listener’s behavior is fixed at step 5 of Figure 2.) Formally, the listener’s strategy is a
function g :X ×M → [0�1] that satisfies

∀x̂ ∈ X�
∑
m∈M

g(x̂�m) ≤ 1 (1)

∀x̂ ∈ X�∀m /∈ σ(x̂)� g(x̂�m)= 0� (2)
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1. The true state x is realized according to probability distribution p and is known
only to the speaker.

2. The speaker makes a cheap talk claim that the state is x̂.

3. (a) For each m ∈ σ(x̂), the listener requests that the speaker present message m

with probability g(x̂�m) and the protocol proceeds to step 4.

(b) With probability 1 − ∑
m∈σ(x̂) g(x̂�m), the listener rejects the speaker’s request

and the communication protocol ends without further communication.

4. The speaker presents some message m′ ∈ σ(x).

5. (a) If the speaker fails to present the requested message (i.e., m′ �= m), the listener
rejects the speaker’s request.

(b) If the speaker presents the requested message (i.e., m′ = m), the listener accepts
the speaker’s request.

Figure 2. Dynamic communication protocol.

Equation (2) says that the listener never requests a message the speaker claims is un-
available. Inequality (1) allows us to interpret g(x̂�m) as a probability. A function g that
satisfies (1) and (2) is a dynamic persuasion rule, and G is the set of such dynamic rules.

For both protocols, we assume the listener commits to a persuasion rule and the
speaker best replies. (We relax this commitment assumption in Section 4.) Any persua-
sion rule then induces an acceptance probability at every state. For a static persuasion
rule f , the acceptance probability is α(f�x) := maxm∈σ(x) f (m) because the speaker will
simply select the available message that maximizes the acceptance probability. For a
dynamic persuasion rule g, the acceptance probability is

α(g�x) := max
z∈X

∑
m∈σ(z)∩σ(x)

g(z�m)�

To understand this, observe that if the speaker claims the state is z when the state is
really x, the listener will request only messages m that belong to σ(z) and the speaker
will only succeed in presenting the required messages if they belong to σ(x) as well. At
state x, the speaker will choose the cheap talk report z that maximizes the probability of
acceptance.

Given a persuasion rule h (static or dynamic), the induced error probability at state
x is then given by μx(h) := 1 −α(h�x) if x ∈ A and μx(h) := α(h�x) if x ∈R. The total er-
ror probability is then μ(h) := ∑

x∈X pxμx(h). The static persuasion problem is to select
f ∈ F to minimize μ(f ) and the dynamic persuasion problem is to select g ∈ G to mini-
mize μ(g). Nothing essential would change if we introduce a state dependent error cost
�x > 0. Then the listener would minimize

∑
x∈X �xpxμx(h). One could derive analogs of

all our results by substituting �xpx for px.
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2.3 The dynamic protocol is canonical

We now establish that nothing is gained by considering mechanisms more general than
the dynamic communication protocol. Consider an arbitrary finite two-player exten-
sive form game with imperfect information and perfect recall �. (See Osborne and Ru-
binstein 1994 for precise definitions.) The two players are the speaker and listener. The
game � has no moves of nature, although allowing moves of nature does not alter Propo-
sition 1.3 Every terminal history is labeled either accept or reject. There are two types of
histories among those at which the speaker moves: evidentiary and ordinary. At eviden-
tiary histories, the set of available actions is M ; no restrictions are placed on ordinary
histories. Define �σ(x) to be the game formed by deleting all actions m ∈ M \ σ(x) at
each evidentiary history as well as the histories emanating from these deleted actions.
So at any evidentiary history in �σ(x), σ(x) is the set of available speaker actions. For
any natural number n, write � ∈ Gn if each history in � has at most n evidentiary sub-
histories. (A subhistory of history h is an initial subsequence of h, possibly the empty
sequence.) So if � belongs to Gn, the speaker has at most n opportunities to present
evidence at �. A mechanism is a pair (��λ), where � is a game that meets the above
specifications and λ is a behavioral strategy for the listener in �. Strategy λ induces a
listener strategy in every game �σ(x) for x ∈ X . In particular, every information set I in
�σ(x) corresponds to some information set I ′ in � at which the listener has observed
the same sequence of events.4 Strategy λ specifies that the listener will behave in I as he
would in I′. Our formulation encodes the assumption that the listener commits to his
strategy. We assume that at each state x, the speaker selects a best reply to λ in �σ(x).

Proposition 1. The minimal error probability among all mechanisms (��λ) with
� ∈Gn is attained by the optimal dynamic persuasion rule for message correspondence
σn.

Proposition 1 is closely related to Theorem 6 of Bull and Watson (2007), which
presents a canonical mechanism (the special three-stage mechanism) for dynamic
(weak) implementation. Due to the special structure of the persuasion problem, the dy-
namic communication protocol has more structure than the special three-stage mecha-
nism: the option to reject the speaker outright (at step 3(b) of Figure 2) and the require-
ment to accept the speaker exactly if she presented the requested evidence are absent
from the special three-stage mechanism (in step 5 of Figure 2). Indeed “acceptance” and
“rejection” have no meaning in the more general framework of Bull and Watson (2007).
Another difference is that whereas Bull and Watson’s Theorem 6 applies to dynamic
mechanisms where each terminal history contains exactly one evidentiary subhistory
(per player), which is natural given their concerns, Proposition 1 shows how dynamic
persuasion rules (weakly) improve upon arbitrary dynamic mechanisms that allow the

3Because Proposition 1 assumes that the listener can commit to her strategy, for the purposes of that
proposition, any game with moves of nature � can be replicated by a game �′, where these moves are re-
placed by moves of the listener at which the listener’s strategy specifies that he randomizes as nature would
have randomized in �.

4Note, however, that not every information set in � corresponds to an information set in �σ(x).



106 Itai Sher Theoretical Economics 9 (2014)

speaker to present evidence up to a fixed number of times n. Our result shows that given
any time constraint, we can restrict attention to the dynamic communication protocol,
using message correspondence σ if one round of evidence transmission is allowed, and,
more generally, simply reinterpreting the message correspondence as σn if n rounds of
evidence transmission are allowed.

3. Optimal persuasion rules

3.1 Programs for optimal rules

We now present optimization problems whose solutions are optimal static and dynamic
persuasion rules. A feasible solution is of the form

(μ�β) = ({μz}z∈X� {β(x�m)}x∈A�m∈σ(x))�

Program P0. Minimize∑
z∈X

μzpz (3)

subject to

1 −μx =
∑

m∈σ(x)
β(x�m) ∀x ∈A (4)

μy ≥
∑

m∈σ(x)∩σ(y)
β(x�m) ∀x ∈A�∀y ∈R (5)

μz ≥ 0 ∀z ∈X (6)

β(x�m) ≥ 0 ∀x ∈A�∀m ∈ σ(x)� (7)

For each z ∈ X , μz is the probability of error at state z. The objective is to minimize
the total error probability. We may interpret β(x�m) as g(x�m), the probability that the
dynamic persuasion rule requests the message m if the speaker claims that the state is x.
Whereas g(x�m) is defined for all x ∈ X , β(x�m) is only defined for states x ∈ A (and
m ∈ σ(x)). Intuitively, the program restricts attention to dynamic rules that always re-
ject the speaker if she claims that the state is in R. Equation (4) can then be interpreted
as saying that for any state x ∈ A, the error probability at x equals the probability that
the rule would reject the speaker at state x if she truthfully reported the state. Inequal-
ity (5) says that for any state y ∈ R and any state x ∈ A, the error probability at state
y is at least the acceptance probability that the speaker would obtain at state y if she
claimed that the state were x. Inequality (5) implies that at each state y ∈ R, the speaker
is optimizing. But Program P0 contains no constraints that directly impose optimizing
behavior at states x ∈ A; the program assumes via (4) that for each x ∈ A, the speaker
reports truthfully, but there are no corresponding incentive constraints.

Theorem 1. Let (μ∗�β∗) be an optimal solution to Program P0. Then g∗ defined by

g∗(x�m) =
{
β∗(x�m) if x ∈A�m ∈ σ(x)

0 otherwise
(8)
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is an optimal dynamic persuasion rule. The rule g∗ induces error probability μ∗
z at

state z.

Program P0 characterizes optimal dynamic persuasion rules. Glazer and Rubinstein
(2006) show that when restricting attention to static persuasion rules, there always exists
an optimal static rule f ∗ that is deterministic, meaning that f ∗(m) ∈ {0�1} for all m (see
their Proposition 1). Glazer and Rubinstein (2006) also argue informally—with respect
to the special case of (1�2)-verification problems to be defined in Section 3.2—that dy-
namic persuasion rules without randomization reduce to static persuasion rules. We
now establish the latter reduction argument for a wider class of persuasion environ-
ments, and in the process, specify the precise relationship between optimal static and
optimal dynamic rules. To do this, we consider two ways to add integrality constraints
to Program P0.

Program P1. Minimize (3) subject to (4)–(6) and

β(x�m) ∈ {0�1} ∀x ∈X�∀m ∈ σ(x)� (9)

Program P2. Minimize (3) subject to (4), (5), (7), and

μx ∈ {0�1} ∀x ∈X� (10)

Theorem 2. (i) Let (μ∗�β∗) be an optimal solution to Program P1. Then f ∗ defined by

f ∗(m) :=
{

max{β∗(x�m) :x ∈ A} if m ∈ ⋃
x∈Aσ(x)

0 otherwise
(11)

is an optimal static persuasion rule. The rule f ∗ induces error probability μ∗
z at

state z.

(ii) Any optimal solution to Program P1 is an optimal solution to Program P2. For any
optimal solution (μ∗�β∗) to Program P2, there exists β∗∗ such that (μ∗�β∗∗) is an
optimal solution to Program P1.

The theorem shows that adding integer constraints transforms Program P0 from a
program for optimal dynamic persuasion to a program for optimal static persuasion.
This can be done in two distinct ways: either by imposing a no-randomization con-
straint on the listener’s requests (Program P1) or by imposing a no-randomization con-
straint on the state-by-state error probabilities (Program P2).5 Thus we have a single
formulation for both the static and the dynamic persuasion problem, which differs only
insofar as we restrict our search to integral solutions.

This highlights the role of randomization. In static persuasion, randomization is
permitted but inessential, as there always exists an optimal static persuasion rule that

5Given an optimal solution to Program P2, the proof of part (ii) of Theorem 2 shows how to derive an
optimal solution to Program P1 and, hence, how to derive an optimal static persuasion rule via (11).
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is deterministic. There, the listener can only randomize the accept/reject decision in
response to a message. In contrast, in the dynamic persuasion problem, the listener
randomly requests evidence in response to a cheap talk claim about the state. Theorem 2
implies that the elimination of random requests reduces dynamic persuasion to static
persuasion.

Theorem 2 implies that optimal dynamic rules have weakly lower error probability
than optimal static rules because the static problem is derived from the dynamic prob-
lem by adding constraints.6  Example 1 shows that this inequality may sometimes be
strict.

Example 1. Let X := {0�1}3 and A := {x :
∑3

i=1 xi is even}. (We consider 0 to be even.)
For z = (z1� z2� z3) ∈ X , let σ(z) := {(zi� i) : i = 1�2�3}. So σ((0�1�0)) = {(0�1)� (1�2)�
(0�3)}. Message (1�2) reveals that the second component of the state is 1 and message
(0�3) reveals that the third component is 0. Let pz = 1

8 for all z ∈ X . An optimal static
persuasion rule is

f ∗(m) =
{

1 if m= (0� i) for i ∈ {1�2�3}
0 otherwise.

The rule f ∗ leads the speaker to be accepted at every state except (1�1�1), inducing an
error probability of 3

8 . In contrast, an optimal dynamic persuasion rule is

g∗(x�m) :=
{

1
3 if x ∈A and m ∈ σ(x)

0 otherwise.
(12)

The rule g∗ leads the speaker to be accepted with probability 1 at every state in A and
to be accepted with probability 2

3 in every state in R, inducing an error probability of 1
3 .

Because 1
3 < 3

8 , the optimal dynamic persuasion rule g∗ outperforms the optimal static
persuasion rule f ∗. ♦

3.2 Insufficiency of the L-principle

We compare our approach to that of Glazer and Rubinstein. An L is a pair (x�T) with
x ∈ A, T ⊆ R, and σ(x) ⊆ ⋃

y∈T σ(y). An L, (x�T), is minimal if for all proper subsets T ′
of T , (x�T ′) is not an L. Glazer and Rubinstein introduce the L-principle∑

z∈{x}∪T
μy ≥ 1 for every minimal L�(x�T)� (13)

To understand this, consider an L, (x�T), and observe that if a deterministic static rule
f avoids a mistake at x ∈ A, f must accept some message m ∈ σ(x). Then μx = 0, so∑

y∈T μy ≥ 1. Why? Because at least one y ∈ T also has m. So f must accept the speaker
at y, committing a mistake. Similar logic applies with randomization and even to dy-
namic rules. The following class of environments helps us to understand to scope of the
L-principle.

6This is also a consequence of Proposition 1.
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(k�n)-Verification Environment. Let k and n be natural numbers with 1 ≤ k < n.
Let Xi, i = 1� � � � � n, be a collection of finite sets with |Xi| ≥ 2 for all i and let the set
of states X have the structure X = X1 × X2 × · · · × Xn. For any J ⊆ {1� � � � � n} and
x = (x1� � � � � xn) ∈ X , define xJ := {(xj� j) : j ∈ J} and let σ(x) := {xJ : |J| ≤ k}. So, at each
state, the speaker observes a vector (x1� � � � � xn). The speaker can reveal (at most) k com-
ponents of the vector. If the speaker reveals a component, she reveals both its value
(xi ∈ Xi) and its index (i ∈ {1� � � � � n}). The speaker is restricted to reveal at most k com-
ponents, but it is feasible for her to reveal any k components.

Glazer and Rubinstein (2006) study static persuasion for general environments from
Section 2.1, using Program GR1 below. Glazer and Rubinstein (2004) study dynamic
persuasion, but only for (1�2)-verification environments,7 using a special case of Pro-
gram GR0:8

Program GR0. Minimize
∑

z∈X pzμz subject to the L-principle (13) and

μz ∈ [0�1] ∀z ∈X�

Program GR1. Minimize
∑

z∈X pzμz subject to the L-principle (13) and

μz ∈ {0�1} ∀z ∈X�

Theorem 3. (i) (Glazer and Rubinstein 2004) Let (μ∗
x)x∈X be an optimal solution to Pro-

gram GR0 for some (1�2)-verification environment. Then there is an optimal dy-
namic persuasion rule g∗ such that for all states x ∈X , g∗ induces error probability
μ∗
x at x.

(ii) (Glazer and Rubinstein 2006) Let (μ∗
x)x∈X be a solution to Program GR1 for any

persuasion problem. Then there is an optimal static persuasion rule f ∗ such that
for all states x ∈ X , f ∗ leads to error probability μ∗

x at state x.

Unfortunately, it impossible to extend the first part of the result to general (k�n)-
verification environments and, hence, also to general persuasion environments.

Theorem 4. (i) Any optimal solution to Program GR0 gives a lower bound on the error
probability at the optimal dynamic persuasion rule.

7In Glazer and Rubinstein (2004), rather than the speaker presenting evidence, the listener verifies an as-
pect of the speaker’s claim, but for (1�2)-verification environments, the two are mathematically equivalent.

8Glazer and Rubinstein (2004) discuss extending the L-principle to (1� n)-verification environments for
n > 2 in a dynamic setting. They mention L’s of the form (x� {yi� yj}) such that x differs from yi exactly on
component i and differs from yj exactly on component j, where i �= j, but neglect to mention other minimal
L’s in the sense of the more general definition they later presented in Glazer and Rubinstein (2006), such as
those of the form (x� {yi : i = 1� � � � � n}), where yi agrees with x only on component i. The neglected minimal
L’s are all valid in the sense that they must be satisfied by any dynamic persuasion rule. Omitting these
L’s only makes the problem identified by Theorem 4 below worse, because that theorem shows that the
L-principle imposes too few constraints in a dynamic setting.
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(ii) Fix natural numbers n and k with 1 ≤ k ≤ n. The following statements are
equivalent:

(a) For all (k�n)-verification environments, the value of the corresponding Pro-
gram GR0 is equal to the error probability at the optimal dynamic persuasion
rule.

(b) The equation n− k= 1 holds.

Part (i) and its proof show that the L-principle is valid for general persuasion prob-
lems. In other words, the error probabilities induced by any dynamic persuasion rule
must satisfy the L-principle (13). However, part (ii) shows that the L-principle (13) is
not sufficient to characterize optimal persuasion rules in a large class of dynamic per-
suasion environments. This applies even within the restricted class of (k�n)-verification
problems. The L-principle is only sufficient when n− k= 1.

4. Credibility

Glazer and Rubinstein (2006) show that in the static persuasion problem, there is no
value to commitment for the listener: In the game where the speaker moves first, send-
ing a message m ∈ σ(x), and then the listener responds with an action, there is an equi-
librium that leads to the same outcome as the optimal rule. This is the credibility result.
Glazer and Rubinstein (2004) present a similar credibility result for dynamic persuasion
rules for the special case of (1�2)-verification environments described in the previous
section. In this section, we extend the credibility result to general dynamic persuasion
rules. Sher (2011) extends the static credibility result to nonbinary decisions under a
concavity assumption.

In a dynamic persuasion problem, the game without commitment is a game that has
the same timing as the dynamic communication protocol of Section 2.2. The difference
is that the listener does not commit to a dynamic persuasion rule prior to the game,
but rather decides which message to request (in step 3(a) of Figure 2), whether to reject
without requesting further evidence (in step 3(b) of Figure 2), and whether to accept or
reject conditional on the receipt of any message (in step 5 of Figure 2). In particular, in
step 5 of Figure 2, the listener is not forced to accept the speaker’s request if the speaker
presents the message that the listener requested. Neither is the listener forced to reject
the speaker’s request if some other message is presented.

Define the speaker’s reporting strategy to be the part of the speaker’s (behavioral)
strategy that specifies her cheap talk claim about the state. Let ζ(x� x̂) be the probability
that the speaker claims that the state is x̂ conditional on the actual state being x. To at-
tain a complete description of the speaker’s strategy, we must supplement the reporting
strategy ζ with a description of what evidence the speaker would present at step 4 of
Figure 2 conditional on the previous history.

To analyze the credibility of the optimal persuasion rule, it is useful to analyze the
dual of Program P0.
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Program D. Maximize∑
x∈A

ϕ(s�x) (14)

subject to

ϕ(s�x) ≤ px ∀x ∈A (15)

ϕ(y� t) ≤ py ∀y ∈R (16)

ϕ(s�x) ≤
∑

y∈R:m∈σ(y)
ϕ(x� y) ∀x ∈ A�∀m ∈ σ(x) (17)

ϕ(y� t) =
∑
x∈A

ϕ(x� y) ∀y ∈ R (18)

ϕ(x� y) ≥ 0 ∀x ∈A�∀y ∈ R� (19)

For each x ∈ A and y ∈ R, there is a variable ϕ(x� y) that is the multiplier on the
incentive constraint (5) corresponding to the pair (x� y), which says that at y, the speaker
must achieve at least the acceptance probability that she would achieve if she were to
claim that the state were x. In addition, for each x ∈ A, there is a variable ϕ(s�x) that is
the multiplier on the constraint (4), the constraint that equates the error probability at x
with the probability that the speaker is rejected at x given that she reports truthfully. The
reason for the notation s in ϕ(s�x) is explained in Section 5 below. For each y ∈ R, there
is a variable ϕ(y� t), where again the notation t is explained in Section 5. The variable
ϕ(y� t) does not correspond to any constraint in Program P0, but is rather a variable
defined by (18). The introduction of this variable simplifies the constraint (16). We will
use the notation ϕ = ({ϕ(s�x)}x∈A� {ϕ(x� y)}(x�y)∈A×R� {ϕ(y� t)}y∈R}) to denote a feasible
solution in Program D.

Define a credible implementation of a dynamic persuasion rule g to be a sequential
equilibrium of the game without commitment that induces error probability μx(g) at
each state x. In other words, the credible implementation leads to the same outcome as
committing to g.

Theorem 5. Let (μ∗�β∗) be an optimal solution to Program P0, let g∗ be the correspond-
ing optimal dynamic persuasion rule defined by (8), and let ϕ∗ be an optimal solution to
Program D. Then there exists a credible implementation of g∗. The speaker’s reporting
strategy is

ζ∗(x� y) :=

⎧⎪⎨⎪⎩
1 if x ∈A and x = y

ϕ∗(y�x)/ϕ∗(x� t) if x ∈R and y ∈A

0 otherwise�
(20)

except at x ∈R with ϕ∗(x� t) = 0, where ζ∗(x� y) can be chosen arbitrarily. On the equilib-
rium path, the speaker presents the evidence the listener requests whenever it is available,
whereas the listener’s behavior coincides with what it would have been if he had commit-
ted to g∗ as in Section 2.2.
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Theorem 5 is a credibility result for dynamic persuasion rules. The theorem shows
that optimal dynamic persuasion rules derived from Program P0 are credible in the
sense that they are consistent with equilibrium in the game without commitment. The
credible implementation achieves the same error probability as the optimal rule in the
game with commitment. The theorem also shows that there always exists an equilib-
rium that supports the optimal rule at which, in A, the speaker tells the truth, while in
R, the speaker randomizes over lies.

Theorem 5 extends the result of Glazer and Rubinstein (2004), which applies only to
(1�2)-verification environments, to the class of all persuasion environments. Theorem 5
also complements the credibility result for static persuasion rules in Glazer and Rubin-
stein (2006). As in Glazer and Rubinstein (2004), the proof involves optimality conditions
for a pair of dual linear programs. In our case, these programs are Program P0, from
which the optimal rule is derived, and its dual, Program D, from which the speaker’s
strategy is derived. In contrast, Glazer and Rubinstein (2004) employed Program GR0
and its dual. However, Theorem 4 shows that Program GR0 is generally valid only for
(k�n)-verification problems with n− k = 1.

5. Foresight and Max Flow

We present a condition—foresight—under which the optimal persuasion problem re-
duces to the classical maximum flow problem. One consequence is that the optimal
static rule is optimal even among dynamic rules. We derive additional consequences,
translating properties of max flow to properties of optimal persuasion. In addition to
the consequences we derive (determinism, coincidence of static and dynamic optimal-
ity, nature of credible equilibrium strategies, symmetry, and complexity), the reduction
implies comparative statics, which we explore elsewhere (Sher 2008).

5.1 Foresight

We motivate foresight with an example.

Example 2. Let M = {1� � � � � n}. Interpret a message m ∈ M as evidence that would be
persuasive if it is genuine and not fabricated. In states x ∈ A, all evidence is genuine
as the speaker is unwilling or unable to fabricate. For x ∈ A, we allow σ(x) to be an
arbitrary nonempty subset of M . In states y ∈ R, all evidence is fabricated. In general,
no observable characteristic distinguishes genuine from fabricated evidence. Assume
that if i < j, then evidence i is easier to fabricate than evidence j, which means that

∀y ∈ R i < j ⇒ (j ∈ σ(y) ⇒ i ∈ σ(y))� (21)
♦

The example is clearly special, yet any persuasion environment may be interpreted
along similar lines: Define evidence m to be (weakly) less forgeable than m′ if

∀y ∈ R� m ∈ σ(y) ⇒ m′ ∈ σ(y)�
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Evidence m is minimally forgeable at x ∈ A if m ∈ σ(x) and m is weakly less forgeable
than any m′ ∈ σ(x).9

Definition 1. A persuasion environment allows foresight if at each accept state x ∈ A,
there exists a minimally forgeable message mx.

We use the term “foresight” because if there is a minimally forgeable message at ac-
cept state x, then the speaker should foresee that this is the evidence that the listener
would require to support the claim that the state is x (see Corollaries 1 and 2 below). For
this reason we also refer to mx as the obvious question at x. In contrast, when foresight
fails, the listener may randomize, making evidence requests unpredictable.

Example 2 allows foresight, with minimally forgeable message mx = max{i : i ∈ σ(x)}
at x ∈ A. Unlike the example, foresight does not generally require a global ranking of
evidence in terms of forgeability; foresight is even consistent with the availability of two
messages at accept state x, neither of which is weakly more forgeable than the other.
The (k�n)-verification environments (Section 3.2) typically violate foresight (depending
on the choice of A).

Foresight generalizes normality, a notion used by Bull and Watson (2007), which is
equivalent to the full reports condition of Lipman and Seppi (1995) and resembles the
nested range condition of Green and Laffont (1986).10 To compare normality to foresight,
we generalize the forgeability relation. In particular, for any Y ⊆ X , define the relation
�Y on the set of messages by

m�Y m′ ⇔ [∀y ∈ Y�m ∈ σ(y) ⇒m′ ∈ σ(y)]�

Say that m is �Y -minimal at x if (i) m ∈ σ(x) and (ii) m �Y m′ for all m′ ∈ σ(x). So σ

allows foresight if there is a �R-minimal message at every state in A. In contrast, σ is
normal if there is a �X-minimal message at every state in X . So foresight is weaker
than normality in two ways. First, foresight employs the finer relation �R, while nor-
mality employs the coarser relation �X : any �X-minimal message is �R-minimal, but
not every �R-minimal message is �X-minimal, so that �X-minimal messages may fail
to exist in states with �R-minimal messages. Hence, the requirement of the existence of
�X-minimal messages is more stringent. Second, foresight only requires �R-minimal
messages at accept states (that is, states in A), while normality requires �X-minimal
messages at all states in X .

The interpretation of the two notions is also different: If a message m is �X-minimal
at x, it is maximally informative in the sense that message m rules out (weakly) more

9The minimally forgeable message, when it exists, may not be unique.
10Papers that explore similar notions include Deneckere and Severinov (2008), Singh and Wittman

(2001), and Forges and Koessler (2005). Models with normal message structures include Milgrom (1981),
Milgrom and Roberts (1986), Shin (1994a, 1994b, 2003), Bull and Watson (2004), and Dziuda (2011). Ben-
Porath and Lipman (2012) and Kartik and Tercieux (2012) study full implementation with evidence and
explore normality in that context. An older version of the latter discusses when dynamic mechanisms out-
perform static mechanisms for full Nash implementation with evidence as well as the bearing of normality
on this issue.
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states (in the sense of inclusion) than any other message at x. This concords with the
common interpretation according to which normality holds in the absence of time con-
straints, where the maximal message corresponds to a presentation of all available evi-
dence. In contrast, a message that is �R-minimal cannot be said to be maximally infor-
mative in the above sense, as �R-minimality of m at x implies nothing about the relative
availability of m at states (other than x) in A. The �R-minimality of m at x means that x
is maximally informative with respect to the specific question of what the state could be
if the state belongs to R. From another point of view, a �X-minimal message is one that
it is difficult to use in the sense that it is (relatively) infrequently available, whereas a �R-
minimal message is a message that it is difficult to abuse in the sense that it is difficult
to use when the listener would not like to be persuaded. This justifies the terminology
“forge” above.

For Y ⊆ X , consider the environment where the set of states is Y and the message
correspondence is the restriction of σ to Y . If this environment is normal, then we say
that the message correspondence σ is normal on Y. The following remark and its proof
show how to construct many message correspondences that allow foresight but are not
normal.

Remark 1. Any normal environment must be normal on Y for all Y ⊆ X . In contrast,
(i) any message correspondence that is not normal on A can be extended to a mes-
sage correspondence on X that allows foresight and (ii) any message correspondence
that is not normal on R can be extended to a message correspondence on X that allows
foresight.

For (i), let σ be arbitrary on A, assume without loss of generality that M = {1� � � � � n},
and extend σ to R so that it satisfies (21). Statement (ii) is illustrated by the following
example.

Example 3. Let σ be arbitrary on R, but assume that for all x ∈ A that σ(x) contains
only a single message.11 Such environments allow foresight. For interpretation, assume
the listener would like to accept the speaker only if she is honest. The speaker is honest
if she is an essentially nonstrategic player—a behavioral type—whose only option is to
present truthful evidence. In contrast, the listener would like to reject the speaker if she
is strategic, and selects her evidence to maximize her benefit. ♦

While foresight entails an obvious question at every accept state, it does not im-
ply that the optimal rule is obvious. Optimality requires that we determine the level
at which evidence is sufficiently difficult to fabricate: If the speaker’s opening argument
claims that the state is x ∈ A, is mx sufficiently difficult to forge for it to be worthwhile
for the listener to ask the obvious question rather than rejecting the speaker outright?
Section 5.2 determines whether mx meets this criterion by solving a max flow problem
(see Corollary 2).

11Strictly speaking, we assume that σ(x) contains only a single nonvacuous message (see Section 2.1).



Theoretical Economics 9 (2014) Persuasion and dynamic communication 115

State A/R Prob Messages

1 A 3
16 m1�m2�m3

2 A 2
16 m2�m3

3 R 1
16 m3

4 A 1
16 m1�m3�m4�m5

5 A 2
16 m3�m5

6 R 3
16 m2�m3�m6

7 R 1
16 m1�m2�m3�m6

8 R 3
16 m1�m2�m3�m5

Table 1. A persuasion environment that allows foresight.

5.2 Max Flow

Under foresight, we reduce optimal persuasion to the classical maximum flow prob-
lem.12 We begin by constructing a network that corresponds to the persuasion prob-
lem.13 A directed graph is a pair (V �E), where V is a set of vertices and E is a set of
directed edges. Assume V = X ∪ {s� t}, where X is the set of states in the persuasion
problem, and s and t are two new vertices. The vertex s is called the source and t is called
the sink. The edge set is given by

E = {(s�x) :x ∈A}︸ ︷︷ ︸
E1

∪{(x� y) :x ∈A�y ∈R�σ(x) ⊆ σ(y)}︸ ︷︷ ︸
E2

∪{(y� t) :y ∈R}︸ ︷︷ ︸
E3

� (22)

In addition, each edge (v�w) ∈E has a capacity c(v�w), defined as

c(v�w) :=

⎧⎪⎨⎪⎩
px if (v�w)= (s�x) ∈E1

∞ if (v�w)= (x� y) ∈E2

py if (v�w)= (y� t) ∈E3�

(23)

Example 4. Table 1 describes a persuasion environment. The first column represents
the set of states X = {1� � � � �8}, the second column shows whether each state belongs to
A or R, the third column gives the probability of each state, and the last column gives
the messages available at the state. One can verify that the environment specified by
Table 1 allows foresight. At each state x ∈ A = {1�2�4�5}, the obvious question is mx.
Figure 3 presents a network that corresponds to this persuasion environment. States in
A and R correspond to vertices in the left and right columns, respectively. The graph
also contains a source s and a sink t. An edge (in E1) with capacity px points from s to
each x ∈A; an edge (in E3) with capacity py points from each y ∈R to t. For all x ∈A and
y ∈ R, if y can mimic x (i.e., σ(x) ⊆ σ(y)), there is an infinite capacity edge (in E2) that
points from x to y. Infinite capacities are not labeled to avoid cluttering the diagram. ♦

12For an extensive treatment of the maximum flow problem, see Ahuja et al. (1993).
13This resembles the conversion of the maximal closure problem to the max flow problem in Picard

(1976).
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Figure 3. A network that corresponds to a persuasion environment.

The maximum flow problem on the above defined network is as follows.

Max Flow. Maximize∑
x:(s�x)∈E

ϕ(s�x) (24)

subject to∑
v:(v�x)∈E

ϕ(v�x) =
∑

v:(x�v)∈E
ϕ(x�v) ∀x ∈X (= V \ {s� t}) (25)

ϕ(v�w) ≤ c(v�w) ∀(v�w) ∈E (26)

ϕ(v�w) ≥ 0 ∀(v�w) ∈ E� (27)

The variable ϕ(v�w) may be conceived as a flow of some commodity along edge
(v�w). The set of equations (25) comprises the flow conservation constraints into any
vertex (other than the source or sink) is equal to the flow out of that vertex. Equation
(26) comprises capacity constraints that say that the flow along any edge cannot exceed
that edge’s capacity. Max Flow attempts to ship as much flow out of the source as pos-
sible subject to these constraints. An optimal solution is a maximum flow. The formu-
lation (24)–(27) is a special case of the maximum flow problem because the edge set has
structure (22) and the capacity function takes the form (23).14

The dual of the maximum flow problem is the minimum cut problem.

14Typically, the max flow objective is the difference between the outflow and the inflow of the source;
because here the edge set (22) does not contain edges that enter the source, the objective is simply the
outflow.
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Min Cut. Minimize ∑
(v�w)∈E

δ(v�w)c(v�w) (28)

subject to

δ(v�w)− γv + γw ≥ 0 ∀(v�w) ∈E (29)

δ(v�w) ≥ 0 ∀(v�w) ∈E (30)

0 ≤ γv ≤ 1 ∀v ∈ V \ {s� t} (31)

γs = 1 (32)

γt = 0� (33)

The formulation of the objective function in (28) uses the convention that 0 ×
∞ = 0.15 Strictly speaking, (31) is not part of the dual of (24)–(27), but imposing (31)
does not affect the value of Min Cut. (See Lemma 1 in the Appendix.) An interpretation
of Min Cut is provided below.

Theorem 6. Assume foresight. Then the following statements hold:

(i) Any optimal solution to Max Flow is an optimal solution to Program D.16

(ii) Any optimal solution to Min Cut induces an optimal solution to Program P0 via

β(x�m) =
{
γx if x ∈A and m= mx

0 otherwise
(34)

μx =
{

1 − γx if x ∈A

γx if x ∈R�

Moreover, Max Flow, Min Cut, Program P0, and Program D all attain the same value.

Say that optimal dynamic and static persuasion rules coincide if optimal dynamic
and static rules lead to the same error probability. It is well known that Min Cut always
has an integer optimum solution, meaning one with γx ∈ {0�1} for all x ∈ V and δ(v�w) ∈
{0�1} for all (v�w) ∈ E.17 Combining Theorems 1 and 2 with Theorem 6 immediately
yields a corollary.

Corollary 1. Assume foresight. Then there exists an optimal dynamic persuasion rule
that is deterministic, and, hence, optimal dynamic and static rules coincide.

While foresight implies that the optimal dynamic rule can be implemented using a
static rule, it does not imply that all dynamic rules can be implemented using static

15We could have replaced ∞ by any sufficiently large real number in (23).
16Since Max Flow does not contain variables ϕ(x� y) when (x� y) ∈ (A × R) \ E, to interpret a Max Flow

solution ϕ as a solution to Program P0, we extend ϕ to edges (x� y) ∈ (A×R) \E by setting ϕ(x� y) = 0.
17This is a consequence of the total unimodularity of the constraint matrix.
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rules. Specifically, modifying Example 1 so that either A = ∅ or A = X , then, vacu-
ously, the example allows foresight. Corollary 1 then implies there is a static rule that
is optimal even among dynamic rules. Indeed, if A = ∅, this is the static rule that re-
jects all messages, and if A = X , it is the static rule that accepts all messages. Defining
Z := {x :

∑3
i=1 xi is even}, the dynamic rule

g(x�m) :=
{

1
3 if x ∈ Z and m ∈ σ(x)

0 otherwise
(35)

induces a vector of acceptance probabilities (α(g�x) :x ∈X) that cannot be replicated by
any static rule. Rule (35) is the same as (12) except that Z is no longer equal to A. Simi-
larly, in Example 4, which allows foresight, consider the dynamic rule g with g(x�m) = 1

2
if x = 1 and m ∈ {m1�m2}, and g(x�m) = 0 otherwise. No static rule mimics g (in the
sense of inducing the same acceptance probabilities). Still, Corollary 1 entails the exis-
tence of a static rule in Example 4 that is optimal even among dynamic rules.

These examples establish that Corollary 1 is fundamentally different from Theorem 5
of Bull and Watson (2007), which shows that under normality, dynamic and static (weak)
implementation coincide in their general mechanism design framework with evidence.
Whereas their result presents a sufficient condition for anything feasible via a dynamic
mechanism to be feasible via a static mechanism, our result establishes a sufficient con-
dition for something optimal via a dynamic mechanism to be feasible, and hence opti-
mal, via a static mechanism.18

We now interpret Min Cut. A cut is a set of vertices Z ⊆ V with s ∈ Z, t /∈ Z. Let C be
the set of all cuts in our network. The capacity of a cut Z is

c(Z) :=
∑

{c(v�w) :v ∈Z�w ∈ V \Z�(v�w) ∈ E}�

So the capacity of a cut Z is the sum of capacities of all edges crossing the cut. The
set of cuts corresponds to the set of integer solutions to Min Cut. In particular, γx = 1
exactly if x ∈Z and γx = 0 otherwise; δ(v�w)= 1 if (v�w) crosses Z (i.e, v ∈Z, w /∈Z) and
δ(v�w) = 0 otherwise. Min Cut can then be rewritten as minimize c(Z) subject to Z ∈ C.
An optimal solution Z is a minimum cut. Any maximum flow ϕ induces a minimum
cut Z; the induced minimum cut is the set of vertices reachable from the source in the
residual graph induced by ϕ (for details, see Ahuja et al. 1993).

Corollary 2. Assume foresight. A maximum flow induces both an optimal rule and its
credible implementation. Specifically, any minimum cut Z corresponds to the optimal
rule

g(x�m) =
{

1 if x ∈A∩Z and m=mx

0 otherwise.
(36)

18Another fundamental difference between our analysis and that of Bull and Watson (2007) is that
whereas the full optimality of static rules among dynamic rules, as in Corollary 1, depends crucially on
whether the listener can benefit by randomizing evidence requests, Bull and Watson (2007) do not discuss
randomization at all as a determinant of whether static mechanisms are optimal.
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The rule g accepts the speaker at states in Z \ s and rejects the speaker otherwise. A maxi-
mum flow corresponds to a speaker strategy via (20).19

The optimal static rule that corresponds to the dynamic rule (36) is f such that
f (m) = 1 if m=mx for x ∈A∩Z and f (m) = 0 otherwise. Here, the credibility result can
be rephrased in the context of the static communication protocol of Section 2.2.20 The
optimal static rule f gives the listener’s strategy in the game without commitment,21

and the listener’s strategy is to send mx when x ∈ A and to randomize over messages
(my :y ∈ A) with probabilities given by (20) when the state x is in R. The Appendix ap-
plies Corollary 2 to solve Example 4, deriving the optimal rule and its credible imple-
mentation from the maximum flow.

Theorem 6 has consequences for the structure of the set of optimal static persuasion
rules, meaning the set of static persuasion rules that are optimal among static rules. The
following example helps us to explain this.

Example 5. This example is due to Glazer and Rubinstein (2006). Consider a (2�5)-
verification environment with Xi = {0�1} for i = 1� � � � �5. (See Section 3.2 for the defini-
tion of (k�n)-verification environments.) Let A := {x ∈ {0�1}5 :

∑5
i=1 xi ≥ 3} and px = 1

32
for all x. Interpret xi = 1 (resp., xi = 0) as a fact that supports (resp., opposes) the
speaker’s request. So the listener prefers to accept exactly when a majority of facts sup-
port the speaker, but the speaker can present only two facts. The optimal static rule par-
titions the indices {1�2�3�4�5} into two sets of size 2 and 3, which we call categories—for
example {1�2} and {3�4�5}—and accepts the speaker only if the speaker presents two
facts that support her request in the same category. For example, if the evidence consists
of the opinions of five experts, two of whom are women and three of whom are men, it
would be optimal to require the speaker to present supporting opinions of two experts of
the same gender to win acceptance. Categories such as gender are ex ante irrelevant, but
the optimal rule may have to make use of some such categories. The model of Fishman
and Hagerty (1990) on optimal disclosure has a similar character. ♦

We now formalize the asymmetry of the optimal rule found in the above example.

Definition 2. A pair of bijections (π�ξ) with π :X → X and ξ :M →M is a symmetry if
for all x, (i) σ(π(x)) = {ξ(m) :m ∈ σ(x)}, (ii) x ∈A⇔ π(x) ∈A, and (iii) pπ(x) = px. Static
rule f is symmetric if for every symmetry (π�ξ) and every m ∈M , f (m) = f (ξ(m)).

Intuitively, a persuasion rule is symmetric if it treats any two pieces of evidence that
cannot be distinguished without labels—or, in other words, in terms of their intrinsic

19See Theorem 5 and its proof for the exact details of this strategy. See also footnote 16.
20Glazer and Rubinstein (2006) establish a credibility result for static rules. Our result differs in two ways:

(i) the optimal static rule is also an optimal dynamic rule, so one can actually implement the optimal dy-
namic rule in the static communication protocol without commitment, and (ii) one can derive the credible
implementation by solving a maximum flow problem. Neither (i) nor (ii) hold without foresight.

21We modify f to accept additional messages available only in A (if any exist) to ensure off-path
rationality.
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properties—in the same way. One can show that every optimal static rule in Example 5
is asymmetric. For this, it is critical that Example 5 violates foresight.

Theorem 6 allows us to identify a symmetric optimal static rule under foresight. Say
a static rule f is less difficult than static rule f ′ if f ′(m) ≤ f (m) for all m ∈ M . The less
difficult is a rule f , the easier it is for the speaker to persuade the listener under f . A least
difficult optimal static persuasion rule is a persuasion rule that is both optimal among
static rules and less difficult than all other optimal static rules. Theorem 6 implies the
following corollary.

Corollary 3. Assume foresight. Then there exists a least difficult optimal static rule f ∗.
The rule f ∗ is symmetric.

This result follows from the well known lattice structure of the set of minimum
cuts (Ford and Fulkerson 1956). Under foresight, optimal deterministic static persua-
sion rules—or, more precisely, the acceptance probabilities induced by such rules—
correspond to minimum cuts, where rules higher up on the lattice tend to make per-
suasion easier. The rule f ∗ is the persuasion rule that accepts message m exactly if m
is accepted by some optimal deterministic static rule. Clearly f ∗ is symmetric, but as
shown by Example 5, in general, f ∗ need not be optimal. However, (α(f ∗�x) :x ∈ X)

is the supremum of the acceptance probabilities of the set of optima, implying under
foresight that since the set of optima is a lattice, f ∗ is itself optimal.

In contrast to static rules, there always (even without foresight) exists a symmetric
optimal dynamic rule g∗ due to the convexity of the set of acceptance probability vec-
tors induced by dynamic rules. However, unlike in the case of foresight, where f ∗ is
deterministic, without foresight, there need not exist a deterministic symmetric optimal
dynamic rule. In light of Example 5, this suggests that in the absence of foresight, some
arbitrariness in categorization can be a (imperfect) substitute for randomized back-and-
forth communication. Also, g∗ need not be the least difficult optimal dynamic rule as no
such rule may exist. However, under foresight, f ∗ is optimal even among dynamic rules,
and at every state, the speaker (weakly) prefers f ∗ to all dynamic rules.22

6. Complexity

Theorems 1 and 6 have consequences for the complexity of optimal persuasion.23

Theorem 7. (i) The static persuasion problem is NP-hard.

(ii) In contrast, for environments that allow foresight, there is a polynomial time algo-
rithm that computes both an optimal static rule f and a credible implementation
of f .

(iii) Even without foresight, there exists a polynomial time algorithm that computes
both an optimal dynamic persuasion rule g and a credible implementation of g.

22I am grateful to an anonymous referee for emphasizing this point.
23See, for example, Goldreich (2008) for definitions of the standard complexity notions employed here.
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Part (iii) follows from the fact that the dynamic persuasion problem can be repre-
sented by the linear Program P0 (Theorem 1) and the speaker strategy in credible im-
plementation of the optimal rule can be found by solving the dual linear Program D
(Theorem 5).24 Part (ii) follows similarly from Theorem 6 on reduction of optimal per-
suasion to the linear program Max Flow under foresight, Corollaries 1 and 2, and the
discussion following Corollary 2 about credible implementation in the static protocol.
Note that whether a persuasion environment allows foresight can also be determined in
polynomial time. The proof of part (i) is given in the Appendix and is by reduction from
the set cover problem.

The result that with either (i) dynamic communication or (ii) foresight, not only is
finding the optimal rule g tractable, but so is finding an equilibrium supporting g, con-
trasts with the general result that finding a Nash equilibrium in an arbitrary game is
hard (formally, PPAD-complete) (Daskalakis et al. 2009, Chen and Deng 2006) and that
finding the optimal Nash equilibrium for a given player is NP-hard (Gilboa and Zemel
1989). That the listener optimal equilibrium is derived via a pair of dual linear pro-
grams resembles the fact that in zero-sum games, an equilibrium can be derived via
a pair of dual linear programs,25 and that the optimal correlated equilibrium in a normal
form game for any given player can be derived via a linear program (Gilboa and Zemel
1989).26

7. Conclusion

This paper provides a new formulation of the optimal persuasion problem (Theorems 1
and 2). We thereby characterize the precise relation between static and dynamic persua-
sion. The methodology of this paper is promising for various extensions of the persua-
sion scenario and also for a broader class of problems concerning mechanism design
with evidence.27

 Sher and Vohra (2013) apply a similar methodology to the problem of
optimal price discrimination on the basis of evidence, a problem that has strong ties
to optimal auctions. That paper shows that the optimal price discrimination problem
reduces to a minimum convex cost flow problem. Analogously to the current paper,
the reduction to a network flow problem in Sher and Vohra (2013) is used to derive
a credibility result for the price discrimination environment. That paper also estab-
lishes a surprisingly close relationship between the price discrimination and persuasion
problems.

24Both Programs P0 and D are easy to construct given the primitives of the problem, and they have a
number of variables and constraints that is polynomial in the number of states and messages. The proof of
Theorem 5 implies that the parts of the speaker strategy other than the reporting strategy are also easy to
construct.

25In zero-sum games, all equilibria yield the same payoffs to all players, so finding any equilibrium is
equivalent to finding the best equilibrium for any given player. Sher (2013) explores the relation between
persuasion games and zero-sum games in more depth.

26For more results on the complexity of equilibria, see Conitzer and Sandholm (2008).
27For a general treatment of the linear programming approach to mechanism design and, in particular,

the application of network flow problems to mechanism design, see Vohra (2011).
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The specific concept of foresight also promises to generalize to a broader class of
mechanism design problems. While the definition of normality treats all states sym-
metrically (see Section 5.1), and so depends only on properties of the evidence, fore-
sight treats evidence at accept and reject states differently. A notion that treats states
symmetrically—such as normality—must impose a more stringent condition on evi-
dence to guarantee that optimal static and dynamic mechanisms coincide. But foresight
appears to be very closely tailored to the persuasion environment. How might it be gen-
eralized for problems other than persuasion? The key to understanding why normality
can be weakened to foresight in the persuasion environment is the observation that the
only binding incentive constraints are those that say that speaker types in reject states
should not want to mimic speaker types in accept states. This accounts for the role in
foresight of forgery of evidence (i.e., use of evidence at a reject state that is available at
an accept state), as opposed to, for example, the use of evidence available at one ac-
cept state at another accept state. Suppose that in a more general mechanism design
problem with evidence, one can argue a priori, without knowing the precise structure of
evidence, that at the optimal mechanism, all binding incentive constraints that involve
mimicking any type t concern the mimicking of t by some type s in a subset S(t) of the
set of types.28 (In an auction setting, S(t) might be the set of types with higher values
than t.) Then one could generalize foresight:29 A message is t-forged whenever it is used
by a type in S(t), and the environment satisfies foresight if every type t has a message
that is maximally difficult to t-forge (among messages available to t). Such a generalized
notion of foresight is a promising avenue of exploration for more general mechanism
design problems with evidence.

Appendix

Proof of Proposition 1. Fix mechanism (��λ) with � ∈ Gn and fix a best reply to
the mechanism for the speaker. For any x ∈ X and S ∈ σn(x), let H(x�S) be the set of
terminal histories h in �(x) such that (i) the speaker is accepted at h and (ii) S is the set
of messages m such that the speaker presents m at some evidentiary subhistory of h. Set
g(x�S) equal to the probability that at state x, the history belongs to H(x�S) given that
the speaker uses her best reply; this probability is calculated conditional on the state
being x. It is a best reply to dynamic rule g for the speaker to report the state truthfully.
If at some state x, the speaker had a strict incentive to lie to g and claim that the state
was y, then she would have had a strict incentive to mimic y in (��λ), contrary to the
assumption that the speaker used a best reply to (��λ). Indeed, mimicking y in (��λ)

can only be more attractive than claiming the state is y in g because in g, if the speaker
fails to present the requested evidence S ∈ σn(y), she will be rejected, whereas in (��λ),
if the speaker fails to present the evidence that would have led to acceptance at y, it is
possible that she will be accepted. Given that the speaker reports truthfully to g, it is
immediate that g and (��λ) lead to the same total error probability. �

28A type here determines both the agent’s evidence and any other relevant characteristics, such as, for
example, the agent’s value for an object in an auction.

29For this generalization to be nontrivial, it must be the case that at least for some types t, S(t) is a proper
subset of the set of types other than t.
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Proof of Theorem 1. Consider an arbitrary dynamic rule g. For every state x ∈ A,
let h(x) be an optimal cheap talk report for the speaker against g at x. For all x ∈ A

and m ∈ σ(x), define β(x�m) := g(h(x)�m) if m ∈ σ(h(x)) and β(x�m) := 0 other-
wise. For z ∈ X , define μz := μz(g). Then ∀x ∈ A, ∀y ∈ R,

∑
m∈σ(x)∩σ(y) β(x�m) =∑

m∈σ(x)∩σ(h(x))∩σ(y) g(h(x)�m) ≤ ∑
m∈σ(h(x))∩σ(y) g(h(x)�m) ≤ μy(g) = μy . Using the

definition of h(x), it is now straightforward to verify that (β�μ) is feasible in Program P0.
The equality μz := μz(g) and the fact that g was arbitrary now imply that the value of
Program P0 is a lower bound on the error probability of the optimal dynamic rule. So
to complete the proof, it is sufficient to show that the rule g∗ defined in (8), using an
optimal solution (β∗�μ∗) to Program P0, satisfies μz(g

∗) = μ∗
z for all z ∈X .

Optimality and (8) imply ∀y ∈ R, μ∗
y = max{∑m∈σ(x)∩σ(y) β∗(x�m) :x ∈A} = μy(g

∗).
Assume for contradiction that there exist x′�x′′ ∈A with∑

m∈σ(x′′)∩σ(x′)
β∗(x′′�m) >

∑
m∈σ(x′)

β∗(x′�m)� (37)

Define β̄(x�m) := β∗(x�m) except when x = x′. If m ∈ σ(x′′) ∩ σ(x′), define β̄(x′�m) :=
β∗(x′′�m). If m ∈ σ(x′) \ σ(x′′), define β̄(x�m) := 0. Define μ̄z := μ∗

z except when z = x′.
Define μ̄x′ := 1 − ∑

m∈σ(x′) β̄(x
′�m). Using feasibility of (μ∗�β∗), it now follows that

∀y ∈R,
∑

m∈σ(x′)∩σ(y) β̄(x′�m)=∑
m∈σ(x′)∩σ(x′′)∩σ(y) β̄(x′�m)≤∑

m∈σ(x′′)∩σ(y) β∗(x′′�m)≤
μ∗
y = μ̄y . With this inequality, it is straightforward to verify feasibility of (μ̄� β̄) in

Program P0. Inequality (37) implies that μ̄x′ < μ∗
x′ , which in turn implies that

(μ̄� β̄) attains a lower value than (μ∗�β∗) in Program P0, a contradiction. So
∀x′�x′′ ∈A,

∑
m∈σ(x′) β

∗(x′�m) ≥ ∑
m∈σ(x′′)∩σ(x′) β

∗(x′′�m), implying that ∀x′ ∈ A, μ∗
x′ =

1 − ∑
m∈σ(x′) β

∗(x′�m) = 1 − ∑
m∈σ(x′)∩σ(x′) β

∗(x′�m) = 1 − max{∑m∈σ(x)∩σ(x′) β
∗(x�m) :

x ∈ A} = μx′(g∗). We have established that for all z ∈ X , μz(g
∗) = μ∗

z , completing the
proof. �

Proof of Theorem 2. Proposition 1 of Glazer and Rubinstein (2006) says there exists
an optimal solution to the static persuasion problem that is deterministic. So let f be an
arbitrary deterministic static rule. For each x ∈ A, choose m(x) ∈ σ(x) with f (m(x)) =
α(f�x). For x ∈ A, define β(x�m(x)) := f (m(x)) and β(x�m) := 0 for m �= m(x). Define
μz := μz(f ) ∀z ∈ X . Let x ∈ A and y ∈ R. If m(x) ∈ σ(y), then μy = μy(f ) ≥ f (m(x)) =∑

m∈σ(x)∩σ(y) β(x�m). If m(x) /∈ σ(y), then μy = μy(f ) ≥ 0 = ∑
m∈σ(x)∩σ(y) β(x�m). With

these inequalities, it is straightforward to verify that (μ�β) is feasible in Program P1.
The equality μz := μz(f ) and the fact that f was arbitrary now imply that the value of
Program P0 is a lower bound on the value of the static persuasion problem.

Let (μ∗�β∗) be optimal in Program P0. Constraints (4), (6), and (9) imply

∀x ∈A�
∑

m∈σ(x)
β∗(x�m) ∈ {0�1}� (38)

Define static rule f ∗ by (11). For x ∈ A, μx(f
∗) = 1 − max{f ∗(m) :m ∈ σ(x)} =

1 − max{max{β∗(x′�m) :x′ ∈ A} :m ∈ σ(x)} ≤ 1 − max{β∗(x�m) :m ∈ σ(x)} =
1 − ∑

m∈σ(x) β∗(x�m) = μ∗
x, where the second to last equality follows from (9) and

(38), and the last equality follows from the feasibility of (μ∗�β∗). Similarly, for y ∈R,
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μy(f
∗) = max{f ∗(m) :m ∈ σ(y)} = max({0} ∪ {β∗(x�m) :x ∈ A�m ∈ σ(x) ∩ σ(y)}) =

max{∑m∈σ(x)∩σ(y) β∗(x�m) :x ∈A} ≤ μ∗
y . The above implies part (i) of Theorem 2.

Let (μ∗�β∗) be optimal in Program P2. For each x ∈ A with μ∗
x = 0, (4) implies that

there exists m(x) ∈ σ(x) with β∗(x�m(x)) > 0. For x ∈ A, define β∗∗(x�m) := 1 if both
μ∗
x = 0 and m= m(x); define β∗∗(x�m) := 0 otherwise.

Let y ∈ R. If μ∗
y = 0, (5) and (7) imply that for all x ∈ A and m ∈ σ(x) ∩ σ(y),

β∗(x�m) = 0. So the definition of m(x) implies ∀x ∈ A, μ∗
x = 1 ⇒m(x) /∈ σ(y). So ∀x ∈A,

μ∗
y = 0 = ∑

m∈σ(x)∩σ(y) β∗∗(x�m). Ifμ∗
y = 1, then ∀x ∈A, μ∗

y = 1 ≥ ∑
m∈σ(x)∩σ(y) β∗∗(x�m).

Using these relations, it is straightforward to verify that (μ∗�β∗∗) is feasible in Pro-
gram P1.

Any optimal solution (μ�β) to Program P1 must satisfy

μy = max
{ ∑
m∈σ(x)∩σ(y)

β(x�m) :x ∈ A

}
�

This together with the Program P1 constraints implies (10) and, hence, that (μ�β) is
feasible in Program P2. The above arguments imply that Programs P1 and P2 have the
same value, and, moreover, imply part (ii) of Theorem 2. �

Proof of Theorem 4.

Proof of part (i) of Theorem 4. Let (x�T) be an L. Any feasible solution (μ�β) in
Program P0 satisfies 1 −μx = ∑

m∈σ(x) β(x�m) ≤ ∑
y∈T

∑
m∈σ(x)∩σ(y) β(x�m) ≤ ∑

y∈T μy ,
where the first inequality follows from the fact that because (x�T) is an L, σ(x) ⊆⋃

y∈T σ(y). So the Program P0 constraints imply the L-principle and the result now fol-
lows from Theorem 1. �

Proof that (ii)(a) ⇒ (ii)(b). For i = 1� � � � � n, let Xi = {0�1}. For all z ∈ X = ×n
i=1Xi, let

pz = 1/2n. Let A = {x : ∑n
i=1 xi is even} (0 is even). Let J := {J ⊆ {1� � � � � n} : |J| = k}.

Then Program P0 simplifies to

minimize
1
2n

∑
z∈X

μz

subject to

1 −μx =
∑
J∈J

β(x�xJ) ∀x ∈A

μy ≥
∑

J∈J :yJ=xJ

β(x�xJ) ∀x ∈A�∀y ∈R

μz ≥ 0� β(x�xJ) ≥ 0 ∀z ∈X�∀x ∈ A�∀J ∈ J �

To understand this, note that if |J|< k but β(x�xJ) > 0, then for some J′ with |J′| = k

and J′ ⊃ J, we can redefine β(x�xJ′) := β(x�xJ′)+β(x�xJ) and β(x�xJ) := 0, maintain-
ing feasibility as well as the objective function value.
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Symmetry of the problem and convexity of the feasible region yields the existence
of a symmetric optimal solution, i.e., an optimal solution (μ∗�β∗) such that there ex-
ist numbers μ∗

A, μ∗
R, and β∗ with μ∗

x = μ∗
A ∀x ∈ A, μ∗

y = μ∗
R ∀y ∈ R, and β∗(x�xJ) = β∗

∀x ∈A, ∀J ∈ J . So Program P0 further simplifies to

minimize
1
2
μA + 1

2
μR

subject to

1 −μA =
(
n

k

)
β

μR ≥
(
n− 1
k

)
β (39)

μA ≥ 0� μR ≥ 0� β ≥ 0�

To understand this, note that the tightest lower bound on μy for y ∈ R is obtained using
x ∈ A that differs from y on exactly one component, in which case

|{J ∈ J :yJ = xJ}| =
(
n− 1
k

)
�

At optimality, (39) holds with equality, implying that

μR =
[(n−1

k

)(n
k

) ]
(1 −μA) = n− k

n
(1 −μA)�

so the objective value as a function of μA is

12
(
μA + n− k

n
(1 −μA)

)
= n− k

2n
+ k

2n
μA�

which is minimized at μA = 0. So the value of Program P0 is (n− k)/2n.
Choose T ⊆ R with |T | ≤ k and x ∈A. For any y ∈R, there exists i(y) ∈ {1� � � � � n} with

yi(y) �= xi(y). Let J = {i(y) :y ∈ T }. Then |J| ≤ k. So xJ ∈ σ(x) \ ⋃
y∈T σ(y), implying that

(x�T) is not an L. It follows that

if (x�T) is a minimal L� then |T | ≥ k+ 1� (40)

So define μ′
z := 1/(k + 1) if z ∈ R and μ′

z := 0 if z ∈ A. The statement (40) implies that
μ′ = (μ′

z :z ∈X) satisfies all L constraints and, hence, is feasible in Program GR0. More-
over, μ′ leads to an error probability of 1/[2(k + 1)], which is less than (n − k)/2n—the
value of Program P0—whenever n − k > 1 (and 0 < k).30 We have constructed a (k�n)-
verification problem in which the value of Program GR0 is strictly less than the value of
Program P0. Theorem 1 completes the proof. �

30Observe that when k > 0, n > k + 1 ⇒ n − kn < n − k(k + 1) ⇒ n < n(k + 1) − k(k + 1) ⇒ 1/(k + 1) <
(n− k)/n.
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Proof that (ii)(b) ⇒ (ii)(a). Consider a (k�n)-verification problem with n− k = 1. For
any z = (z1� z2� � � � � zn) ∈ X , i ∈ {1� � � � � n}, and yi ∈ Xi, let (yi� z−i) := (z1� � � � � zi−1� yi�

zi+1� � � � � zn). Let μ := (μz :z ∈ X) be feasible in Program GR0. Let A′′ := {x ∈ A :∀i�
∃yi ∈ Xi� (yi� x−i) ∈ R}. For all x ∈ A′′ and i ∈ {1� � � � � n}, choose yxi ∈ arg minyi∈Xi{μ(yi�x−i) :
(yi� x−i) ∈R}. The equality n−k= 1 implies that (x� {(yxi � x−i) : i = 1� � � � � n}) is a minimal
L, so that

∀x ∈ A′′� μx +
n∑

i=1

μ(yxi �x−i) ≥ 1� (41)

For all x ∈ A′ := A \A′′, there exists i(x) ∈ {1� � � � � n} with (yi(x)�x−i(x)) ∈ A ∀yi(x) ∈ Xi(x).
Let J(i) := {1� � � � � n} \ i, so that xJ(i) is the message that shows the value and index of all
components other than i at x. Define

β′(x�m) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if x ∈A′ and m= xJ(i(x))
μ(yxi �x−i)/

∑n
j=1 μ(yxj �x−j) if x ∈A′′�m= xJ(i)� and

∑n
j=1 μ(yxj �x−j) > 1

μ(yxi �x−i) if x ∈A′′�m= xJ(i)� and
∑n

j=1 μ(yxj �x−j) ≤ 1

0 otherwise.

Define μ′
z := 1 − ∑

m∈σ(x) β′(x�m) if z ∈ A and μ′
z := μz if z ∈ R. Let x ∈ A and y ∈ R.

There exists i∗ ∈ {1� � � � � n} with xi∗ �= yi∗ . If y−i∗ = x−i∗ , then μ′
y = μy ≥ β′(x�xJ(i∗)) =∑

m∈σ(x)∩σ(y) β′(x�m). If y−i∗ �= x−i∗ , then μ′
y ≥ 0 = ∑

m∈σ(x)∩σ(y) β′(x�m). Using the
above, it is straightforward to verify that (μ′�β′) is feasible in Program P0.

Choose x ∈ A. If either x ∈ A′ or
∑n

j=1 μ(yxj �x−j) > 1, then μ′
x = 0 ≤ μx. If x ∈ A′′

and
∑n

j=1 μ(yxj �x−j) ≤ 1, then μ′
x = 1 − ∑

m∈σ(x) β(x�m) = 1 − ∑n
i=1 μ(yxi �x−i) ≤ μx, where

the last inequality follows from (41). For y ∈ R, μ′
y = μy . So

∑
z∈X pzμ

′
z ≤ ∑

z∈X pzμz .
Since μ was an arbitrary feasible solution in Program GR0, it follows that the value of
Program P0 is a lower bound on the value of Program GR0. However, part (i) of the
theorem now implies that the values of Programs P0 and GR0 are indeed the same. �

�

Proof of Theorem 5. First we specify speaker and listener strategies, and argue that
they constitute a Bayesian Nash equilibrium (i.e., they are mutual best replies) that in-
duces the error probability of the optimal rule. Afterward, we explain how these strate-
gies can be modified to form a sequential equilibrium.

A Bayesian Nash equilibrium implements the optimal rule. The speaker uses the re-
porting strategy ζ∗ given by (20) (unless y ∈ R and ϕ∗(y� t) = 0, in which case the re-
porting strategy selects an arbitrary probability distribution over reports in A31). At
step 4 of Figure 2, the speaker presents the message the speaker requested if it belongs
to σ(x) ∩ σ(x̂), where x is the true state and x̂ was the speaker’s cheap talk claim, and
presents m0 otherwise. The listener’s strategy coincides with the optimal rule g∗ given
by (8). In particular, this means that at step 5 of Figure 2, the listener accepts the speaker
exactly if the speaker presented the message that the listener requested (even though

31Nothing of substance would change if we allowed the speaker to also select reports in R in this case.
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the rules of the game do not require the listener to do this). Call any listener strategy
that follows this rule for behavior at step 5 of Figure 2 and also only requests messages
m ∈ σ(x̂) with positive probability following cheap talk report x̂ straightforward. Call the
speaker’s proposed equilibrium strategy ζ̄∗ and the listener’s strategy ḡ∗. Strategy ḡ∗ is
straightforward.

Clearly, given the listener’s strategy, the speaker would never have an incentive to
modify her behavior at step 4 of Figure 2,32 so we hold this behavior fixed throughout
and consider only deviations from the speaker’s reporting strategy.

Consider an arbitrary listener strategy h̄. Let h(x̂�m) be the probability that the
listener requests message m conditional on cheap talk report x̂. (The listener rejects
without requesting evidence with probability 1 − ∑

m∈M h(x̂�m).) Let h◦(x̂�m�m′) be
the probability that the listener accepts the speaker conditional on the event that the
speaker claims that the state is x̂, the listener requests message m, and then the speaker
presents message m′. Strategy h̄ may not be straightforward. Let ḡ be an alternative
straightforward listener strategy in which, conditional on cheap talk report x̂, the lis-
tener requests message m with probability

g(x̂�m) :=

⎧⎪⎨⎪⎩
h(x̂�m)h◦(x̂�m�m)

+ (1/|σ(x̂)|)∑
m′∈M\σ(x̂) h(x̂�m′)h◦(x̂�m′�m0) if m ∈ σ(x̂)

0 otherwise.

Then ḡ performs at least as well as h̄ against ζ̄∗.33 So in considering listener deviations
from ḡ∗, we can restrict attention to straightforward strategies and, hence, consider de-
viations only from the listener’s strategy for requesting evidence at step 3 of Figure 2.

The proof of Theorem 1 establishes that for any optimal solution (μ∗�β∗) to Pro-
gram P0 and any x�x′ ∈ A,

∑
m∈σ(x′) β

∗(x′�m) ≥ ∑
m∈σ(x′′)∩σ(x′) β

∗(x′′�m), implying that
it is a best reply for the speaker to report truthfully at states x ∈A.34

Let y ∈ R. Assume for contradiction that there exist x�x′ ∈ A with ζ∗(y�x) > 0
but

∑
m∈σ(x′)∩σ(y) g∗(x′�m) >

∑
m∈σ(x)∩σ(y) g∗(x�m). Then by (5), μ∗

y > 0. Then com-
plementary slackness implies ϕ∗(y� t) = py > 0. So at y, ζ∗ is given by (20), implying
ϕ∗(x� y) > 0. Complementary slackness now implies μ∗

y = ∑
m∈σ(x)∩σ(y) g∗(x�m), imply-

ing that μ∗
y <

∑
m∈σ(x′)∩σ(y) g∗(x′�m) and contradicting (5). So ζ̄∗ is a best reply to ḡ∗.

For x ∈ A and m ∈ σ(x), define p̂x := px + ∑
y∈R ζ∗(y�x)py and define δx�m :=∑

y∈R:m∈σ(y) ζ∗(y�x)py . The quantity p̂x is the probability that the speaker will claim
that the state is x according to ζ∗. The quantity δx�m is the probability that (i) the state is
in R, (ii) the speaker claims that the state is x, and (iii) the speaker has message m.

32Recall that g∗(x̂�m) > 0 ⇒m ∈ σ(x̂).
33Assume the speaker uses ζ̄∗. If x ∈ A, then regardless of whether the listener uses h̄ or

ḡ, the acceptance probability conditional on the state being x is
∑

m∈σ(x) h(x�m)h◦(x�m�m) +∑
m′∈M\σ(x) h(x�m′)h◦(x�m′�m0). Let y ∈ R. If the listener uses h̄, the acceptance prob-

ability conditional on the state being y is
∑

x∈A ζ∗(y�x)[∑m∈σ(x)∩σ(y) h(x�m)h◦(x�m�m) +∑
m∈σ(x)\σ(y) h(x�m)h◦(x�m�m0) + ∑

m′∈M\σ(x) h(x�m′)h◦(x�m′�m0)]. If the listener uses ḡ, the ac-
ceptance probability conditional on the state being y is

∑
x∈A ζ∗(y�x)[∑m∈σ(x)∩σ(y) h(x�m)h◦(x�m�m) +

(|σ(x) ∩ σ(y)|/|σ(x)|)∑
m′∈M\σ(x) h(x�m′)h◦(x�m′�m0)]. When y ∈ R, the acceptance probability is

(weakly) smaller under ḡ than under h̄.
34A claim that the state belongs to R leads to certain rejection.
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The listener’s problem of choosing a straightforward best reply to ζ∗ can be repre-
sented as that of choosing (g(x�m) : x ∈A�m ∈ σ(x)) to minimize∑

x∈A
p̂x

[ ∑
m∈σ(x)

g(x�m)
δx�m

p̂x
+

(
1 −

∑
m∈σ(x)

g(x�m)

)
px

p̂x

]

subject to
∑

m∈σ(x) g(x�m) ≤ 1 ∀x ∈A and g(x�m) ≥ 0 ∀x ∈A, ∀m ∈ σ(x). The optimality
conditions for the above optimization problem are∑

m′∈M
g(x�m′) < 1 ⇒ px ≤ δx�m ∀x ∈A�∀m ∈ σ(x) (42)

g(x�m) > 0 ⇒ δx�m ≤ px ∀x ∈A�∀m ∈ σ(x) (43)

g(x�m) > 0 ⇒ δx�m ≤ δx�m′ ∀x ∈A�∀m�m′ ∈ σ(x)� (44)

To establish that ḡ∗ is a best reply to ζ̄∗, it is sufficient to establish that g∗ satisfies (42)–
(44).

Constraints (16)–(19) and (20) imply that for all x ∈A and m ∈ σ(x),

ϕ∗(s�x) ≤
∑

y∈R:m∈σ(y)
ϕ∗(x� y) =

∑
y∈R:m∈σ(y)�ϕ∗(y�t)>0

ϕ∗(x� y)
ϕ∗(y� t)

ϕ∗(y� t)

≤
∑

y∈R:m∈σ(y)�ϕ∗(y�t)>0

ϕ∗(x� y)
ϕ∗(y� t)

py =
∑

y∈R:m∈σ(y)�ϕ∗(y�t)>0

ζ∗(y�x)py (45)

≤
∑

y∈R:m∈σ(y)
ζ∗(y�x)py�

Consider any x ∈ A such that
∑

m′∈σ(x) g∗(x�m′) < 1. Then (4) and (8) imply μ∗
x = 1 −∑

m′∈σ(x) β∗(x�m′) > 0. So complementary slackness implies px = ϕ∗(s�x). Condition
(45) then implies that px ≤ ∑

y∈R:m∈σ(y) ζ∗(y�x)py for all m ∈ σ(x). So g∗ satisfies (42).
Consider x ∈ A and m ∈ σ(x) with g∗(x�m) > 0. We argue that in this case, all three

inequalities in (45) become equalities. Equation (8) implies that β∗(x�m) > 0. So com-
plementary slackness implies that the first inequality becomes an equality. For any y ∈R

with m ∈ σ(y), (5) implies μ∗
y > 0. So complementary slackness implies ϕ∗(y� t) = py ,

implying that the second inequality becomes an equality. Choose any y ∈ R with
ϕ∗(y� t) = 0. Because py > 0, it follows that ϕ∗(y� t) < py . Complementary slackness
implies that μ∗

y = 0, which implies via (5) that because β∗(x�m) > 0, m /∈ σ(y). So the
third inequality becomes an equality. To summarize, ∀x ∈ A, ∀m ∈ σ(x), g∗(x�m) > 0 ⇒
ϕ∗(s�x) = ∑

y∈R:m∈σ(y) ζ∗(y�x)py . Constraint (15) now implies that g∗ satisfies (43). For
all x ∈ A and m′ ∈ σ(x), (45) says that ϕ∗(s�x) ≤ ∑

y∈R:m′∈σ(y) ζ∗(y�x)py , implying that

g∗ satisfies (44). So ḡ∗ is a best reply to ζ̄∗. The fact that ζ̄∗ is a best reply to ḡ∗ implies
that the equilibrium (ζ̄∗� ḡ∗) induces the same error probability as the optimal rule g∗ at
every state.

Strengthening the Bayesian Nash equilibrium to a sequential equilibrium. Fi-
nally we modify ζ̄∗ and ḡ∗ so that the above Bayesian Nash equilibrium becomes a
sequential equilibrium. Define MA := {m ∈ M :∀x ∈ X�m ∈ σ(x) ⇒ x ∈ A}, A∗ :=
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{x ∈ A :σ(x) ∩MA �= ∅}. For each x ∈ A∗, choose m∗(x) ∈ σ(x) ∩MA. The speaker strat-
egy ζ̄∗∗ agrees with ζ̄∗ with two exceptions: (i) Suppose x ∈ X \ A∗ and x̂ ∈ X , m ∈ M

satisfy
∑

x′∈X px′ζ∗(x′� x̂)g∗(x̂�m) = 0. Then if the state is x, the speaker presented the
cheap talk report x̂, and the listener requested m, the speaker will present m0. (ii) Sup-
pose x ∈ A∗ and x̂ ∈ X , m ∈ M satisfy pxζ

∗(x� x̂)g∗(x̂�m) = 0. Then if the state is x, the
speaker presented cheap talk report x̂, and the listener requested m, the speaker will
present m(x). The listener strategy ḡ∗∗ agrees with ḡ∗ with two exceptions: (i′) Suppose
x̂ ∈ X , m ∈ M satisfy

∑
x′∈X px′ζ∗(x′� x̂)g∗(x̂�m)ζ◦(x′� x̂�m�m′) = 0. Then if the speaker

presented cheap talk report x̂, the listener requested message m, and the speaker pre-
sented some message m′ ∈ MA, then the listener will accept the speaker. (ii′) Suppose
x̂ ∈ A \ A∗ and m ∈ M satisfy g∗(x̂�m) = 0. Then if the speaker presented cheap talk
report x̂, the listener requested message m, and the speaker presented message m0, the
listener will accept the speaker’s request exactly if px̂ >

∑
y∈R ζ∗(y� x̂)py .

The strategy profiles (ḡ∗∗� ζ̄∗∗) and (ḡ∗� ζ̄∗) differ only on zero probability histories,
so (ḡ∗∗� ζ̄∗∗) induces the same error probability as the optimal rule g∗ at every state. We
now verify that ḡ∗∗ and ζ̄∗∗ are mutual best replies. Because (ḡ∗∗� ζ̄∗∗) and (ḡ∗� ζ̄∗) differ
only on zero probability histories and (g∗� ζ∗) is a Bayesian Nash equilibrium, to show
that ḡ∗∗ is a best reply to ζ̄∗∗, it is sufficient to show that conditional on any report x̂ ∈ A,
the listener has no incentive to request any message m with g∗(x̂�m) = 0. If x̂ ∈A∗, then
the facts that (ḡ∗∗� ζ̄∗∗) implements an optimal rule and ζ̄∗∗ entails truthful reports on
A imply that the listener is already achieving an error probability of zero conditional on
report x̂, and so has no incentive to deviate. If x̂ ∈ A \ A∗, then requesting a message
m with g∗(x̂�m) = 0 against ζ̄∗∗ would lead to the same outcome as either rejecting the
speaker without requesting any messages against ζ̄∗ or requesting m0 and then contin-
uing according to ḡ∗ against ζ̄∗. Since these deviations were not attractive in the equi-
librium (ḡ∗� ζ̄∗), they cannot benefit the listener given the strategy profile (ḡ∗∗� ζ̄∗∗). So
ḡ∗∗ is a best reply to ζ̄∗∗. The speaker can only cause ḡ∗ and ḡ∗∗ to differ by presenting
m ∈ MA, which is only possible in A∗. As explained above, in A∗, ḡ∗∗ avoids error and
thus already accepts the speaker with probability 1 if the speaker uses ζ̄∗∗. It follows that
ζ̄∗∗ is a best reply to ḡ∗∗.

We now argue that in (ḡ∗∗� ζ̄∗∗), the speaker’s strategy is sequentially rational off the
equilibrium path. If x ∈A∗, this follows from the fact that conditional on any nontermi-
nal history where the speaker moves, the probability of acceptance is 1. If x ∈ X \ A∗,
then at all nonterminal off-equilibrium path histories where the speaker moves, the
speaker has previously made a cheap talk claim x̂ and the listener has requested a mes-
sage m. Following such histories, according to ζ̄∗∗, either every available message will
lead to rejection or the speaker will present the only available message—either m or m0,
depending on the history—which will lead to acceptance. This establishes sequential
rationality for the speaker.

We can represent ζ̄∗∗ as a pair (ζ∗� ζ◦), where ζ∗ is the speaker’s reporting strategy
and ζ◦(x� x̂�m�m′) is the probability that the speaker presents m if the true state is x, the
speaker claimed that the state is x̂, and the listener requested message m′. For each suf-
ficiently small ε > 0, define a (totally mixed) speaker strategy ζ̄ε := (ζε� ζ

◦
ε ) by ζε(x� x̂) :=

ζ∗(x� x̂) − λx (λx defined below) if ζ∗(x� x̂) > 0, by ζε(x� x̂) := ε if ζ∗(x� x̂) = 0 and x ∈ R,
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and by ζε(x� x̂) := ε2 otherwise. Define ζ◦
ε (x� x̂�m�m′) := ζ◦(x� x̂�m�m′) − τx�x̂�m (τx�x̂�m

defined below) if ζ◦(x� x̂�m�m′) > 0, define ζ◦
ε (x� x̂�m�m′) := ε if ζ◦(x� x̂�m�m′) = 0,

m′ ∈ σ(x), and x ∈ R and define ζ◦
ε (x� x̂�m�m′) = ε2 if ζ◦(x� x̂�m�m′) = 0, m′ ∈ σ(x),

and x ∈ A. The values of λx and τx�x̂�m are chosen so that
∑

x̂∈X ζε(x� x̂) = 1 and∑
m′∈σ(x) ζ◦

ε (x� x̂�m�m′) = 1, and ζ̄◦
ε → ζ̄∗∗ as ε → 0. Let b be the limiting listener beliefs

about the state (as a function of the listener’s information set) induced by ζ̄◦
ε as ε → 0

and any totally mixed listener strategy.35 There are two kinds of off-equilibrium listener
information sets: (i) those where the listener knows that the speaker took some action,
which occurs with zero probability according to ζ̄∗∗ given the listener’s past actions, and
(ii) the off-equilibrium information sets not in the first category. In case (i), unless the
speaker has presented a message m ∈ MA, according to b, the listener assigns proba-
bility 1 to the state being in R. Following such histories, the listener will always reject
the speaker according to ḡ∗∗, a best reply to his beliefs. In histories of type (i) where the
speaker presents m ∈ MA, the listener will assign probability 1 to the state belonging to
A according to b and will accept the speaker, a best reply. Finally following histories of
type (ii), ḡ∗∗ is constructed so that the listener will reject the speaker exactly if according
to b, he assigns probability of at most 1

2 to the state belonging to A, again, a best reply.
This establishes that ḡ∗ is sequentially rational against beliefs b, completing the proof.

�

Proof of Theorem 6.

Proof of part (i) of Theorem 6. Constraint (17) is equivalent to

ϕ(s�x) ≤ min
m∈σ(x)

∑
y∈R:m∈σ(y)

ϕ(x� y) ∀x ∈A� (46)

Assume foresight. Definition 1 and (19) imply mx ∈ arg minm∈σ(x)
∑

y∈R:m∈σ(y) ϕ(x� y)
∀x ∈ A. Definition 1 implies mx ∈ σ(x) ∩ σ(y) ⇔ σ(x) ⊆ σ(y) ∀x ∈ A, ∀y ∈ R. So (46)
simplifies to ϕ(s�x) ≤ ∑

y:σ(x)⊆σ(y) ϕ(x� y) ∀x ∈A. At any optimum of Program D,

ϕ(s�x) =
∑

y:σ(x)⊆σ(y)

ϕ(x� y) ∀x ∈A� (47)

Otherwise, we could increase ϕ(s�x) without violating any constraints, increasing the
objective. Replacing (17) by (47), we may assume that ϕ(x� y) = 0 whenever σ(x)� σ(y);
otherwise, we could reduce ϕ(y� t) by ϕ(x� y) and set ϕ(x� y) = 0, attaining a new feasible
solution with the same objective value. So (18) becomes∑

x:σ(x)⊆σ(y)

ϕ(x� y) = ϕ(y� t) ∀y ∈R� (48)

Given edges (22), (47) and (48) are equivalent to (25) and (14) is equivalent to (24). Equa-
tion (23) implies equivalence of (15) and (16) with (26). Constraint (19) and equations
(47) and (48) imply (27). So Program D reduces to Max Flow. �

35The beliefs b are independent of the listener’s totally mixed strategy.
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Proof of part (ii) of Theorem 6.

Lemma 1. Adding or removing constraints (31) has no affect on the value of Min Cut.

Proof. For any optimal solution (δ�γ) to Min Cut without (31), define V− := {v :
γv < 0}, V+ := {v :γv > 1}, and V0 := V \ (V− ∪ V+). Define a new solution (δ�γ′), where
γ′
v := 0 ∀v ∈ V− and γ′

v = 1 ∀v ∈ V+, and otherwise (δ�γ′) coincides with (δ�γ). The so-
lution (δ�γ′) satisfies (30)–(33) and in particular (31). We verify that (δ�γ′) satisfies (31)
using optimality (and hence feasibility) of (δ�γ). First choose (s�x) ∈ E1. If x ∈ V0, (31)
is immediate. If x ∈ V−, δ(s�x) ≥ γs − γx = 1 − γx > 1 = 1 − γ′

x = γ′
s − γ′

x. If x ∈ V+, then
δ(s�x) ≥ 0 = 1 − 1 = γ′

s − γ′
x. Choose (y� t) ∈ E3. If y ∈ V0, (31) is immediate. If y ∈ V−,

then δ(y� t) ≥ 0 = 0 − 0 = γ′
t − γ′

y . If y ∈ V+, then δ(y� t) ≥ γy − γt = γy ≥ γ′
y = γ′

y − γ′
t .

Choose (x� y) ∈ E2. Optimality of (δ�γ) implies δ(x� y) = 0. So (31) reduces to γ′
y ≥ γ′

x.
Since γy ≥ γx, (x� y) must belong to one of the following sets: V− × V−, V− × V0, V− × V+,
V0 × V0, V0 × V+, or V+ × V+. If (x� y) ∈ V0 × V0, then γ′

y = γy ≥ γx = γ′
x. In all other cases,

(31) follows from the definition of γ′. Since (δ�γ) and (δ�γ′) have the same objective
value, we are done. �

Lemma 1 justifies treating (29)–(33) as the dual of Max Flow below.

Lemma 2. At any optimal solution to Min Cut, (i) δ(s�x) = 1 − γx ∀(s�x) ∈ E1,
(ii) δ(x� y) = 0 ∀(x� y) ∈E2, and (iii) δ(y� t) = γy ∀(y� t) ∈E3.

Proof. Min Cut has a finite value.36 This, along with (23), implies (ii). Equations (29)
and (32) imply δ(s�x) ≥ γs − γx = 1 − γx ∀x ∈ A. If the inequality is strict, (31) implies
we can reduce δ(s�x) without violating any constraints, reducing the objective, implying
(i). Similarly, for any y ∈ R, δ(y� t) ≥ γy − γt = γy , and if the inequality is strict, we can
reduce δ(y� t), implying (iii). �

Fix an optimum (δ�γ) in Min Cut. Define (μ�β) by (34). We argue that (μ�β) is
feasible in Program P0. Equation (34) implies ∀x ∈ A, 1 − μx = 1 − (1 − γx) = γx =∑

m∈σ(x) β(x�m). Constraint (29) and equation (34), and (ii) of Lemma 2 imply ∀x ∈ A,
∀y ∈ R, σ(x) ⊆ σ(y) ⇒ μy = γy ≥ γx − δ(x� y) = γx = ∑

m∈σ(x)∩σ(y) β(x�m). Constraint
(31) and equation (34), and foresight imply ∀x ∈ A, ∀y ∈ R, σ(x) � σ(y) ⇒ μy ≥ 0 =∑

m∈σ(x)∩σ(y) β(x�m). Given the above relations, it is straightforward to verify that
(μ�β) is feasible in Program P0. Equation (34), Lemma 2, (23), and Max Flow–Min Cut
duality imply

∑
z∈X pzμz = ∑

x∈Apx(1 − γx) + ∑
y∈R pyγy = ∑

(v�w)∈E δ(v�w)c(v�w) =∑
x∈Aϕ(s�x) for any optimum ϕ of Max Flow. Part (i) of Theorem 6 and duality of Pro-

grams P0 and D now imply optimality of (μ�β). �
�

Solution to Example 4. The maximum flow ϕ∗ for Example 4 is given by Table 2.
The table is split into three panels. The top, center, and bottom panels describe the flow

36Zero is a lower bound on the value; a feasible solution with finite value is δ(s�x) = 1 ∀(s�x) ∈ E1;
δ(v�w) = 0 ∀(v�w) /∈ E1; γs = 1; γv = 0 ∀v �= s.
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(v�w) ϕ∗(v�w) c(v�w)

(s�2) 2
16

2
16

(s�1) 2
16

3
16

(s�4) 0 1
16

(s�5) 2
16

2
16

(2�6) 2
16 ∞

(2�7) 0 ∞
(2�8) 0 ∞
(1�7) 1

16 ∞
(1�8) 1

16 ∞
(5�8) 2

16 ∞
(3� t) 0 1

16

(6� t) 2
16

3
16

(7� t) 1
16

1
16

(8� t) 3
16

3
16

Table 2. A maximum flow for Example 4.

ϕ∗ on edges in E1, E2, and E3, respectively (see (22)). In each panel, an entry in the left
column names an edge (v�w), the corresponding entry in the center column gives the
flow ϕ∗(v�w), and the entry in the right column gives the capacity c(v�w).

Figure 4 depicts the maximum flow.37 All edges point from left to right, in the di-
rection away from s and toward t, but arrows have been omitted from the figure. The
thick black lines depict positive flow along an edge; edges without thick black lines have
zero flow. If an edge e consists of two parallel lines, this means that the flow along
the edge is less than the capacity (i.e., ϕ∗(e) < c(e)), whereas if it consists of only one
line, this means that the flow is equal to the capacity. The residual capacity of edge e is
c(e)−ϕ∗(e). The residual capacity of edges that connect the source to A represents the
net benefit of acceptance or, more precisely, the probability of accepting the speaker mi-
nus the probability of incorrectly accepting the speaker. Similarly, the residual capacity
of edges that connect R to the sink represents the net benefit of rejection.

A minimum cut Z∗ is {s�1�4�5�7�8}. This is depicted in the figure as the set of ver-
tices underneath the curve. The capacity of this cut is the sum of capacities of edges
that cross from Z∗ to its complement; in the figure, this is the sum of capacities of edges
that cross the curve from below, moving in a northeast direction. So the capacity of the
minimum cut Z∗ is 6

16 , which is the same as the value of the maximum flow (i.e., the
quantity of flow exiting the source s). Cut Z∗ consists of the set of vertices reachable
from the source on a path that travels forward along edges with positive residual ca-
pacity or backward along edges with positive flow. Corollary 2 implies that there is an
optimal persuasion rule that accepts exactly messages {m1�m4�m5} and thereby accepts

37The positions of vertices 1 and 2 have been interchanged in comparison to Figure 3, but this difference
is merely cosmetic. The two figures represent exactly the same network because they contain the same
vertices and edges.
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Figure 4. A maximum flow and minimum cut for Example 4.

the speaker exactly in the states under the curve {1�4�5�7�8}. Corollary 2 also shows
how to derive the speaker strategy in the credible implementation. At states x ∈ A, the
speaker reports truthfully. At states y ∈ R, the speaker strategy is derived via the maxi-
mum flow. For example, at state 8 ∈ R, the speaker claims that the state is 1 and 5 with
probabilities proportional to the flows on edges (1�8) and (5�8): At 8, the speaker claims
the state is 1 with probability ϕ∗(1�8)/ϕ∗(8� t) = 1

3 and that the state is 5 with probability
ϕ∗(5�8)/ϕ∗(8� t) = 2

3 . Finally, Theorem 6 tells us that the total error probability at the
optimal rule is equal to 6

16 , the value of the maximum flow.

Proof of Corollary 3. Let Z∗ be the union of all minimum cuts. (See the definition
of a minimum cut in the paragraph preceding Corollary 2.) Due to the lattice struc-
ture of the set of minimum cuts, Z∗ is itself a minimum cut (Ford and Fulkerson 1956,
Topkis 1998). Define f ∗(m) := 1 if {x ∈ X :m ∈ σ(x)} ⊆ Z∗ and define f ∗(m) := 0 other-
wise. The rule f ∗ accepts the speaker precisely at states in Z∗. Theorem 6 and Corollary 1
imply that f ∗ is an optimal persuasion rule. By construction, f ∗ is less difficult than any
other optimal deterministic static rule and f ∗ is symmetric. Assume for contradiction
that there is an optimal static rule f ′ and message m′ such that f ∗(m′) = 0 < f ′(m′).
Define (δ′�γ′) so that γ′

x := α(f ′�x) and δ′ satisfies conditions (i)–(iii) in Lemma 2. The-
orem 6 and optimality of persuasion rule f ′ imply that (δ′�γ′) is an optimal solution
to Min Cut. Because the constraint matrix of Min Cut is totally unimodular, the set of
optimal solutions to Min Cut is a polytope with integral extreme points, and (δ′�γ′)
must be a convex combination of these integral extreme points. For each such inte-
gral optimum (δ′′�γ′′), there exists a corresponding optimal rule defined by f ′′(m) := 1
if {x ∈ X :m ∈ σ(x)} ⊆ {x ∈ X :γx = 1} and by f ′′(m) := 0 otherwise. At least one of these
deterministic optimal rules must be such that f ′′(m′) = 1, contradicting the fact that f ∗
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is less difficult than all deterministic optimal rules. It follows that f ∗ is less difficult than
all static optimal rules. �

Proof of part (i) of Theorem 7. Let U be a set and let S be a family of subsets of U
such that

⋃
S = U . The set cover problem is the problem of finding a minimal cardinality

subset T of S such that
⋃

T = U . This problem is known to be NP-hard. We will prove
that the static persuasion problem (without foresight) is NP-hard by reduction from the
set cover problem. Consider an instance of the set cover problem (U�S). For each S ∈ S ,
construct a state xS and let X = U ∪ {xS :S ∈ S}. Let A = U and R = {xS :S ∈ S}. For
each x ∈ A, let px := 2|R|/[(2|A| + 1)|R|] and for each y ∈ R, let py := 1/[(2|A| + 1)|R|].
For each S ∈ S , let there be a message mS and define σ so that mS ∈ σ(x) ⇔ x ∈ S ∪
{xS}. We know that there is an optimal static persuasion rule that is deterministic and
that any deterministic optimal static persuasion rule can be associated with the set K
of messages that it accepts. Given the specification of the above persuasion problem, it
is clear that any deterministic optimal persuasion rule must accept all states in A = U

or, more precisely, must accept some message available at x for all x ∈ A. The goal is
then to do this while accepting the minimum number of states in R, which amounts to
finding a minimal cardinality collection K ⊆ M such that for all x ∈A, K∩σ(x) �= ∅. This
is equivalent to finding a minimal cardinality subset T of S that covers U (i.e.,

⋃
T =U),

which is the set cover problem. �
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