
Theoretical Economics 8 (2013), 729–750 1555-7561/20130729

Endogenous indeterminacy and volatility of asset prices
under ambiguity

Michael Mandler
Department of Economics, Royal Holloway College, University of London

If agents are ambiguity-averse and can invest in productive assets, asset prices can
robustly exhibit indeterminacy in the markets that open after the productive in-
vestment has been launched. For indeterminacy to occur, the aggregate supply of
goods must appear in precise configurations, but the investment levels that gener-
ate these supplies arise systematically. That indeterminacy arises only at a knife-
edge set of aggregate supplies allows for a simple explanation of the volatility of
asset prices: small changes in supplies necessarily lead to a large price response.
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1. Introduction

In a seminal paper, Dow and Werlang (1992) argue that ambiguity aversion can lead
asset prices to be indeterminate. Ambiguity-averse agents deem a set of probability dis-
tributions to be possible and in the maximin formulation evaluate their asset portfolios
using the worst-case distribution that minimizes their expected utility. With two states—
an asset with either a high return or a low return—an agent whose initial endowment is
state-invariant evaluates an asset purchase using the distribution that assigns the high-
est probability to the low-return state and evaluates an asset sale using the distribution
that assigns the highest probability to the high-return state. This switch of distributions
as agents contemplate going long or short can lead agents to stay out of the market over
a range of prices (“portfolio inertia”), with the result that asset prices are indeterminate.
Epstein and Wang (1994) pursue a related line of argument.

These conclusions face a difficulty however: for most consumption bundles, agents
identify a single probability distribution as the worst case and this distribution remains
the worst case for any small change in consumption. Locally, therefore, some or all of the
agents in an ambiguity-averse society have smooth indifference curves and act just like
classical expected-utility maximizers. These agents, moreover, determine the market
response to price changes. For example, with one good in each of two states, an agent
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whose consumption varies by state has just one worst-case distribution locally. As long
as the aggregate endowment varies by state, there must be at least one such agent in
any competitive equilibrium, and that is enough to ensure that equilibria are typically
determinate. The case for indeterminacy therefore seems easy to dismiss. These argu-
ments appear in different ways in Epstein and Wang (1994), Chateauneuf et al. (2000),
Dana (2004), and Rigotti and Shannon (2012), although they are not always directed to
the Dow–Werlang no-trade argument. Dana and Rigotti–Shannon argue specifically that
ambiguity-averse economies typically have determinate equilibria, just like economies
of classical expected-utility maximizers.

We take another look at asset pricing under ambiguity aversion by departing from
the standard pure-exchange setting in which endowments are exogenously given. In-
stead, agents have the option to invest in productive assets that endogenously alter the
economy’s state-by-state endowment of goods. It is then a robust event for equilibrium
investment to occur at just the unusual levels that lead to asset-price indeterminacy: in
the two-state case, the investment level that makes society’s aggregate supply of goods
constant across states. Asset prices then are indeterminate, not in the overall intertem-
poral equilibrium, but in the markets that open later, after the productive investment
has been launched.1 And the indeterminacy is real: rather than displaying portfolio
inertia, agents trade in equilibrium and consequently variations in equilibrium asset
prices change each agent’s demand, consumption, and utility. The indeterminacy that
arises endogenously lies in the class considered in Dana (2004) even though, as Dana
pointed out, the indeterminacy is nongeneric in an exchange setting.

Investment robustly occurs in the special configurations that lead to indeterminacy
due to the very fact that agents exhibit ambiguity aversion. In the two-state case, as an
agent’s consumption rises in the bad state where it is initially low, the agent switches
the probability distribution he or she uses to evaluate asset portfolios at the point where
consumption becomes equal across states. Consequently the utility return to an invest-
ment that enhances output at the bad state falls discontinuously at exactly the point
where investment equalizes aggregate consumption across states. This discrete fall
makes the special consumption-equalizing level of investment a systematic occurrence.
When there are more than two states, the same scenario can unfold where investment
occurs at just the level that leads to indeterminacy, but now agents’ consumption need
not be perfectly hedged and can vary by state.

The knife-edge feature of the indeterminacy in this paper—that indeterminacy oc-
curs only at particular investment levels—heightens its economic relevance: arbitrarily
small changes in quantities necessarily have a big impact on prices. Suppose we add
a small amount of noise to the state-specific output of the investment technology. Al-
though for almost every outcome of the noise, indeterminacy is then absent, asset prices
will be volatile instead: if agents learn that there will be a small increase in output at
some state, then—because of the switch in the probability distribution used to evalu-
ate consumption portfolios—the price of assets with payoffs that are weighted toward

1This type of indeterminacy can occur in the absence of uncertainty when technology is modeled using
production activities (Mandler 1995).
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that state will fall discretely. The investments that ambiguity-averse agents undertake to
hedge against uncertainty thus end up magnifying the uncertainty of prices. Indeed, no
matter how small the production noise is, asset prices will display nonvanishing vari-
ance. The volatility of asset prices is, therefore, much larger than can be explained by
the volatility of fundamentals: there is “excess volatility.” In an economy of smooth
expected-utility maximizers, in contrast, a small amount of noise leads to only a small
variance in asset prices. We can therefore draw a bright line between the market equi-
librium consequences of classical and ambiguity-averse agents.

The large price impact of small changes in quantities also means that agents have
a strong incentive to manipulate market prices. In the working-paper version of this
article, we illustrate this point by showing that no matter how small an agent is as a
fraction of the entire economy, he or she can achieve a discrete utility gain by disposing
of an arbitrarily small quantity of his or her endowment. A large economy of ambiguity-
averse agents therefore cannot function competitively.

The distinctive character of the knife-edge indeterminacy that occurs with ambigu-
ity aversion can be seen in a graph of the equilibrium correspondence (the map from ex-
ogenous parameters to equilibrium prices and quantities). For a two-state economy of
agents with maximin ambiguity aversion, Figure 1 pictures the map from some agent i’s
endowment of the good that appears at a state b to that good’s normalized equilibrium
price. Assume, when i’s endowment equals eib and fixing the endowments of the other
agents, that the aggregate endowment of the state b good equals the aggregate endow-
ment of the economy’s other state-contingent good. Indeterminacy is then present at eib
while at nearby endowments, equilibrium prices are unique. Although the endowment
that leads to indeterminacy is rare, we will see that it arises systematically. Just as impor-
tantly, small variations in eib in the neighborhood of eib necessarily lead to large changes
in equilibrium prices; this feature of the model drives our volatility results. A discontinu-
ity of prices is unavoidable due to the fact that the equilibrium correspondence does not
admit a continuous selection in a neighborhood of eib, which, in turn, is due to the failure
of the equilibrium correspondence to be lower hemicontinuous at eib. If, in contrast, the
equilibrium correspondence were continuous, then it would admit a continuous selec-
tion and hence prices could be a stable function of endowments (Figure 2). That the link
between indeterminacy and volatility is mandatory in Figure 1 but not in Figure 2 is one
of this paper’s main points. We illustrate this contrast via the Bewley (2002) incomplete-
preferences model of Knightian uncertainty, where indeterminacy is omnipresent but
the equilibrium correspondence is continuous.

To sum up, it has long been clear that the Dow–Werlang no-trade argument does not
by itself generate equilibrium indeterminacy or volatility; “some other ingredient has to
be inserted” in the words of Mukerji and Tallon (2004). One way to fill the gap is to let
assets have an idiosyncratic component to their return that agents regard as ambiguous,
as in Epstein and Wang (1994) and Mukerji and Tallon (2001). Another way to use ambi-
guity to explain volatility is to consider the effect on equilibrium prices of a parameter
such as a signal that can take on infinitely many values (see Epstein and Schneider 2008,
Illeditsch 2011, Condie and Ganguli 2011). With this second path, however, ambiguity
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Figure 1. Endogenous indeterminacy (failure of lower hemicontinuity).

Figure 2. Indeterminacy with incomplete preferences (full continuity).

aversion no longer plays a distinctive role. In a traditional general-equilibrium model,

if a parameter sweeps through infinitely many values, a point can come where a small

parameter change has to induce a large change in prices. Consider Figure 1 again or

even the more orthodox case where the equilibrium correspondence is S-shaped. In a

family of infinitely many economies, therefore, it is not surprising to find that at some

point a small parameter change brings a large price response. The aim of this paper, in

contrast, is to show that indeterminacy and volatility can arise robustly in a neighbor-

hood of a single model. The extra ingredient needed to deliver this goal is nothing more

than the presence of a productive asset.
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2. A simple economy

Although indeterminacy and volatility arise robustly in economies with ambiguity-
averse agents, there are certainly some combinations of agents and technology param-
eters that lead to well behaved equilibria where, in both the overall intertemporal econ-
omy and in the economy’s later periods of operation, prices and allocations are locally
unique and change smoothly as a function of output levels. Since indeterminacy is not
always present, there is no loss in turning to the simplest framework that is rich enough
for asset price indeterminacy and volatility to be robust.

In period 1, agents can use their resources either to consume or to invest in a pro-
ductive asset that generates output in the final period, period 2. Between periods 1 and 2
is an intermediate period in which agents can trade state-contingent claims on period 2
goods. We could let there be further consumption in the intermediate period without
changing any result.

There are two states g and b (for good and bad) and uncertainty is resolved between
the intermediate period and period 2. So altogether there are three consumption goods:
x1, consumed in period 1; xb, consumed in period 2 in state b; and xg, consumed in
period 2 in state g. Generic consumption in period 2 is labeled x2.

There is a finite set of agents I . Agent i ∈ I is endowed with the quantities
(ei1� e

i
b� e

i
g) � 0 of the three goods where

∑
i∈I eig >

∑
i∈I eib, which is why b is called the

bad state. The preferences of agent i are described by a differentiably strictly concave
and strictly increasing function ui :R2+ → R that gives the utility index of goods in the
two time periods2 and a closed interval of probabilities P i = [πi�πi] for state b, where
0 < πi < πi < 1. Ambiguity aversion takes the form of a Gilboa and Schmeidler (1989)
maximin assumption on preferences over state-contingent bundles: each i has the util-
ity function Ui :R3+ → R defined by

Ui(xi1�x
i
b�x

i
g) = min

π∈P i
[πui(xi1�xib)+ (1 −π)ui(xi1�x

i
g)]� (1)

The productive asset links the periods: if agent i invests ki of the first-period good
in the productive asset, then i receives a return of cki units of xb, where c > 0. So the
quantity of goods available in period 2 in state b is

∑
i∈I(ck

i + eib). One may think of the
productive asset as an investment that alleviates the bad consequences of state b. As we
explain, the key feature of the asset is that it changes the mix of state b and g goods that
occurs in the agents’ natural endowments in period 2. It is only for simplicity that we
assume that the asset yields output in just one state.

Since we are interested only in robust cases of asset-price indeterminacy and volatil-
ity, we need to distinguish persistent properties of models from flukes. A model is a
ω= ((ui�πi�πi� ei1� e

i
b� e

i
g)i∈I� c) that meets the assumptions we have stated and � is the

set of models. We give � a topology by defining ωn to converge to ω (ωn → ω) if and
only if ((πi(n)�πi(n)� ei1(n)� e

i
b(n)� e

i
g(n))i∈I� c(n)) → ((πi�πi� ei1� e

i
b� e

i
g)i∈I� c) in the Eu-

clidean sense and, for each ui and compactK ⊂ R
2+, (ui(n)�Dui(n)) converges uniformly

to (ui�Dui) on K. A property of a model ω is robust if there is an open neighborhood �′
of ω such that the property holds for all models in �′.

2Differentiable strict concavity means that D2ui(xi) is negative definite for all xi ∈ R
2+.
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3. Equilibrium and indeterminacy

In a market equilibrium of the model in Section 2, the agents in period 1 can use their
first-period endowment to buy shares in a firm that invests the first-period good in pro-
duction. Each share in the firm is used to buy one unit of the first-period good and so
shares in the first period have the same price as the first-period good. Let θi1 be agent i’s
share purchase, which can be negative. In the intermediate period, the agent can trade
shares in the firm and assets that deliver output in period 2: one asset that delivers a
unit of output in state b and another that delivers a unit of output in state g. Agent i’s
purchases of these assets are given by θib and θig and their prices are labeled pb and pg.
Since a share in the firm delivers c units of the state b good in period 2, it must sell for
pbc in the intermediate period. To keep the accounting simple, we do not distinguish in
the intermediate period between a single unit of the asset that delivers the state b good
and c units of firm shares. So the aggregate purchases in the intermediate period of the
state b asset must sum to the aggregate supply of firm shares multiplied by c.

With this market structure, agent i faces the budget constraint xi1 +θi1 ≤ ei1 in the first
period, pbθ

i
b+pgθ

i
g ≤ pbcθ

i
1 in the intermediate period, and xib ≤ eib+θib and xig ≤ eig+θig

in states b and g in the second period. So, given (pb�pg� e
i
1� e

i
b� e

i
g), agent i’s budget set

is given by

Bi = {
(xi1�x

i
b�x

i
g� θ

i
1� θ

i
b� θ

i
g) ∈ R

3+ × R
3 :

xi1 + θi1 ≤ ei1�pbθ
i
b +pgθ

i
g ≤ pbcθ

i
1�x

i
b ≤ eib + θib�x

i
g ≤ eig + θig

}
�

Markets are complete in the standard sense that the span of the bundles that can be
reached by trading the assets θb and θg equals all of R

2.

Definition 1. An equilibrium is a ((xi1�x
i
b�x

i
g� θ

i
1� θ

i
b� θ

i
g)i∈I�pb ≥ 0�pg ≥ 0), where

pb +pg = 1, such that:

• For each i ∈ I , (xi1�x
i
b�x

i
g� θ

i
1� θ

i
b� θ

i
g) ∈ Bi and Ui(xi1�x

i
b�x

i
g) ≥ Ui(xi′1 �x

i′
b�x

i′
g) for all

(xi′1 �x
i′
b�x

i′
g�θ

i
1� θ

i′
b�θ

i′
g) ∈ Bi,

• ∑
i∈I(x

i
1 + θi1) = ∑

i∈I ei1,
∑

i∈I θi1 ≥ 0,
∑

i∈I θib = ∑
i∈I cθi1,

∑
i∈I θig = 0,

∑
i∈I xib =∑

i∈I(e
i
b + θib),

∑
i∈I xig = ∑

i∈I(e
i
g + θig).

Any model that satisfies our assumptions has an equilibrium.
In a standard perfect-foresight interpretation of equilibrium, agents know pb and

pg in the initial period, even though the markets where those prices rule have not yet
opened. But once we come to the intermediate period, will those initial-period expecta-
tions form determinate equilibrium prices? If not, then how can market forces by them-
selves lead those expectations to rule as market prices? Since agents arrive in the inter-
mediate period with the standard characteristics of general-equilibrium consumers—
endowments and preferences—we can ask whether equilibria for the intermediate-
period markets are locally unique and, specifically, if there are prices in the intermediate
period that clear markets that differ slightly from the prices that were anticipated in the
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initial period. While, in a classical general-equilibrium model, indeterminacy arises only
at a measure 0 set of parameters—and thus is dismissible—the endowments of an inter-
mediate economy are not arbitrary; they are endogenously determined by the agents’
first-period equilibrium investment decisions.

When prices are not constrained to fulfill initial-period expectations, we denote
them by (qb�qg). To determine the (qb�qg) that can clear markets in the intermediate

period, fix some equilibrium ((xi1�x
i
b�x

i
g� θ

i
1� θ

i
b� θ

i
g)i∈I�pb�pg). Agent i in the interme-

diate period then chooses (xib�x
i
g� θ

i
b, θig) ∈ R

2+ × R
2 to maximize Ui(xi1�x

i
b�x

i
g) subject

to

(xib�x
i
g� θ

i
b� θ

i
g) ∈ Bi

int

≡ {(xib�xig� θib� θig) ∈ R
2+ × R

2 :qbθib + qgθ
i
g ≤ qbcθ

i
1�x

i
b ≤ eib + θib�x

i
g ≤ eig + θig}�

Definition 2. Given the equilibrium ((xi1�x
i
b�x

i
g� θ

i
1� θ

i
b� θ

i
g)i∈I�pb�pg), an intermedi-

ate equilibrium is ((xib�x
i
g� θ

i
b� θ

i
g)i∈I� qb ≥ 0� qg ≥ 0), where qb + qg = 1 such that:

• For each i ∈ I , (xib�x
i
g� θ

i
b� θ

i
g) ∈ Bi

int and Ui(xi1�x
i
b�x

i
g) ≥ Ui(xi1�x

i′
b�x

i′
g) for all

(xi′b�x
i′
g�θ

i′
b�θ

i′
g) ∈ Bi

int.

• ∑
i∈I θib = ∑

i∈Icθ
i
1,

∑
i∈I θig = 0,

∑
i∈I xib = ∑

i∈I(e
i
b + θib),

∑
i∈I xig = ∑

i∈I(e
i
g +

θig).

It is easy to confirm, given the equilibrium ((xi1�x
i
b�x

i
g� θ

i
1� θ

i
b� θ

i
g)i∈I�pb�pg), that

((xib�x
i
g� θ

i
b, θ

i
g)i∈I� qb = pb�qg = pg) is an intermediate equilibrium. When other in-

termediate equilibria exist arbitrarily near to ((xib�x
i
g� θ

i
b� θ

i
g)i∈I�pb�pg), then there is

“endogenous” indeterminacy in the intermediate period.

Definition 3. An equilibrium ((xi1�x
i
b�x

i
g� θ

i
1� θ

i
b� θ

i
g)i∈I�pb�pg) is indeterminate along

the equilibrium path if there is a continuum of intermediate equilibria that contains

((xib�x
i
g� θ

i
b� θ

i
g)i∈I�pb�pg).3

Since preferences are strictly convex, any pair of distinct intermediate equilibria
must have different price vectors. Definition 3 does not impose a new equilibrium con-
cept: Definition 1 remains in force. Indeterminacy along the equilibrium path is sim-
ply a property of a conventional equilibrium for intertemporal models, although not a
property that has received much attention in general-equilibrium theory.

Given an intermediate equilibrium, the price of any asset beyond our simple con-
tracts that deliver output in one state only is determined by qb and qg. For linear com-
binations of our simple contracts, indeterminacy along the equilibrium path leads to an
indeterminacy of the intermediate-period price of almost any asset in this class.

3A set of intermediate equilibria E ⊂ R
4I+2 forms a continuum if |E| > 1 and there is a continuous func-

tion f from some interval T ⊂ R onto E.



736 Michael Mandler Theoretical Economics 8 (2013)

Proposition 1. There are models where it is robust for all equilibria to be indeterminate
along the equilibrium path.

To grasp why Proposition 1 is true, suppose for the moment that it is robust for
agents in equilibrium to invest just enough to make the aggregate supply of output in
the b state equal the aggregate endowment in the g state,

∑
i∈I

(cθ
i
1 + eib)=

∑
i∈I

eig� (2)

Consistent with (2), each agent i can consume a bundle with xib = xig at the equilibrium
price vector (pb�pg). If, in that case, we view the economy that operates in the inter-
mediate period as a model in its own right, its relative price ratio qb/qg is not pinned
down by the intermediate period’s market-clearing requirements. For any (xib�x

i
g) with

xib = xig, any π ∈ P i solves the minimization problem in (1) and it follows that any such

(xib�x
i
g) is supported by a continuum of price vectors, specifically any price ratio in

[πi/(1 −πi)�πi/(1 −πi)].4 Agent i’s indifference curve is therefore kinked at any state-
invariant bundle. If pb/pg lies in

⋂
i∈I(π

i/(1 −πi)�πi/(1 −πi)), then each agent in the
intermediate period continues to demand a state-invariant bundle following a slight
change in qb/qg away from pb/pg. The sum of the reduced-form budget constraints
that hold in the intermediate period5 and (2) then imply that the markets for both the
state b and g goods continue to clear following the change in qb/qg.

But why should it be robust for (2) to be satisfied? As aggregate investment
∑

i∈I θi1
passes through the level at which (2) holds, at least some agents must switch from using
the distribution with the highest probability of state b to the distribution with the lowest
probability of state b. The resulting discrete fall in the utility rate of return on invest-
ment allows equilibrium investment to equilibrate systematically at the level where (2)
obtains: as the parameters of the model change slightly, the market rate of return can
adjust to ensure that (2) remains satisfied. The proof of Proposition 1 (in the Appendix,
which contains all proofs) makes this argument in greater detail.

Even though the aggregate supplies of output in the b and g states are equal in
the intermediate equilibria under consideration, generically each agent’s intermediate-
period b endowment differs from his g endowment and therefore each agent trades.
Each agent’s market demands and utility therefore change as the price ratio takes on its
various equilibrium values. This fact marks a difference relative to the portfolio iner-
tia that comes with Dow–Werlang (1992) indeterminacy; see the discussion to come in
Section 5.

For some combinations of parameters, the model has equilibria where (2) is not sat-
isfied. To take an extreme example,

∑
i∈I eig could be so large that even if all of the first-

period good were invested,
∑

i∈I θ
i
1 = ∑

i∈I ei1, the supply of goods in the g state would

4See the subsection “Two types of indeterminacy” below.
5In the intermediate period, agent i can optimize by maximizing Ui(xi1�x

i
b�x

i
g) subject to the reduced-

form budget constraint qbxib + qgx
i
g = qb(cθ

i
1 + eib)+ qge

i
g .
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still outstrip the supply in the b state,
∑

i∈I eig >
∑

i∈I(cθ
i
1 + eib). The same inequality

would also hold in equilibrium if the marginal utility of first-period consumption were
sufficiently high. Under either scenario, some agent i must consume more in the g state
than in the b state; since this i evaluates consumption portfolios using the distribution
πi and therefore behaves locally like a classical utility maximizer, intermediate equilibria
typically are locally unique.

Indeterminacy along the equilibrium path does not translate into indeterminacy of
full equilibria. Suppose that pb/pg is an equilibrium price ratio in the full intertempo-
ral equilibrium that leads (2) to hold and that pb/pg lies amid a continuum intermedi-
ate equilibrium price ratios. A slight change in qb/qg in the intermediate period from
pb/pq would change the ex post rate of return on investment. Had this change been
anticipated, savings in the initial period would typically adjust in response, breaking
the equality of the supply of goods in the b and g states. But then at least some agents
must be consuming more in one state than in the other and hence relative prices must
equal the unique ratio that supports these individuals’ consumption bundles. This new
supporting price ratio lies outside of the continuum of price ratios that support agents’
indifference curves when second-period consumption is state-invariant; hence a sce-
nario where a slight deviation from pb/pg can still serve as an equilibrium price ratio in
the full intertemporal equilibrium cannot, in fact, occur.

Two types of indeterminacy

The Bewley (2002) incomplete-preferences model of Knightian uncertainty, formulated
as a general-equilibrium model in Rigotti and Shannon (2005), underscores the distinc-
tive features of the indeterminacy under study. Unlike our model where indeterminacy
in the intermediate period occurs only at isolated endowments, indeterminacy in the
Bewley model persists under small endowment perturbations. This persistence makes
it hard to argue that small parameter changes should have dramatic equilibrium conse-
quences (the pattern we will see in Section 4). In the Bewley model, the equilibrium cor-
respondence is typically continuous in the neighborhood of an equilibrium and, there-
fore, as Figure 2 makes clear, a small variation in endowments is consistent with price
stability. One could posit that the prices selected from the equilibrium correspondence
jump at some endowment point, but it would be hard to rationalize why markets happen
to work in this way. Unlike Figure 1, those jumps are not hardwired in.

To make the comparison to Bewley explicit, we simplify our presentation of max-
imin ambiguity aversion. Let xi denote a vector of uncertain consumption for agent i,
for example (xib�x

i
g) in the intermediate period of our model, and assume that each i

maximizes minπ∈P i Eπu
i(xi) for some set of distributions P i (where Eπ denotes expec-

tation calculated using the distribution π). If xi′ is strictly preferred to xi, then xi′ must
have strictly higher expected utility than xi calculated using any distribution π∗ that
solves i’s minimization problem when consumption equals xi since

Eπ∗ui(xi′) ≥ min
π∈P i

Eπu
i(xi′) > min

π∈P i
Eπu

i(xi) = Eπ∗ui(xi)�
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Therefore, DxiEπ∗ui(xi) supports the indifference curve of i that intersects xi. So when
xi leads to multiple minimizing probabilities, say π∗ and π∗∗, a continuum of normal-
ized price vectors will support xi (e.g., any απ∗ + (1 − α)π∗∗ with α ∈ [0�1] when xi is
state-invariant). A multiplicity of supporting prices can then lead to indeterminacy of
equilibrium, as in the proof of Proposition 1. Alternatively, if a single π is minimizing,
just one normalized price vector will support xi, assuming that ui is differentiable. Since
multiple π’s in P i solve i’s minimization problem only at unusual bundles xi, indetermi-
nacy is an exceptional event in the maximin model (although one that arises robustly)
and hence the equilibrium correspondence will display the failure of lower hemiconti-
nuity pictured in Figure 1.

In contrast, an agent i with Bewley preferences is defined to strictly prefer (xi′b�x
i′
g) to

(xib�x
i
g) if and only if

Eπu
i(xi′) > Eπu

i(xi) for all π ∈ P i�

So a strict preference of a bundle xi′ over xi requires xi′ to have higher expected utility
than xi calculated using any π ∈ P i. As a consequence, there is a continuum of support-
ing prices at every consumption bundle, not just at exceptional bundles. If, in addition,
the agents in an economy have sets of supporting prices that robustly intersect, at some
consumption profile, then indeterminacy is present: any vector in the intersection can
serve as an equilibrium price vector (Rigotti and Shannon 2005). Under mild restrictions
the intersection will persist as a continuous function of parameters and we arrive at the
continuous correspondence pictured in Figure 2. The different continuity features of the
equilibrium correspondences in Figures 1 and 2 explain why volatility appears readily in
the maximin model: the failure of lower hemicontinuity in Figure 1 ensures that a small
supply perturbation must lead to a large price response.

General technologies

The conclusion of Proposition 1 would not change if we were to let an initial-period
investment θi1 generate a vector of outputs in the two states (cbθ

i
1� cgθ

i
1). A switch of

distributions and a discrete fall in the utility rate of return would then occur at the point
where aggregate investment satisfies∑

i∈I
(cbθ

i
1 + eib)=

∑
i∈I

(cgθ
i
1 + eig)�

As with (2), such investment levels can arise robustly. Assuming
∑

i∈I eib �= ∑
i∈I eig, the

above equality requires that cb �= cg: investment must be able to change the economy’s
ratio of the state-contingent goods.

Indeterminacy with state-varying consumption

The key prerequisite for indeterminacy is that each agent i consumes a bundle at which
a continuum of probabilities in P i solves the minimization problem in (1) and where,
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therefore, indifference curves are kinked. The simplest way to satisfy this condition is
for consumption to be state-invariant, in which case any π ∈ P i is utility-minimizing.
But if there are three or more states, then a continuum of solutions can also arise when
agents are not perfectly hedged and consumption differs across states.

For example, let the set of states be {a�b� c}, let a first-period good be consumed or
used to produce the state a good, set endowments to be (eia� e

i
b� e

i
c) = (0�3�4), and set

probabilities and utility to be, respectively�

P i = {(πa�πb�πc)≥ 0 :πa + 2πb + 3πc = 2 and πa +πb +πc = 1}
Ui(xi1�x

i
a�x

i
b�x

i
c) = min

(πa�πb�πc)∈P i

∑
s∈{a�b�c}

πs(x
i
1 + xis)�

If the state b and c goods are nonproduced, then in an economy that consists only of
agents of this type, each i must consume (xib�x

i
c) = (3�4). If first-period investment

leads to consumption xia, then i’s minimization problem in the intermediate period is
min(πa�πb�πc)∈P i xiaπa + 3πb + 4πc , which has a unique solution ( 1

2 �0� 1
2) when xia < 2,

a unique solution (0�1�0) when xia > 2, and a continuum of solutions {α( 1
2 �0� 1

2) +
(1 − α)(0�1�0) : 0 ≤ α ≤ 1} when xia = 2. Given that utility is linear, these solution proba-
bilities can serve as intermediate-period price vectors. Indeterminacy therefore occurs
when (xia�x

i
b�x

i
c) = (2�3�4), i.e., when consumption varies by state. Moreover, if the re-

turn to a unit of period 1 investment is greater than 2 and ei1 is sufficiently large, the
above agents will invest just the amount that leads to xia = 2 and hence indeterminacy.6

4. Volatility of asset prices

We introduce a little uncertainty about productivity of the investment technology that
translates the period 1 good into the state b good. The aggregate supplies of the state b

and g goods then are almost never exactly equal in the intermediate period. Although
indeterminacy therefore disappears, asset prices instead display nonnegligible variance
no matter how small the investment uncertainty is. That the technological noise ex-
tinguishes price indeterminacy has the conceptual advantage that the resulting volatil-
ity tracks a real event (the outcome of the investment uncertainty) and hence cannot
be interpreted as an artifact of attaching different equilibrium price vectors to different
sunspots (see the discussion in Epstein and Wang 1994).

To see the cause of volatility, suppose an equilibrium approximately equalizes the
aggregate supplies in the b and g states and that agents discover in the intermediate
period that the technological noise has led to a relatively high level of output for the
investment undertaken in period 1. Then the price of θb must assume a small value
(because agents when calculating expected utilities will use a low πb) as will the price
of any asset whose payoff is weighted in favor of the b state. Conversely, a small level of

6It so happens in this example that indeterminacy does not appear robustly if there is more than one
type of linear agent: with a one-dimensional set of minimizing probabilities for each agent, any nonempty
intersection of the minimizing probabilities across agents will generically consist of a single point. One way
to repair this problem is to introduce more states.
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noise leads to a discretely higher price for θb. While this reasoning makes intuitive sense,

there is still work to do; one must show that equilibrium investment falls somewhere in

the band where, taking the noise into account, the events where the supply of the state

b good is larger and smaller than the supply of the state g good both have nonnegligible

probability.

As we will see, the variance of asset prices has a positive lower bound even as the in-

vestment uncertainty becomes trivial; the model therefore exhibits excess volatility. The

volatility is, in fact, larger relative to fundamentals than, for example, in the Epstein and

Schneider (2008) model of asset pricing under ambiguity. A smooth model of expected

utility maximizers would, of course, behave differently; a small amount of technological

noise would lead to only a small variation of asset prices.

Fix a model ω from Section 2 whose technology is described by the parameter c̃. For

each positive integer t, the technology parameter now is a random variable c governed

by a density ht on a support [ct� ct] (that is, ht(c) > 0 ⇔ c ∈ [ct� ct]), where ct ≤ c̃ ≤ ct with

at least one strict inequality. Agents learn the realization of c at the beginning of the

intermediate period when they receive the proceeds of their first-period investment.

Outside of the investment uncertainty, every feature of version t of ω coincides with

that of ω. To let the noise shrink with t, we assume that ct − ct → 0. We thus have

a model with technological uncertainty for each t, which we call a sequence of models

with technological uncertainty. We also say that the sequence converges to ω.

Consumptions xib and xig and asset demands θib and θig for agent i in version t are

now functions from [ct� ct] to R as are the prices pb and pg. With these new definitions

in place and given (pb�pg� e
i
1� e

i
b� e

i
g), an agent i’s budget set in version t of the model is

Bi
t = {

(xi1�x
i
b�x

i
g� θ

i
1� θ

i
b� θ

i
g) ∈ R+ × R

[ct �ct ]+ × R
[ct �ct ]+ × R × R

[ct �ct ] × R
[ct �ct ] :

xi1 + θi1 ≤ ei1� and ∀c ∈ [ct� ct]�pb(c)θ
i
b(c)+pg(c)θ

i
g(c) ≤ pb(c)cθ

i
1�

xib(c) ≤ eib + θib(c)�x
i
g(c) ≤ eig + θig(c)

}
�

We view ht as the density of the objective distribution of c, since we are interested in

the observable distribution of equilibria. Since we want to avoid any additional idiosyn-

cratic ambiguity regarding the distribution of c that might be an independent source of

volatility, we assume that all agents (unambiguously) believe that ht governs c. For each

agent i, utility is given by

V i
t (x

i
1�x

i
b�x

i
g) ≡

∫ ct

ct

Ui(xi1�x
i
g(c)�x

i
b(c))ht(c)dc

=
∫ ct

ct

min
π∈P i

[
πui(xi1�x

i
b(c))+ (1 −π)ui(xi1�x

i
g(c))

]
ht(c)dc�
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The recursive structure of the above utility functions—in the initial period each i max-
imizes the expectation of the objective that i maximizes in the intermediate period—
ensures dynamic consistency. So if a plan (xi1�x

i
b�x

i
g� θ

i
1� θ

i
b� θ

i
g) is optimizing in the ini-

tial period given the expected prices (pb�pg), then in the intermediate period, i will
proceed to choose (xib�x

i
g� θ

i
b� θ

i
g) if (pb�pg), in fact, obtains.7

Definition 4. An equilibrium for t is ((xi1�x
i
b�x

i
g� θ

i
1� θ

i
b� θ

i
g)i∈I�pb�pg) such that:

• For each i ∈ I , (xi1�x
i
b�x

i
g� θ

i
1� θ

i
b� θ

i
g) ∈ Bi

t and V i
t (x

i
1�x

i
b�x

i
g) ≥ V i

t (x
i′
1 �x

i′
b�x

i′
g) for all

(xi′1 �x
i′
b�x

i′
g�θ

i
1� θ

i′
b�θ

i′
g) ∈ Bi

t .

• ∑
i∈I(x

i
1 + θi1)= ∑

i∈I ei1,
∑

i∈I θi1 ≥ 0.

• For all c ∈ [ct� ct]:
∑

i∈I θib(c) = ∑
i∈I cθi1,

∑
i∈I θig(c) = 0,

∑
i∈I xib(c) = ∑

i∈I(e
i
b +

θib(c)),
∑

i∈I xig(c) = ∑
i∈I(e

i
g + θig(c)).

Given a sequence of models with technological uncertainty and an equilibrium for
each t with prices (pt

b(c)�p
t
g(c))c∈[ct �ct ], the variance of relative prices at t is given by

Var
(
pt
b(c)

pt
g(c)

)
=

∫ ct

ct

(
pt
b(c)

pt
g(c)

− E

[
pt
b(c)

pt
g(c)

])2

ht(c)dc�

where the expectation E is calculated using the density ht . We define asset prices for the
sequence to be volatile in the limit if, for any sequence of equilibrium prices 〈(pt

b�p
t
g)〉,

Var(
pt
b(c)

pt
g(c)

) is bounded away from 0 for all t sufficiently large. When asset prices are

volatile in the limit, the ratio of the variance of asset prices to the variance of the funda-
mental c increases without bound as t → ∞. We focus on prices rather than on other en-
dogenous variables out of tradition; the volatility of prices also leads the utility of agents
to be volatile due to agents’ trade in the intermediate period.

Let ω be a model from Section 2. A property of a sequence of models with techno-
logical uncertainty that converges to ω is robust if there is an open neighborhood �′ of
ω such that, for any ω′ ∈ �′, the property holds for any sequence of models with tech-
nological uncertainty that converges to ω′. Since robustness requires a property to hold
for any sequence of models that converges to any ω′ ∈ �′, the ht densities that govern c

are unrestricted; we could instead incorporate ht into the definition of a model and let
properties be generic only if they hold for all densities with a sufficiently small support.

7Under the alternative modeling option where each i maximizes

min
π∈P i

[∫ ct

ct

(
πui(xi1�x

i
b(c))+ (1 −π)ui(xi1�x

i
g(c))

)
ht(c)dc

]
�

dynamic consistency would not obtain. There is, however, a “rectangular” set of probability measures Qi

defined on appropriate measurable subsets of {b�g} × [ct � ct ] such that a maximin agent with utility ui and
the set of probabilities Qi has the preferences represented by V i

t and, in addition, is dynamically consistent.
See Epstein and Schneider (2003).
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Proposition 2. There are sequences of models with technological uncertainty where it
is robust for asset prices to be volatile in the limit.

Our definition of equilibrium does not allow agents in the initial period to trade con-
tracts that have payoffs contingent on the realization of c. This modeling decision is the
simpler and more plausible path, but technically markets are incomplete. Fortunately
the proof of Proposition 2 does not rely on this incompleteness. It is routine to define
markets for the continuum of contracts that completeness would require; if we did so,
then we could add “whether or not markets are complete” to the end of Proposition 2.
The motive for this qualification is that a classical economy of expected utility maximiz-
ers with multiple equilibria might show nontrivial volatility in the presence of techno-
logical noise when markets are incomplete: the realization of c could effectively serve as
a sunspot that determines which equilibrium plays out, thus allowing a randomization
over the multiple equilibria. When markets are complete, c cannot serve as a sunspot
and then there is an unambiguous volatility difference between ambiguity-averse and
expected-utility economies. Alternatively, we could maintain the sharp divide between
the two types of economies if we consider only expected-utility economies with a single
equilibrium.

5. Conclusion

The seemingly unusual event that the aggregate supply of output falls into a configu-
ration that generates indeterminacy occurs systematically with ambiguity aversion and
intertemporal production. Ambiguity aversion introduces a discontinuity in the rate of
return on investment at just the points where investment results in indeterminacy; the
discontinuity ensures that these particular investment levels arise robustly. That inde-
terminacy occurs only at specific output supplies gives it economic potency, which we
have illustrated by showing that asset prices display a large reaction to small random
events.

The indeterminacy considered here is a direct descendant of Dow–Werlang (1992),
but there is an important difference. In Dow and Werlang, agents are implicitly endowed
with the same quantity of goods in the b and g states and stick to that endowment, de-
clining to buy or sell an asset over a range of the asset’s price. As a consequence, asset
price variations do not affect demand or utility. In this paper, agents typically have to
trade in the intermediate period so as to reach their utility-maximizing second-period
consumption bundles. Since agents have to trade in the intermediate period, any vari-
ation in equilibrium prices in the intermediate period changes their demands and util-
ities: if, say, the price of the state b good rises slightly, then an agent who previously
purchased that good in the intermediate period now buys less of it and is worse off.

With a different asset structure, we could get Dow–Werlang indeterminacy and port-
folio inertia. For example, suppose that agents in period 1 can buy not only productive
shares in the firm, but also assets that deliver claims on the state b and g goods. Each
agent then is able in his first-period trades to buy rights to his second-period consump-
tion bundle. With these demands, agents do not need to trade further in the interme-
diate period, but if intermediate-period markets are open, then agents can refrain from
trade over a continuum of prices, as in Dow and Werlang.
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Appendix: Proofs

Proof of Proposition 1. For each i ∈ I , fix some arbitrary ui that satisfies our as-
sumptions and (xi1�x

i
2) � 0, and set some c > 0. We build a model and equilibrium

where agent i has ui and consumes (xi1�x
i
2).

Agent i’s optimization problem can be solved by maximizing Ui(xi1�x
i
b�x

i
g) subject to

the unified budget constraint cpbx
i
1 +pbx

i
b+pgx

i
g ≤ cpbe

i
1 +pbe

i
b+pge

i
g. If (x̂i1� x̂

i
2� λ̂

i)≥
0 satisfies the first order conditions

cpbx
i
1 + (pb +pg)x

i
2 = cpbe

i
1 +pbe

i
b +pge

i
g (3)

Dxi1
ui(xi1�x

i
2)− λicpb = 0 (4)

Dxi2
ui(xi1�x

i
2)− λi(pb +pg) = 0 (5)

πiDxi2
ui(xi1�x

i
2)− λipb < 0 (6)

πiDxi2
ui(xi1�x

i
2)− λipb > 0 (7)

(1 −πi)Dxi2
ui(xi1�x

i
2)− λipg < 0 (8)

(1 −πi)Dxi2
ui(xi1�x

i
2)− λipg > 0� (9)

then

L(xi1�x
i
b�x

i
g)= Ui(xi1�x

i
b�x

i
g)− λ(cpbx

i
1 +pbx

i
b +pgx

i
g − cpbe

i
1 −pbe

i
b −pge

i
g)

is maximized at (xi1�x
i
b�x

i
g) = (x̂i1� x̂

i
2� x̂

i
2) and hence this vector solves i’s optimization

problem. Note in this regard that conditions (6)–(9) state that the right (left) hand side
derivatives of L with respect to xb and xg are negative (positive), and one may use
(5)–(9) to check that L is then maximized with respect to any direction of change in
(xib�x

i
g).

For appropriate choices of (λi� ei1� e
i
b� e

i
g�π

i�πi�pb�pg), (xi1�x
i
2) satisfies (3)–(9). For

instance, set eig = xi2, let eib < eig be arbitrary, and set ei1 = xi1 + (1/c)(eig − eib). Then

(3) is satisfied regardless of pb or pg. Set an arbitrary pb and set λ
i

to satisfy (4) when

(xi1�x
i
2) = (xi1�x

i
2). Given (xi1�x

i
2�λ

i
�pb), set pg to satisfy (5). Finally, let π̂i be defined

by π̂iDxi2
ui(xi1�x

i
2) − λ

i
pb = 0. Then, by (5), (1 − π̂i)Dxi2

ui(xi1�x
i
2) − λ

i
pg = 0. Hence,

by setting πi < π̂i < πi, inequalities (6)–(9) are satisfied when (xi1�x
i
2�λ

i�pb�pg) =
(xi1�x

i
2�λ

i
�pb�pg).

Let asset holdings be given by θ
i
1 = ei1 − xi1, θ

i
g = 0, and θ

i
b = xib − eib for each i ∈ I . It

is easy to see that the market-clearing conditions in Definition 1 are then satisfied and

so ((xi1�x
i
b�x

i
g� θ

i
1� θ

i
b� θ

i
g)i∈I�pb�pg) is, in fact, an equilibrium.

Given this equilibrium, ((xib�x
i
g� θ

i
b� θ

i
g)i∈I� qb = pb�qg = pg) is an intermediate

equilibrium. This intermediate equilibrium is indeterminate as is any intermediate

equilibrium derived from an equilibrium ((xi1�x
i
b�x

i
g� θ

i
1� θ

i
b� θ

i
g)i∈I�pb�pg), where xig =
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xib for all i ∈ I and (6)–(9) are satisfied. To see this, observe that the unified bud-
get constraint for agent i that applies in the intermediate period is qbx

i
b + qgx

i
g =

qb(e
i
b + cθ

i
1) + qge

i
g. As long as qb/qm is sufficiently near to pb/pg, the xi2 that satisfies

(qb + qg)x
i
2 = qb(e

i
b + cθ

i
1) + qge

i
g is i’s equilibrium choice of both xb and xg.8 Agent

i’s intermediate equilibrium choices of (θib� θ
i
g) then follow from this choice of xb = xg.

Due to the fact that
∑

i∈I(e
i
b+cθ

i
1) = ∑

i∈I eig, these demands are consistent with market
clearing.

Let ω denote the model ((ui�πi�πi� ei1� e
i
b� e

i
g)i∈I� c) we have constructed. Since

each agent i in the equilibrium we have identified for ω consumes xi1 = ei1(ω) +
(1/c)(eib(ω)− eig(ω)), xib = xig = eig(ω) (given access to the technology, each i could con-
sume without trade), it follows that ω has a unique equilibrium. We omit the standard
argument that if there were more than one equilibrium for some ω̂ in every open �̂

containing ω, then ω would have an additional equilibrium too.
We show that there is an open set of models � with ω ∈ � and a continuous function

f from � to an appropriately normalized set of prices such that f (ω) is an equilibrium
price vector for ω ∈ � and f (ω) = (pb�pg). As we will see, (3)–(9) will remain satisfied
on a small enough neighborhood of ω and hence each i in equilibrium will consume the
same quantities in states b and g. Indeterminacy of the intermediate equilibria therefore
continues to obtain. Since equilibrium is unique in a neighborhood of ω, we conclude
that it is robust for all equilibria to be indeterminate along the equilibrium path. Below,
we indicate the dependence of a parameter on the model ω by the notation ei1(ω), ui(ω),
and so forth.

Given the negative definiteness of D2ui(xi1�x
i
2) and our assumption that if ωn → ω

then Dui(ωn)→ Dui on any compact K, it is an exercise in demand theory to use the im-
plicit function theorem to show that (3)–(5) can be solved locally for (xi1�x

i
2�λ

i) as func-
tions of (pb�pg;ω) in a neighborhood of (pb�pg;ω), thus producing continuous func-

tions xi1(pb�pg;ω), xi2(pb�pg;ω), and λi(pb�pg;ω) that are continuously differentiable

in (pb�pg) and where (xi1(pb�pg;ω)�xi2(pb�pg;ω)�λi(pb�pg;ω)) = (xi1�x
i
2�λ

i
).9 Since

(6)–(9) are inequalities, these conditions remain satisfied for all (pb�pg;ω) in some
open neighborhood of (pb�pg;ω). Hence (xi1(pb�pg;ω)�xi2(pb�pg;ω)�xi2(pb�pg;ω))

8Beyond the budget constraint, the other first order conditions that must be satisfied when xb = xg are

Dxi2
ui(xi1�x

i
2)− λi(qb + qg) = 0

πiDxi2
ui(xi1�x

i
2)− λiqb < 0

πiDxi2
ui(xi1�x

i
2)− λiqb > 0

(1 −πi)Dxi2
ui(xi1�x

i
2)− λiqg < 0

(1 −πi)Dxi2
ui(xi1�x

i
2)− λiqg > 0�

Given the xi2 determined by the budget constraint, the first condition above determines λi. Since the re-
maining conditions are inequalities, they remain satisfied for qb/qm near pb/pg .

9A topological version of the implicit function theorem is needed (see Schwartz 1967).
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solves (3)–(9) and comprises agent i’s optimizing demands on an open neighborhood of
(pb�pg;ω).

By homogeneity, we can renormalize and henceforth constrain pb to equal 1. So
pg = pg/pb is the equilibrium price for the state g good at ω. Now suppose that∑

i∈I Dpgx
i
2(1�pg;ω) �= 0. Another application of the implicit function theorem implies

there is a continuous function pg(ω), defined on an open �′ ⊂ � that contains ω, such
that pg(ω) = pg and ∑

i∈I

(
xi2(1�pg(ω);ω)− eig(ω)

) = 0� (10)

(So the previously mentioned function f :� → {1}×R+ is defined by f (ω) = (1�pg(ω)).)
To check that satisfying (10) leads to a full equilibrium, observe that by the budget con-
straints that define Bi, asset demands, which are now also functions of (pb�pg;ω), must
be given by

θi1(1�pg(ω);ω) = ei1(ω)− xi1(1�pg(ω);ω) (11)

θib(1�pg(ω);ω) = xi2(1�pg(ω);ω)− eib(ω) (12)

θig(1�pg(ω);ω) = xi2(1�pg(ω);ω)− eig(ω)� (13)

Given (10), summing the equality (13) over i gives
∑

i∈I θig(1�pg(ω);ω) = 0, so the equi-
librium market-clearing requirements for both θg in the intermediate period and xg in
the final period are met. Summing the equalities (11) and (12) over i implies that the x1

market in the first period and the xb market in the final period clear. Finally, by sum-
ming the equality (3) over i, and using (10) and the equalities (11) and (12), we have∑

i∈I θib(1�pg(ω);ω) = ∑
i∈I cθi1(1�pg(ω);ω), the market-clearing requirement for θb.

Since pb = 1, pg(ω), xi1(1�pg(ω);ω), xi2(1�pg(ω);ω), and λi(1�pg(ω);ω) allow condi-
tions (3)–(9) to remain satisfied for ω in an open neighborhood of ω, our earlier indeter-
minacy argument implies that

((
xi2(1�pg(ω);ω)�xi2(1�pg(ω);ω)�θib(1�pg(ω);ω)�θig(1�pg(ω);ω)

)
i∈I�

qb = 1� qg = pg(ω)
)

is indeterminate for ω in the same neighborhood.
It remains to show that

∑
i∈I Dpgx

i
g(1�pg;ω) �= 0. Consider the supplementary

problem in the model ω of maximizing ui(xi1�x
i
2) subject to cpbx

i
1 + (pb + pg)x

i
2 ≤ I

and let mi
2(cpb�pb + pg� I) denote the solution xi2 to this problem, i.e., the Marshallian

demand for good 2. Since i’s income is cei1 + eib +pge
i
g at ω (now dropping dependence

on ω from our notation), differentiation gives

Dpgx
i
g(1�pg;ω) =D2m

i
2(c�1 +pg� ce

i
1 + eib +pge

i
g)

+D3m
i
2(c�1 +pg� ce

i
1 + eib +pge

i
g)e

i
g�
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Letting hi
2(cpb�pb +pg�u) be the agent’s Hicksian demand for good 2, the Slutsky equa-

tion states that

D2m
i
2(c�1 +pg� ce

i
1 + eib +pge

i
g)

=D2h
i
2(c�1 +pg�U

i(xi1�x
i
b�x

i
g))

−mi
2(c�1 +pg� ce

i
1 + eib +pge

i
g)D3m

i
2(c�1 +pg� ce

i
1 + eib +pge

i
g)�

Since eig = mi
2(c�1 + pg� ce

i
1 + eib + pge

i
g), we have Dpgx

i
g(1�pg;ω) = D2h

i
2(c�1 + pg�

Ui(xi1�x
i
b�x

i
g)), which, by classical demand theory, is strictly negative. Hence

∑
i∈I

Dpgx
i
g(1�pg;ω) �= 0�

�

Proof of Proposition 2. In Part 1, we construct an agent γ whose utility is maximized
only when savings of the first-period good are at the level, eγ1 − x

γ
1 , that leads second-

period consumption in states b and g to be equal. Then in Part 2 we show that if there
were a set of I agents, each with characteristics near that of γ, and if equilibrium prices
were not volatile in the limit, then there would have to be a solution to the problem
of maximizing the sum of I copies of the γ utility that differs from each agent saving
e
γ
1 − x

γ
1 .

Part 1. Let uγ be a utility that meets our assumptions such that

Dx1u
γ(x

γ
1 �x

γ
2 ) = ĉπ̂Dx2u

γ(x
γ
1 �x

γ
2 ) (14)

is satisfied for some (x
γ
1 �x

γ
2 ) � 0, π̂ ∈ (0�1), and ĉ > 0. Let (e

γ
1 � e

γ
b� e

γ
g) satisfy e

γ
b +

ĉ(e
γ
1 − x

γ
1 ) = e

γ
g = x

γ
2 and e

γ
1 > x

γ
1 , and let Eπu

γ(x
γ
1 ), where π ∈ [0�1], denote πuγ(x

γ
1 �

e
γ
b + ĉ(e

γ
1 − x

γ
1 )) + (1 − π)uγ(x

γ
1 � e

γ
g). Then (14) is the first order condition that shows

that xγ1 solves the problem maxxγ1 Eπ̂u
γ(x

γ
1 ) subject to x

γ
1 ∈ [0� eγ1 ]. Then for xγ1 ∈ [0� eγ1 ],

min
π∈[πγ�πγ]

Eπu
γ(x

γ
1 ) =Eπ̂u

γ(x
γ
1 ) ≥Eπ̂u

γ(x
γ
1 ) ≥ min

π∈[πγ�πγ]
Eπu

γ(x
γ
1 )�

where the equality follows from the fact that e
γ
b + ĉ(e

γ
1 − x

γ
1 ) = e

γ
g . Hence x

γ
1 solves

maxxγ1 (minπ∈[πγ�πγ]Eπu
γ(x

γ
1 )) subject to x

γ
1 ∈ [0� eγ1 ].

We now let c be uncertain and note two easily confirmed facts, omitting their sim-
ple proofs. First, if 〈(eγ1 (n)� eγb(n)� eγg(n)� c(n)� c(n))〉 converges to (ei1� e

i
b� e

i
g� ĉ� ĉ) and, for

each n, hn is an arbitrary density on [c(n)� c(n)], then the solution to the single-agent
problem

max
xi1≥0

∫ c(n)

c(n)
min

π∈[πγ�πγ]
(
πuγ(x

γ
1 � e

γ
b(n)+ c(e

γ
1 (n)− x

γ
1 ))

(15)
+ (1 −π)uγ(x

γ
1 � e

γ
g(n))

)
hn(c)dc
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subject to x
γ
1 ≤ e

γ
1 (n) converges to x

γ
1 . Second, it follows that the solution to the problem

of maximizing the sum of I copies of the utility that we have defined,

max
(x1

1�����x
I
1)≥0

I∑
k=1

(∫ c(n)

c(n)
min

π∈[πγ�πγ]
(
πuγ(xk1 � e

γ
b(n)+ c(e

γ
1 (n)− xk1 ))

(16)

+ (1 −π)uγ(xk1 � e
γ
g(n))

)
hn(c)dc

)

subject to
∑I

k=1 x
k
1 ≤ ∑I

k=1 e
γ
1 (n), converges to a vector (x1

1� � � � � x
I
1) equal to I copies of

x
γ
1 .

Part 2.

Lemma 1. Let Pk = [πk�πk] for k ∈ I and suppose (i) ρ�ρ ∈ (0�1) satisfy ρ ≥ πk and

ρ≤ πk for all k ∈ I , and (ii) ((xk1 �x
k
g�x

k
b�θ

k
1 � θ

k
g�θ

k
b)k∈I�pb�pg) is an equilibrium for some

version t of some model. Then there is a subset C ⊂ [ct� ct] with Lebesgue measure ct − ct
such that, for any c ∈ C,

∑
k∈I(e

k
b + c(ek1 −xk1 )) >

∑
k∈I ekg (resp.

∑
k∈I(e

k
b + c(ek1 −xk1 )) <∑

k∈I ekg ) implies

pb(c)

pg(c)
≤ ρ

1 − ρ

(
resp.

pb(c)

pg(c)
≥ ρ

1 − ρ

)
�

Proof. To avoid vacuities, assume

∃c ∈ [ct� ct] such that
∑
k∈I

(ekb + c(ek1 − xk1 )) �=
∑
k∈I

ekg� (17)

For each agent k, there must be a Ck ⊂ [ct� ct] of measure ct − ct such that,
for c ∈ Ck, (xkb(c)�x

k
g(c)) maximizes Uk(xk1 �x

k
b(c)�x

k
g(c)) subject to pb(c)x

k
b(c) +

pg(c)x
k
g(c) ≤ pb(c)(cθ

k
1 + ekb)+pg(c)e

k
g , (xkb(c)�x

k
g(c)) ≥ 0. Set

C =
⋂
k∈I

Ck
∖ {

c ∈ [ct� ct] :
∑
k∈I

(ekb + c(ek1 − xk1 )) =
∑
k∈I

ekg

}
�

Given (17), the last set above has at most one element and hence C has measure ct − ct .
Now suppose that

∑
k∈I(e

k
b + c(ek1 − xk1 )) >

∑
k∈I ekg for some c ∈ C. Then there must be

a j ∈ I for which x
j
b(c) > x

j
g(c). Hence

pb(c)

pg(c)
≤

D
x
j
b

Uj(x
j
1�x

j
b(c)�x

j
g(c))

D
x
j
g
Uj(x

j
1�x

j
b(c)�x

j
g(c))

with strict inequality possible when xig(c) = 0. For any (xk1 �x
k
2 ) ∈ R

2+ and any k ∈ I ,

D+
xkb
Uk(xk1 �x

k
2 �x

k
2 )

D−
xkg
Uk(xk1 �x

k
2 �x

k
2 )

= πk

1 −πk
�
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where the superscripts + and − indicate right and left derivatives, respectively. Since
the concavity of uj gives

D
x
j
b

Uj(x
j
1�x

j
b(c)�x

j
g(c))

D
x
j
g
Uj(x

j
1�x

j
b(c)�x

j
g(c))

≤
D+

x
j
b

Uj(x
j
1�x

j
2�x

j
2)

D−
x
j
g

Uj(x
j
1�x

j
2�x

j
2)

and since πk/(1 −πk) ≤ ρ/(1 − ρ), we have the desired conclusion. The case∑
k∈I

(ekb + c(ek1 − xk1 )) <
∑
k∈I

ekg

is similar. �

Consider an arbitrary sequence 〈ωn〉, where

ωn = (
(uk(n)�πk(n)�πk(n)� ek1 (n)� e

k
b(n)� e

k
g(n))k∈I� c(n)� c(n)�hn

)
�

such that, for each k ∈ I , uk(n) → uγ uniformly on compact sets,

(πk(n)�πk(n)� ek1 (n)� e
k
b(n)� e

k
g(n)� c(n)� c(n)) → (πγ�πγ� e

γ
1 � e

γ
b� e

γ
g� ĉ� ĉ)�

and where c(n) > c(n) for each n. To prove the proposition, it is sufficient to show, for
any such 〈ωn〉 and any corresponding sequence of equilibria〈

((xk1 (n)�x
k
g(n)�x

k
b(n)�θ

k
1 (n)�θ

k
g(n)�θ

k
b(n))k∈I�pb(n)�pg(n))

〉
for 〈ωn〉, that Var(pb(n)/pg(n)) is bounded away from 0 for all n sufficiently large. Define

R(n) = μ({c ∈ [c(n)� c(n)] :
∑

k∈I ekg(n) >
∑

k∈I(e
k
b(n)+ c(ek1 (n)− xk1 (n)))})

μ({c ∈ [c(n)� c(n)] :
∑

k∈I ekg(n) <
∑

k∈I(e
k
b(n)+ c(ek1 (n)− xk1 (n)))})

�

where μ is Lebesgue measure. Setting ρ and ρ so that πγ > ρ > π̂ > ρ > πγ , we have

πk(n) ≤ ρ and πk(n) ≥ ρ for all k and all large n. Hence Lemma 1 implies that if there
is no subsequence with either R(n) → ∞ or R(n) → 0, then Var(pb(n)/pg(n)) will be
bounded away from 0 for all n sufficiently large.

Suppose, to the contrary, that there is a subsequence with R(n) → ∞ (we omit the
similar case R(n)→ 0). Then Lemma 1 implies that the ratio

μ

({
c ∈ [c(n)� c(n)] :

pb(n)(c)

pg(n)(c)
<

ρ

1 − ρ

})/
μ

({
c ∈ [c(n)� c(n)] :

pb(n)(c)

pg(n)(c)
≥ ρ

1 − ρ

})

converges to 0 along the subsequence. Observe that the γ agent from Part 1 (with the
utility uγ , endowments (e

γ
1 � e

γ
b� e

γ
g), and πγ < π̂ < πγ) will, if c equals ĉ with certainty,

consume the quantities (xγ1 �x
γ
b�x

γ
g) = (x

γ
1 �x

γ
2 �x

γ
2 ) when (pb�pg) satisfies

Dx1u
γ(x

γ
1 �x

γ
2 )

Dx2u
γ(x

γ
1 �x

γ
2 )

= ĉpb

pb +pg
(18)
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(see (4) and (5)). Given (14), the unique ratio pb
pg

such that (pb�pg) satisfies (18) is

π̂/(1 − π̂), which lies in the interval (πγ/(1 −πγ)�πγ/(1 −πγ)). Suppose we face the
same agent with some price ratio p̃b/p̃g ∈ (π̂/(1 − π̂)�ρ/(1 − ρ)). Since (x

γ
1 �x

γ
2 ) is still in

the unified budget set that constrains xγb to equal xγg ,

B(p̃b� p̃g� ĉ)≡ {(xγ1 �xγ2 ) ∈ R
2+ : ĉp̃bx

γ
1 + (p̃b + p̃g)x

γ
2 ≤ ĉp̃be

γ
1 + p̃be

γ
b + p̃ge

γ
g}�

and since uγ is differentiable, there must be a (x̃
γ
1 � x̃

γ
2 ) ∈ B(p̃b� p̃g� ĉ) such that Uγ(x̃

γ
1 � x̃

γ
2 ,

x̃
γ
2 ) > Uγ(x

γ
1 �x

γ
2 �x

γ
2 ).10 In fact, (x̃γ1 � x̃

γ
2 ) ∈ B(pb�pg� ĉ) for any pb/pg > p̃b/p̃g. Given this

and since c(n)→ ĉ and c(n)→ ĉ, for all n sufficiently large (x̃
γ
1 � x̃

γ
2 ) ∈ B(pb�pg� c) for any

c ∈ [c(n)� c(n)] and any (pb�pg) with pb/pg ≥ ρ/(1 − ρ). Therefore, since R(n) → ∞,
for each k ∈ I there is a N such that for n > N the utility level achieved by k in the
equilibrium of ωn satisfies∫ c(n)

c(n)
Uk
n (x

k
1 (n)�x

k
b(n)(c)�x

k
g(n)(c))hn(c)dc ≥Uk

n (x̃
γ
1 � x̃

γ
2 � x̃

γ
2 )�

11

Since uk(n)(x̃
γ
1 � x̃

γ
2 ) → uγ(x̃

γ
1 � x̃

γ
2 ), Uk

n (x̃
γ
1 � x̃

γ
2 � x̃

γ
2 ) → Uγ(x̃

γ
1 � x̃

γ
2 � x̃

γ
2 ) and hence there is a

ε > 0 such that, for all n sufficiently large,∫ c(n)

c(n)
Uk
n (x

k
1 (n)�x

k
b(n)(c)�x

k
g(n)(c))hn(c)dc ≥Uγ(x

γ
1 �x

γ
2 �x

γ
2 )+ ε� (19)

Since uk(n) → uγ uniformly on compact sets, Uk
n →Uγ uniformly on a compact set that

contains {(xk1 (n)�xkb(n)(c)�xkg(n)(c)) :n ≥ 1� c(n) ≤ c ≤ c(n)}. Hence

∫ c(n)

c(n)

[
Uk
n (x

k
1 (n)�x

k
b(n)(c)�x

k
g(n)(c))−Uγ(xk1 (n)�x

k
g(n)(c)�x

k
b(n)(c))

]
hn(c)dc → 0� (20)

But as we observed in Part 1, the solution to (15), call it x
γ
1 (n), converges to x

γ
1 . Given (19)

and (20), there is a δ > 0 such that for all sufficiently large n, there is a feasible allocation
((xk1 (n)�x

k
g(n)�x

k
b(n))k∈I , where, for each k ∈ I ,

∫ c(n)

c(n)
Uγ(xk1 (n)�x

k
g(n)(c)�x

k
b(n)(c))hn(c)dc

≥
∫ c(n)

c(n)
Uγ(x

γ
1 (n)�x

γ
b(n)(c)�x

γ
g(n)(c))hn(c)dc + δ�

where

(x
γ
b(n)(c)�x

γ
g(n)(c)) ≡ (

e
γ
b(n)+ c(e

γ
1 (n)− x

γ
1 (n))� e

γ
g(n)

)
for c ∈ [c(n)� c(n)]. For large n, this contradicts the fact that (16) is solved at (x1

1� � � � � x
I
1) =

(x
γ
1 (n)� � � � � x

γ
1 (n)). �

10We use Uγ(xi1�x
i
b�x

i
g) to denote minπ∈[πγ�πγ ](πuγ(xi1�x

i
b)+ (1 −π)uγ(xi1�x

i
g)).

11We use Uk
n (x

k
1 �x

k
b�x

k
g) to denote minπ∈[πk(n)�πk(n)](πu

k(n)(xk1 �x
k
b)+ (1 −π)uk(n)(xk1 �x

k
g)).
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