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A general framework for rational learning in social networks
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This paper provides a formal characterization of the process of rational learning
in social networks. Agents receive initial private information and select an action
out of a choice set under uncertainty in each of infinitely many periods, observing
the history of choices of their neighbors. Choices are made based on a common
behavioral rule. Conditions under which rational learning leads to global consen-
sus, local indifference, and local disagreement are characterized. In the general
setting considered, rational learning can lead to pairs of neighbors selecting dif-
ferent actions once learning ends while not being indifferent among their choices.

The effect of the network structure on the degree of information aggregation
and speed of convergence is also considered, and an answer to the question of
optimal information aggregation in networks is provided. The results highlight
distinguishing features between properties of Bayesian and non-Bayesian learn-
ing in social networks.
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1. Introduction

Social networks have a very important function as a source of information. Individu-
als constantly communicate with their social peers and use the information obtained
through their interactions when forming opinions and making decisions. Within the
economic literature, the importance of social networks is widely recognized. The role of
social networks for employment outcomes,1 technology adoption,2 models of collective
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political action,3 and bargaining outcomes4 has been established.5 However, the litera-
ture providing proof of the significance of social networks in economic settings is mostly
empirical or considers only static environments. Thus there is a lack of understanding
of the formal learning process of rational individuals in social networks and how the
behavior and opinions of individuals evolve over time if they interact repeatedly. The
following key questions are addressed in this paper.

1. In a general setting with rational agents, what are the dynamics of the informa-
tional structure and its properties once learning ends?

2. Under which circumstances does rational learning lead to consensus, indifference,
or disagreement among the actions chosen? The indifference and disagreement
could be local—across neighbors—or global—across all agents in the network.

3. How does the network structure affect both the quality and the speed of informa-
tion aggregation?

The first of these question is answered independently by Rosenberg et al. (2009) in
a setting where agents select utility maximizing actions in each period. My approach is
somewhat different. In the tradition of the papers on knowledge and consensus such as
Cave (1983), Bacharach (1985), Parikh and Krasucki (1990), and Krasucki (1996), I do not
restrict attention to the expected utility setting, but consider the following framework
of repeated choice under uncertainty. Agents are organized in an exogenously given
(undirected) network that is common knowledge among all agents. Initially, agents re-
ceive private information given by the true cell of their partition and, subsequently, they
simultaneously select a choice out of a choice set in each of infinitely many periods. The
network structure determines the observability of actions: agents observe the history of
choices of their neighbors. In this model, learning refers to a refinement of the infor-
mation sets of agents, where the information set of an agent is the smallest subset of
the state space that the agent knows to contain the true state of the world. Learning is
based on the inferences agents make regarding the information sets of their neighbors,
depending on the history of actions they observe.

Actions are chosen based on a common behavioral rule that assigns sets of optimal
actions to every possible information set. This choice correspondence is required to be
union consistent. Union consistency is a behavioral condition across mutually exclu-
sive events and stems from the literature on knowledge and consensus.6 If the same
action is optimal for each of a disjoint collection of information sets, then union consis-
tency requires this action to be optimal for the information set given by the union of the
information sets in the collection.

3See, for example, Chwe (2000). In the sociology literature, Opp and Gern (1993) and Snow et al. (1980)
explore the importance of social networks for political participation.

4See Manea (2011), and Wang and Wen (2002).
5An extensive survey on the relevance of social networks from an economic perspective is given by

Jackson (2008).
6See, for example, Bacharach (1985), Cave (1983), and Krasucki (1996).
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This framework captures, but is not limited to, an expected utility setting, where
agents share a common prior over the state space as well as a common utility func-
tion without payoff externalities and where, in each period, agents select the action that
maximizes their expected utility in that period conditioning on their information.7

Rational learning requires all agents in every period to consider the set of possible
information sets of all other agents and how their choices impact the information sets of
their neighbors in the subsequent period. In increasingly large networks, this becomes
an increasingly complex task, especially in incomplete networks.8 Due to these com-
plexities, most of the existing literature on learning and evolution of behavior and opin-
ions in social networks assumes boundedly rational agents. Examples can be found in
Bala and Goyal (1998), DeMarzo et al. (2003), Golub and Jackson (2010), and Acemoglu
et al. (2010).

Despite the practical difficulties and complexities, I show that the learning process
and the resulting informational structure can be characterized in a quite simple and in-
tuitive way. The rational learning process modeled here is based on the learning process
in Geanakoplos and Polemarchakis (1982). They consider a special case of my general
framework, in which agents repeatedly announce their posteriors of an uncertain event
in a complete network consisting of two agents.

1.1 Summary of results

Both the literature on non-Bayesian learning as well as the literature on knowledge and
consensus focus on consensus. In this paper, I show that in a richer setting, allowing
for general network structures and choice correspondences, consensus and even local
indifference can fail to occur under rational learning and union consistent choice corre-
spondences. Local indifference denotes the case where any action an agent selects once
learning ends is optimal for all his neighbors. The main contributions of the paper are
presented in the form of four theorems.

The first theorem establishes that if the common behavioral rule is union consistent,
then local indifference holds once learning ends. If two agents disagree by choosing
different actions once learning ends, they are indifferent and could swap their actions
as they would be equally well off. Rational learning in networks can, therefore, lead to
heterogeneous choices.

The second theorem provides an asymptotic local indifference result for cases where
learning does not end in finite time. The sufficient conditions I characterize in the gen-
eral framework translate to the expected utility framework in the following way: if all
cells of the join of partitions have positive probability and utility functions are bounded,
then every action an agent selects infinitely often is optimal for his neighbors in the
limit.9

7The case considered in Rosenberg et al. (2009) is not a special case of my general framework, as they
allow for strategic behavior and uncountable signal space.

8In complete networks, all agents are neighbors of each other. Incomplete networks are not complete
and, therefore, the history of choices is not common knowledge among all agents.

9The join of a collection of partitions is the coarsest common refinement of the partitions.
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The first two theorems rely on the assumption of common knowledge of strategies—
common knowledge of which action every agent selects out of the set of optimal actions
for every possible information set. Therefore, the network structure does not affect the
validity of the local indifference result under common knowledge of strategies. Relax-
ing the assumption of common knowledge of strategies and assuming only common
knowledge of rationality, i.e., common knowledge of all agents following the same com-
mon behavioral rule, I show that the validity of the local indifference result depends on
the network structure. In incomplete networks, it generally fails, while Theorem 3 estab-
lishes that, under a union consistent choice rule, in complete networks, common knowl-
edge of rationality is sufficient for local indifference. This is the most striking result men-
tioned so far as it provides a scenario where rational learning can lead to two neighbors
selecting different actions once learning ends while not being indifferent among their
choices.10 This is a new insight to the literatures on non-Bayesian learning, Bayesian
learning, and knowledge and consensus.

To address the question of the effect of the network structure on the degree of infor-
mation aggregation and duration to consensus, I consider the special case where agents
share a common prior and repeatedly announce their posterior belief of an uncertain
event to their neighbors. How precise is the private information of all agents incorpo-
rated in the eventual consensus belief? One’s intuition might suggest that complete net-
works should always do at least as well as incomplete networks. However, I show this
intuition to be false. I provide an example of a complete network that is dominated by
an incomplete network in terms of quality of information aggregation.

Theorem 4 establishes that (i) generically, the private information of all agents is in-
corporated in the eventual consensus belief and (ii) the duration to consensus is a func-
tion of the diameter of the graph: the larger is the diameter, the longer it takes for con-
sensus to occur. Therefore, all connected networks are generically equivalent in terms of
quality of information aggregation and differ only in their duration to consensus. The-
orem 4 also shows that, generically, agents have no information gain from untruthfully
announcing their belief and, therefore, there is no strategic incentive to lie.

1.2 Discussion of results

From a normative perspective, the present paper yields the tools to address the ques-
tion of optimal information aggregation in institutions. In a followup paper (Mueller-
Frank 2012), the rational learning framework provided in this paper is used to establish
superiority of Bayesian communication structures over non-Bayesian communication
structures in terms of quality of information aggregation.

Due to the complexity of inferences, it is hard to imagine fully rational learning oc-
curring in the real world, even though, for small networks, it cannot be excluded on
the basis of complexity alone. From a positive perspective, the fully rational case ana-
lyzed in this paper serves as a counterfactual benchmark. The advantage of the Bayesian
analysis in comparison to the existing non-Bayesian learning models is that it is not ad

10Furthermore, in the expected utility setting, this local disagreement can occur on a subset of the state
space that has positive prior probability.
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hoc. The weakness of the non-Bayesian literature, as DeMarzo et al. (2003) and Golub
and Jackson (2010), is its lack of generality and reliance on a particular functional form:
weighted averages. The common ground with the non-Bayesian learning literature is
that Bayesian learning generally, but not always, leads to consensus or local indifference.
In non-Bayesian models, this occurs based on simple updating rules, while in Bayesian
models, consensus is the product of highly complex inferences. But this paper also high-
lights important distinctions between the Bayesian and non-Bayesian approach as the
possibility of heterogenous choices in the limit for the Bayesian case and the different
effects changes of the network have on the speed of convergence.

The rest of the paper is organized as follows. In the next section, I introduce my gen-
eral framework and briefly describe two special cases. In Section 3, I provide a simple
example for the workings of the learning process, and characterize the general learning
process and the resulting informational structure. Section 4 presents my local indiffer-
ence result once learning ends. In Section 5, I analyze the case where learning does not
end in finite time, introduce the concept of a dominant set, and present Theorem 2.
In Section 6, I contrast common knowledge of rationality with common knowledge of
strategies and present Theorem 3. In Section 7 I consider the effect of the network struc-
ture on the quality of information aggregation and duration to consensus. Theorem 4
and an example for superiority of incomplete networks, in the sense of information ag-
gregation, is presented. Section 8 compares my framework and results to the existing
literature on knowledge and consensus, and Bayesian and non-Bayesian learning in net-
works. Section 9 concludes. The Appendix presents proofs, lemmas, and examples that
are omitted in the main text.11

2. The framework

2.1 Synopsis

There is a finite set of agents V = {1� � � � � v} who face uncertainty, represented by a mea-
surable space (�� F), where � is the state space and F is a σ-algebra of subsets of �.12

At the beginning of time, t = 1, one state ω is realized. Each agent i has private informa-
tion about the realized state given by his partition Pi. If the realized state of the world
is ω, then i knows that a state in Pi(ω) has occurred. The set of partitions of all players
{Pi}i∈V is commonly known.13 Time is discrete.

Players form part of a social network G. In each of an infinite number of periods, all
players simultaneously select an action out of a choice set A. The network determines
the observability of actions: agents observe the history of actions of their neighbors.
They select actions as a function of the available information. The information set of an
agent plays a crucial role in the subsequent analysis.

11An additional appendix, where I prove statements made in the paper, consider an extension, and pro-
vide additional examples, is available in a supplementary file on the journal website, http://econtheory.
org/supp/1015/supplement.pdf.

12I assume F to be generated by the join of partitions.
13Common knowledge of information partitions is not an assumption, but a tautology. See Aumann

(1999).

http://econtheory.org/supp/1015/supplement.pdf
http://econtheory.org/supp/1015/supplement.pdf
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The information set of agent i in period t denotes the smallest subset of the state
space that i knows to contain the true state of the world. It is a function of the observ-
ables of agent i, the cell of his partition, and the history of choices of his neighbors up
to period t. Therefore, the information sets are (weakly) shrinking over time: the in-
formation set in period t is a subset of the information set in period t − 1. Learning in
this setting refers to a refinement of information sets of agents based on the history of
actions they observe.

2.2 The social network

The social network is represented by an undirected graph G. A graph is a pair of sets G =
(V �E) such that E ⊂ [V ]2. The elements of V are nodes of the graph and the elements of
E are the edges of the graph.

Node i in G represents player i. The neighborhood of agent i, Ni, contains all agents
who are connected to i by an edge in G:

Ni = {j ∈ V : ij ∈E}�

An undirected graph has the following symmetric property: if agent j is contained in
agent i’s neighborhood, then agent i is contained in agent j’s neighborhood. The com-
mon neighborhood of two players i and j is denoted by Nij and consists of the set of
agents who are neighbors of both i and j:

Nij =Ni ∩Nj�

A graph G is connected if, for all nodes i, j, there exists a sequence of nodes k1� � � � �kl,
where k1 = i and kl = j, such that kf+1 ∈ Nkf for f = 1� � � � � l − 1. A graph is complete if,
for all nodes i� j ∈ V , we have i ∈ Nj . A graph is incomplete if it is not complete. I assume
that the social network G is common knowledge.

2.3 The common choice correspondence and strategies

Agents select actions based on a common choice correspondence c:

c : F ⇒A�

The choice correspondence assigns a subset of the choice set A to each information set
I ∈ F . The actions assigned to an information set can be thought of as the actions that
are optimal given the information set.

A pure strategy si for player i is a function that assigns a single action to each infor-
mation set I ∈ F , si : F → A, such that si(I) ∈ c(I) for all I ∈ F . The choice correspon-
dence assigns a set of optimal actions to each information set, and the strategy si selects
one of them. The strategies of all players are assumed to be common knowledge.

The history of play at time t is denoted as ht = (a1� � � � � at−1), ak ∈ Av for k =
1� � � � � t − 1. The history that player i observes in a given period t is denoted as ht

i , and
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consists of the history of actions chosen by i and his neighbors up to period t. The his-
tory of actions that both player i and j observe is denoted as ht

ij , and consists of the
history of choices up to period t of agents i and j, and of all agents l that are neighbors
of both i and j.

2.4 Special cases of the general framework

The general framework captures two prominent settings as special cases: the probability
announcement setting and the expected utility setting.14 For the probability announce-
ment setting, let Pi be finite for all i and let p be a common probability measure on F .
Suppose that all elements of the join of partition have positive probability. Let all agents
be concerned with the likelihood of some uncertain event Q ∈ F , and define c(·) as

c(I) = p(I ∩Q)

p(I)
for I ∈ F �

In this setting, agents announce their conditional probability of the event Q in every
period. This is a special case of a choice function rather than a correspondence, as a
unique probability is assigned to each information set in F . Note that for a thus defined
choice rule, strategic announcements are excluded, i.e., agents are assumed to tell the
truth. On first glance, this assumption seems to be restricting, but turns out to matter
only for nongeneric probability measures. In Theorem 4, I show that, generically, there
is no incentive to lie as no information gain results from it.

For the expected utility setting, let Pi be countable for all i and let p be a common
probability measure on F . Suppose that all agents share a common utility function
u :A × � → R that is bounded and measurable for each a ∈ A. Let the choice corre-
spondence c(·) be defined15 as

c(I) = arg max
a∈A

E[u(a�ω)|I] for I ∈ F �

The inherent assumptions of the thus defined choice correspondence are homogeneous
agents in the sense of common values and that, in each period, agents maximize their
expected utility of the given period, thus behaving nonstrategically in the way they se-
lect actions. An information gain in a later period could occur by misrepresenting one’s
information in a given period. The assumption of nonstrategic behavior is necessary for
tractability reasons in the general framework. However, it seems that a variant of Theo-
rem 4 might hold in the expected utility setting. For generic (bounded) utility functions
and probability measures on a finite state space �, it appears intuitive that the probabil-
ity of a given action being optimal for more than one information set converges to zero
with the number of actions going to infinity. Hence the incentive to lie vanishes with an
increasing set of actions.

14Note that the probability announcement setting can be captured within the expected utility setting via
quadratic loss functions.

15To assure existence of a maximum for infinite A, A needs to be a compact subset of a topological space
A and u to be continuous in A for every ω.
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In a setting where agents maximize their expected, discounted sum of stage utili-
ties, the incentive to rationally deceive decreases with the value agents assign to future
consumption. The more agents discount future payoffs, the less likely they are to de-
viate from the nonstrategic action. Rosenberg et al. (2009) independently consider the
asymptotic properties of behavior in the expected utility setting under Bayesian learn-
ing and allow for strategic behavior.16 They show that the local indifference result holds
almost surely.

3. The learning process

Agents progressively learn over time through the inferences they make from the history
of choices of their neighbors. The information set of an agent in period t is the smallest
subset of the state space that the agent knows to contain the true state of the world. It is
a function of the private observables of the agent, the cell of his partition, and the history
of actions he observed up to period t.

Rational learning requires each agent to consider the set of possible information sets
of each other agent in every period and how their choice in a given period impacts the
information sets of their neighbors in the subsequent period. Compared to a complete
network analysis like in Geanakoplos and Polemarchakis (1982), where the history of
choices of all agents is common knowledge, the added difficulty in an incomplete net-
work is that the privately observable component contributing to the information set of a
given player is not given only by the cell of his partition, but also by the history of choices
he (privately) observes.

I assume fully rational agents who make all possible inferences based on the history
they observe. Their inference consists of direct inference regarding the realized partition
cell of their neighbors, as well as, over time, indirect inference regarding the realized cell
of all other agents. The crucial element of the learning process is the information set
of an agent. The information set of agent i in period t, Iti ∈ F , is the smallest subset of
the state space that the agent knows to contain the true state of the world based on his
private observables. Based on the history he observes, the agent learns to dismiss states
as not consistent with the history. Therefore, the information set Iti is a subset of the
information set It−1

i for every t and every state of the world.
The learning process requires agent i to make inferences regarding the realized par-

tition cells of all agents based on his neighbors actions. To do so, he considers, for each
of his neighbors j, their set of possible information sets I t

j—the information sets of i that
are consistent with the common observables of i and j. This set of possible information
sets is a subset of the σ-algebra and hence the strategy of agent j, which is assumed to
be common knowledge, assigns a unique action to every information set in I t

j . Based on
the action chosen by agent j in period t, agent i can dismiss all information sets in I t

j to
which the strategy of j assigns a different action than the one chosen. The set of informa-
tion sets in I t

j that survive the elimination process in period t is denoted as Dt
j ⊂ I t

j and
serves to refine i’s information set in period t + 1. In the following discussion, I provide
an example of the learning process before presenting its formal structure.

16Please see Section 8 for a discussion on the relation of Rosenberg et al. and this paper.
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ω1 ω2

ω3 ω4

Figure 1. State space of the example.

3.1 Example of the learning process

Prior to providing the formal characterization of the learning process, let us consider a
very simple example that eases the understanding of the informational structure and the
learning process. Suppose that there are four states of the world, � = {ω1�ω2�ω3�ω4},
and three agents, V = {1�2�3}. Let us represent the state space with the matrix in Fig-
ure 1.

Suppose that agent 1 learns the rows of the matrix, i.e., if state ω1 or ω2 is realized,
he learns that a state in the first row is realized. Suppose that agent 2 has no private
information; he learns only that the true state of the world lies in �, while agent 3 learns
the columns of the matrix, i.e., if state ω1 or ω3 is realized, he learns that the true state
of the world lies in the first column. We have

P1 = {ω1�ω2;ω3�ω4}
P2 = {ω1�ω2�ω3�ω4}
P3 = {ω1�ω3;ω2�ω4}�

The first period information sets of agents are given by the realized partition cells. Sup-
pose all agents share an uniform common prior p over � and in each round, every agent
selects an action ati ∈ {α�β}. Let the corresponding state dependent utility function be
given by

ui(ai�ω)=
⎧⎨
⎩

1 if ai = α and ω=ω1

2 if ai = β and ω=ω4

0 otherwise.

Suppose that in every round t, each agent selects the action that maximizes his expected
utility in round t, conditioning on his private information set Iti ⊂�:

c(Iti )= ati = max
a∈{α�β}E[ui(a�ω)|Iti ]�

In case of indifference, suppose that all agents select action α. Finally, let the agents be
organized in a line network with agent 2 being the center agent, Ni = {2} for i = 1�3 and
N2 = {1�3}. Let us consider the first period action of agents given their information set.
Agent 1 selects a1

1(I
1
1) = α if he observes the first row, I1

1 = {ω1�ω2}, and selects a1
1(I

1
1) = β

if he observes the second row, I1
1 = {ω3�ω4}. Agent 2 receives no private information

and selects a1
2(I

1
2) = β. Agent 3 selects a1

3(I
1
3) = α if he observes the first column, I1

3 =
{ω1�ω3}, and selects a1

3(I
1
3) = β if he observes the second column, I1

3 = {ω2�ω4}. Hence
agent 1 and agent 3 reveal their realized partition cell through their first round choice to
agent 2, who observes both of their announcements—a fact that is common knowledge
among all agents. Suppose that the state ω1 is realized, which leads to the first period
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choice vector a1 = (α�β�α). From the choice of agent 1, agent 2 learns that either ω1 or
ω2 is realized, and from the choice of agent 3, he learns that either ω1 or ω3 is realized.
Combining the two, he learns that the true state of the world is ω1. Note that due to the
perfect separation of choices across partition cells of both agent 1 and agent 3, agent
2 learns the true state of the world in each state ω ∈ � through the first period choice
vector. The information sets of the agents in state ω1 at the beginning of the second
round conditional on the observed history h2

i (ω1) are given by

I2
1(ω1�h

2
1(ω1)) = {ω1�ω2}

I2
2(ω1�h

2
2(ω1)) = {ω1}

I2
3(ω1�h

2
3(ω1)) = {ω1�ω3}�

Since the information sets of neither agent 1 nor 3 changed from the first to the second
round, neither will their chosen action. To draw inference from agent 2’s second period
choice, agents 1 and 3 have to consider the possible information sets of agent 2. The
information sets of agent 2 that agent 1 considers possible given the common history
h2

12, i.e., the first period choices of both 1 and 2, are described by the set

I 2
2 (h

2
12(ω1);ω1) = {ω1;ω2}�

Based on the common history of 1 and 2, it is commonly known among them that the
second round information set of agent 2 is either I2

2 = ω1 or I2
2 = ω2. For agent 1 to

draw inference from the second period choice of agent 2, he has to consider the choice
2 makes in each of the possible information sets. But since agent 2 selects α in both
states ω1 and ω2, due to the tie-breaking rule, agent 1 can draw no further inference
from the second round choice of agent 2. Similarly, agent 3 considers the set of possible
information sets of agent 2 based on their common history

I 2
2 (h

2
23(ω1);ω1) = {ω1;ω3}�

Since agent 2 selects action α in both of the possible information sets (in ω3 due to the
tie-breaking rule), agent 3 can draw no further inference with regards to the realized
information set of agent 2. For all t ≥ 2, we have at = (α�α�α).

3.2 Formal structure of learning process

Let me now present the formal structure of the learning process and introduce the no-
tation used throughout the paper. At the beginning of stage t = 1, the information set
I1
i (ω) of each agent i is given by the true cell of his partition. In period t = 1, we have

I1
i (ω) = Pi(ω)�

It is common knowledge among any pair of agents i and j that the true cell of their
meet,

∧
l=i�jPl(ω), is realized.17 Let Pi denote a cell in i’s partition, Pi ∈ Pi. The set

17The meet of a pair of partitions is the finest common coarsening of the partitions.
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of possible first stage information sets of agent j based on the common information∧
l=i�jPl(ω) of i and j is given by

I 1
j (ω; i) =

{
Pj ∈ Pj :Pj ⊂

( ∧
l=i�j

Pl(ω)

)}
�

The set of possible information sets of agent j from the perspective of agent i, I 1
j (ω; i),

consists of the cells Pj of j’s partition Pj that are contained in the realized cell of the
meet of i and j,

∧
l=i�jPl(ω). Each agent j selects his first period action a1

j according to
his information set and strategy. His neighbor i makes the following inference regarding
player j’s realized partition cell according to the action a1

j chosen:

D1
j (a

1
j ;ω; i) = {Pj ∈ I 1

j (ω; i) :a1
j = sj(Pj)}�

The set D1
j (a

1
j ;ω; i) is a subset of the set of possible first period information sets, I 1

j (ω; i).

The set D1
j (a

1
j ;ω; i) is also the set of partition cells of j, Pj , contained in the set of possible

information sets of j, I 1
j (ω; i), to which the strategy, sj , of agent j assigns the action

a1
j . Therefore, the sets in I 1

j (ω; i) \ D1
j (a

1
j ;ω; i) are dismissed by agent i based on the

additional observable a1
j as not consistent with the first period action of agent j.

After observing the first period choices of his neighbors and making inference re-
garding the realized cells of their partitions, player i takes the intersection of the true cell
of his partition with the sets

⋃
D1

j (a
1
j ;ω; i) across all his neighbors j ∈ Ni to compute his

second stage information set.18 Agent i’s information set in period t = 2 is denoted as

I2
i (Pi(ω)�h2

i (ω)) = Pi(ω)∩
⋂
j∈Ni

⋃
D1

j (a
1
j ;ω; i)�

In period t, the information set of agent i is given by

Iti (Pi(ω)�ht
i(ω)) = Pi(ω)∩

⋂
j∈Ni

⋃
Dt−1

j (at−1
j ;ht−1

ij (ω);ω)�

The information set of agent i in period t consists of all states of the world that are
contained in his partition cell, Pi(ω), and in the union of possible information sets,⋃

Dt−1
j (at−1

j �ht−1
ij (ω);ω), of each of his neighbors j. Any pair of neighbors i and j shares

a common history ht
ij(ω) at the outset of period t given by the history of choices up to

period t of i and j, and the history of choices of all agents l that are neighbors of both i

and j. The set I t
j (h

t
ij(ω);ω) consists of possible information sets of player j in period t

that are consistent with the common observables of agents i and j. The set I t
j (h

t
ij(ω);ω)

is common knowledge among them and contains the true information set of player j.
We have

I t
j (h

t
ij(ω);ω) =

{
Itj (Pj� ĥ

t
j) :

ĥt
ij = ht

ij(ω)

∃It−1
j ∈ Dt−1

j (at−1
j �ht−1

ij (ω);ω) s.t. Itj (Pj� ĥ
t
j) ⊂ It−1

j

}
�

18For a collection of sets D, the notation
⋃

D denotes the union over all sets in D.
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The set of possible information sets of agent j in period t based on the realized common
history ht

ij(ω) of agent i and j consists of all information sets Itj (Pj� ĥ
t
j) such that the

private history of j is consistent with the realized common history ht
ij(ω), and Itj (Pj� ĥ

t
j)

is consistent with the choice of agent j in period t − 1. Player j selects an action atj in
period t according to his strategy, which leads to a refinement of the set I t

j (h
t
ij(ω);ω) by

his neighbor i,

Dt
j(a

t
j;ht

ij(ω);ω) = {
Itj ∈ I t

j (h
t
ij(ω);ω) :atj = sj(I

t
j )

}
�

where Dt
j(a

t
j;ht

ij(ω);ω) is common knowledge among i and j, as it relies only on vari-
ables that are commonly known among them. At the beginning of stage t + 1, agent i
processes the inferences made based on the choices of his neighbors in period t, result-
ing in his private information set in period t + 1 given by

It+1
i (Pi(ω)�ht+1

i (ω)) = Pi(ω)∩
⋂
j∈Ni

⋃
Dt

j(a
t
j;ht

ij(ω);ω)�

The alert reader may realize that the inference made by agent i regarding the informa-
tion set of his neighbor j occurs out of a set of commonly known possible informa-
tion sets, I t

j (h
t
ij(ω);ω), even though player i’s private information might lead to an ex-

clusion of some elements of I t
j (h

t
ij(ω);ω). In particular, agent i can exclude all those

information sets of player j that have an empty intersection with his information set
Iti (P i(ω)�ht

i(ω)). While the set of possible information sets that the inferences of agents
are based on differs in the private and common observables case, the resulting infor-
mation sets are the same. For a formal proof, please see the supplementary appendix.
The proof is based on an induction argument. An understanding of the intuition behind
the equivalence can be gained when considering the interaction in the first round and
its effect on the information sets in round two: suppose agent i can exclude some of j’s
commonly considered possible partition cells P ′

j based on i’s private information. This
means that i’s observed partition cell Pi has an empty intersection with P ′

j , where P ′
j is a

subset of the realized cell of the meet of agents i and j. Suppose that P ′
j is consistent with

the first period action of agent j. However, it is easy to see that, nevertheless, P ′
j has an

empty intersection with agent i’s second round private information set based on infer-
ences out of pairwise common observables, as the information set I2

i equals the inter-
section of i’s partition cell with the set of possible partition cells of each of i’s neighbors
that are consistent with the history. Hence if Pi ∩ P ′

j = ∅, then I2
i (Pi�h

2
i (ω))∩ P ′

j = ∅.

Despite the practical difficulties of rational learning in arbitrary incomplete net-
works, I have shown that the formal structure of the rational learning process has a sim-
ple and intuitive form. The learning process defined here can be used in practice to ana-
lyze the evolution of information sets of agents and their behavior in specific situations.
However, despite the simple and intuitive formal structure of the process, the computa-
tional burden can be very large in practice, as each agent effectively has to consider the
information sets of all agents in each round and their respective optimal choices.
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4. Local indifference once learning ends

Having established the formal structure of the rational learning process, one can answer
questions with regards to the evolution of behavior in social networks. In particular,
does learning lead to convergence of choices? Before I present the first theorem, I define
an important property of choice correspondences: union consistency.

Definition 1. The correspondence c : F ⇒ A is union consistent if for all disjoint col-
lections of sets G , G ⊂ F ,

⋂
G∈G

c(G) 	= ∅ ⇒
⋂
G∈G

c(G) = c

( ⋃
G∈G

G

)
�

Union consistency stems from the literature on knowledge and consensus, where
the property is also known as the sure thing principle.19 In the literature, the property
is applied to choice functions rather than correspondences as in this paper. Union con-
sistency is a behavioral assumption across mutually exclusive events: if an action is op-
timal for every information set in a collection of disjoint information sets, then it is also
optimal for the information set equaling the union over all information sets in the dis-
joint collection. In addition, only actions that are optimal for all information sets in
the disjoint collection are optimal under the information set equaling the union over
all information sets in the disjoint collection. Union consistency holds in the probabil-
ity announcement and expected utility setting if all elements of the join have positive
probability and the utility function is bounded and measurable for each action.20

As an example for union consistency, consider the case where a decision maker is
uncertain about the weather. She wears a jacket if it rains and if it snows. Union con-
sistency then requires her to wear a jacket if she knows only that it is either raining or
snowing.

The following theorem gives my main result with regard to optimal behavior once
learning ends.

Theorem 1. If the choice correspondence c(·) is union consistent and for a given state ω,
there exists a finite t ′ such that for all t ≥ t ′ and for each pair of neighbors i ∈ V , j ∈ Ni⋃

I t
i (h

t
ij(ω);ω) =

⋃
I t ′
i (h

t ′
ij(ω);ω)�

then

sj
(
Itj (Pj(ω)�ht

j(ω))
) = atj ∈ c

(
Iti (Pi(ω)�ht

i(ω))
)

for all t ≥ t ′.

Theorem 1 establishes that under rational learning in networks, any action an agent
selects is optimal for all his neighbors once learning ends. I denote this property as local

19See, for example, Bacharach (1985), Cave (1983), and Krasucki (1996).
20This can be easily established. A proof of the claim can be found in the supplementary appendix to an

earlier version of this paper and is available on request.



14 Manuel Mueller-Frank Theoretical Economics 8 (2013)

indifference. Note that the indifference across actions chosen once learning ends holds
only on a local level—across neighbors—rather than on a global level—across all agents
in a connected network. A feature of rational learning in networks is that once learn-
ing ends, a pair of agents can select different actions while not being indifferent among
them, as long as they are not neighbors of each other.21 The possibility of heterogeneous
choices once learning ends differs from the results in the informational cascades litera-
ture: heterogeneous choices once learning ends are consistent with rational learning of
homogeneous agents under repeated interaction, while they are not consistent with ra-
tional learning of homogeneous agents in the informational cascade model, where once
learning ends, i.e., in a cascade, homogeneous agents select the same action.22

Applying the result of Theorem 1 to the probability announcement setting, we find
that within finitely many communication rounds, all agents in a connected network
agree on the probability of the uncertain event Q. This corollary constitutes a gener-
alization of the “we can’t disagree forever” result from Geanakoplos and Polemarchakis
(1982) to arbitrary connected social networks. Even though posterior probabilities are
communicated only on a neighborhood level, rational learning leads to convergence of
the posterior of all agents in a connected social network.

In addition to union consistency of the choice correspondence, one condition on
the learning process is required: the union over the set of possible information sets that
all agents assign to their neighbors remains constant from period t ′ onward. When in-
formally stating that learning ends, I refer to this condition, which implies that the in-
formation sets of all agents remain constant from t ′ onward. The proof of the theorem
is an application of Proposition 1.

Proposition 1. Let c : F ⇒ A be union consistent and let G� L ⊂ F be collections of dis-
joint sets such that ⋃

G∈G
G=

⋃
L∈L

L�

If there exist actions al�ag ∈ A such that al ∈ c(L) for all L ∈ L and ag ∈ c(G) for all G ∈ G ,
then

al ∈ c(G) for all G ∈ G

ag ∈ c(L) for all L ∈ L�

To apply Proposition 1 and thus prove the local indifference result once learning
ends, we have to establish that its three conditions are satisfied: (i) for each i ∈ V , j ∈Ni,
we have I t

i (h
t
ij(ω);ω) is a disjoint collection of sets, (ii) for a pair of neighbors i, j, the

set of possible information sets I t
i (h

t
ij(ω);ω), I t

i (h
t
ij(ω);ω) comprises partitions of the

same set, and (iii) for all agents i, once learning ends, there exists an action that agent i’s

21Please see Section 3 of the supplementary appendix for an example.
22For example, see Smith and Sørensen (2000). In the following discussion, the informational cascade

model is sometimes denoted as the sequential social learning model.
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strategy assigns to all the information sets considered possible by his neighbors. Condi-
tions (i) and (iii) are established as Lemmas 1 and 2, while condition (ii) is established
in the proof of the theorem.23 Please see the Appendix for the formal statement of the
lemmas and the proof of Theorem 1 and Proposition 1.

Geanakoplos and Polemarchakis (1982) consider the probability announcement set-
ting for the special case of a complete network consisting of two agents. In a complete
network, the history of announcements is common knowledge and the information set
of an agent in a given period equals the intersection of the cell of his partition and the
set of states that are commonly known to contain the true state of the world. There-
fore, in a complete network, Lemmas 1 and 2 hold trivially. In an incomplete network,
the history of announcements is not common knowledge among all agents, so infor-
mation sets have to be generated in a different manner. As is shown in Proposition 1
of the supplementary appendix, the information set of an agent can be generated from
inferences on his neighbors’ actions based only on common observables among pairs
of neighbors. Once the properties of Lemmas 1 and 2 are established for the learning
process, the proof of Theorem 1 follows directly from Proposition 1. Geanakoplos and
Polemarchakis implicitly use a version of Proposition 1 applied to choice functions in
their proof.24

5. Asymptotic local indifference

The previous section provided a local indifference result once learning ends. In the case
of finite partitions, learning ends in finite time for all states. In the case of infinite par-
titions, however, learning does not necessarily end in finite time. In this section, I am
going to establish an asymptotic local indifference result that covers the case of infinite
partitions. The concept of a dominant set, defined below, plays a crucial role in the
asymptotic analysis.

Definition 2. The set B ∈ F is a dominant set under c if, for all sequences {Bt}∞t=1 in
F such that Bt+1 ⊂ Bt and

⋂∞
t=1B

t = B, the following statement holds: If there exists an
infinite subsequence {Btk}∞k=1 of {Bt}∞t=1 and an action a ∈ A such that a ∈ c(Btk) for all
k ∈ N, then a ∈ c(B).

Set B is dominant under choice correspondence c if, for every sequence of sets that
converge to B, every action that is optimal for infinitely many information sets in the
sequence is also optimal for the limit set B. In the expected utility setting, every set with
positive probability is a dominant set if the utility function is bounded and measurable
for every action a.25

23There exists a more direct way to prove Theorem 1 that does not rely on the characterization of the
learning process. The idea is to extend the state space to capture the histories of play. I decided against this
approach as no intuition can be gained with regard to how rational learning works and how it relates to the
local indifference result.

24I use the term implicitly, as they do not refer to union consistency per se given that their analysis lies
in the probability announcement setting where the union consistency property is satisfied.

25Please see Proposition 2 in the supplementary appendix.
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In addition to the concept of a dominant set, I need to impose a dominance consis-
tency condition on the choice correspondence c.

Definition 3. The choice correspondence c(·) is dominance consistent (DC), if for all
B�F ∈ F such that B ⊂ F ,

B dominant set ⇒ F dominant set.

I have stated that in the expected utility setting with a bounded and measurable
utility function, any set of positive probability is a dominant set. Thus the dominance
consistency conditions holds in this environment as well, as any set that contains a set
of positive probability has positive probability.

Before stating the theorem, let me define the limit information set as

I∞
i (Pi(ω)�h∞

i (ω)) =
∞⋂
t=1

Iti (Pi(ω)�ht
i(ω))�

The limit information set I∞
i (Pi(ω)�h∞

i (ω)) consists of the states of the world that are
contained in the information set Iti (Pi(ω)�ht

i(ω)) in every period t. Remember that
I t
i (h

t
ij(ω);ω) denotes the set of possible information sets of agent i in period t based on

the common observables of i and his neighbor j; {I t
i (h

t
ij(ω);ω)}t∈N denotes a sequence

of collections of sets. Let the limit of the sequence be denoted as

I ∞
i (h∞

ij (ω);ω) = {
I∞
i (Pi(ω

′)�h∞
i (ω′)) : Iti (Pi(ω

′)�ht
i(ω

′)) ∈ I t
i (h

t
ij(ω);ω)∀t}�

Note that the limit set I ∞
i (h∞

ij (ω);ω) is not empty, as the true information set of player
i, Iti (Pi(ω)�ht

i(ω)), is contained in I t
i (h

t
ij(ω);ω) in every period t, and the true cell of the

join is contained in Iti (Pi(ω)�ht
i(ω)).

Theorem 2. If all elements of the join
∨

j∈V Pj are dominant sets under c, and the choice
correspondence is union consistent and dominance consistent, then for every state ω ∈�,
any action that agent i selects infinitely often is optimal for all his neighbors j in their
limit information set. Define

A∞
i (ω) = {

a ∈ A :a = si
(
Iti (Pi(ω)�ht

i(ω))
)

for infinite periods t
}

and j ∈Ni. Then

A∞
i (ω) ⊂ c

(
I∞
j (Pj(ω)�h∞

j (ω))
)
�

Theorem 2 presents conditions under which an asymptotic local indifference result
holds; any action an agent selects infinitely often is optimal for his neighbors in their
limit information set. Note that a sufficient condition for the asymptotic local indiffer-
ence result is that the set of actions is finite as in that case A∞

i (ω) is nonempty for all
states ω. If the set of actions is infinite, A∞

i (ω) can be empty. Applied to the expected
utility setting, the theorem states that if all cells of the join of partitions have positive
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probability, then any action an agent selects infinitely often is optimal for all his neigh-
bors in the limit.

Let me give a brief outline of the proof. I establish that every limit information set
I∞
i (Pi(ω)�h∞

i (ω)) is a dominant set, relying on the assumption that every cell of the join
is a dominant set together with dominance consistency. The limit set being dominant
implies that every action in A∞

i (ω) is optimal for agent i in his limit information set.
The strategy of agent i assigns, in every period t, the same action to any information
set Iti (Pi(ω

′)�ht
i(ω

′)) that converges to a limit information set in I ∞
i (h∞

ij (ω);ω) as to the
true information set (Lemma 4 in the Appendix):

si
(
Iti (Pi(ω

′)�ht
i(ω

′))
) = si

(
Iti (Pi(ω)�ht

i(ω))
)
�

This, together with all limit information sets being dominant, implies that all actions
in A∞

i (ω) are optimal for all limit information sets in I ∞
i (h∞

ij (ω);ω). Furthermore,

I ∞
i (h∞

ij (ω);ω) is a collection of disjoint sets, and I t ′
i (h

t ′
ij(ω);ω) and I t ′

j (h
t ′
ij(ω);ω) par-

tition the same set for neighbors i and j (Lemma 3 in the Appendix). All conditions
of Proposition 1 on the informational structure and behavior in the limit are satisfied.
Proposition 1 gives the asymptotic local indifference result: any action that agent i se-
lects infinitely often is optimal for all his neighbors in their limit information set.

The objective of this section is to establish conditions on the choice rule that yield
an asymptotic local indifference result. Dominant sets and the dominant consistent
choice rule play the following role in the proof. Theorem 2 requires one to connect the
sequence of actions chosen with optimal actions in the limit. The concept of a dominant
set provides such a connection between actions that are optimal for infinitely many in-
formation sets in the information set process converging to the limit information set and
their optimality in the limit information set. For the local indifference result to be true in
all states of the world, all elements of the power set of the join have to be dominant sets.
The condition of dominance consistency allows one to require only that the elements of
the join be dominant sets, as it implies dominance of all possible limit information sets.

6. Common knowledge of rationality versus common knowledge of

strategies

The analysis so far was based on the assumption of common knowledge of strategies:
common knowledge of which action any agent selects out of the set of actions assigned
by the choice correspondence for every information set in F . In this section, I assume
that only rationality of agents is commonly known, i.e., it is common knowledge that
agents select actions according to the common choice correspondence. This forms a
departure from a Bayesian point of view, where probabilities should be assignable to
strategies, and a departure from a game theoretic view, where (mixed) strategies are
common knowledge.

As established in Theorems 1 and 2 above, the local indifference result holds in-
dependently of the actual network structure under common knowledge of strategies.
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When relaxing the assumption of common knowledge of strategies, however, the net-
work structure determines the validity of the local indifference result. In complete net-
works, local indifference holds under common knowledge of rationality, while it might
fail in incomplete networks.

To establish the claim, consider the rational learning process in complete networks
under common knowledge of rationality. In period t = 1, the smallest event that is com-
mon knowledge (CK) among all players is the true cell of the meet of all players,

CK1(ω) =
∧
j∈V

Pj(ω)�

The set of commonly known possible first period information sets of agent j in state ω

is given by

I 1
j (ω) = {Pj ∈ Pj :Pj ∩ CK1(ω) 	= ∅}�

For a given first period choice a1
j of player j, it becomes common knowledge among all

agents that the information set of agent j is contained in set D1
j (a

1
j ;ω), where

D1
j (a

1
j ;ω) = {I1

j ∈ I 1
j (ω) :a1

j ∈ c(I1
j )}�

The set D1
j (a

1
j ;ω) consists of the partition cells Pj that are commonly considered possi-

ble for agent j, Pj ⊂ CK1(ω), and for which action a1
j is optimal. Through the observation

of a1
j , it becomes common knowledge among all agents that player j’s realized partition

cell has the property that a1
j is optimal given the realized cell.

In complete networks, the history of actions is common knowledge among all play-
ers. Thus at the beginning of period t = 2, it is common knowledge among all agents
that a state in CK2(h2;ω) is realized where

CK2(h2;ω) =
⋂
j∈V

⋃
D1

j (a
1
j ;ω)�

At the outset of period t, we have

CKt (ht;ω) =
⋂
j∈V

⋃
Dt−1

j (at−1
j ;ht−1;ω)�

The information set of player i at time t is given by

Iti (Pi(ω)�ht) = Pi(ω)∩ CKt (ht;ω)�

The set of commonly known possible information sets of agent j in period t is given by

I t
j (h

t;ω) =
{
Pj ∩ CKt (ht;ω) :

Pj ∈ Pj

Pj ∩ CKt (ht;ω) 	= ∅

}

and the inference agents make regarding agent j’s information set based on his choice
in period t is given by

Dt
j(a

t
j;ht;ω) = {Itj ∈ I t

j (h
t;ω) :atj ∈ c(Itj )}�
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The information set of agent i in period t + 1, depending on the choices of all other
agents in period t, is given by

It+1
i (Pi(ω)�ht+1) = Pi(ω)∩ CKt+1(ht+1;ω)�

where

CKt+1(ht+1;ω) =
⋂
j∈V

⋃
Dt

j(a
t
j;ht;ω)�

Thus, in complete networks, the information set of an agent in period t is given by the in-
tersection of his true partition cell with the set CKt (ht;ω), which is common knowledge
among all agents.

Theorem 3 states the local indifference result in complete networks under common
knowledge of rationality.

Theorem 3. If the network is complete and the choice correspondence is union consis-
tent, then common knowledge of rationality is sufficient for the following result: For a
given state ω, if there exists a time t ′ such that CKt (ht;ω) = CKt ′(ht ′ ;ω) for all t ≥ t ′, then

atj ∈ c
(
Iti (Pi(ω)�ht)

)
for all i� j ∈ V and t ≥ t ′.

In complete networks, common knowledge of strategies is not necessary to achieve
the local indifference result. The weaker assumption of common knowledge of rational-
ity is sufficient. Once common learning ends, any action an agent selects is optimal for
all others.

The proof is again an application of Proposition 1. I demonstrate that the three con-
ditions of Proposition 1 are satisfied. Thus local indifference follows. But does local
indifference hold for incomplete networks as well?

Generally, the local indifference result fails in incomplete networks. The reason for
failure lies in the fact that, in general, the set of possible information sets agents assign to
their neighbors is not a collection of disjoint sets. Thus union consistency does not give
the local indifference result, as it relies on the information sets being a disjoint collection
of sets. To provide intuition, take a pair of neighbors i, j and consider the inference that
player i makes based on player j’s first period choice. Whenever there is a cell in player
j’s partition to which the choice correspondence assigns more than a single action, the
collection of sets {⋃ D1

j (aj;ω; i)}aj∈A does not constitute a partition of �. The set of pos-
sible information sets of agent i in period t = 2 from the perspective of his neighbor k,
who is not neighbor of j, may fail to be a collection of disjoint sets. Please see the Ap-
pendix for an example where local disagreement occurs on a set of positive probability
in the expected utility setting.

In this section, I have shown that the consensus result of the literature on knowl-
edge and consensus cannot be generalized to union consistent choice correspondences,
common knowledge of rationality, and incomplete, undirected networks. Rational
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learning in incomplete networks can lead to disagreement among pairs of (mutual)
neighbors.

It could be argued that the above analysis assumes boundedly rational agents, as the
inferences do not account for the different possible strategies agents might follow; nei-
ther do the information sets. It further could be argued that, by definition, the state
space contains all possible states of the world and thus each state should include a
description of the possible types of all players, represented by their strategies. In the
supplementary appendix, I address these points by considering extensions of the state
space in cases of lack of common knowledge of strategies and lack of common knowl-
edge of the network structure.

7. Optimal information aggregation and duration to consensus

In this section, I address the question of how the network structure affects (i) the aggre-
gation of the privately held information and (ii) the duration to consensus. To analyze
these questions, I restrict attention to a special case of the general framework analyzed
so far: the probability announcement setting.

In this setting, agents share a common prior and repeatedly announce their poste-
rior belief of an uncertain event. Theorem 1 implies that under finite partitions, consen-
sus is established in finite time among all agents in a connected network. The consen-
sus beliefs, however, might differ from network to network. But how does the network
structure affect the precision of the consensus belief?

Let me first define a measure for the quality of information aggregation of different
network structures. By information setting ((�� F�p)�V � {Pi}i∈V �Q), I denote the con-
junction of the probability space, the set of agents, their finite partitions of the state
space, and the uncertain event Q ∈ F . The goal is to rank different communication net-
works by their quality of information aggregation for a fixed information setting. As
above, I restrict attention to connected, undirected networks.

Let P t
iG denote i’s partition of the state space in period t and for network G.26 Con-

sider the meet
∧

i∈V P t∗
iG of the partitions of all agents once learning ends in all states.

For a given cell of the meet, all states in the cell have the same consensus belief, as oth-
erwise learning would continue in a connected network. The quality of information
aggregation is defined in terms of the meet

∧
i∈V P t∗

iG: communication network G leads
to better information aggregation than network G′ if and only if

∧
i∈V P t∗

iG is finer than∧
i∈V P t∗

iG′ .27 A communication network G leads to optimal information aggregation if
the meet of partitions once learning ends equals the join of partitions in the first pe-
riod. This is a natural definition of optimal information aggregation, as it states that
each agent incorporates the private information of all agents in every state of the world.

One’s intuition might suggest that complete networks should do at least as well as
incomplete networks, as all agents directly communicate with each other. This intuition,
however, is incorrect. Please see the Appendix for an example of an information setting

26See the proof of Theorem 1 for background on the partition.
27Note that not all pairs of networks need be comparable in this manner, as their corresponding meets

need not have a finer/coarser relation.
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where an incomplete network leads to better information aggregation than the complete
network. The example compares a star network and a complete network with the same
underlying set of agents, state space, common prior, and partitional information. It is
shown that the meet of learning ends partitions of the star network is finer than the
meet of learning ends partitions in the complete network. The consensus belief in the
star network equals the pooled information posterior—the posterior probability of the
event conditioning on the realized cell of the join—in all states of the world, while the
consensus belief in the complete network differs from the pooled information posterior
in some states. The better information aggregation of the star network comes at the
cost of a longer duration to consensus. The main intuition for the better information
aggregation of the star network is that in complete networks, agents might jointly jump
to conclusions too fast due to the fact that all announcements are common knowledge.

The natural question resulting from the example concerns (i) the characteristics of
optimal communication structures as a function of the information setting and (ii) the
duration to consensus of different network structures. I do not provide a complete an-
swer to this question, but a generic one, where the common probability measure is
treated as a random element.

Let the partitions of all agents be finite and consider the partition of the state space

P =
{{∨

i∈V
Pi(ω)∩Q

}
ω∈�

�

{∨
i∈V

Pi(ω)∩QC

}
ω∈�

}
�

where QC denotes the complement of Q. The partition P further refines the join∨
i∈V Pi(ω) of partitions of all agents by partitioning each cell of the join into states that

lie in event Q and states that do not. Let k denote the cardinality of the partition P ,
K = {1� � � � �k}. Note that for any information setting

((�� F�p)�V � {Pi}i∈V �Q)�

fixing the probabilities of the cells of partition P determines the posterior announce-
ment process and the consensus probabilities. Then the probability simplex 	(K), en-
dowed with a uniform probability measure μ, describes the set of all probability mea-
sures to be considered.28 Note that the distance between two agents in the network is
the length of the shortest path connecting them. The diameter of the network, d(G), is
the greatest distance between any two agents in the network.

Theorem 4. For almost every [μ] probability measure p ∈ 	(K), consensus is achieved
in round t∗ ≤ d(G) + 1. In every state ω ∈ �, the consensus belief equals the conditional
probability of event Q, conditioning on the realized cell of the join.

Returning to the question of optimal information aggregation, Theorem 4 states
that, generically, all connected networks lead to optimal information aggregation. The
only distinction between the network structures is the duration to consensus. The larger

28Please see the Appendix for a precise definition.
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is the diameter of the graph, the longer is the (maximal) duration to consensus. The
theorem has two important implications. The first implication concerns strategic an-
nouncements and the assumption that all agents announce their true posterior. In
the probability announcement setting, the incentive to lie can derive only from the
possibility to learn more based on lying. But Theorem 4 states that, generically, ev-
ery agent reveals his private information in every communication round. Hence there
is no reason to lie. The second implication involves a distinction between Bayesian
and non-Bayesian learning in networks. Golub and Jackson (2012) address the ques-
tion of speed of convergence under weighted average updating function where con-
sensus occurs asymptotically. They show that link density does not affect the speed
of convergence, while homophily—the tendency of individuals to associate with simi-
lar individuals—slows the rate of convergence. Theorem 4 implies that under Bayesian
learning, changing homophily while keeping the diameter of the graph constant has no
effect on the speed of convergence. The main distinction with regard to speed of conver-
gence is the following: adding links to a network leads to a (weak) increase in speed of
convergence under Bayesian learning, while under non-Bayesian learning, adding ho-
mophily increasing links decreases the speed of convergence. Therefore, adding links
to a Bayesian network leads to (weakly) less heterogeneity, while adding links to a non-
Bayesian network might lead to more heterogeneity.

Golub and Jackson (2012) also discuss a direct contagion process that is character-
ized by travel along shortest paths. One example of such a process is a contagion pro-
cess where agents have binary types—infected and noninfected—and a node becomes
infected as soon as at least one neighbor is infected. In such a contagion process, the
duration to consensus is bounded above by the diameter of the graph plus 1 exactly as
under Bayesian learning. From the point of view of duration to consensus, Bayesian
learning is hence much closer to a contagion process as opposed to weighted-average
based non-Bayesian learning.

Geanakoplos and Polemarchakis (1982) prove a similar result for a complete network
with two agents. The difference in analysis beyond complete as opposed to arbitrary
connected network structures, lies in me treating the probability measure as random or
uncertain, which seems more reasonable from a practical perspective, while they treat
the event Q as random. A nice feature of treating the probability measure as opposed
to the event as random is that the perfect information aggregation result holds for dis-
crete and nonatomic prior probability measures while under random events nonatomic
probability measures are necessary for the result. Formally, Geanakoplos and Polemar-
chakis show that almost surely both agents reveal their partition cell in the first round
of announcements and information is aggregated perfectly. Theorem 4 states that all
agents almost surely reveal their private information set in each round of interaction
and in any connected network structure.

8. Discussion of results in relation to literature

This paper is closely related to the literature on knowledge and consensus, and the lit-
erature on learning in networks, and has some relation to the sequential social learning



Theoretical Economics 8 (2013) Framework for rational learning 23

literature. The literature on knowledge and consensus analyzes under which conditions
pairwise repeated communication among a finite set of individuals leads to consensus.
The most important contributions are by Aumann (1976), Geanakoplos and Polemar-
chakis (1982), Cave (1983), Bacharach (1985), Parikh and Krasucki (1990), and Krasucki
(1996). This literature throughout assumes pairwise communication, decision func-
tions, and finite partitions, whereas I consider simultaneous communication in incom-
plete networks, a decision correspondence, and finite and countably infinite partitions.

The most closely related papers are Parikh and Krasucki (1990) and Krasucki (1996).
They consider repeated pairwise communication among a finite number of individu-
als in countably many rounds. Agents apply message functions that map information
sets to messages. Communication occurs according to a protocol that selects a pair of
agents—sender and receiver—in each of countable rounds. In a given round, the sender
announces his message to the receiving agent. This differs from the setting considered
in this paper where, in each round, all agents simultaneously “communicate” with all
their neighbors. The protocol defines a directed graph where an edge from agent i to j

exists if agent i communicates with j in infinitely many rounds.
The protocol is denoted as fair if the underlying graph is strongly connected. Parikh

and Krasucki (1990) show that consensus occurs in finite time under a fair protocol
whenever the message function satisfies a convexity property that is a stronger require-
ment than union consistency. Krasucki (1996) establishes that union consistency is suf-
ficient for consensus under a fair protocol if the graph contains no cycles.

The main similarity of this paper and the existing literature on knowledge and con-
sensus concerns the nature of the learning process and the corollary result to Theorem 1,
which establishes sufficiency of a connected, undirected network and union consistent
choice functions for consensus in finite time. The sufficiency of union consistent as
opposed to convex choice functions in Parikh and Krasucki (1990), and connected as
opposed to a strongly connected network with no cycles in Krasucki (1996), comes from
my assumption of an undirected underlying graph.

All four theorems presented in this paper are new contributions to the literature on
knowledge and consensus. The main extensions and contributions are the following:
(i) the generalization to choice correspondences and the resulting local indifference re-
sult allowing for heterogeneous choice; (ii) the extension to infinite partitions, and the
resulting sufficient conditions on the information setting and choice correspondence
that assure asymptotic consensus; (iii) the distinction between common knowledge of
rationality and common knowledge of strategies, and the resulting validity of local indif-
ference in complete networks and the possibility of its failure in incomplete networks.
This possibility of local disagreement among pairs of (mutual) neighbors once learning
ends is the first example of its kind under union consistent choice correspondences.

In the literature on learning in networks, there are two previous papers that analyze
Bayesian learning in networks: Gale and Kariv (2003) and Rosenberg et al. (2009). Both
consider the expected utility setting. The closer related one is Rosenberg et al., which
independently establishes an asymptotic local indifference result in the expected utility
setting, allowing for strategic behavior. Therefore, there is some overlap of their results
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and my first two theorems.29 In particular, the overlap concerns the expected utility set-
ting with countable signal support. However, their approach differs significantly from
the one taken in this paper due to the different framework considered and the tech-
niques used to establish the result. To establish local indifference, they rely on martin-
gale based and measure theoretic arguments. Another distinction lies in the focus of
Rosenberg et al. and this paper: their focus is on establishing a general asymptotic local
indifference result in the expected utility setting. The focus of this paper is twofold: First,
it lies on a characterization of the learning process in a general setting so as to analyze
the occurrence of local indifference, consensus, and local disagreement among agents
in social networks. Second, the characterization of the learning process is used as a tool
to address questions on optimal aggregation of private information in networks and to
establish distinguishing features between non-Bayesian and Bayesian learning.

Within the non-Bayesian learning literature, the most related papers are DeMarzo
et al. (2003) and Golub and Jackson (2010). Here agents follow simple updating rules
when forming their opinion: the opinion of an agent in round t is the weighted av-
erage of the last period opinions of his neighbors (and himself). In the thus defined
non-Bayesian setting, asymptotic consensus has been shown to occur in strongly con-
nected networks. In this paper, I have shown that the consensus result carries forward to
Bayesian learning settings under choice functions. In the non-Bayesian setting, consen-
sus is the simple consequence of the mechanical updating of agents, while in this paper,
it is based on potentially highly complex computations agents make in each round of
interaction.

The results presented in this paper also help to distinguish Bayesian and non-
Bayesian learning from an observational point of view. First, the local indifference result
presented in this paper captures heterogeneous action choices once learning ends (and
therefore in the limit), which is inconsistent with weighted-average based non-Bayesian
learning in connected, undirected graphs if the weights agents assign to their neighbors
and themselves are strictly positive.

Second and more importantly, an interesting distinction with regard to the dura-
tion to consensus as a response to changes in the network structure is established.
Adding homophily increasing links to a non-Bayesian network leads to a decrease in
speed of convergence, and thereby more heterogeneity, while adding links to a Bayesian
network leads to a (weak) decrease in duration to consensus, and thereby weakly less
heterogeneity.30

Finally, this paper is also related to the sequential social learning literature, with the
most prominent contributions being Bikhchandani et al. (1992) and Smith and Sørensen
(2000). In these papers, each of (countable) infinitely many (homogeneous) agents ob-
serves a private signal about the state of the world and makes a one-time, irreversible
choice in a predetermined sequence. In a recent paper, Acemoglu et al. (2011) generalize
the sequential social learning model with a social network application in mind. In their

29The results established in my paper go beyond the expected utility setting. For an example of a union
consistent choice correspondence that is not representable in expected utility form, see Section 3 in the
supplementary appendix.

30See Golub and Jackson (2012) for the non-Bayesian case.
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model, agents observe only a stochastically generated subset of their predecessors—
their neighborhood—as opposed to all predecessors. The focus of this literature lies on
a characterization of conditions on the signal and network structure such that herding,
or alternatively perfect learning, where the correct action is chosen in the limit, occurs.
Due to the difference in the setting considered, i.e., finite versus infinite set of agents
and repeated versus one-time choice, the two approaches are complementary. The re-
sults can be compared with regard to the occurrence of herding and the information
aggregation properties. Theorem 1 implies a herding result for any network in case of
a choice function and finite partitions: there exists a finite time period such that from
that period onward all agents in the network select the same action. In the sequential so-
cial learning model with homogeneous agents, however, the occurrence of herding de-
pends both on the signal structure, bounded versus unbounded private signals and on
the structure of the network.31 The implication of such herding for information aggre-
gation differs, however. While herding in the sequential social learning setting precludes
perfect learning, Theorem 4 establishes that in the repeated interaction framework an-
alyzed here, herding generically involves perfect learning in the sense of the posterior
belief announced that aggregates the private information of all agents.

9. Conclusion

This paper analyzes rational learning and the evolution of behavior and opinions in so-
cial networks where agents repeatedly take actions. The analysis is motivated by the es-
sential role social networks play in many economic and social settings, and the necessity
of a thorough understanding of the underlying rational learning dynamics. Despite the
immense (practical) complexities involved in rational learning in incomplete networks,
I characterize the informational structure in a simple and intuitive way.

My first result establishes that under common knowledge of strategies, rational
learning leads to local indifference: any action an agent selects is optimal for all his
neighbors once learning ceases. For the case where learning does not end in finite time,
I characterize a set of conditions such that an asymptotic local indifference result holds.

However, rational learning can lead to failure of local indifference. Under the ab-
sence of common knowledge of strategies, local indifference might fail in incomplete
networks, while it holds in complete networks.

The paper also provides a result on the effect of the network structure on the degree
of information aggregation and speed of convergence in the probability announcement
setting. Generically, every connected network aggregates the private information of all
agents and the duration to consensus increases with the diameter of the graph. This is,
however, not generally true. I provide an example of an information setting where the
complete network aggregates less information than an incomplete network.

The analysis and the results established in this paper are based on the assumption
of the social network being undirected. A natural question to ask then is whether the
results hold for more general directed networks. The answer to this question is yes. It is

31See Theorems 2 and 4 of Acemoglu et al. (2011).
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straightforward to establish the local indifference result of Theorems 1 and 2 for agents
who are mutual neighbors of each other, as they then share a common history. Since
Theorem 3 requires complete networks, it trivially holds for directed graphs as well.

The assumption of common knowledge of the network structure is made through-
out the paper. However, the local indifference result is robust to relaxing assumptions
on common knowledge of the network structure and common knowledge of strategies
if learning occurs in an extended state space and decisions are made based on informa-
tion sets within that state space. Please see the supplementary appendix for a formal
treatment.

The interested reader might also wonder about the dependence of the local indif-
ference results on the assumption of the network being fixed over time. What if the
network structure is allowed to change over time? If the process of networks is common
knowledge, then the properties of Lemmas 1 and 3 and Lemmas 2 and 4 are not affected.
Therefore, once learning ends, local indifference holds for any pair of neighbors in every
period. Asymptotically, local indifference, as stated in Theorem 2, holds for any pair of
neighbors who observe each other in infinitely many periods.

Appendix A: Examples

Example 1 (Failure of local indifference under common knowledge of rationality). Con-
sider a star network with three agents 1, 2, and 3, N1 = {2}, N2 = {1�3}, and N3 = {2}. The
state space consists of nine states � = ⋃9

i=1ωi. Let the state space be represented by the
rectangle in Figure 2.

Figure 2. State space and partitions.

Agents 1 and 3 have private information, while agent 2 has not. Agent 1 learns the
rows of the matrix, while agent 3 learns the columns. The partitions are given by

P1 = {ω1�ω2�ω3;ω4�ω5�ω6;ω7�ω8�ω9}
P2 = {ω1�ω2�ω3�ω4�ω5�ω6�ω7�ω8�ω9}
P3 = {ω1�ω4�ω7;ω2�ω5�ω8;ω3�ω6�ω9}�

The example lies within the expected utility setting. The agents share a common prior
p over � with p(ω2) = p(ω4) = p(ω6) = p(ω8) = p(ω9) = 17

140 , p(ω5) = 34
140 , and p(ω1) =

p(ω3) = p(ω7) = 7
140 . The set of actions consists of odd or even A = {o�e}, where action

o yields a utility of 1 in the odd indexed states and zero otherwise, while action even
yields a utility of 1 in even indexed states and zero otherwise:

u(o�ωi) =
{

1 if i = 1�3�5�7�9
0 otherwise

u(e�ωi) =
{

1 if i = 2�4�6�8
0 otherwise.



Theoretical Economics 8 (2013) Framework for rational learning 27

In each round, agents maximize their expected utility conditioning on their information.
The choice correspondence c then prescribes the following choices for the possible first
period information sets

c(ω1�ω2�ω3) = c(ω1�ω4�ω7) = e

c(ω4�ω5�ω6) = c(ω2�ω5�ω8) = {o�e}
c(�) = c(ω3�ω6�ω9) = c(ω7�ω8�ω9) = o

c(ω1�ω2�ω4�ω5) = c(ω2�ω3�ω5�ω6) = c(ω5�ω6�ω8�ω9) = c(ω4�ω5�ω7�ω8) = o�

Let the state ω3 be realized, which occurs with probability 7
140 > 0. Player 1 then observes

the first row and selects e, player 2 selects o, and player 3 observes the third column and
selects o. The information sets at the beginning of the second period for players are
I2

1(P1(ω3)�h
2
1) = {ω1�ω2�ω3}, I2

2(P2(ω3)�h
2
2) = {ω2�ω3�ω5�ω6}, and I2

3(P3(ω3)�h
2
3) =

{ω3�ω6�ω9}. The second stage information sets that are common knowledge to be pos-
sible for agent i among agents i and j based on the common observables of agents i and
j are

I 2
2(h

2
12;ω3) = {ω1�ω2�ω4�ω5;ω2�ω3�ω5�ω6}

I 2
1(h

2
12;ω3) = {ω1�ω2�ω3;ω4�ω5�ω6}

I 2
2(h

2
23;ω3) = {ω2�ω3�ω5�ω6;ω5�ω6�ω8�ω9}

I 2
3(h

2
23;ω3) = {ω2�ω5�ω8;ω3�ω6�ω9}�

Note that for all information sets of agent 2 considered possible by agents 1 and 3, the
choice correspondence prescribes action o. Therefor neither agent 1 nor agent 2 can
make any further inference from agent 2’s second period choice. At the beginning of the
third round (and in every later round as well), agent i = 1�3 has to consider the possibil-
ity of an action switch of agent j 	= i, j = 1�3, which would perfectly reveal the cell of his
partition. Suppose that ht is such that all agents played the same action in every round
as in the first. Then the sets of possible information sets of agent 2 from the perspective
of agent 1 are

I t
2(h

t
12;ω3) = {ω1�ω2�ω4�ω5;ω2�ω3�ω5�ω6;ω2�ω5}

I t
2(h

t
23;ω3) = {ω2�ω3�ω5�ω6;ω5�ω6�ω8�ω9;ω5�ω6}�

But the expected utility maximizing action conditioning on {ω2�ω5} and {ω5�ω6} is ac-
tion o. Agent 2 optimally selects o for all his possible information sets. In this example,
learning ends and the only action chosen by and optimal for agent 1 is e, while for his
neighbor, agent 2, the only action chosen by and optimal for is action o. Hence local
indifference can fail with positive probability in the expected utility framework if the
network is incomplete and only common knowledge of rationality is assumed. ♦



28 Manuel Mueller-Frank Theoretical Economics 8 (2013)

Figure 3. The state space � and information partitions.

Figure 4. Join of partitions.

Example 2 (Superiority of information aggregation in incomplete network versus com-
plete network). Consider the example in Figure 3 that compares the quality of informa-
tion aggregation of a complete three agent network with a three agent star network. Sup-
pose that �, the set of all states of the world, is represented by the rectangle in Figure 1.32

All agents share a uniform common prior probability distribution over the rectangle.
Agent 1 partitions � horizontally, the cells of his partitions are given by the union

of the first two rows, r1, the union of rows three and four, r2, and the remaining two
rows, r3, P1 = {r1� r2� r3}. The diagonal line in the rectangle represents the dividing line
of agent 2’s partition. He partitions the state space diagonally: the cells of his partition
are the upper triangle, d1, and the lower triangle d2, P2 = {d1� d2}. Agent 3 partitions the
state space vertically. The cells of his partition are given by the union of the first two
columns, c1, the union of columns three and four, c2, and the union of the remaining
two columns, c3, P3 = {c1� c2� c3}. The event Q with regard to which agents announce
their posterior probabilities is given by Q = ⋃10

i=1Qi. From the partitions of the three
agents, one can generate their join. Figure 4 represents the cells of the join of all agents
and labels them from P1 to P12.

Consider the complete network, G1, first. Applying the learning process defined in
Section 3 establishes that learning ends with the second period announcements in all
states of the world. The meet of partitions once learning ends equals

∧
i∈V

P 3
iG1

= {P1P2P5P6�P3�P4P8�P9�P10�P11�P12}�

32There is a continuum of states.
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The incomplete network, G2, has a star structure with agent 2 as the center node, N1 =
N3 = {2} and N2 = {1�3}. Learning ends with the announcements in period three and
the meet of partitions once learning ends equals∧

i∈V
P 4
iG2

= {P1�P2�P5�P6�P3�P4P8�P9�P10�P11�P12}�

For states ω ∈ ⋃
i=1�2�5�6Pi, the incomplete network leads to more precise information

aggregation; in fact, the incomplete network yields common knowledge of the realized
cell of the join for

ω ∈
⋃

i=1�2�5�6

Pi

and different consensus posteriors than the complete network, q∗
G1

(ω) = 1
2 for all

ω ∈
⋃

i=1�2�5�6

Pi�

while

q∗
G2

(ω) =

⎧⎪⎨
⎪⎩

1
4 if ω ∈ P1
3
4 if ω ∈ P2 ∪ P5

0 if ω ∈ P6.

In all other states of the world, the two networks are equivalent in the quality of informa-
tion aggregation. The incomplete network G2 leads to better information aggregation
than G1 as

∧
i∈V P t∗

iG2
is finer than

∧
i∈V P t∗

iG1
.33 This example shows that for some infor-

mation settings, incomplete networks yield better information aggregation than com-
plete networks by restricting communication, even though the duration to consensus is
(weakly) longer. ♦

Appendix B: Proofs

Proof of Proposition 1. Suppose c(·) satisfies union consistency and there exist ac-
tions al�ag ∈ A such that

al ∈ c(L) for all L ∈ L

ag ∈ c(G) for all G ∈ G�

By union consistency, we have

⋂
G∈G

c(G) = c

( ⋃
G∈G

G

)

33Please see Section 5 in the supplementary appendix for background on the learning process in this
example.
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and ⋂
L∈L

c(L) = c

( ⋃
L∈L

L

)
�

As the union over all sets in G equals the union over all sets in L, the choice correspon-
dence assigns the same set of actions

c

( ⋃
G∈G

G

)
= c

( ⋃
L∈L

L

)
�

implying by union consistency ⋂
G∈G

c(G) =
⋂
L∈L

c(L)

and thus

al ∈ c(L)∀L ∈ L ⇒ al ∈ c(G)∀G ∈ G

ag ∈ c(G)∀G ∈ G ⇒ ag ∈ c(L)∀L ∈ L� �

Lemma 1. For all agents i ∈ V and all periods t,

(Pi(ω)�ht
i(ω)) 	= (Pi(ω

′)� ĥt
i(ω

′))

implies

Iti (Pi(ω)�ht
i(ω))∩ Iti (Pi(ω

′)� ĥt
i(ω

′)) = ∅�

Proof. Let me first consider the case where Pi(ω) = Pi(ω
′) and ht

i(ω) 	= ĥt
i(ω

′). I use a

proof by induction. First I show that h2
i (ω) 	= ĥ2

i (ω
′) implies

I2
i (Pi(ω)�h2

i (ω))∩ I2
i (Pi(ω

′)� ĥ2
i (ω

′)) = ∅�

By definition of I2
i (Pi(ω)�h2

i (ω)),

I2
i (Pi(ω)�h2

i (ω)) = Pi(ω)∩
⋂
l∈Ni

⋃
D1

l (a
1
l ;ω; i)�

The equality Pi(ω) = Pi(ω
′) implies I 1

l (ω; i) = I 1
l (ω

′; i). Thus34 {⋃ D1
l (a;ω; i)}a∈A =

{⋃ D1
l (a;ω′; i)}a∈A form identical partitions of I 1

l (ω; i), which implies for a1
l 	= â1

l ,(⋃
D1

l (a
1
l ;ω; i)

)
∩ (⋃

D1
l (â

1
l ;ω′; i)) = ∅�

The inequality h2
i (ω) 	= ĥ2

i (ω
′) implies that there exists an agent l ∈ Ni such that a1

l 	= â1
l ,

which implies

I2
i (Pi(ω)�h2

i (ω))∩ I2
i (Pi(ω

′)� ĥ2
i (ω

′)) = ∅�

34Where a is such that D1
l (a;ω; i) 	= ∅.
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Suppose now that for all ht−1
i (ω) 	= ĥt−1

i (ω′), we have

It−1
i (Pi(ω)�ht−1

i (ω))∩ It−1
i (Pi(ω

′)� ĥt−1
i (ω′)) = ∅�

Take any ht
i(ω) 	= ĥt

i(ω
′). There are two cases to consider. The first case is where the his-

tory of actions in the previous period is unequal, ht−1
i (ω) 	= ĥt−1

i (ω′). By the induction
hypothesis, we have

It−1
i (Pi(ω)�ht−1

i (ω))∩ It−1
i (Pi(ω

′)� ĥt−1
i (ω′)) = ∅�

This, together with the fact that the information set of player i in period t is a subset of
the information set in period t − 1, i.e.,

Iti (Pi(ω)�ht
i(ω)) ⊂ It−1

i (Pi(ω)�ht−1
i (ω))

Iti (Pi(ω
′)� ĥt

i(ω
′)) ⊂ It−1

i (Pi(ω
′)� ĥt−1

i (ω′))�

yields the desired result

Iti (Pi(ω)�ht
i(ω))∩ Iti (Pi(ω

′)� ĥt
i(ω

′)) = ∅�

Now consider the case where ht
i(ω) 	= ĥt

i(ω
′) and ht−1

i (ω) = ĥt−1
i (ω′). This implies that

there are some agents l in i’s neighborhood who select a different action in period t − 1
under ht

i(ω) than under ĥt
i(ω

′), i.e., at−1
l 	= ât−1

l for some l ∈ Ni. The equality of histories

until time t − 1, ht−1
i (ω) = ĥt−1

i (ω′) implies

I t−1
l (ht−1

il (ω);ω) = I t−1
l (ĥt−1

il (ω′);ω′)

for all l ∈Ni. Thus the collection of sets {⋃ Dt−1
l (a;ht−1

il (ω);ω)}a∈A, {⋃ Dt−1
l (a; ĥt−1

il (ω′);
ω′)}a∈A constitutes identical partitions of

⋃
I t−1
l (ht−1

il (ω);ω). For any at−1
l 	= at

′−1
l , we

have (⋃
Dt−1

l (at−1
l ;ht−1

il (ω);ω)
)

∩
(⋃

Dt−1
l (at

′−1
l ;ht−1

il (ω′);ω′)
)

= ∅�

As the information set Iti (Pi(ω)�ht
i(ω)) is given by

Iti (Pi(ω)�ht
i(ω)) = Pi(ω)∩

⋂
l∈Ni

⋃
Dt−1

l (at−1
l ;ht−1

il (ω);ω)

and there are some l ∈Ni with at−1
l 	= ât−1

l , we have

Iti (Pi(ω)�ht
i(ω))∩ Iti (Pi(ω

′)� ĥt
i(ω

′)) = ∅�

Suppose now that Pi(ω) 	= Pi(ω
′). By definition of Iti (Pi(ω)�ht

i(ω)), we have for all t
and ω,

Iti (Pi(ω)�ht
i(ω)) ⊂ Pi(ω)�

thus implying

Iti (Pi(ω)�ht
i(ω))∩ Iti (Pi(ω

′)�ht
i(ω

′)) = ∅� �
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Lemma 2. For a pair of neighbors i ∈ V , j ∈ Ni, if⋃
I t ′+1
i (ht ′+1

ij (ω);ω) =
⋃

I t ′
i (h

t ′
ij(ω);ω)�

then there exists at
′
i ∈A such that

at
′
i = si(I

t ′
i )

for all It
′
i ∈ I t ′

i (h
t ′
ij(ω);ω).

Proof. Take any pair of information sets It
′
i � Î

t ′
i ∈ I t ′

i (h
t ′
ij(ω);ω). Suppose

si(I
t ′
i ) 	= si(Î

t ′
i )�

If It
′
i is the true information set of player i, he selects the action at

′
i = si(I

t ′
i ), leading to

Dt ′
i (a

t ′
i ;ht ′

ij(ω);ω) with

Ît
′
i /∈ Dt ′

i (a
t ′
i ;ht ′

ij(ω);ω)�

As I t ′+1
i (ht ′+1

ij (ω);ω) contains only elements It
′+1
i such that there exists an It

′
i ∈ Dt ′

i (a
t ′
i ;

ht ′
ij(ω);ω) with It

′+1
i ⊂ It

′
i and, by Lemma 1, I t ′

i (h
t ′
ij(ω);ω) is a disjoint collection of sets,

we have ⋃
I t ′+1
i (ht ′+1

ij (ω);ω)∩ Ît
′
i = ∅�

which yields a contradiction to⋃
I t ′
i (h

t ′
ij(ω);ω) =

⋃
I t ′+1
i (ht ′+1

ij (ω);ω)� �

Proof of Theorem 1. By Lemma 2, for all i ∈ V and their neighbors j, there exists at
′
i

such that

at
′
i = si(I

t ′
i )

for all It
′
i ∈ I t ′

i (h
t ′
ij(ω);ω). Thus at

′
i ∈ c(It

′
i ) for all It

′
i ∈ I t ′

i (h
t ′
ij(ω);ω). By Lemma 1, the set

of information sets {Iti (ω�ht
i(ω))}ω∈� is a disjoint collection of sets in each period t and

for every agent i, implying that I t
i (h

t
ij(ω);ω) is a collection of disjoint sets. Furthermore,

the true state ω is contained in Iti (ω�ht
i(ω)). Therefore, {Iti (ω�ht

i(ω))}ω∈� partitions the
state space �. Denote this partition as P t

i . Hence for two neighbors i, j, the union over
the set of possible information sets

⋃
I t
i (h

t
ij(ω);ω) equals the cell of the meet of parti-

tions in period t, ⋃
I t
i (h

t
ij(ω);ω) =

∧
l=i�j

P t
l (ω)�

which implies ⋃
I t
i (h

t
ij(ω);ω) =

⋃
I t
j (h

t
ij(ω);ω)�

The conditions of Proposition 1 are satisfied and thus for all pairs of neighbors i, j,

sj
(
It

′
j (Pj(ω)�ht ′

j (ω))
) = at

′
j ∈ c

(
It

′
i (Pi(ω)�ht ′

i (ω))
)
�
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In addition, the condition ⋃
I t
i (h

t
ij(ω);ω) =

⋃
I t ′
i (h

t ′
ij(ω);ω)

for all t ≥ t ′ implies

Iti (Pi(ω)�ht
i(ω)) = It

′
i (Pi(ω)�ht ′

i (ω))�

Thus local indifference holds for all periods t ≥ t ′. �

Lemma 3. The inequality (Pi(ω
′)�h∞

i (ω′)) 	= (Pi(ω
′′)�h∞

i (ω′′)) implies

I∞
i (Pi(ω

′)�h∞
i (ω′))∩ I∞

i (Pi(ω
′′)�h∞

i (ω′′)) = ∅�

Proof. Take any two distinct limit information sets I∞
i (Pi(ω

′)�h∞
i (ω′)) and I∞

i (Pi(ω
′′)�

h∞
i (ω′′)). For Pi(ω

′) 	= Pi(ω
′′), Lemma 1 implies for all periods t that

Iti (Pi(ω
′)�ht

i(ω
′))∩ Iti (Pi(ω

′′)�ht
i(ω

′′)) = ∅�

The definition of the limit set implies

I∞
i (Pi(ω

′)�h∞
i (ω′)) ⊂ Iti (Pi(ω

′)�ht
i(ω

′))

for all t and together we have

I∞
i (Pi(ω

′)�h∞
i (ω′))∩ I∞

i (Pi(ω
′′)�h∞

i (ω′′)) = ∅�

Suppose Pi(ω
′) = Pi(ω

′′) and h∞
i (ω′) 	= h∞

i (ω′′). The inequality of histories then implies

that there exists a t̂ such that ht̂
i(ω

′) 	= ht̂
i(ω

′′). Lemma 1 then yields

It̂i (Pi(ω
′)�ht̂

i(ω
′))∩ It̂i (Pi(ω

′′)�ht̂
i(ω

′′)) = ∅�

By definition of the limit set for each period t and each state ω′, we have

I∞
i (Pi(ω

′)�h∞
i (ω′)) ⊂ Iti (Pi(ω

′)�ht
i(ω

′))�

which implies

I∞
i (Pi(ω

′)�h∞
i (ω′))∩ I∞

i (Pi(ω
′′)�h∞

i (ω′′)) = ∅� �

Lemma 4. If I∞
i (Pi(ω

′)�h∞
i (ω′)) ∈ I ∞

i (h∞
ij (ω);ω), then

si
(
Iti (Pi(ω)�ht

i(ω))
) = si

(
Iti (Pi(ω

′)�ht
i(ω

′))
)

for each period t.

Proof. Consider a sequence of information sets {Iti (Pi(ω
′)�ht

i(ω
′))}t∈N that converges

to a limit set I∞
i (Pi(ω

′)�h∞
i (ω′)) in I ∞

i (h∞
ij (ω);ω). Suppose that for some period t, we

have

â= si
(
Iti (Pi(ω)�ht

i(ω))
) 	= si

(
Iti (Pi(ω

′)�ht
i(ω

′))
) = a′�
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which implies by Lemma 1 and the definition of Dt
i ( ) that

Iti (Pi(ω
′)�ht

i(ω
′))∩

(⋃
Dt

i (â;ht
i(ω);ω)

)
= ∅�

By definition,
⋃

I t+1
i (ht+1

ij (ω);ω) is a subset of
⋃

Dt
i (a

t
i;ht

i(ω);ω), implying

Iti (Pi(ω
′)�ht

i(ω
′))∩

(⋃
I t+1
i (ht+1

ij (ω);ω)
)

= ∅�

As It+1
i (Pi(ω

′)�ht+1
i (ω′)) ⊂ Iti (Pi(ω

′)�ht
i(ω

′)), we have

It+1
i (Pi(ω

′)�ht+1
i (ω′))∩

(⋃
I t+1
i (ht+1

ij (ω);ω)
)

= ∅�

yielding a contradiction with I∞
i (Pi(ω

′)�h∞
i (ω′)) ∈ I ∞

i (h∞
ij (ω);ω). �

Proof of Theorem 2. Define the set

A∞
i (ω) = {

a ∈A :a = si
(
Iti (Pi(ω)�ht

i(ω))
)

for infinite periods t
}
�

The set A∞
i (ω) consists of all actions that agent i selects infinitely often in state ω ac-

cording to his strategy. First I establish that the set A∞
i (ω) is contained in the set of

optimal actions for every I∞
i (Pi(ω

′)�h∞
i (ω′)) ∈ I ∞

i (h∞
ij (ω);ω), where j ∈ Ni. As each

information set I∞
i (Pi(ω)�h∞

i (ω)) contains at least one cell of the join, which is domi-
nant by assumption, dominance consistency implies that I∞

i (Pi(ω)�h∞
i (ω)) is a dom-

inant set. By definition of the information set in period t, we have Iti (Pi(ω)�ht
i(ω)) ⊂

It−1
i (Pi(ω)�ht−1

i (ω)). By definition of the limit information set I∞
i (Pi(ω)�h∞

i (ω)),

I∞
i (Pi(ω)�h∞

i (ω)) =
∞⋂
t=1

Iti (Pi(ω)�ht
i(ω))�

Therefore, the sequence {Iti (Pi(ω)�ht
i(ω))}∞t=1 satisfies the conditions of Definition 2.

Since the actions in A∞
i (ω) are optimal in infinitely many periods and the limit infor-

mation set I∞
i (Pi(ω)�h∞

i (ω)) is a dominant set under c, we have

A∞
i (ω) ⊂ c

(
I∞
i (Pi(ω)�h∞

i (ω))
)
�

For any information set I∞
i (Pi(ω

′)�h∞
i (ω′)) that is an element of I ∞

i (h∞
ij (ω);ω) and

every period t, we have, by Lemma 4,

si
(
Iti (Pi(ω)�ht

i(ω))
) = si

(
Iti (Pi(ω

′)�ht
i(ω

′))
)
�

which implies that all actions in A∞
i (ω) are optimal for every limit information set in

I ∞
i (h∞

ij (ω);ω) due to all limit information sets being dominant sets,

A∞
i (ω) ⊂ c(I∞

i )

for all I∞
i ∈ I ∞

i (h∞
ij (ω);ω). Applying the same reasoning for agent j ∈Ni yields

A∞
j (ω) ⊂ c(I∞

j )
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for all I∞
j ∈ I ∞

j (h∞
ij (ω);ω). By Lemma 3, the set of information sets, {I∞

i (ω�h∞
i (ω))}ω∈�

is a disjoint collection of sets, implying that I t
i (h

t
ij(ω);ω) is a collection of disjoint

sets. Furthermore, the true state ω is contained in I∞
i (ω�h∞

i (ω)). Therefore, {I∞
i (ω�

h∞
i (ω))}ω∈� = P ∞

i partitions the state space �. Hence for two neighbors i, j, the union
over the set of possible information sets

⋃
I ∞
i (h∞

ij (ω);ω) equals the cell of the meet of
the limit partitions of i and j,⋃

I ∞
i (h∞

ij (ω);ω) =
∧
l=i�j

P ∞
l (ω)�

which implies ⋃
I ∞
i (h∞

ij (ω);ω) =
⋃

I ∞
j (h∞

ij (ω);ω)�

Thus the conditions of Proposition 1 are satisfied for the collection of sets I ∞
i (h∞

ij (ω);ω)

and I ∞
j (h∞

ij (ω);ω), which implies

A∞
j (ω) ⊂ c(I∞

i )

for all I∞
i ∈ I ∞

i (h∞
ij (ω);ω) and thus for the true limit information set

A∞
j (ω) ⊂ c

(
I∞
i (Pi(ω)�h∞

i (ω))
)
�

concluding the proof. �

Proof of Theorem 3. I have to establish the three conditions of Proposition 1 so as
to prove the global indifference result. The set of possible information sets of agent i in
period t ′ from the perspective of all other agents is equal to

I t ′
i (h

t ′ ;ω) =
{
Pi ∩ CKt ′(ht ′ ;ω) :

Pi ∈ Pi

Pi ∩ CKt ′(ht ′ ;ω) 	= ∅

}
�

As Pi is a partition, I t ′
i (h

t ′ ;ω) is a collection of disjoint sets. Furthermore, for all agents
i� j ∈ V , ⋃

I t ′
i (h

t ′ ;ω) =
⋃

I t ′
j (h

t ′ ;ω)�

Thus the first two conditions of Proposition 1 are satisfied.
To establish the third condition of Proposition 1, I need to show that at

′
i is optimal

for all possible information sets of i in period t ′, at ′i ∈ c(It
′
i ) for all It

′
i ∈ I t ′

i (h
t ′ ;ω). I do so

by contradiction. Suppose there exists an Ît
′
i ∈ I t ′

i (h
t ′�ω) such that at

′
i /∈ c(Ît

′
i ), implying

⋃
Dt ′

i (a
t ′
i ;ht ′ ;ω)∩ Ît

′
i = ∅�

The definition

CKt ′+1(ht ′+1;ω) =
⋂
i∈V

⋃
Dt ′

i (a
t ′
i ;ht ′ ;ω)�
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then yields

CKt ′+1(ht ′+1;ω)∩ Ît
′
i = ∅�

contradicting the assumption that common learning ends in period t ′, i.e., contradicting

CKt ′+1(ht ′+1;ω) = CKt ′(ht ′ ;ω)�

I have now established the three conditions of Proposition 1. Together with the as-
sumption of a union consistent choice correspondence, we have the global indifference
result. �

B.1 Proving Theorem 4

B.1.1 Construction of uniform probability measure Before presenting the proof, let me
construct the uniform probability measure μ on the simplex 	(K). The simplex is a
convex subset of an affine hyperplane in R

k with dimension k − 1. Hence its Lebesgue
measure in R

k is equal to zero. I define a probability measure μ in the following steps.
Consider a rotation r :	(K) → R

k such that for all p�p′ ∈ 	(K),

[r(p)]1 = [r(p′)]1�

Next project each r(p), p ∈ 	(K) on R
k−1:

projK\{1} : r(	(K)) → R
k−1�

Let λk−1 be the Lebesgue measure in R
k−1 and denote by B(Rk) the Borel σ-algebra in

R
k. Define the σ-algebra of subsets of 	(K), F(	(K)) as

F(	(K)) = {M ∩	(K) :M ∈ B(Rk)}�
For the measurable space (	(K)� F(	(K))), define measure λ as

λ(S)= λk−1(projK\{1}r(S))

for S ∈ F(	(K)). From the measure λ, construct a probability measure μ in the usual
manner; for S ∈ F(	(K)),

μ(S)= λ(S)

λ(	(K))
�

Proof of Theorem 4. Consider the partition

P =
{{∨

i∈V
Pi(ω)∩Q

}
ω∈�

�

{∨
i∈V

Pi(ω)∩QC

}
ω∈�

}
�

The cardinality of P equals k and K = {1� � � � �k}. The partition P can be divided into
partitions PQ and PQC , where

PQ = {P ∈ P :P ∩Q = P}
PQC = {P ∈ P :P ∩QC = P}�
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Each element p of the simplex 	(K) is a probability measure over the cells of parti-
tion P . Consider the power set of the join 2

∨
i∈V Pi . The information set of each agent is

an element of 2
∨

i∈V Pi for every state of the world and every history of announcements.
Consider an information set I ∈ 2

∨
i∈V Pi such that

I ∩ P = ∅ for all P ∈ PQ

or

I ∩ P = ∅ for all P ∈ PQC �

For such an information set, the agent knows with certainty whether Q has occurred.
The agent does not change his opinion any more and his posterior conditioning on his
information is the eventual consensus belief. In the following expression, consider only
information sets I ∈ 2

∨
i∈V Pi where agents do not know the occurrence of event Q with

certainty, i.e.,

I ∩ P 	= ∅� I ∩ P ′ 	= ∅

for some P ∈ PQ and P ′ ∈ PQC . For a given information set I, let fI :	(K) → [0�1] denote
the posterior probability of event Q conditioning on I for a given probability measure:

fI(p) =
∑

P∈PQ s�t� P⊂Ip(P)∑
P∈PQ s�t� P⊂Ip(P)+ ∑

P∈P
QC s�t� P⊂Ip(P)

�

The function fI is continuous. For two different information sets I 	= I ′, consider the set
of probability measures SII′ ∈ Lk(	(K)) that lead to the same conditional probability:

SII′ = {p ∈ 	(K) : fI(p)= fI′(p)}�
Equivalent transformations yield

SII′ =
{
p ∈ 	(K) :

∑
PQ⊂I

p(PQ)×
( ∑
P
QC ⊂I ′

p(PQC )

)
=

∑
PQ⊂I ′

p(PQ)×
( ∑
P
QC ⊂I

p(PQC )

)}
�

where PQ denotes a typical element of PQ and PQC denotes a typical element of PQC .
Define the function

fII′(p) =
∑
PQ⊂I

p(PQ)×
( ∑
P
QC ⊂I ′

p(PQC )

)
−

∑
PQ⊂I ′

p(PQ)×
( ∑
P
QC ⊂I

p(PQC )

)
�

Therefore, fII′(p) equals zero if and only if p ∈ SII′ . It is easy to see that fII′ is surjective.
I need to establish that SII′ has probability zero in 	(K). Consider the following open
sets in the codomain: (−ε�0), (0� ε), and (−ε� ε). As fII′ is continuous and surjective, the
preimage of each of these sets is an open ball in 	(K). Note that open balls in 	(K) cor-
respond to open balls in R

k−1 in the mapping described in the previous subsection on
the construction of the uniform probability measure. The preimage of the open interval
(−ε� ε) can be partitioned into the preimages of (−ε�0), {0}, and (0� ε). As the preimage
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of (−ε� ε) is open, for each p ∈ f−1
II′ (0), there exists a radius r̄p such that for all open balls

Br(p) in 	(K) with r < r̄p, we have p′ ∈ Br(p) implies that p′ lies in f−1
II′ (0), f−1

II′ ((−ε�0)),
or f−1

II′ ((0� ε)). Therefore, each p ∈ SII′ is either an interior point of SII′ or a boundary
point of f−1

II′ ((−ε�0)) or f−1
II′ ((0� ε)) (or both). But open balls in the Euclidean space are

Jordan measurable and, therefore, their boundary has Lebesgue measure zero. Hence,
if projK\{1}(r(SII′)) has positive measure in R

k−1, its interior is nonempty, which implies
that there exists an open ball Br(p) in 	(K) such that p > �0 and for every p̂ ∈ Br(p), we
have p̂ ∈ SII′ . There are three cases to consider. The first case is given by I∪I ′ 	=�. With-
out loss of generality, there exists P ′ ∈ P such that P ′ ⊂ I \ I ′. Furthermore, there exists
P ′′ ∈ P such that P ′′ ⊂ {I ∪ I ′}C . Consider the following probability measure p̂ ∈ Br(p)

where only the probabilities of P ′ and P ′′ are adjusted:

p̂(P ′) = p(P ′)+ ε

p̂(P ′′) = p(P ′′)− ε�

Then fII′(p) = 0 implies fII′(p̂) 	= 0, establishing a contradiction. The second case is
given by I ∪ I ′ = � and I ′ ⊂ I, and the third case is given by I ∪ I ′ = �, ¬(I ′ ⊂ I) and
¬(I ⊂ I ′). Arguments similar to those above lead to contradictions with the claim that
all probability measures in Br(p) lie in SII′ in both of the remaining cases. As the power
set of the join is finite, there are finitely many pairs I, I ′ involving subsets of the power
set of the join. For each of these finitely many pairs, the corresponding set of probability
measures that lead to the same posterior announcement has probability zero. There-
fore, the union over all sets SII′ has probability zero as well, which implies that almost
surely [μ] the probability measure p leads to a different posterior announcement for
each information set in the power set of the join.35 Hence all agents reveal their infor-
mation set almost surely in every period. Consider two agents i, j with distance d(i� j) in
the graph. It takes d(i� j)+1 periods for them to mutually (commonly) learn each others’
realized partition cell. Let d(G) denote the diameter of the graph. Therefore, consen-
sus and common knowledge of the realized cell of the join are established in d(G) + 1
periods. �
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