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Strategy-proof voting for multiple public goods
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In a voting model where the set of feasible alternatives is a subset of a prod-
uct set A = A1 × · · · × Am of m finite categories, we characterize the set of all
strategy-proof social choice functions for three different types of preference do-
mains over A, namely for the domains of additive, completely separable, and
weakly separable preferences over A.
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1. Introduction

In this paper, we consider the issue of strategy-proofness in a voting model where agents
vote for alternatives from several categories simultaneously. To be precise, the voters
face m finite categories Ak of alternatives (k = 1� � � � �m), and the purpose of the voting
is to choose one element from the product set A = A1 × · · · × Am. If these m choices
are entirely independent, one can of course consider the choice from each category
Ak separately, and the strategy-proof voting procedures for such “one-dimensional”
social choice problems are well known: when Ak contains three or more eligible
alternatives, then it follows from the Gibbard–Satterthwaite theorem (Gibbard 1973,
Satterthwaite 1975) that only the dictatorial voting procedures are strategy-proof, and
when Ak contains exactly two eligible alternatives, then a voting procedure is strategy-
proof if and only if it is “voting by committees” (see Barberà et al. 1991). In this study,
however, we consider the simultaneous choice from m categories because we want to
allow explicitly for the possibility that these m choices cannot be made completely in-
dependently, but that they must be coordinated to some extent.

Such a need for coordination can come up for different reasons, as illustrated by the
following examples. First, one of the most common reasons is that the overall choice
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from the product set must be balanced in some sense. This can be due to exogenous
constraints such as budget restrictions; for example, if the categories Ak represent levels
of spending on different parts of the public sector such as infrastructure, public educa-
tion, health care, etc., then budget limitations usually exclude the simultaneous choice
of expensive alternatives from several categories. Alternatively, the balanced choice can
be the consequence of fundamental values among the voters that are incorporated in
the voting procedure; for example, if a committee has to decide how m open positions
at a department (which are represented by the m categories Ak) are to be filled and if
an even distribution of sex or age of the staff is considered important, then the com-
mittee will probably want to use a voting procedure that avoids unbalanced outcomes.
Second, another important reason for coordination may be that certain categories are
complementary to some extent. For example, if a laboratory must decide between dif-
ferent research projects (which correspond to the alternatives in A1), employ a research
manager (A2), choose among different kinds of equipment (A3), etc., then each alter-
native in A1 typically is meaningful only with certain choices from A2 and A3, but not
with others. Finally, a third important reason for coordination we want to mention here
is that, in many societies, basic constitutional principles put restrictions on laws and
necessitate coordination. This is the case, for example, when a parliament has to de-
cide what civil rights to assign to different groups in the society that are distinguished by
characteristics such as age, gender, nationality, etc. In this case, Ak consists of different
possible bundles of rights for group k (e.g., no rights, basic level of rights, full rights in-
cluding franchise, membership in social security and pension system, etc.). According
to many constitutions, the assignment of civil rights must inter alia be such that citizens
get at least as many rights as residents without citizenship, and if two groups differ only
in gender, then these two groups must receive the same bundle of rights.

The need for coordination can thus be of a very different nature, but from a general
perspective, coordination across different categories always means that certain com-
binations of alternatives are excluded from being elected. Formally, this means that
the set of all feasible outcomes of the voting is, in general, not the entire product set
A = A1 × · · · × Am, but rather a proper subset of it, and in our voting model, the range
of the voting can be any arbitrary nonempty subset of A.

If the voters can rank the possible outcomes of such a constrained multiple good
voting in any conceivable way, then it follows, again by the Gibbard–Satterthwaite the-
orem, that only the dictatorial voting procedures are strategy-proof, at least if there are
more than two possible outcomes. But when eligible alternatives are multiple public
goods, as in the model in this paper, it is common to assume that voters’ preferences
over A = A1 × · · · ×Am, in addition to being rational, also exhibit some kind of separa-
bility structure. In the literature on multiple public good voting, one finds mainly three
different types of separability assumptions on voters’ preferences, namely weak separa-
bility, complete separability, and additivity. We consider our voting model for all of these
three preference structures.

The discussion so far indicates that two factors are central to our considerations: on
the one hand, the structure of the set of feasible outcomes of a voting, and on the other
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hand, the structure of individual preferences. In our analysis it turns out that the ex-
tent to which it is possible to construct strategy-proof voting procedures for constrained
multiple public good voting depends crucially on these two factors and their interplay.
In the literature closest to this paper, the role of these two factors is analyzed in the pa-
pers Barberà et al. (2005) and Svensson and Torstensson (2008), both of which consider
basically the same voting model as in our study, but under additional assumptions on
the cardinality of the categories Ak. Barberà et al. (2005) characterize all strategy-proof
social choice functions (SCFs) for constrained multiple public good voting for both ad-
ditive and weakly separable preferences under the assumption that every category Ak

contains exactly two alternatives. Svensson and Torstensson (2008) assume instead that
every category Ak contains at least three alternatives, and they provide a complete char-
acterization of all strategy-proof SCFs for completely separable preferences. There is, of
course, an obvious theoretical interest in finding corresponding characterizations for
the general case (i.e., without any restrictions on the number of alternatives in the cate-
gories Ak); additionally, the examples above indicate that the cardinality restrictions in
these previous results cannot generally be expected to be satisfied. The purpose of this
paper is to remove these cardinality restrictions and to characterize all strategy-proof
SCFs for constrained multiple public good voting for weakly separable, completely sep-
arable, and additive preferences without imposing any additional assumptions.

Our characterization of the strategy-proof SCFs is based on a description of the range
of the SCFs. Thereby, we make extensive use of the following result from Svensson and
Torstensson (2008), which allows us to express the functional structure of the strategy-
proof SCFs in an easily understandable way: If f is an SCF whose range Rf is a subset of
the product set A=A1 × · · · ×Am, then there is a unique maximal decomposition Rf =
B1 × · · · ×Bq of the range into q ≤ m components. To construct nondictatorial strategy-
proof SCFs for multiple public good voting, it is natural to try to divide the choice from
the entire product set A into a number of independent choices from subcollections of
categories Ak, and the maximal range decomposition B1 × · · · × Bq provides the upper
bound for how far the choice can be decomposed.

When preferences are additive or completely separable, voters consider the ele-
ments in each component Bj independently of the other components. For these prefer-
ence structures, we can show (Theorem 1 and Theorem 2) that an SCF f is strategy-proof
if and only if f can be decomposed into q independent choices from the q components
Bj in the maximal range decomposition of f , and the choice from every component Bj

is made in a strategy-proof way. To be precise, f is strategy-proof if and only if f is dicta-
torial on every component Bj with three or more elements (where different such com-
ponents can have different dictators), and voting by committees on every component
Bj with two elements. In particular, this means that the purely dictatorial result from
the Gibbard–Satterthwaite theorem can be avoided when the maximal range decompo-
sition of f contains at least two components. Our characterization of the strategy-proof
SCFs for additive and completely separable preferences may appear intuitive, but it can-
not be obtained by applying the standard results for strategy-proof voting procedures
to each of the components Bj in the maximal range decomposition, because if such a
component covers two or more of the categories in the product set A, then the domain
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of (marginal) preferences on this component is not unrestricted and, therefore, it is not
a priori obvious which SCFs are strategy-proof on Bj . Instead, we present a proof tech-
nique that allows us to simplify the structure of the domain of marginal preferences on
every component Bj considerably, and we hope that this proof strategy turns out to be
fruitful in connection with other problems as well.

When preferences are weakly separable, we require only that voters rank the alter-
natives in every category Ak independently of the other categories, but the same need
no longer be true for the elements in a component Bj . But if the voters’ rankings of
the elements in a component Bj depend on which elements are chosen from the other
components, then it is intuitively reasonable that every nondictatorial decomposed SCF
provides incentives for strategic voting. This is indeed the case, and we show that for all
nontrivial range restrictions, only the dictatorial SCFs are strategy-proof (Theorem 3),
which means that we get back to the conclusion of the Gibbard–Satterthwaite theorem
when preferences are weakly separable.

This paper is organized as follows: Section 2 introduces the social choice model.
Section 3 provides our characterizations of strategy-proof SCFs for constrained multiple
good voting for the three cases when voters’ preferences are either additive, completely
separable, or weakly separable. Section 4, finally, contains a discussion of the related
literature and some concluding comments. All proofs are collected in the Appendix.

2. The social choice model and some important results from the literature

2.1 The basic model

The basic formal framework of this study is as follows. Let N = {1� � � � � n} be a finite
society of n individuals, who consider a finite set A of social alternatives. The individuals
have complete, transitive, and asymmetric1 preferences over the alternatives in A, and
the preference of individual i is denoted by Pi. The set of all admissible preferences over
A is denoted by PA, and PA is referred to as the preference domain; normally, PA is
a proper subset of the set of all complete, transitive, and asymmetric preferences. If
P ∈ PA and B ⊂ A is a subset of A, then τB(P) denotes the (unique) maximal element
of P in B, i.e., τB(P) ∈ B and τB(P) P b for all b ∈ B \ {τB(P)}; in particular, τA(P) is
the unrestricted maximal element of P in A. The preferences of the n individuals are
collected in a (preference) profile (P1� � � � �Pn) ∈ Pn

A, and so as to focus on individual i’s
preference, the profile (P1� � � � �Pn) is sometimes rewritten as (Pi�P−i), where P−i ∈ Pn−1

A

thus denotes the profile of all individuals except individual i.
A social choice function (SCF) is a mapping f : Pn

A → A that assigns to every profile
(P1� � � � �Pn) ∈ Pn

A a unique social choice a ∈ A. For a given SCF f , the set of all alter-
natives that can be attained by f is denoted by Rf , i.e., Rf = {a ∈ A :a = f (P1� � � � �Pn)

for some (P1� � � � �Pn) ∈ Pn
A}, and Rf is called the range of f . An SCF f : Pn

A → A is ma-
nipulable at the profile (P1� � � � �Pn) ∈ Pn

A if there is some i ∈ N and some P ′
i ∈ PA such

1A preference P on A is complete if for all a�a′ ∈ A, a �= a′, either a P a′ or a′ P a; P is transitive if a P a′
and a′ P a′′ implies a P a′′ for all a�a′� a′′ ∈ A. Finally, P is asymmetric if, for all a�a′ ∈ A, a P a′ implies that
a′ P a does not hold.
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that f (P ′
i� P−i) Pi f (Pi�P−i). If f cannot be manipulated at any admissible profile, then

f is strategy-proof. Finally, f : Pn
A → A is dictatorial if there is some i ∈ N such that

f (Pi�P−i) = τRf
(Pi) for all (Pi�P−i) ∈ Pn

A.
In this formal framework, the theoretical starting point for our study is the well

known Gibbard–Satterthwaite theorem (Gibbard 1973, Satterthwaite 1975).

The Gibbard–Satterthwaite Theorem. Let A be a finite set of alternatives, and sup-
pose that the preference domain PA consists of all complete, transitive, and asymmetric
preferences over A. Then f : Pn

A → A with #Rf ≥ 3 is strategy-proof if and only if f is
dictatorial.

2.2 The model with multiple public goods

The basic model is now extended by imposing a product set structure on the set of alter-
natives. To be precise, there are m< ∞ finite and nonempty categories Ak (1 ≤ k ≤ m),
indexed by the set M = {1� � � � �m}, and the set of alternatives is A = ∏

k∈M Ak. Thus,
an alternative is now an m-tuple a = (a1� � � � � am) of m public goods, and if a ∈ A, then
ak ∈ Ak denotes the public good in a that is chosen from category k. If S ⊂ M is a
nonempty subset of the set of coordinate indices, we denote by AS the product set of
the corresponding categories, i.e., AS = ∏

k∈S Ak. The projection from A onto AS is de-
noted by πAS

:A → AS , so for a ∈ A, πAS
(a) is the suballocation of a that belongs to the

categories corresponding to S; for the special case when S = {k} for some k ∈M , we write
πAk

instead of πA{k} . If a ∈ A and S ⊂ M , we can decompose a as a = (aS�a−S), where
aS = πAS

(a) and a−S = πAM\S (a); in the special case when S = {k}, we write a = (ak�a−k).
Consider now the preference domain PA. When A is a product set, it is often rea-

sonable to assume that not all conceivable preferences over A belong to PA, but that
PA instead exhibits a structure that takes the product set structure of A into account.
In the literature, there are mainly three types of preference domains that are commonly
considered.

1. Additive preferences. A complete, transitive, and asymmetric preference P on A =∏
k∈M Ak is additive if there exist m functions uk :Ak → R, k ∈ M , such that the

utility function u :A → R defined by u(a) = ∑
k∈M uk(ak) represents P . The set of

all additive preferences over A is denoted by P add
A .

2. Completely separable preferences. Given a nonempty collection S ⊂ M of cate-
gories, a complete, transitive, and asymmetric preference P on A = ∏

k∈M Ak is
separable with respect to S if the ranking of P of the elements in AS is independent
of the categories M \ S. Formally, P is separable with respect to S if for all a�a′ ∈ A,
we have (aS�a−S)P (a′

S�a−S) if and only if (aS�a′
−S)P (a′

S�a
′
−S). IfP is separable with

respect to S, then P induces a well defined preference on AS , called the marginal
preference of P on AS and denoted by πAS

(P), which satisfies aS πAS
(P)a′

S for
aS�a

′
S ∈ AS if and only if (aS�a−S) P (a′

S�a−S) for some a−S ∈ AM\S . A preference
P on A is completely separable if P is separable with respect to every nonempty
subset S ⊂ M , and the set of all completely separable preferences on A is denoted
by P cs

A .
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3. Weakly separable preferences. A complete, transitive, and asymmetric preference
P on A = ∏

k∈M Ak is weakly separable if the ranking of the alternatives in every
category Ak is independent of the categories M \ {k}, i.e., if P is separable with
respect to {k} for every k ∈ M . The set of all weakly separable preferences on A is
denoted by P ws

A .

From these definitions, it follows immediately that P add
A ⊂ P cs

A ⊂ P ws
A . However, the

converse inclusions do not hold in general: Bradley et al. (2005) show that the inclu-
sion P add

A ⊂ P cs
A is strict if A contains m ≥ 5 categories with #Ak ≥ 2,2 and the following

example illustrates why the inclusion P cs
A ⊂ P ws

A is strict whenever m≥ 3.

Example 1. Let A= {0�1} × {0�1} × {0�1}. If the preference P on A is such that

(1�1�1) P (1�1�0) P (1�0�1) P (1�0�0)
(1)

P (0�1�1) P (0�1�0) P (0�0�1) P (0�0�0)�

then it is easily checked that the utility function u(a) = 4a1 + 2a2 + a3 represents P , so P

is additive, and hence also completely and weakly separable.
Alternatively, if P is defined by

(1�1�1) P (0�1�1) P (1�0�1) P (0�0�1)
(2)

P (1�1�0) P (1�0�0) P (0�1�0) P (0�0�0)�

then in every category, 1 is preferred to 0 for every fixed pair of alternatives from the
other two categories, and hence P is weakly separable. But the ranking of the pairs (0�1)
and (1�0) in the first two categories depends on whether the third coordinate is 0 or 1,
and, therefore, P is neither completely separable nor additive. ♦

Example 1 can also be used to explain the differences between the three domains
P ws
A , P cs

A , and P add
A in a more intuitive way. Suppose, for example, that the three cat-

egories in A = {0�1}3 correspond to three candidates under consideration for employ-
ment, and that ak = 1 indicates that candidate k is employed, while ak = 0 represents
the opposite. In this context, weak separability means that each candidate is evaluated
independently of whether the other candidates are employed; this condition is met in
both (1) and (2), where all three candidates are considered appropriate for employment.
Complete separability requires here that, in addition, the relative ranking of any two
candidates does not depend on whether the third candidate is employed; for example,
in (1), candidate 1 is unambiguously preferred to candidate 2 in the sense that both
(1�0�0) P (0�1�0) and (1�0�1) P (0�1�1). This requirement may be violated if there is
some interplay between the candidates; for example, if candidate 1 is considered more
skilled than candidate 2, but candidate 2 is able to cooperate much more efficiently with
candidate 3, then it is possible that (0�1�1) P (1�0�1) despite (1�0�0) P (0�1�0), as in (2)

2In a classical paper, Debreu (1960) shows however, that in the “continuous” case, for example, when

A = Rm+ and preferences are continuous, the identity P add
A = P cs

A holds.
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where the preference is only weakly, but not completely separable. Finally, if preferences
are completely separable, it is often convenient to impose also the structure of additivity
as a technical assumption to obtain a tractable representation of preferences.

2.3 The maximal range decomposition and some special SCFs

Consider now an SCF f : Pn
A → A. It is, of course, possible that the range of f equals the

entire product set A, but for reasons illustrated in the Introduction, it is also of partic-
ular interest to consider the case when Rf is a proper subset of A. Therefore, we now
describe the structure of subsets of A. If B ⊂ A is a proper subset of the product set A,
then B can also be considered as a product set, simply because the entire set B can
be seen as a product set with only one factor, but in many cases there exists a product
set decomposition B = B1 × · · · × Bq of B into q components Bj (1 ≤ j ≤ q) that is finer
than the one-factor product set B, but coarser than the complete decomposition into
m factors. Formally, that B1 × · · · × Bq is a decomposition of B means that for every Bj

(j = 1� � � � � q), there exists a corresponding set of coordinates C(Bj) ⊂ M “covered” by Bj

such that (i) Bj ⊂ ∏
k∈C(Bj)

Ak, (ii) C(Bj)∩C(Bj′)= ∅ for all j �= j′, (iii)
⋃

1≤j≤q C(Bj) =M ,
and (iv) B and B1 ×· · ·×Bq are equal as sets. A decomposition B = B1 ×· · ·×Bq is maxi-
mal if there exists no decomposition B = B′

1 × · · · ×B′
q′ with q′ > q components. It turns

out that every subset of A has a unique maximal decomposition.

Svensson and Torstensson’s (2008) Proposition 1. Let B ⊂ ∏
k∈M Ak. Then there

is a decomposition B = B1 × · · · × Bq̄ such that the number q̄ is maximal. For the maxi-
mal q̄, the various components Bj (j = 1� � � � � q̄) are unique. If B = B′

1 ×· · ·×B′
q′ is another

decomposition of B, then for all j and j′, C(Bj) ⊂ C(B′
j′) if C(Bj)∩C(B′

j′) �= ∅.3

In some cases, B is its own maximal decomposition (i.e., q̄ = 1), and then B is called
indecomposable; for example, B = {(0�0)� (0�1)� (1�0)} is an indecomposable subset of
A = {0�1} × {0�1}. At the other extreme, the maximal decomposition of a subset can
have at most q = m components, which, of course, is the case when B = A, but this
can also happen for proper subsets of A: for example, B = {0�1} × {0} is a proper sub-
set of A = {0�1} × {0�1} with q = m = 2. The following example illustrates the maximal
decomposition of a subset in a nontrivial case.

Example 2. Let A = {0�1} × {0�1} × {0�1} and set B = A \ {(1�1�0)� (1�1�1)}. This
means that B is obtained by excluding exactly those two alternatives from A whose
first two coordinates are (1�1). Thus, we have the decomposition B = B1 × B2, where
B1 = {(0�0)� (0�1)� (1�0)} and B2 = {0�1}, with C(B1) = {1�2} and C(B2) = {3}. Since it
is not possible to decompose B further, B1 × B2 is the unique maximal decomposition
of B. ♦

3This result can be considered as a set-theoretical counterpart to the fundamental theorem of arithmetic,
which states that every integer greater than 1 has a unique prime factor decomposition.
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In connection with product set decompositions, we also use the following notation:
if B1 × · · · ×Bq is a decomposition of a subset B ⊂ A, then we denote by πBj the projec-
tion of A onto the categories covered by Bj , i.e., πBj = πAC(Bj)

, and the complementary

projection is denoted by π−Bj , i.e., π−Bj = πAM\C(Bj)
.

In addition to the types of separable preferences defined above, we also use the fol-
lowing notion to indicate when the separability of a preference is compatible with a de-
composition of a subset B of A: a preference P on A is componentwise separable with
respect to the decomposition B1 × · · · × Bq of B ⊂ A if P is separable with respect to
C(Bj) for every j = 1� � � � � q.

We now define some special functional forms of SCFs for multiple public good vot-
ing. If the set of feasible alternatives is a proper subset of A = ∏

k∈M Ak, then it is, in
general, not possible to decompose the voting completely in the sense that the individ-
uals in the society make independent choices from the m categories, because this may
lead to infeasible alternatives. But if the set of feasible alternatives is decomposed as
B1 × · · · × Bq, then society can choose without restrictions from every component Bj ,
and the choices from the different components can be combined in any conceivable
way. Consider now f : Pn

A →A and let Rf = B1 × · · · ×Bq be some decomposition of Rf ,
which is not necessarily maximal. We say that f is dictatorial on a component Bj if there
is some individual i, called the dictator on Bj , such that πBj (f (Pi�P−i)) = πBj (τRf

(Pi))

for all profiles (Pi�P−i) ∈ Pn
A. It is possible that f is dictatorial on some components Bj

but not on others, and two components Bj and Bj′ can have different individuals as dic-
tators. If the same individual i is a dictator on every component Bj (j = 1� � � � � q), then f

is, of course, dictatorial in the usual sense.
For components with exactly two elements, one can define the following special

form of voting rule: If #Bj = 2 for some Bj in Rf = B1 × · · · × Bq, i.e., Bj = {b1
j � b

2
j }, then

f : Pn
A → A is voting by committees on Bj if there exist two nonempty families Wb1

j
and

Wb2
j

of nonempty subsets of N , called the winning coalitions for b1
j and b2

j , such that for

s = 1�2 and all (P1� � � � �Pn) ∈ Pn
A, we have

πBj (f (P1� � � � �Pn)) = bsj ⇔ {
i ∈N :πBj (τRf

(Pi)) = bsj
} ∈ Wbsj

�

and, in addition, Wbsj
satisfies coalition monotonicity in the sense that if I ∈ Wbsj

and

I ⊂ J ⊂ N , then also J ∈ Wbsj
. Intuitively, coalition monotonicity means that increasing

the support for a certain alternative must not worsen that alternative’s chances to be
elected. A common example of voting by committees is voting by quota, where one of the
alternatives, say b1

j , needs to get the support of a quota Q ∈ [0�1] from the individuals to
be elected, i.e., I ∈ Wb1

j
if and only if #I/n≥Q, and the special case Q = 1/2 corresponds

of course to the majority rule. Another example of voting by committees is obtained
when f is dictatorial on Bj with individual i being the dictator, and in this case I ∈ Wbsj

if

and only if {i} ⊂ I (s = 1�2). For the case when #Ak = 2 for all k ∈ M , the domain PA is
either the domain of additive or weakly separable preferences, and f : Pn

A → A is onto,
Barberà et al. (1991) show that f is strategy-proof if and only if f is voting by committees
on every Ak.
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We conclude this section with a result from the literature that characterizes all
strategy-proof SCFs on the domain of additive preferences in the presence of arbitrary
range restrictions, but under the additional requirement that every category contains
exactly two alternatives; this result is used in the following analysis.

Barberà et al.’s (2005) Theorem 1.4 Let A = ∏
k∈M Ak be a product set of alternatives

with #Ak = 2 for all k ∈ M . An SCF f : (P add
A )n → A is strategy-proof if and only if f

has the following properties with respect to its maximal range decomposition Rf = B1 ×
· · · ×Bq.

(i) If #Bj = 2, then f is voting by committees on Bj (1 ≤ j ≤ q).

(ii) If #Bj ≥ 3, then f is dictatorial on Bj (1 ≤ j ≤ q).

3. Strategy-proof voting for multiple public goods under range

restrictions

We now provide complete characterizations of the strategy-proof SCFs for multiple pub-
lic good votings with arbitrary range restrictions for the three cases when preferences are
additive, componentwise separable, or weakly separable.

3.1 Additive preferences

For the domain of additive preferences, Theorem 1 in Barberà et al. (2005) provides,
under the additional assumption that every category contains exactly two alternatives,
the complete characterization of the strategy-proof SCFs for constrained multiple public
good voting cited in the previous section. It turns out that the same characterization also
holds in the absence of the restriction #Ak = 2 (k ∈M), and we have the following result.

Theorem 1. Let A = ∏
k∈M Ak be a product set of m finite categories Ak. An SCF

f : (P add
A )n → A is strategy-proof if and only if f has the following properties with respect

to its maximal range decomposition Rf = B1 × · · · ×Bq.

(i) If #Bj = 2, then f is voting by committees on Bj (1 ≤ j ≤ q).

(ii) If #Bj ≥ 3, then f is dictatorial on Bj (1 ≤ j ≤ q).

4We have reformulated this result in the language of our model so as to apply and generalize this result
appropriately. In the original voting model in Barberà et al. (2005), society must choose a subset of a set of
m different objects under the constraint that not all possible subsets are feasible. Identifying each subset
of the m objects with a binary m-dimensional characteristic vector, this voting problem of course turns out
to be equivalent to choosing one element from the product set A = {0�1}m. Furthermore, the terminology
in Barberà et al. (2005) translates as follows: sections and active components in Barberà et al. (2005) are
called components Bj and elements in Bj , respectively, in our model, and for the range of the SCF, Barberà
et al. (2005) obtain a minimal Cartesian decomposition (in the sense that no section can be decomposed
further), which corresponds to our maximal range decomposition (where “maximal” refers to the number
of components). Moreover, in Barberà et al. (2005), the SCF is defined by coordinatewise voting with coor-
dination conditions on the winning coalitions so as to meet the range restrictions, while we define the SCF
componentwise, which makes the coordination conditions redundant.
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Theorem 1 states that a strategy-proof SCF f : (P add
A )n → A with maximal range de-

composition Rf = B1 × · · · × Bq must be componentwise decomposable in the sense
that the choice from every component depends only on the individuals’ marginal pref-
erences over that component, which of course are well defined when preferences are
additive. Moreover, to obtain strategy-proofness for the entire choice from Rf , it is nec-
essary and sufficient that the choice on every component is strategy-proof according to
the results for “one-dimensional” voting, which means that f must be voting by com-
mittees on components with two elements and dictatorial on components with three
or more elements. Note, however, that the second part of this result does not follow di-
rectly from the Gibbard–Satterthwaite theorem because if #C(Bj)≥ 2, then additivity of
preferences implies that the domain of marginal preferences on Bj is not unrestricted,
and hence the Gibbard–Satterthwaite theorem cannot be applied to components with
three or more elements. Instead, Theorem 1 can be derived from the corresponding re-
sult in Barberà et al. (2005) when the choice problem in Theorem 1 is reformulated in
a convenient way, which is explained in the following example. In the formal proof of
Theorem 1, which is provided in the Appendix, the arguments from Example 3 are made
rigorous and general.

Example 3. Consider the product set A = A1 ×A2 ×A3, where Ak = {ak1� ak2� ak3} for
k = 1�2�3. To rewrite the social choice problem of choosing one alternative from A into
a multiple binary choice problem, start by identifying the alternatives in each category
Ak with binary unit vectors of length three as follows:

ak1 ↔ (1�0�0)� ak2 ↔ (0�1�0)� ak3 ↔ (0�0�1)� k= 1�2�3�

Then every a ∈ A can be identified with a binary vector of length 9 by joining the bi-
nary unit vectors corresponding to its three coordinates; for example, a = (a12� a23� a31)

corresponds to (0�1�0�0�0�1�1�0�0). In this way, A can be identified with a proper sub-
set of the binary product set Ā = {0�1}9. Next, if P̄ is a preference on Ā, we associate
P̄ with that preference P on A that ranks the alternatives in A in the same way as P̄

ranks the corresponding alternatives in Ā.5 Thereby, the additive preferences on Ā are
associated with additive preferences on A: If P̄ ∈ P add

Ā
is represented by the utility func-

tion ū = ∑9
l=1 ūl, define the utility function u :A → R by letting u(a) be equal to the

utility assigned by ū to the alternative in Ā that corresponds to a ∈ A; for example, if
a = (a12� a23� a31), set

u(a) = ū1(0)+ ū2(1)+ ū3(0)+ ū4(0)+ ū5(0)+ ū6(1)+ ū7(1)+ ū8(0)+ ū9(0)�

It is easily checked that u is an additive representation of the preference P on A that
corresponds to P̄ . For any given SCF f : (P add

A )n → A, we can now define a correspond-
ing SCF f̄ : (P add

Ā
)n → Ā as follows: If (P̄1� � � � � P̄n) ∈ (P add

Ā
)n and (P1� � � � �Pn) ∈ (P add

A )n

is a preference profile that corresponds to (P̄1� � � � � P̄n), then we let f̄ (P̄1� � � � � P̄n) be that
alternative in Ā that corresponds to f (P1� � � � �Pn) ∈A.

5Note that since A corresponds only to a proper subset of Ā, there exist for every P on A several P̄ on Ā

that rank the alternatives in Ā, which correspond to alternatives in A, in the same way as P .
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Suppose now, as a concrete example, that f : (P add
A )n → A is a strategy-proof SCF

with range Rf = ((A1 × A2) \ {(a11� a21)}) × (A3 \ {a33}). Then the maximal range

decomposition of f is, of course, B1 × B2, where B1 = (A1 × A2) \ {(a11� a21)} and

B2 = A3 \ {a33}. The SCF f̄ : (P add
Ā

)n → Ā, which corresponds to f , is also strategy-proof

and has the maximal range decomposition Rf̄ = B̄1 × B̄2, where, using the abbreviation

Â= {(1�0�0)� (0�1�0)� (0�0�1)},

B̄1 = (Â× Â) \ {(1�0�0�1�0�0)} and B̄2 = Â \ {(0�0�1)}�

By Theorem 1 in Barberà et al. (2005), f̄ is dictatorial on B̄1 and voting by committees on

B̄2, and translating this functional structure to f gives that f must be dictatorial on B1

and voting by committees on B2. ♦

Remark 1. In Theorem 1, the functional form of f is formulated in such a way that the

individuals vote for the elements in the components Bj . Alternatively, it would be possi-

ble to express the functional form of f in terms of how the individuals vote for the m cat-

egories Ak in A, but this would require introducing coordination conditions that ensure

the feasibility of the overall outcome. Such coordination conditions are not uncommon

in the literature on constrained multiple public good votings, but unfortunately they

tend to be rather complicated. If the choice of f , as here, is described in terms of the

components Bj , feasibility of the overall outcome is automatically guaranteed, and the

characterization of f becomes more transparent and understandable.

3.2 Componentwise separable preferences

Intuitively, the characterization of strategy-proof SCFs in Theorem 1 as component-wise

decomposable rules should not depend ultimately on the additivity of preferences, but

rather on the fact that marginal preferences are well defined for every component Bj .

The next theorem states that componentwise separability of preferences is indeed a suf-

ficient condition to obtain the same decomposability characterization of strategy-proof

SCFs as in Theorem 1.

Theorem 2. Let A = ∏
k∈M Ak be a product set of m finite categories Ak. Let PA be a

domain of complete, transitive, and asymmetric preferences over A such that P add
A ⊂ PA.

Let further f : Pn
A → A be an SCF with maximal range decomposition Rf = B1 × · · · ×Bq,

and assume that every P ∈ PA is componentwise separable with respect to B1 × · · · × Bq.

Then f is strategy-proof if and only if f satisfies the following two conditions.

(i) If #Bj = 2, then f is voting by committees on Bj (1 ≤ j ≤ q).

(ii) If #Bj ≥ 3, then f is dictatorial on Bj (1 ≤ j ≤ q).
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The assumption P add
A ⊂ PA is a richness condition that allows us to use Theorem 1

in the proof of Theorem 2. Without this condition, the class of strategy-proof SCFs may
be larger than specified by Theorem 2.6

For the domain P cs
A of all completely separable preferences, the assumptions of The-

orem 2 are, of course, always satisfied, regardless of the structure of the maximal range
decomposition B1 × · · · ×Bq, which leads to the following corollary.

Corollary 1. Let A = ∏
k∈M Ak be a product set of m finite categories Ak. An SCF

f : (P cs
A )n →A is strategy-proof if and only if f has the following properties with respect to

its maximal range decomposition Rf = B1 × · · · ×Bq.

(i) If #Bj = 2, then f is voting by committees on Bj (1 ≤ j ≤ q).

(ii) If #Bj ≥ 3, then f is dictatorial on Bj (1 ≤ j ≤ q).

Remark 2. Corollary 1 confirms a conjecture in the concluding discussion in Svensson
and Torstensson (2008): The main result in that paper provides a characterization of all
strategy-proof SCFs f : (P cs

A )n → A under the additional assumptions that #Ak ≥ 3 for
every k ∈M and that f is weakly onto in the sense that every alternative in every category
is elected at least at some profile (formally, this means {πAk

(a) :a ∈ Rf } = Ak for every
k ∈ M). With these assumptions, every component in the maximal range decomposition
of f satisfies #Bj ≥ 3, and Svensson and Torstensson (2008) obtain a componentwise
dictatorial result that corresponds to case (ii) in Corollary 1. However, they conjecture
that in the absence of their additional assumptions, Corollary 1 should hold.

3.3 Weakly separable preferences

For weakly separable preferences, Theorem 2 in Barberà et al. (2005) characterizes com-
pletely the strategy-proof SCFs for constrained multiple public good voting under the
restriction that #Ak = 2 for every k ∈ M . The following result provides the correspond-
ing characterization for the general case, i.e., without making any assumptions on the
cardinality of Ak except finiteness.

Theorem 3. Let A = ∏
k∈M Ak be a product set of m finite categories Ak. An SCF

f : (P ws
A )n → A is strategy-proof if and only if f has the following properties with respect

to its maximal range decomposition Rf = B1 × · · · ×Bq.

(i) If q = m, then f is voting by committees on every Bj with #Bj = 2 and dictatorial
on every Bj with #Bj ≥ 3 (1 ≤ j ≤ q).

(ii) If q <m and #Rf ≥ 3, then f is dictatorial.

6If PA is a domain of componentwise separable preferences, it is straightforward to check that any SCF
f : Pn

A → A, which is voting by committees on components with two elements and dictatorial on compo-
nents with at least three elements, is strategy-proof, even if P add

A �⊂ PA. But if P add
A �⊂ PA, there may be ad-

ditional strategy-proof SCFs; for example, if PA contains only componentwise separable preferences that
also are multidimensional single-peaked as defined in Barberà et al. (1997), then it follows from Barberà
et al. (1997) that there also exist strategy-proof SCFs f : Pn

A →A that are generalized median voter schemes.
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Part (i) of Theorem 3 follows, of course, as a special case from Theorem 2. Part (ii)
states that if preferences are weakly separable, then in the case of a nontrivial range
restriction (i.e., q <m), it is no longer possible to construct a strategy-proof SCF by com-
posing it via componentwise strategy-proof rules, but instead there must be a single
dictator on the entire range of the SCF. The intuition for this purely dictatorial result is
explained in the following example.

Example 4. Let A= {0�1} × {0�1} × {0�1} and suppose that f : (P ws
A )2 → A is a strategy-

proof two-person SCF with range Rf = A \ {(1�1�0)� (1�1�1)}. By Example 2, the max-
imal decomposition of Rf is B1 × B2, where B1 = {(0�0)� (0�1)� (1�0)} and B2 = {0�1}.
Since P cs

A ⊂ P ws
A , we can consider the restriction of f to profiles of completely separa-

ble preferences; denote this restriction by f̄ . By Corollary 1, f̄ is dictatorial on B1 and
voting by committees on B2, but suppose here for simplicity that f̄ is also dictatorial
on B2. If B1 and B2 have the same individual as dictator, then f̄ is dictatorial, and from
standard extension arguments it follows then that f is also dictatorial. This is, however,
the only possible scenario here, because if B1 and B2 have different dictators under f̄ ,
then it is possible to construct a profile at which f is manipulable, which is explained
in the following discussion. Assume, therefore, that individual 1 is the dictator associ-
ated with B1, while individual 2 is the dictator on B2. Now allow individual 1 to extend
his preference to P ws

A , while individual 2’s preference still belongs to P cs
A ; in particular,

this means that the maximal element of P1 in B1 may now depend on whether 0 or 1 is
chosen from B2. For such profiles (P1�P2) ∈ P ws

A × P cs
A , the choice from B2 must still be

individual 2’s maximal element in B2: If there were some (P̂1� P̂2) ∈ P ws
A × P cs

A such that

πB2(f (P̂1� P̂2)) �= πB2(τRf
(P̂2)), then individual 1 would be able to manipulate f at every

profile (P̂ ′
1� P̂2) ∈ (P cs

A )2 where τRf
(P̂ ′

1) = f (P̂1� P̂2) because f (P̂1� P̂2) = τRf
(P̂ ′

1), while

f (P̂ ′
1� P̂2) �= τRf

(P̂ ′
1) since πB2(f (P̂

′
1� P̂2)) = πB2(τRf

(P̂2)) �= πB2(τRf
(P̂ ′

1)). For the choice
from B1, this has the following implication: If (P1�P2) ∈ P ws

A × P cs
A , then πB1(f (P1�P2))

must be individual 1’s maximal element in B1 conditional on the choice made by in-
dividual 2 in B2, because, otherwise, individual 1 could manipulate f by representing
some P ′

1 ∈ P cs
A , which ranks this conditional maximal element at the (unconditional)

top.
Consider now the profile (P̄1� P̄2), where P̄1 and P̄2 are defined as

(1�1�1) P̄1 (0�1�1) P̄1 (1�0�1) P̄1 (0�0�1)

P̄1 (1�1�0) P̄1 (1�0�0) P̄1 (0�1�0) P̄1 (0�0�0)

(1�1�1) P̄2 (1�1�0) P̄2 (1�0�1) P̄2 (1�0�0)

P̄2 (0�1�1) P̄2 (0�1�0) P̄2 (0�0�1) P̄2 (0�0�0)�

where alternatives that do not belong to Rf are scored out. By Example 1, P̄1 ∈
P ws
A \ P cs

A and P̄2 ∈ P cs
A . From the preceding paragraph, we get first πB2(f (P̄1� P̄2)) =
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πB2(τRf
(P̄2)) = 1, and given that 1 is chosen from B2, individual 1’s most preferred el-

ement in B1 is (0�1), so πB1(f (P̄1� P̄2)) = (0�1). Thus, f (P̄1� P̄2) = (0�1�1). But now
individual 2 can manipulate f : If P̄ ′

2 ∈ P cs
A is some completely separable preference

with πB2(τRf
(P̄ ′

2)) = 0, then πB2(f (P̄1� P̄
′
2)) = 0 and hence πB1(f (P̄1� P̄

′
2)) = (1�0), so

f (P̄1� P̄
′
2) = (1�0�0); since (1�0�0)P̄2(0�1�1), this means that individual 2 can manipu-

late f at (P̄1� P̄2) via P̄ ′
2. Thus, f can only be strategy-proof if the restriction of f to com-

pletely separable preferences has the same individual as dictator on B1 and B2, and it is
then straightforward to show that this dictatorship extends to f itself.

The reason for individual 2’s manipulation opportunity at (P̄1� P̄2) should now be
clear: f can only be strategy-proof if the choice in B1 is the most preferred alternative
of individual 1 given the choice of individual 2 in B2, but if individual 1’s most preferred
alternative in B1 depends on the choice in B2, which is possible here because B1 covers
more than one category and preferences need only be weakly separable, then this de-
pendency makes it possible for individual 2 to influence the choice in B1 and hence also
to manipulate f . Note that the inversion of individual 1’s most preferred element in B1,
which is crucial for the argument above, is only possible when individual 1’s unrestricted
top element from the first two categories (in this example, the pair (1�1)) is excluded
from the range of f ; in particular, this means that if there are no range restrictions (i.e.,
Rf = A), then the manipulation opportunity indicated above does not exist. ♦

Remark 3. Theorem 3 cannot be obtained from the corresponding result in Barberà
et al. (2005, Theorem 2), where #Ak = 2, using the binary transformation that allowed
us to derive our result for additive preferences from the corresponding result in Barberà
et al. (2005) as illustrated in Example 3 for the following reason: In Example 3, we started
by identifying the set of alternatives A =A1 ×A2 ×A3 with a subset of the binary prod-
uct set Ā = {0�1}9. If P̄ is now a weakly separable preference on Ā, then P̄ ranks each of
the nine coordinates in Ā independently of the other coordinates, but the same is not
necessarily true, for example, for the collection of the first three coordinates in Ā, which
correspond to the category A1, and hence P̄ does not necessarily correspond to a weakly
separable preference on A. Therefore, the set of all preferences on A, which correspond
to weakly separable preferences on Ā, is a strict superdomain of P ws

A , and the dicta-
torial result for the former domain, which can be obtained from Barberà et al. (2005,
Theorem 2), cannot be used to infer the dictatorial result for the smaller domain P ws

A .
Instead, the proof of Theorem 3 is based on the ideas outlined in Example 4.

We conclude this section with two examples that illustrate how our results can be
applied.

Example 5. Suppose that A = ∏
k∈M Ak is a product set and let B = A \ {a} for some

a ∈ A. This special form of range restriction is considered in Aswal et al. (2003), who
show, using their criterion of linked domains, that if Ak = {0�1} for every k ∈ M (in
their paper, every category Ak corresponds to one of m candidates, which can be either
elected or not elected) and preferences are weakly separable, then every strategy-proof
SCF f : (P ws

A )n → A whose range equals B must be dictatorial. However, B is obviously
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indecomposable, and, therefore, it follows directly from our results that under the as-
sumptions in Aswal et al. (2003), there is no nondictatorial strategy-proof SCF with range
B, and, moreover, this dictatorial result also holds when #Ak ≥ 2 (k ∈ M) and also when
preferences are completely separable or additive. ♦

Example 6. Aswal et al. (2003) also consider the following slightly more complicated
range restriction: There are again m candidates (i.e., Ak = {0�1} for k ∈ M), but the
range is now B = {a ∈ A = ∏

k∈M Ak�K1 ≤ ∑
k∈M ak ≤ K2}, where K1 and K2 are inte-

gers such that 0 < K1 ≤ K2 < m, which means that the number of elected candidates
must be between K1 and K2. This kind of range restriction occurs, for example, when
an understaffed department wants to employ at least K1 new researchers and, due to
budget restrictions, at most K2 researchers can be employed. Using the criterion of
linked domains, Aswal et al. (2003) show that there is no nondictatorial strategy-proof
SCF f : (P ws

A )n → A with range B.
With our results, this dictatorial result can be established in a more general setting:

Let A = ∏
k∈M Ak be a product set of integer intervals Ak = [αk�αk] =

{αk�αk + 1� � � � �αk} and let B = {a ∈ A :K1 ≤ ∑
k∈M ak ≤ K2}, where

∑
k∈M αk ≤ K1 ≤

K2 ≤ ∑
k∈M αk with at least two of the inequalities being strict. Then B is indecompos-

able,7 and it follows, hence, from our results that if PA is the domain of weakly separable,
completely separable, or additive preferences over A, then there is no nondictatorial
strategy-proof SCF f : Pn

A →A with range B. ♦

4. Related literature and concluding comments

The issue of strategy-proofness in multiple public good voting is studied from different
perspectives in a number of papers in the literature. The most fundamental papers in
this area, among which Border and Jordan (1983), Barberà et al. (1991), Le Breton and
Sen (1999), Le Breton and Weymark (1999), Weymark (1999), and Nehring and Puppe
(2007) should be mentioned, consider voting models where preferences are separable
and the range is unrestricted (i.e., Rf = A), and the papers differ mainly in their as-
sumptions on the form of separability and on the cardinality of the categories Ak. The
main common finding in these papers is that strategy-proof SCFs with full range must
be decomposable across the categories Ak and be strategy-proof on every category.

The basic model for multiple public good voting has been modified in different ways,
and our study contributes to a variant of the model where preferences are still separable,
but the range is now allowed to be restricted. A first contribution in this direction is by
Aswal et al. (2003), who consider the two special cases of range restrictions that were

7The indecomposability of B can be shown as follows: We have
∑

k∈M αk <Kj <
∑

k∈M αk either for j = 1
or j = 2, and suppose that this condition holds here for j = 2 (the case j = 1 is symmetric). Suppose that B =
B1 × B2 and let a = (b1� b2) ∈ B1 × B2 be such that

∑
k∈M ak = K2. Then

∑
k∈M αk <

∑
k∈M ak <

∑
k∈M αk,

and hence either
∑

k∈C(B1)
ak >

∑
k∈C(B1)

αk and
∑

k∈C(B2)
ak <

∑
k∈C(B2)

αk or
∑

k∈C(B1)
ak <

∑
k∈C(B1)

αk

and
∑

k∈C(B2)
ak >

∑
k∈C(B2)

αk. Assume that the latter two inequalities hold. Now construct a′ = (b′
1� b

′
2)

by increasing one of the coordinates in b1 by 1 and decreasing one of the coordinates in b2 by 1. Then∑
k∈M a′

k = ∑
k∈M ak = K2, so a′ ∈ B. But (b′

1� b2) /∈ B because
∑

k∈C(B1)
a′
k + ∑

k∈C(B2)
ak = K2 + 1. Thus,

B cannot be decomposed as a product set.
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explained and generalized in Examples 5 and 6. Barberà et al. (2005) and Svensson and
Torstensson (2008) are so far the most general papers on multiple public good voting
under constraints, in the sense that all possible kinds of range restrictions are allowed,
but both papers impose additional assumptions on the cardinality of the categories Ak.
In the literature, these two papers are closest to our study, and from the discussion in the
Introduction and in the preceding section, it should be clear how our results are related
to and generalize the results in these two papers.

Another interesting way to modify the basic model for multiple public good voting
is to keep the full range assumption, but to impose a structure other than separability
on preferences. In this context, special attention is given to multidimensional single-
peaked preferences, and here we find the important contributions by Barberà et al.
(1993) and Chichilnisky and Heal (1997). In Barberà et al. (1993), the set A of alterna-
tives is a discrete multidimensional grid, and single-peaked preferences P are defined
by the condition that if a�b ∈ A are such that a belongs to the minimal box spanned by
τA(P) and b, then a P b. In this framework, an SCF is strategy-proof if and only if it is
categorywise decomposable and is a generalized median voter scheme on every cate-
gory. Chichilnisky and Heal (1997) consider instead a continuous m-dimensional set of
alternatives on which single-peaked preferences are symmetric in the sense that indif-
ference curves are ellipsoids; strategy-proof SCFs are coordinatewise decomposable and
they are characterized as locally constant or dictatorial rules.

Finally, it is, of course, possible to combine multidimensional single-peaked prefer-
ences with range restrictions, which is done in Serizawa (1996) and Barberà et al. (1997,
1998). Serizawa (1996) considers componentwise single-peaked preferences and a spe-
cial form of range restrictions, which occur as a consequence of limited production re-
sources in the economy, and strategy-proof SCFs are found to be generalized schemes
of voting by committees. Barberà et al. (1997) start with the same assumptions as in
Barberà et al. (1993), but now all kinds of range restrictions are allowed, and strategy-
proof SCFs are characterized as generalized median voter schemes on every dimension
together with a condition, the intersection property, that ensures the feasibility of elected
alternatives. Barberà et al. (1998) establish a similar characterization in a continuous
setting.

We conclude with a remark on how the voting problem studied in this paper can be
considered further. Our results provide characterizations of all strategy-proof SCFs for
constrained multiple public good voting for the three important domains of additive,
completely separable, and weakly separable preferences. Even though these domains
of separable preferences are considered frequently in the literature, they are only par-
ticular cases of domains of separable preferences. More generally, one can define a do-
main P S

A of separable preferences over A by specifying a set S ⊂ 2M of subsets of M and
letting P S

A be the set of all preferences over A that are separable with respect to every
S ∈ S .8 It would then be interesting to find characterizations of all strategy-proof SCFs

8Not all S ⊂ 2M can be used to define a domain P S
A of separable preferences because separability with

respect to certain groups of categories may also imply separability with respect to other groups of cate-
gories. For example, when every Ak is finite, then any preference that is separable with respect to S�T ∈ S
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f : (P S
A)

n → A for an arbitrary separability structure S .9 Obviously, such a characteri-
zation must depend on the interplay between S and the maximal range decomposition
B1 × · · · ×Bq, and generalizing the arguments in the proofs of Theorems 2 and 3, it can
be shown that if q ≥ 2, then there exist nondictatorial strategy-proof SCFs f : (P S

A)
n → A,

which are voting by committees on every Bj with #Bj = 2 and componentwise dictato-
rial on every Bj with #Bj ≥ 3, if and only if every P ∈ P S

A has a well defined top element
in every component Bj (i.e., independently of which elements are chosen from the other
components). This condition is, of course, met when preferences are component-wise
separable, which is the content of Theorem 2, but C(Bj) ∈ S for all j is only a sufficient,
but not necessary condition to avoid a purely dictatorial result, which is illustrated in
the following example.

Example 7. Let A = {0�1}4 and define P S
A by

S = {{1}� {2}� {3}� {4}� {1�2}� {1�3}� {2�3}}� (3)

Furthermore, let B = B1 × B2, where B1 = {(1�0�0)� (0�1�0)� (0�0�1)} and B2 = {0�1}.
Then every P ∈ P S

A ranks (1�0�0) ∈ B1 and (0�1�0) ∈ B1 independently of whether 0 or
1 is chosen from B2, because {1�2} ∈ S implies that (1�0�0�0) P (0�1�0�0) if and only if
(1�0�0�1) P (0�1�0�1). Similarly, since {1�3} ∈ S and {2�3} ∈ S , also (1�0�0) and (0�0�1)
as well as (0�1�0) and (0�0�1) are ranked independently of the choice from B2. From this
it follows that the top of P in B1 does not depend on the choice from B2. Further, since
{4} ∈ S , also the top in B2 is independent of the choice from B1. Therefore, it is possible
to construct nondictatorial (componentwise) strategy-proof SCFs f : (P S

A)
n → A, whose

range equals B.
Note, however, that this nondictatorial result holds even though there exist prefer-

ences P ∈ P S
A that are not separable with respect to C(B1) = {1�2�3}. For example, it is

straightforward to check that P defined by

(1�1�1�1) P (1�1�0�1) P (1�0�1�1) P (1�0�0�1) P (0�1�1�1) P (0�1�0�1)

P (0�0�1�1) P (0�0�0�1) P (1�1�1�0) P (1�1�0�0) P (1�0�1�0) P (0�1�1�0) (4)

P (1�0�0�0) P (0�1�0�0) P (0�0�1�0) P (0�0�0�0)

belongs to P S
A, but since (0�1�1�0) P (1�0�0�0) while (1�0�0�1) P (0�1�1�1), it follows

that C(B1) /∈ S .10 ♦

is also separable with respect to S∩T , i.e., S must be closed under intersections (Bradley et al. 2005, Propo-
sition 4.2). In the “continuous” case, S must, in addition, also be closed under unions, differences, and
symmetric differences (Gorman 1968).

9A similar problem is studied in Le Breton and Sen (1999), but from the following different perspective:
In a model where #Ak ≥ 3 for all k ∈ M and Rf = A (i.e., range restrictions are not permitted), they con-
sider the special case when S is an arbitrary partition of M , which moreover can be different for different
individuals, and they find that strategy-proof SCFs must be categorywise dictatorial and, in addition, satisfy
a condition that ensures consistency with the individual separability structures.

10It might seem obvious that C(B1) /∈ S because S in (3) does not contain the set {1�2�3}. Hypothet-
ically, it could have been the case that separability with respect to the S ∈ S specified in (3) also implies
separability with respect to {1�2�3}, but P in (4) shows that this is not the case.
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Example 7 shows that componentwise separability is not necessary for the existence
of a nondictatorial strategy-proof SCF. However, we do not think that there exists a
simple condition to decide whether a given combination of a separability structure S
and a maximal range decomposition B1 × · · · ×Bq admits nondictatorial decomposable
strategy-proof SCFs.

Appendix: The proofs

This appendix provides the proofs of Theorem 1, Theorem 2, and Theorem 3.

Proof of Theorem 1. If P ∈ P add
A , then for every j (1 ≤ j ≤ q), πBj (τRf

(P)) is the well
defined most preferred element of P in Bj , independently of which element in B−j it
is combined with. Hence, if f : (P add

A )n → A is voting by committees on every Bj with
#Bj = 2 and dictatorial on every Bj with #Bj ≥ 3, then f is strategy-proof.

For the only if part, assume now that f is strategy-proof. In the following proof, we
employ Theorem 1 in Barberà et al. (2005) as indicated in Example 3 and we divide the
proof into six steps.

Step 1: It suffices to prove the only if part for SCFs that are weakly onto.11 Assume
that the only if part has already been proved for all weakly onto SCFs and consider some
SCF f : (P add

A )n → A that is not weakly onto. This means that there is some category
A

k̂
and some â

k̂
∈ A

k̂
such that â

k̂
/∈ πA

k̂
(Rf ).12 Every profile (P1� � � � �Pn) ∈ (P add

A )n

of additive preferences can be identified with a profile (
∑

k∈M u1k� � � � �
∑

k∈M unk) of
corresponding additive utility functions, and f can hence be considered as a function
of the numbers {uik(alk)}i∈N�k∈M�1≤lk≤#Ak

. However, since â
k̂
/∈ πA

k̂
(Rf ), f must be

independent of the numbers {u
ik̂
(â

k̂
)}i∈N , because if there existed Pi�P

′
i ∈ P add

A and

P−i ∈ (P add
A )n−1 such that Pi and P ′

i rank all a ∈ Rf identically but f (Pi�P−i) �= f (P ′
i� P−i),

then individual i would be able to manipulate f either at (Pi�P−i) or at (P ′
i� P−i). Set

Â
k̂

= A
k̂

\ {â
k̂
} and Â = A1 × · · · × Â

k̂
× · · · × Am, and let f̂ : (P add

Â
)n → Â be the re-

striction of f to ({uik(alk)}i∈N�k∈M�1≤lk≤#Ak
) \ ({u

ik̂
(â

k̂
)}i∈N). Then f̂ is strategy-proof

because f is strategy-proof, and, moreover, since R
f̂

= Rf , f̂ and f have the same maxi-

mal range decomposition. If f̂ is weakly onto, f̂ is voting by committees on every Bj with
#Bj = 2 and dictatorial on every Bj with #Bj ≥ 3, and f must then have the same prop-

erties. If f̂ is not weakly onto, continue eliminating alternatives that cannot be elected
until a weakly onto SCF is obtained. Hence, it suffices to prove the only if part for weakly
onto SCFs.

Step 2: Define a binary transformation TA of A. For k ∈ M , set αk ≡ #Ak and
let Ak = {aklk}

αk
lk=1 be indexations of the elements in Ak. Define Tk :Ak → {0�1}αk by

Tk(a
k
lk
) = elk , where elk denotes the lkth unit vector of length αk. Set Ā = ∏m

k=1{0�1}αk
and define TA :A → Ā by TA(a1� � � � � am) = (T1(a1)� � � � �Tm(am)). Note that TA is injec-
tive and for all a ∈A, TA(a) contains exactly m ones, the other entries being zero.

11An SCF f : Pn
A →A is weakly onto if {πAk

(a) :a ∈ Rf } =Ak for every k ∈ M .
12Here, the following convention is used: When ϕ :X → Y is a mapping and Z ⊂ X , then ϕ(Z) denotes

the set ϕ(Z) = {ϕ(x) :x ∈ Z}.
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Step 3: Define a surjective mapping Q : P add
Ā

→ P add
A that preserves the ranking of al-

ternatives in Ā and A that correspond to each other under TA. For P̄ ∈ P add
Ā

, define the

preference Q(P̄) on A by setting a Q(P̄) a′ for a�a′ ∈ A if and only if TA(a) P̄ TA(a
′).

To show that Q(P̄) ∈ P add
A , suppose that P̄ is represented by the utility function ū =∑m

k=1
∑αk

lk=1 ū
k
lk

, where ūklk
: {0�1} → R, and after a linear transformation of ū if neces-

sary, we can assume that ūklk(0) = 0 for k ∈M and 1 ≤ lk ≤ αk. Introduce utility functions

uk :Ak → R by setting uk(alk) = ūklk
(1) for k ∈ M and 1 ≤ lk ≤ αk, and define u :A → R by

u(a) = ∑m
k=1 uk(ak) for a = (a1� � � � � am) ∈ A. Then u(a) = ū(TA(a)), so u is an additive

representation of Q(P̄). Furthermore, since P̄ is asymmetric, Q(P̄) is also asymmetric.
Hence, Q(P̄) ∈ P add

A .
It remains to show that Q is surjective. Consider some arbitrary but fixed P ∈ P add

A

and let P be represented by u = ∑m
k=1 uk, where uk :Ak → R for k ∈ M . Since every

Ak is finite, we can, after small adjustments, assume that every uk takes values only
in Q, and after multiplying u by a convenient factor, every uk can, in fact, be assumed
to be integer-valued. Define now, for every k ∈ M and 1 ≤ lk ≤ αk, utility functions
ūklk

: {0�1} → R by setting ūklk
(0) = 0 and13

ūklk(1) = uk(alk)+ 2−(lk+∑k−1
k′=1 αk′ )� (5)

and let P̄ be that preference on Ā that is represented by the utility function ū =∑m
k=1

∑αk
lk

ūklk
. The terms 2−(lk+∑k−1

k′=1 αk′ ) in (5) work as a tie-breaking device and ensure

that P̄ is asymmetric. Hence, P̄ ∈ P add
Ā

. Since
∑Z

z=1 2−z < 1 for every Z < ∞, we have

u(a) > u(a′) if and only if ū(TA(a)) > ū(TA(a
′)) for all a�a′ ∈A. Therefore, Q(P̄) = P and

Q is surjective.
Step 4: Associate to f : (P add

A )n → A a strategy-proof SCF f̄ : (P add
Ā

)n → Ā. Define the

SCF f̄ : (P add
Ā

)n → Ā by f̄ (P̄1� � � � � P̄n) = TA(f (Q(P̄1)� � � � �Q(P̄n))) for all (P̄1� � � � � P̄n) ∈
(P add

Ā
)n. Then for all (P̄i� P̄−i) ∈ (P add

Ā
)n and P̄ ′

i ∈ P add
Ā

, we have14

f̄ (P̄ ′
i� P̄−i) P̄i f̄ (P̄i� P̄−i) ⇔ f (Q(P̄ ′

i)�Q(P̄−i)) Q(P̄i) f (Q(P̄i)�Q(P̄−i))�

and since f is strategy-proof, it follows that f̄ is strategy-proof.
Step 5: Let Rf = B1 ×· · ·×Bq be the unique maximal decomposition of Rf according

to Svensson and Torstensson (2008, Proposition 1). If the binary transformation corre-
sponding to the categories covered by Bj (1 ≤ j ≤ q) are denoted by TBj :

∏
k∈C(Bj)

Ak →
{0�1}

∑
k∈C(Bj)

αk , then Rf̄ = TB1(B1)× · · · × TBq(Bq) is the unique maximal decomposition

of Rf̄ . From the definition of f̄ , it follows that Rf̄ = TA(Rf ) = TB1(B1) × · · · × TBq(Bq).
It remains to show that TB1(B1) × · · · × TBq(Bq) cannot be decomposed further. Sup-
pose, therefore, so as to obtain a contradiction, that for some j (1 ≤ j ≤ q), there exists
a decomposition TBj (Bj) = B̄1

j × B̄2
j . Consider some k ∈ C(Bj). For every b̄j ∈ TBj (Bj),

13For k= 1, we use in (5) the convention
∑0

k′=1 αk′ = 0.
14Making a slight abuse of notation, Q(P̄−i) denotes here the profile obtained when Q is applied to every

preference in P̄−i.
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exactly one of the coordinates in b̄j corresponding to Ak equals 1, and, conversely, since
f is weakly onto, for every coordinate in TBj (Bj) corresponding to Ak there is some

b̄j ∈ TBj (Bj) for which this coordinate is equal to 1. Therefore, the coordinates in TBj (Bj)

that correspond to Ak must either belong completely to B̄1
j or completely to B̄2

j . This

means that TBj can be written as (T 1
Bj
�T 2

Bj
), where T s

Bj
is the binary transformation of

the categories Ak that belong to B̄s
j (s = 1�2). But then Bj = (T 1

Bj
)−1(B̄1

j ) × (T 2
Bj
)−1(B̄2

j ),

which contradicts the assumption that Rf = B1 ×· · ·×Bq is the maximal decomposition
of Rf . Thus, Rf̄ = TB1(B1)× · · · × TBq(Bq) must be the unique maximal decomposition
of Rf̄ .

Step 6: Apply Theorem 1 in Barberà et al. (2005) to f̄ , and translate the structure of
f̄ to f . By Theorem 1 in Barberà et al. (2005), f̄ is voting by committees on TBj (Bj)

with #TBj (Bj) = 2 and dictatorial on TBj (Bj) with #TBj (Bj) ≥ 3. To show that f has

a corresponding structure, consider first some component Bj with #Bj = 2. Then f̄

is voting by committees on TBj (Bj). Because πBj = T−1
Bj

◦ πTBj (Bj) ◦ T and τRf
◦ Q =

T−1 ◦ τRf̄
, we have

{
i ∈N :πBj (τRf

(Q(P̄i))) = bj
} = {

i ∈N :πTBj (Bj)(τRf̄
(P̄i)) = TBj (bj)

}

for all (P̄1� � � � � P̄n) ∈ (P add
Ā

)n and bj ∈ Bj ; since, furthermore, πBj (f (Q(P̄1)� � � � �

Q(P̄n))) = bj if and only if πTBj (Bj)(f̄ (P̄1� � � � � P̄n)) = TBj (bj) and Q is surjective, the win-

ning coalitions for TBj (bj) under f̄ must be exactly the same as the winning coalitions
for bj under f . Thus, f is voting by committees on Bj . By a similar argument, it follows
that if #Bj ≥ 3, then f is dictatorial on Bj . �

In the proofs of Theorem 2 and Theorem 3, we use the following monotonicity prop-
erty of strategy-proof SCFs, which is frequently used in the literature and goes back to
Muller and Satterthwaite (1977).

Lemma 1 (Monotonicity). Let PA be a domain of complete, transitive, and asymmet-
ric preferences over a set A, and suppose that f : Pn

A → A is a strategy-proof SCF. If
f (P1� � � � �Pn) = a for some profile (P1� � � � �Pn) ∈ Pn

A, and (P ′
1� � � � �P

′
n) ∈ Pn

A is such that
a Pi a

′ implies a P ′
i a

′ for all i ∈N and a′ ∈A, then also f (P ′
1� � � � �P

′
n)= a.

Proof of Theorem 2. If f is voting by committees on every Bj with #Bj = 2 and dicta-
torial on every Bj with #Bj ≥ 3, then it follows by the same argument as in the beginning
of the proof of Theorem 1 that f is strategy-proof.

For the only if part, assume now that f is strategy-proof. Let f̂ : (P add
A )n → A be the

restriction of f to profiles of additive preferences. Since f is strategy-proof, f̂ is also
strategy-proof. Moreover, R

f̂
= Rf , because if a ∈ Rf so that f (P1� � � � �Pn) = a for some

(P1� � � � �Pn) ∈ Pn
A, we can pick some Pa ∈ P add

A with τA(Pa) = a and get, by Lemma 1,

that f̂ (Pa� � � � �Pa) = a. In particular, this means that f̂ has the same maximal range de-
composition B1 ×· · ·×Bq as f . By Theorem 1, f̂ is voting by committees on every Bj with
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#Bj = 2 and dictatorial on every Bj with #Bj ≥ 3, and we show now that this functional
structure extends to f .

Consider first some component Bj with #Bj ≥ 3, and let individual i be the dic-

tator associated with Bj by f̂ , that is, πBj (f̂ (Pi�P−i)) = πBj (τR
f̂
(Pi)) for all (Pi�P−i) ∈

(P add
A )n. Suppose, to obtain a contradiction, that individual i is not a dictator on

Bj under f , i.e., there is some profile (P̄i� P̄−i) ∈ Pn
A such that f (P̄i� P̄−i) = ā, but

πBj (ā) �= πBj (τRf
(P̄i)). Take some P̄ ′ ∈ P add

A with τA(P̄
′)= ā, and set P̄ ′

−i = (P̄ ′� � � � � P̄ ′) ∈
(P add

A )n−1. By Lemma 1, f (P̄i� P̄
′
−i) = ā. Let ā′ ∈ Rf be the alternative that satisfies

πBj (ā
′) = πBj (τRf

(P̄i)) and π−Bj (ā
′) = π−Bj (ā). Since P̄i is separable with respect to

C(Bj), we have ā′ P̄i ā. Now if P̄ ′
i ∈ P add

A is such that τA(P̄
′
i) = ā′, then f (P̄ ′

i� P̄
′
−i) =

f̂ (P̄ ′
i� P̄

′
−i) = ā′, which contradicts strategy-proofness of f at (P̄i� P̄

′
−i). Thus, individual i

must be a dictator on Bj under f .
Now consider some component Bj with #Bj = 2 and let Bj = {b1

j � b
2
j }. Let Wbsj

be

the winning coalitions for bsj under f̂ (s = 1�2). Using arguments similar to those in the
preceding paragraph, we show that the same coalition structure applies for f on Bj . Sup-
pose, therefore, that there exists some profile (P̄1� � � � � P̄n) ∈ Pn

A such that the coalition

W̄ = {i ∈ N :πBj (τRf
(P̄i)) = b1

j } belongs to Wb1
j
, but f (P̄1� � � � � P̄n) = ā and πBj (ā) = b2

j .

Let P̄ ′ ∈ P add
A be such that τA(P̄ ′) = ā, and set P̄ ′

−W̄
= (P̄ ′� � � � � P̄ ′) ∈ (P add

A )n−#W̄ . Then,

by Lemma 1, f (P̄W̄ � P̄ ′
−W̄

) = ā. Furthermore, set ā′ = (b1
j � ā−j), and note that ā′ ∈ Rf and

ā′ P̄i ā for every i ∈ W̄ . Let P̄ ′′ ∈ P add
A be such that τA(P̄ ′′) = ā′ and set P̄ ′′̄

W
= (P̄ ′′� � � � � P̄ ′′) ∈

(P add
A )#W̄ . Then f (P̄ ′′̄

W
� P̄ ′

−W̄
) = f̂ (P̄ ′′̄

W
� P̄ ′

−W̄
) = ā′. But this means that if we replace the

preferences from (P̄W̄ � P̄ ′
−W̄

) to (P̄ ′′̄
W
� P̄ ′

−W̄
) successively one at a time, there must be

some i ∈ W̄ that can manipulate f . Hence, every W ∈ Wb1
j

is a winning coalition for b1
j

under f and, by symmetry, a corresponding statement must be true for every W ∈ Wb2
j
.

Thus, f is voting by committees on Bj . �

Proof of Theorem 3. (i) The case q = m is a direct consequence of Theorem 2.
(ii) For the case q < m, note first that a dictatorial SCF obviously is strategy-proof.

For the converse implication, assume now that f : (P ws
A )n → A is strategy-proof. To be-

gin with, we consider only the case when n = 2. Let f̄ : (P cs
A )2 → A be the restriction of

f : (P ws
A )2 → A to completely separable preferences. Since f is strategy-proof, it follows

immediately that f̄ is also strategy-proof. Moreover, Rf̄ = Rf , because if a ∈ Rf so that

f (P1�P2)= a for some (P1�P2) ∈ (P ws
A )2, we can pick some Pa ∈ P cs

A with τA(Pa) = a and
get, by Lemma 1, that f̄ (Pa�Pa) = a. In particular, this means that f̄ has the same maxi-
mal range decomposition B1 ×· · ·×Bq as f . By Theorem 2, f̄ is voting by committees on
every Bj with #Bj = 2 and dictatorial on every Bj with #Bj ≥ 3. Since q < m, the max-
imal range decomposition B1 × · · · × Bq must contain some component, say B1, such
that #C(B1)≥ 2. We now consider the two cases #B1 ≥ 3 and #B1 = 2 separately.

Case 1: When #B1 ≥ 3. If #B1 ≥ 3, then f̄ is dictatorial on B1, and assume with-
out loss of generality that i = 1 is the dictator associated with B1. Introduce first some
simplifying notational conventions: Assume that the categories in A = A1 × · · · × Am
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are ordered in such a way that all categories belonging to B1 are collected leftmost

in A, then all categories belonging to B2 follow, and so on; formally, this means that

if k ∈ C(Bj) and k′ ∈ C(Bj′), then j < j′ implies k < k′. To define preferences on A in

a convenient way below, identify each Ak with the integer interval {0�1� � � � �#Ak − 1}.

Further assume without loss of generality that b◦
j ≡ (0� � � � �0) ∈ Bj for all j ≥ 2. Note also

that since #C(B1) ≥ 2, there must be some b◦
1 ∈ ∏

k∈C(B1)
πAk

(B1) such that b◦
1 /∈ B1, be-

cause otherwise B1 could be decomposed as B1 = ∏
k∈C(B1)

πAk
(B1), and assume that

b◦
1 ≡ (0� � � � �0). Suppose further that the categories Ak belonging to B1 are ordered in

such a way that, among the elements in B1 with a maximal number of zeros, there

is at least one element b̂1 such that all zeros are collected “rightmost” in b̂1, and de-

note the set of all b̂1 with the precisely described property by B̂1. Formally, b̂1 ∈ B̂1 if

(i) b̂1 maximizes #{k ∈ C(B1) :πAk
(b1) = 0} among all b1 ∈ B1, and (ii) if πAk

(b̂1) = 0 and

k+ 1 ∈ C(B1), then πAk+1(b̂1) = 0.

In the following part of the proof, we show that i = 1 must be a dictator for f̄ ; from

this it then follows almost directly that i = 1 is also a dictator for f . To obtain a contra-

diction, assume now that there is some component Bj for which i = 1 is not a dictator

under f̄ . Now we prove in five steps that it is then possible to construct a profile at which

f is manipulable.

Step 1: Define preferences P̄1 ∈ P ws
A \ P cs

A and P̄2� P̄
′
2 ∈ P cs

A . Let α ≡ maxk∈M{#Ak} and

define for i = 1, the preference P̄1 ∈ P ws
A \ P cs

A by the utility function

ū1(a) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−
∑
k∈M

akα
k if ak = 0 for all k ∈ M \C(B1)

−
∑

k∈C(B1)

akα
#C(B1)−k+1 −

∑
k∈M\C(B1)

akα
k if ak �= 0 for some k ∈M \C(B1).

Intuitively, P̄1 is lexicographic on B2 × · · · ×Bq with priority decreasing from the right to

the left. Moreover, the component B1 has least priority and the priority order within B1

depends on whether b−1 = (0� � � � �0). Let πB1(P̄1|b−1) be the marginal preference of P̄1

on B1 conditional on b−1 ∈ B2 × · · · × Bq being fixed. For b◦
−1 = (0� � � � �0), define b̄1 ≡

τB1(πB1(P̄1|b◦
−1)) and note that b̄1 ∈ B̂1. Define further b̄′

1 ≡ τB1(πB1(P̄1|b−1)) for b−1 �=
(0� � � � �0) and note that we must have πA1(b̄

′
1)= 0 and thus b̄′

1 �= b̄1 because πA1(b̄1)= 0.

Next, let P̄2 ∈ P cs
A be the lexicographic preference on A given by the utility function

ū2(a) = −∑m
k=1 akα

m−k, whose priority thus is decreasing from the left to the right.

Finally, to define P̄ ′
2, consider each component Bj in B1 × · · · × Bq on which i = 1

is not a dictator under f̄ . If #Bj ≥ 3, then i = 2 must be a dictator on Bj under f̄ ; in

this case, let b̄′
j ∈ Bj be some arbitrary element in Bj with b̄′

j �= (0� � � � �0). If #Bj = 2,

then there must be at least one b̄′
j ∈ Bj for which {2} is a winning coalition under f̄ ,

and assume without loss of generality that b̄′
j �= (0� � � � �0). In both cases, we get that if

P2 ∈ P cs
A is such that πBj (τRf

(P2)) = b̄′
j , then πBj (f̄ (P1�P2)) = b̄′

j for all P1 ∈ P cs
A . Now let

P̄ ′
2 ∈ P cs

A be such that πBj (τRf
(P̄ ′

2)) = b̄′
j on every Bj on which i = 1 is not a dictator.
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Step 2: We have f (P̄1� P̄2) = τRf
(P̄1) and, in particular, πB1(f (P̄1� P̄2)) = b̄1. If

P1 ∈ P cs
A is such that τRf

(P1) = τRf
(P̄1), then f (P1� P̄2) = f̄ (P1� P̄2) = τRf

(P1), be-
cause on B1, i = 1 is a dictator, and on Bj with j ≥ 2, we have the unanimous vote
πBj (τRf

(P1)) = πBj (τRf
(P̄2)) = (0� � � � �0). Hence, by Lemma 1, f (P̄1� P̄2)= τRf

(P̄1).

Step 3: For j ≥ 2, πBj (f (P̄1� P̄
′
2)) = πBj (f̄ (P1� P̄

′
2)) for all P1 ∈ P cs

A with τRf
(P1) =

τRf
(P̄1).15 Consider first a component Bj on which i = 1 is not a dictator under f̄ .

Then πBj (f (P1� P̄
′
2)) = b̄′

j for all P1 ∈ P cs
A . If now πBj (f (P̄1� P̄

′
2)) = b̂j �= b̄′

j , then i = 1 is

able to manipulate f at a profile (P ′
1� P̄

′
2), where P ′

1 ∈ P cs
A is some lexicographic pref-

erence that gives highest priority to the categories belonging to Bj and that satisfies

πBj (τA(P
′
1)) = b̂j . Thus, πBj (f (P̄1� P̄

′
2)) = πBj (f̄ (P1� P̄

′
2)) for all Bj on which i = 1 is not a

dictator.
Consider now components Bj on which i = 1 is a dictator under f̄ . Let Bj∗ be the first

component from the right in B1 ×· · ·×Bq such that i = 1 is a dictator on Bj∗ under f̄ , but
πBj∗ (f (P̄1� P̄

′
2)) �= πBj∗ (τRf

(P̄1)) = (0� � � � �0). If P ′
1 ∈ P cs

A is such that τA(P ′
1) = τRf

(P̄1),

then πBj′ (f (P
′
1� P̄

′
2)) = πBj′ (f (P̄1� P̄

′
2)) for all j′ > j∗ by the preceding paragraph, but

πBj∗ (f (P
′
1� P̄

′
2)) = (0� � � � �0), and thus i = 1 is able to manipulate f at (P̄1� P̄

′
2). Thus, there

is no such Bj∗ , and πBj (f (P̄1� P̄
′
2)) = πBj (f̄ (P1� P̄

′
2)) also holds for all Bj on which i = 1 is

a dictator.
Step 4: We have πB1(f (P̄1� P̄

′
2)) = b̄′

1. From the assumption that i = 1 is not a dic-
tator on all Bj with j ≥ 2 and Step 3, it follows that πB−1(f (P̄1� P̄

′
2)) �= (0� � � � �0), and

hence the top alternative of P̄1 in B1 conditional on πB−1(f (P̄1� P̄
′
2)) is b̄′

1. Therefore,
πB1(f (P̄1� P̄

′
2)) = b̄′

1, because otherwise i = 1 is able to manipulate f by representing
some P1 ∈ P cs

A whose top satisfies πB1(τA(P1)) = b̄′
1 and πB−1(τA(P1)) = πB−1(f (P̄1� P̄

′
2)).

Step 5: We have f (P̄1� P̄
′
2) P̄2 f (P̄1� P̄2). The preceding three steps imply that

πB1(f (P̄1� P̄2)) = b̄1 and πB1(f (P̄1� P̄
′
2)) = b̄′

1. Since P̄2 is lexicographic with highest pri-
ority given to A1 and since πA1(b̄

′
1)= 0 while πA1(b̄1) �= 0, we have f (P̄1� P̄

′
2) P̄2 f (P̄1� P̄2).

Since Step 5 contradicts the strategy-proofness of f , the assumption that i = 1 is
not a dictator for f̄ must be wrong, and we conclude that f̄ (P1�P2) = τRf

(P1) for all

(P1�P2) ∈ (P cs
A )2.

The final step is to show that i = 1 is also a dictator for f . Suppose, therefore, there is
some profile (P1�P2) ∈ (P ws

A )2 such that f (P1�P2) = a �= τRf
(P1). If P ′

2 ∈ P cs
A is such that

τA(P
′
2) = a, then f (P1�P

′
2) = a by Lemma 1. But then i = 1 can manipulate f at (P1�P

′
2)

by representing some P ′
1 ∈ P cs

A with τA(P
′
1) = τRf

(P1) because f (P ′
1�P

′
2) = f̄ (P ′

1�P
′
2) =

τRf
(P ′

1). Thus, i = 1 must be a dictator for f .

Case 2: When #B1 = 2. Consider now the case when #B1 = 2 and let B1 = {b1
1� b

2
1}. If

f̄ : (P cs
A )2 →A is, as above, the restriction of f to completely separable preferences, then

f̄ is by Theorem 2 voting by committees on B1, and there are two cases to consider.
(i) If f̄ is dictatorial on B1, it follows by exactly the same arguments as in Case 1 that

f̄ and hence also f must be dictatorial.

15Intuitively, Step 3 shows that on all Bj with j ≥ 2, the outcome πBj (f (P̄1� P̄
′
−1)) is the same as if i = 1

reported some completely separable preference with the same top as P̄1.
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(ii) If f̄ is not dictatorial on B1, then one of the two alternatives in B1 is cho-
sen if and only if both individuals vote for it. Suppose without loss of generality that
πB1(f̄ (P1�P2)) = b2

1 if and only if πB1(τRf̄
(P1)) = πB1(τRf̄

(P2)) = b2
1, and otherwise,

πB1(f̄ (P1�P2)) = b1
1. To replicate the arguments above, set b̄1 ≡ b1

1 and b̄′
1 ≡ b2

1. Let Ak

with k ∈ C(B1) be identified with integer intervals {0�1� � � � �#Ak − 1} in such a way that
if P̄2 ∈ P cs

A is defined as in Step 1 above, then πB1(τRf̄
(P̄2)) = b̄′

1. Further, choose P̄ ′
2 ∈ P cs

A

as in Step 1 above with the additional requirement that πB1(τRf̄
(P̄ ′

2)) = b̄′
1. Then both

πB1(f̄ (P1� P̄2)) and πB1(f̄ (P1� P̄
′
2)) must be equal to πB1(τRf̄

(P1)) for all P1 ∈ P cs
A , exactly

as if i = 1 were a dictator for f̄ on B1, and we can, therefore, apply the same arguments
as in the five steps above to obtain the contradiction that i = 2 can manipulate f . Thus,
also when #B1 = 2, f : (P ws

A )2 → A must be dictatorial.
We now use an induction argument to prove the theorem for general n. Assume

thus that n ≥ 3, and suppose that the theorem has already been proved for all n′ < n.
Let f : (P ws

A )n → A be a strategy-proof SCF with #Rf ≥ 3. Define f̂ : (P ws
A )2 → A by

f̂ (P1�P2) = f (P1� � � � �P1�P2), where P1 thus is replicated n − 1 times in the argument
of f . Note that R

f̂
= Rf , because if a ∈ Rf and Pa ∈ P ws

A is such that τA(Pa) = a, then

f̂ (Pa�Pa) = a as a consequence of Lemma 1, and hence a ∈ R
f̂

; in particular, #R
f̂

≥ 3.

Note further that f̂ is strategy-proof: To see that f̂ is strategy-proof in its first argument,
let P1�P

′
1�P2 ∈ P ws

A be arbitrary but fixed. For η = 0�1� � � � � n − 1, define the coalitions
W ′

η = {1� � � � �η} ⊂ N and Wη = {η+1� � � � � n−1} ⊂ N with the convention W ′
0 = Wn−1 = ∅,

and set PW ′
η

= (P ′
1� � � � �P

′
1) ∈ (P ws

A )η and PWη = (P1� � � � �P1) ∈ (P ws
A )n−η−1. Further, set

aη = f (PW ′
η
�PWη�P2) for η = 0�1� � � � � n − 1, and note that a0 = f̂ (P1�P2) and an−1 =

f̂ (P ′
1�P2). Since f is strategy-proof, we must have either aη−1P1aη or aη−1 = aη for

η = 1� � � � � n− 1. By transitivity it follows that either f̂ (P1�P2) P1 f̂ (P
′
1�P2) or f̂ (P1�P2) =

f̂ (P ′
1�P2), which means that f̂ is strategy-proof in its first argument. It further follows

directly from the strategy-proofness of f that f̂ is also strategy-proof in its second argu-
ment. By the induction hypothesis, f̂ is thus dictatorial, and we consider the two cases
when the dictator of f̂ is î = 1 and î = 2.

Suppose first that î = 1 is the dictator for f̂ . Take some arbitrary but fixed P̄n ∈ P ws
A

and define f̄P̄n : (P ws
A )n−1 → A by f̄P̄n(P1� � � � �Pn−1) = f (P1� � � � �Pn−1� P̄n). Since f is

also strategy-proof, it follows immediately that f̄P̄n is also strategy-proof. Furthermore,

Rf̄P̄n
= Rf , because if a ∈ Rf and Pa ∈ P ws

A is such that τA(Pa) = a, then f̄P̄n(Pa� � � � �Pa) =
f̂ (Pa� P̄n) = a. By the induction hypothesis, f̄P̄n is dictatorial, and it remains to show

that the identity of the dictator of f̄P̄n does not depend on the choice of P̄n ∈ P ws
A . Sup-

pose, therefore, that there exist P̄n� P̄
′
n ∈ P ws

A such that individual i is the dictator for f̄P̄n ,

while individual i′ (i′ �= i) is the dictator for f̄P̄ ′
n
. If Pi�Pi′ ∈ P ws

A are now chosen such

that τRf
(Pi) �= τRf

(P̄n) while τRf
(Pi′) = τRf

(P̄n), then this would imply that individ-

ual n is able to manipulate f at (P1� � � � �Pi� � � � �Pi′� � � � � P̄n) by representing P̄ ′
n instead

of P̄n. Thus, the identity of the dictator of f̄P̄n must be independent of P̄n, and it follows
that f is dictatorial.
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Consider finally the case when î = 2 is the dictator for f̂ . In this case, individual n
must be a dictator for f , which follows from a contradiction argument: If there were
some (Pn�P−n) ∈ (P ws

A )n such that f (Pn�P−n) = a but a �= τRf
(Pn), we could take some

Pa ∈ P ws
A with τA(Pa) = a and set P ′−n = (Pa� � � � �Pa). Then f (Pn�P

′−n) = a by Lemma 1,

but since î = 2 is a dictator for f̂ , we also have f (Pn�P
′−n) = f̂ (Pa�Pn) = τRf

(Pn), which
is a contradiction. �
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