# Forward induction reasoning revisited 

Pierpaolo Battigalli<br>Department of Economics, Bocconi University<br>Amanda Friedenberg<br>Department of Economics, Arizona State University


#### Abstract

Battigalli and Siniscalchi (2002) formalize the idea of forward induction reasoning as "rationality and common strong belief of rationality" (RCSBR). Here we study the behavioral implications of RCSBR across all type structures. Formally, we show that RCSBR is characterized by a solution concept we call extensive form best response sets (EFBRS's). It turns out that the EFBRS concept is equivalent to a concept already proposed in the literature, namely directed rationalizability (Battigalli and Siniscalchi 2003). We conclude by applying the EFBRS concept to games of interest. Keywords. Epistemic game theory, forward induction, extensive form best response set, directed rationalizability.


JEL classification. C72.

## 1. Introduction

Forward induction is a basic concept in game theory. It reflects the idea that players rationalize their opponents' behavior whenever possible. In particular, players form an assessment about the future play of the game, given the information about the past play and the presumption that their opponents are strategic. This affects the players' choices.

Formalizing forward induction reasoning requires an epistemic apparatus: To express the idea that players rationalize their opponents' past behavior, we need a language that explicitly describes what a player believes about the strategies her opponents play and the beliefs they hold at each information set. An (extensive-form based) epistemic type structure gives such a language.

[^0]Copyright © 2012 Pierpaolo Battigalli and Amanda Friedenberg. Licensed under the Creative Commons Attribution-NonCommercial License 3.0. Available at http: //econtheory . org.
DOI: 10.3982/TE598

Within this framework, Battigalli and Siniscalchi (2002) formalize forward induction reasoning using the idea of "strong belief." (See also Stalnaker 1998.) A player strongly believes an event $E$ if he assigns probability 1 to $E$, as long as $E$ is consistent with the information set he has reached. With this, the conditions that each player is rational, strongly believes that "each (other) player is rational," strongly believes "each (other) player is rational and strongly believes others are rational," etc. formally capture the idea of forward induction reasoning. The collection of these assumptions is called rationality and common strong belief of rationality ( $R C S B R$ ).

Battigalli and Siniscalchi (2002) analyze the implications of RCSBR in the canonical construction of the so-called universal type structure. (This is a type structure that induces all hierarchies of conditional beliefs.) They show that, in this case, a strategy is consistent with RCSBR if and only if it is extensive-form rationalizable (Pearce 1984). But, for a "smaller" type structure-one that does not induce all hierarchies of conditional beliefs-the strategies consistent with RCSBR may be distinct from the extensiveform rationalizable strategies. (See Battigalli and Siniscalchi 2002 or Example 3 below.)

Given this fact, a natural question arises. What are the implications of forward induction reasoning across all epistemic type structures? The answer is a solution concept we call extensive-form best response sets (EFBRS's). Specifically, we show that RCSBR is characterized by EFBRS's: For a given game and type structure, the strategies consistent with RCSBR form an EFBRS. Conversely, for a given EFBRS, there is a type structure so that the strategies consistent with RCSBR are exactly the given EFBRS. (See Theorem 1.) Of course, the extensive-form rationalizable strategy set is one EFBRS. Which EFBRS obtains depends on the given type structure.

While the EFBRS definition is new, we note that it is equivalent to a definition already proposed in the literature, namely, the directed rationalizability concept. This solution concept is due to Battigalli and Siniscalchi (2003), who refer to it as $\Delta$-rationalizability. We discuss the connection in Section 9.a below. We see that, in some ways, the questions raised here can be viewed as a follow-up to the questions raised in Battigalli and Siniscalchi (2003).

The paper proceeds as follows. The game and epistemic structure are defined in Sections 2 and 3. Rationality and strong belief are defined in Section 4. Section 5 gives the main theorem, a characterization of RCSBR in terms of EFBRS's. Section 6 gives an alternate characterization theorem, in terms of directed rationalizability. We then turn to applications in Sections 7 and 8. Finally, in Section 9, we conclude by discussing certain conceptual and technical aspects of the paper.

## 2. The game

We consider finite extensive-form games of perfect recall. We write $\Gamma$ for such a game. The definition we consider is similar to that in Osborne and Rubinstein (1994, Definition 200.1). In particular, it allows for simultaneous moves. ${ }^{1}$

[^1]There are two players, namely $a$ (Ann) and $b$ (Bob). ${ }^{2}$ Let $C_{a}$ and $C_{b}$ be choice or action sets for Ann and Bob. A history for the game consists of (possibly empty) sequences of simultaneous choices for Ann and Bob. More formally, a history is either (i) the empty sequence, written $\phi$, or (ii) a sequence of choice pairs ( $c^{1}, \ldots, c^{K}$ ), where $c^{k}=\left(c_{a}^{k}, c_{b}^{k}\right) \in C_{a} \times C_{b}$. Histories have the property that if $\left(c^{1}, \ldots, c^{K}\right)$ is a history, then so is $\left(c^{1}, \ldots, c^{L}\right)$ for each $L \leq K$. Each history can be viewed as a node in the tree, and so we interchangeably use the terms "node" and "history."

Write $x$ for a history of the game and let $C(x)=\left\{c \in C_{a} \times C_{b}:(x, c)\right.$ is a history for the game\}. Write $C_{a}(x)=\operatorname{proj}_{C_{a}} C(x)$ and $C_{b}(x)=\operatorname{proj}_{C_{b}} C(x)$. By assumption, these sets have the property that $C(x)=C_{a}(x) \times C_{b}(x)$. The interpretation is that $C_{a}(x)$ is the set of choices available to a at history $x$. If $\left|C_{a}(x)\right| \geq 2$, say a moves at history $x$ or $a$ is active at $x$. (If $\left|C_{a}(x)\right| \leq 1, a$ is inactive at history $x$.) Call $x$ a terminal history of the game if $C(x)=\varnothing$. (Terminal histories can be viewed either as terminal nodes or paths for the game.)

Let $H_{a}$ (resp. $H_{b}$ ) be a partition of the set of all nodes at which $a$ (resp. $b$ ) is active plus the initial node $\phi$. The partition $H_{a}\left(\right.$ resp. $\left.H_{b}\right)$ has the property that if $x, x^{\prime}$ are contained in the same partition member, viz. $h$ in $H_{a}$ (resp. $H_{b}$ ), then $C_{a}(x)=C_{a}\left(x^{\prime}\right)$ (resp. $C_{b}(x)=C_{b}\left(x^{\prime}\right)$ ). The interpretation is that $H_{a}$ (resp. $H_{b}$ ) is the family of information sets for $a$ (resp. $b$ ). (Notice that $\{\phi\} \in H_{a} \cap H_{b}$. Perfect recall imposes further requirements on $H_{a}$ and $H_{b}$. See Osborne and Rubinstein 1994, Definition 203.3.) Write $H=H_{a} \cup H_{b}$.

Let $Z$ be the set of terminal histories of the game and let $z$ be an arbitrary element of $Z$. Extensive-form payofffunctions are given by $\Pi_{a}: Z \rightarrow \mathbb{R}$ and $\Pi_{b}: Z \rightarrow \mathbb{R}$.

We abuse notation and write $C_{a}(h)$ for the set of choices available to $a$ at information set $h \in H_{a}$. With this, the set of strategies for player $a$ is given by $S_{a}=\prod_{h \in H_{a}} C_{a}(h)$. Define $S_{b}$ analogously. Each pair of strategies ( $s_{a}, s_{b}$ ) induces a path through the tree. Let $\zeta: S_{a} \times S_{b} \rightarrow Z$ map each strategy profile into the induced path. Strategic-form payoff functions are given by $\pi_{a}=\Pi_{a} \circ \zeta$ and $\pi_{b}=\Pi_{b} \circ \zeta$. Given a profile ( $s_{a}, s_{b}$ ), write $\pi\left(s_{a}, s_{b}\right)=\left(\pi_{a}\left(s_{a}, s_{b}\right), \pi_{b}\left(s_{a}, s_{b}\right)\right)$ and refer to this payoff vector as an outcome of the game. Two strategy profiles, $\left(s_{a}, s_{b}\right)$ and $\left(r_{a}, r_{b}\right)$, are outcome equivalent if $\pi\left(s_{a}, s_{b}\right)=$ $\pi\left(r_{a}, r_{b}\right)$. (Of course, if $\left(s_{a}, s_{b}\right)$ and ( $r_{a}, r_{b}$ ) induce the same path (i.e., if $\zeta\left(s_{a}, s_{b}\right)=$ $\zeta\left(r_{a}, r_{b}\right)$ ), they are outcome equivalent. But, they may be outcome equivalent even if they do not.)

For each information set $h \in H$, write $S_{a}(h)$ (resp. $S_{b}(h)$ ) for the set of strategies for $a$ (resp. $b$ ) that allow $h$. (That is, $s_{a} \in S_{a}(h)$ if there is some $s_{b} \in S_{b}$ so that the path induced by $\left(s_{a}, s_{b}\right)$ passes through $h$.) Let $\mathcal{S}_{a}$ (resp. $\mathcal{S}_{b}$ ) be the collection of all $S_{a}(h)$ (resp. $\left.S_{b}(h)\right)$ for $h \in H_{b}$ (resp. $h \in H_{a}$ ). Thus, $\mathcal{S}_{a}$ represents the information structure of $b$ about the strategy of $a$. In particular, at each of $b$ 's information sets, he has a belief about $a$ that assigns probability 1 to the set of $a$ 's strategies consistent with the information set being reached.

## 3. The type structure

This section defines an epistemic type structure. There are two ingredients: First, for each player, there are type sets $T_{a}$ and $T_{b}$. Informally, each player "knows" his own type,

[^2]but faces uncertainty about the strategy the other player will choose and the type of the other player. So each type $t_{a} \in T_{a}$ is associated with a belief on $S_{b} \times T_{b}$. Of course, we want to specify a belief at each information set. Therefore, we map each type into a conditional probability system (CPS) on $S_{b} \times T_{b}$, where the conditioning events correspond to the information sets in the game tree. That is, for each type, there is an array of probability measures on $S_{b} \times T_{b}$, one for each information set, and this array satisfies the rules of conditional probability when possible.

We now give the formal definitions. These closely follow the definitions in Battigalli and Siniscalchi (2002). Throughout, let $\Omega$ be a separable metrizable space and let $\mathcal{B}(\Omega)$ be the Borel $\sigma$-algebra on $\Omega$. We endow the product of separable metrizable spaces with the product topology and endow a subset of a separable metrizable space with the relative topology. Write $\mathcal{P}(\Omega)$ for the set of Borel probability measures on $\Omega$ and endow $\mathcal{P}(\Omega)$ with the topology of weak convergence.

Definition 1 (Rényi 1955). Fix a separable metrizable space $\Omega$ and a nonempty collection of events $\mathcal{E} \subseteq \mathcal{B}(\Omega)$. A conditional probability system (CPS) on ( $\Omega, \mathcal{E}$ ) is a mapping $\mu(\cdot \cdot): \mathcal{B}(\Omega) \times \mathcal{E} \rightarrow[0,1]$ such that, for every $E \in \mathcal{B}(\Omega)$ and $F, G \in \mathcal{E}$, the following statements hold:
(i) $\mu(F \mid F)=1$,
(ii) $\mu(\cdot \mid F) \in \mathcal{P}(\Omega)$, and
(iii) $E \subseteq F \subseteq G$ implies $\mu(E \mid G)=\mu(E \mid F) \mu(F \mid G)$.

Call $\mathcal{E}$, with $\varnothing \neq \mathcal{E} \subseteq \mathcal{B}(\Omega)$, a collection of conditioning events for $\Omega$.
When it is clear that $\mu(\cdot \cdot)$ is a CPS on $(\Omega, \mathcal{E})$, we omit reference to its arguments, simply writing $\mu$ instead of $\mu(\cdot \mid \cdot)$.

Write $\mathcal{C}(\Omega, \mathcal{E})$ for the set of conditional probability systems on $(\Omega, \mathcal{E})$. The $\operatorname{set} \mathcal{C}(\Omega, \mathcal{E})$ can be viewed as a subset of $[\mathcal{P}(\Omega)]^{\mathcal{E}}$. We endow $[\mathcal{P}(\Omega)]^{\mathcal{E}}$ with the product topology and then endow $\mathcal{C}(\Omega, \mathcal{E})$ with the relative topology. If $\mathcal{E}$ is countable, $\mathcal{C}(\Omega, \mathcal{E})$ is separable metrizable. When the set of conditioning events is clear from the context, we omit reference to $\mathcal{E}$, simply writing $\mathcal{C}(\Omega)$.

We are often interested in product sets. We adopt the convention that if $\Omega_{1} \times \Omega_{2}=\varnothing$, then both $\Omega_{1}=\varnothing$ and $\Omega_{2}=\varnothing$. Fix some $\mathcal{E} \subseteq \mathcal{B}\left(\Omega_{1}\right)$ and write $\mathcal{E} \otimes \Omega_{2}$ for the set of all $E \times \Omega_{2}$, where $E \in \mathcal{E}$. Of course, $\mathcal{E} \otimes \Omega_{2} \subseteq \mathcal{B}\left(\Omega_{1} \times \Omega_{2}\right)$.

Consider a CPS $\mu(\cdot \mid \cdot)$ on $\left(\Omega_{1} \times \Omega_{2}, \mathcal{E} \otimes \Omega_{2}\right)$, where $\mathcal{E} \subseteq \mathcal{B}\left(\Omega_{1}\right)$. Define $\nu(\cdot \mid \cdot): \mathcal{B}\left(\Omega_{1}\right) \times$ $\mathcal{E} \rightarrow[0,1]$ so that $\nu(E \mid F)=\mu\left(E \times \Omega_{2} \mid F \times \Omega_{2}\right)$ for all $E \in \mathcal{B}\left(\Omega_{1}\right)$ and $F \in \mathcal{E}$. Then $\nu$ is a conditional probability system on $\left(\Omega_{1}, \mathcal{E}\right)$. When $\nu(\cdot \mid \cdot)$ is defined in this way, write $\nu(\cdot \mid \cdot)=\operatorname{marg}_{\Omega_{1}} \mu(\cdot \mid \cdot)$. No confusion should result.

Definition 2. Fix an extensive-form game $Г$. А $\Gamma$-based type structure is a collection

$$
\left\langle S_{a}, S_{b} ; \mathcal{S}_{a}, \mathcal{S}_{b} ; T_{a}, T_{b} ; \beta_{a}, \beta_{b}\right\rangle
$$



Figure 1. Battle of the sexes with an outside option.
where $T_{a}$ (resp. $T_{b}$ ) is a nonempty separable metrizable space and $\beta_{a}: T_{a} \rightarrow$ $\mathcal{C}\left(S_{b} \times T_{b}, \mathcal{S}_{b} \otimes T_{b}\right)$ (resp. $\beta_{b}: T_{b} \rightarrow \mathcal{C}\left(S_{a} \times T_{a}, \mathcal{S}_{a} \otimes T_{a}\right)$ ) is a measurable belief map. Members of $T_{a}$ (resp. $T_{b}$ ) are called types. Members of $S_{a} \times T_{a} \times S_{b} \times T_{b}$ are called states.

To illustrate Definition 2, consider two examples of $\Gamma$-based type structures. Each is based on the game $\Gamma$ of the battle of the sexes (BoS) with an outside option as given in Figure 1.

Example 1. Suppose the game of BoS with an outside option is played in a society that has come to form a "lady's choice convention." Loosely, everyone in the society thinks that if the lady gets to move in a BoS-like situation, she makes choices that can lead to her "best payoff," i.e., she plays $U p$, hoping to get a payoff of 4 . Moreover, it is "transparent" that everyone thinks this.

The convention restricts the beliefs players do vs. do not consider possible. ${ }^{3}$ It can be modelled by a type structure $\left\langle S_{a}, S_{b} ; \mathcal{S}_{a}, \mathcal{S}_{b} ; T_{a}, T_{b} ; \beta_{a}, \beta_{b}\right\rangle$ based on the game in Figure 1. The type structure satisfies the following conditions: Each type $t_{b}$ of Bob is mapped to a CPS on $S_{a} \times T_{a}$ that assigns probability 1 to $\{U p\} \times T_{a}$ at each information set. Moreover, for each such CPS, there is a type of Bob, viz. $t_{b}$, so that $\beta_{b}\left(t_{b}\right)$ is exactly that CPS. Likewise, for each CPS on $S_{b} \times T_{b}$, there is a type of Ann, viz. $t_{a}$, so that $\beta_{a}\left(t_{a}\right)$ is exactly that CPS. (See Battigalli and Friedenberg 2009 on how to construct such a structure.)

Notice that at each information set, each type of Bob assigns probability 1 to the event "Ann plays $U p$," i.e., to Ann trying to achieve her best payoff. There are no restrictions on Ann's beliefs about Bob's play of the game. This follows from $\beta_{a}$ being onto-for each belief she can have about $S_{b}$, there is a type of Ann that has that belief. But at each information set, each type of Ann assigns probability 1 to the event "at each information set, Bob assigns probability 1 to the event 'Ann plays $U p$,'" and so on. In this sense, it is transparent that Bob thinks that if Ann gets to move, she will play $U p$.

Example 2. Suppose the game of BoS with an outside option is played among players who have no reason to believe that the other players are more or less likely to choose

[^3]a particular strategy or to have particular beliefs, etc. This idea can be modelled by a type structure that contains all possible conditional beliefs (about types), i.e., by a type structure $\left\langle S_{a}, S_{b} ; \mathcal{S}_{a}, \mathcal{S}_{b} ; T_{a}, T_{b} ; \beta_{a}, \beta_{b}\right\rangle$ based on the game in Figure 1, where $\beta_{a}$ and $\beta_{b}$ are onto.

This is known as a complete type structure. (The terminology is due to Brandenburger 2003.) One example of a complete type structure is the canonical construction of a type structure, as in Battigalli and Siniscalchi (1999a). That type structure induces all hierarchies of conditional beliefs.

## 4. Rationality and strong belief

We now turn to the main epistemic definitions, all of which have counterparts with $a$ and $b$ reversed. Begin by extending $\pi_{a}(\cdot, \cdot)$ to $S_{a} \times \mathcal{P}\left(S_{b}\right)$ in the usual way, i.e., $\pi_{a}\left(s_{a}, \varpi_{a}\right)=\sum_{s_{b} \in S_{b}} \pi_{a}\left(s_{a}, s_{b}\right) \varpi_{a}\left(s_{b}\right)$. Since the measure $\varpi_{a}$ on $S_{b}$ reflects a belief by $a$ about $b$, we write $\varpi_{a} \in \mathcal{P}\left(S_{b}\right)$.

Definition 3. Fix $X_{a} \subseteq S_{a}$ and $s_{a} \in X_{a}$. Say $s_{a}$ is optimal under $\varpi_{a} \in \mathcal{P}\left(S_{b}\right)$ given $X_{a}$ if $\pi_{a}\left(s_{a}, \varpi_{a}\right) \geq \pi_{a}\left(r_{a}, \varpi_{a}\right)$ for all $r_{a} \in X_{a}$.

Definition 4. Say $s_{a} \in S_{a}$ is sequentially optimal under $\mu_{a}(\cdot \mid \cdot): \mathcal{B}\left(S_{b}\right) \times \mathcal{S}_{b} \rightarrow[0,1]$ if, for all $h$ with $s_{a} \in S_{a}(h), s_{a}$ is optimal under $\mu_{a}\left(\cdot \mid S_{b}(h)\right)$ given $S_{a}(h)$. Say $s_{a} \in S_{a}$ is sequentially justifiable if there exists $\mu_{a}(\cdot \cdot): \mathcal{B}\left(S_{b}\right) \times \mathcal{S}_{b} \rightarrow[0,1]$ so that $s_{a}$ is sequentially optimal under $\mu_{a}(\cdot \mid \cdot)$.

Definition 5. Say $\left(s_{a}, t_{a}\right)$ is rational if $s_{a}$ is sequentially optimal under $\operatorname{marg}_{S_{b}} \beta_{a}\left(t_{a}\right)$.
Let $R_{a}$ be the set of strategy-type pairs, viz. ( $s_{a}, t_{a}$ ), at which $a$ is rational.
Definition 6 (Battigalli and Siniscalchi 2002). Fix a CPS $\mu(\cdot \cdot): \mathcal{B}(\Omega) \times \mathcal{E} \rightarrow[0,1]$ and an event $E \in \mathcal{B}(\Omega)$. Say $\mu$ strongly believes $E$ if
(i) there exists $F \in \mathcal{E}$ so that $E \cap F \neq \varnothing$ and
(ii) for each $F \in \mathcal{E}, E \cap F \neq \varnothing$ implies $\mu(E \mid F)=1$.

If a CPS $\mu$ strongly believes $E$ and $\Omega \in \mathcal{E}$, then $\mu(E \mid \Omega)=1$. In our application, we have $\Omega \in \mathcal{E}$. Of course, no CPS strongly believes the empty set.

Strong belief fails a monotonicity property, i.e., $\mu$ may strongly believe an event $E$ but not some event $F$ with $E \subseteq F$. (This can happen if there is some $G \in \mathcal{E}$ with $E \cap G=\varnothing$ but $F \cap G \neq \varnothing$.) But there are two important properties that strong belief does satisfy. (These properties are useful in our analysis.)

Property 1 (Conjunction). Fix a CPS on $(\Omega, \mathcal{E})$, viz. $\mu$, and a finite or countable collection of events $E_{1}, E_{2}, \ldots$ If $\mu$ strongly believes $E_{1}, E_{2}, \ldots$, then $\mu$ strongly believes $\bigcap_{m} E_{m}$.

Property 2 (Marginalization). Fix a CPS $\mu$ on $\left(\Omega_{1} \times \Omega_{2}, \mathcal{E} \otimes \Omega_{2}\right)$, where $\mathcal{E} \subseteq \mathcal{B}\left(\Omega_{1}\right)$. If $\mu$ strongly believes $E \in \mathcal{B}\left(\Omega_{1} \times \Omega_{2}\right)$ and $\operatorname{proj}_{\Omega_{1}} E$ is Borel, then $\operatorname{marg}_{\Omega_{1}} \mu$ strongly believes $\operatorname{proj}_{\Omega_{1}} E$.

Definition 7. Say $t_{a} \in T_{a}$ strongly believes $E_{b} \in \mathcal{B}\left(S_{b} \times T_{b}\right)$ if $\beta_{a}\left(t_{a}\right)$ strongly believes $E_{b}$.
Let $\mathrm{SB}_{a}\left(E_{b}\right)$ be the set of strategy-type pairs $\left(s_{a}, t_{a}\right)$ such that $t_{a}$ strongly believes event $E_{b}$. That is, $\mathrm{SB}_{a}\left(E_{b}\right)$ is the event that "Ann strongly believes $E_{b}$."

Now, we inductively define the set of states at which there is rationality and $m$ thorder strong belief of rationality. Set $R_{a}^{1}=R_{a}$ (resp. $R_{b}^{1}=R_{b}$ ). The event that Ann is rational and Ann strongly believes "Bob is rational" is then

$$
R_{a}^{2}=R_{a}^{1} \cap \mathrm{SB}_{a}\left(R_{b}^{1}\right) .
$$

And the event that Ann is rational, Ann strongly believes "Bob is rational," and strongly believes "Bob is rational and strongly believes 'I am rational" is

$$
R_{a}^{3}=R_{a} \cap \mathrm{SB}_{a}\left(R_{b}\right) \cap \mathrm{SB}_{a}\left(R_{b} \cap \mathrm{SB}_{b}\left(R_{a}\right)\right)=R_{a}^{2} \cap \mathrm{SB}_{a}\left(R_{b}^{2}\right) .
$$

More generally, define $R_{a}^{m}$ (resp. $R_{b}^{m}$ ), so that $R_{a}^{m+1}=R_{a}^{m} \cap \mathrm{SB}_{a}\left(R_{b}^{m}\right)$ (resp. $R_{b}^{m+1}=R_{b}^{m} \cap$ $\left.\mathrm{SB}_{b}\left(R_{a}^{m}\right)\right)$.

Definition 8. Say there is rationality and common strong belief of rationality (RCSBR) at state $\left(s_{a}, t_{a}, s_{b}, t_{b}\right)$ if $\left(s_{a}, t_{a}, s_{b}, t_{b}\right) \in \bigcap_{m} R_{a}^{m} \times \bigcap_{m} R_{b}^{m}$.

The prediction of play under RCSBR is the projection of $\bigcap_{m} R_{a}^{m} \times \bigcap_{m} R_{b}^{m}$ on $S_{a} \times S_{b}$. This prediction depends on both the given game and the given epistemic type structure.

Example 3. Return to Example 1, i.e., the BoS with an outside option game and the type structure associated with the lady's choice convention. (Recall, each $\beta_{b}\left(t_{b}\right)$ assigns probability 1 to $\{U p\} \times\left\{T_{a}\right\}$ and the belief map $\beta_{a}$ is onto.) In this example, $\operatorname{proj}_{S_{a}} R_{a}^{m} \times$ $\operatorname{proj}_{S_{b}} R_{b}^{m}$ is $\{U p, D o w n\} \times\{O u t\}$ for each $m \geq 1$.
$m=1$ : Since each type $t_{b}$ assigns probability 1 to $\{U p\} \times T_{a},\left(s_{b}, t_{b}\right)$ is rational if and only if $s_{b}=$ Out. Also, there is a CPS $\mu_{a}$ (resp. $\nu_{a}$ ) on $S_{b} \times T_{b}$ so that $U p$ (resp. Down) is sequentially optimal under $\mu_{a}$ (resp. $\nu_{a}$ ). Since $\beta_{a}$ is onto, there is a type $t_{a}$ (resp. $u_{a}$ ) so that $\left(U p, t_{a}\right) \in R_{a}^{1}$ (resp. (Down, $\left.u_{a}\right) \in R_{a}^{1}$ ).
$m \geq 2$ : Assume the claim holds for $m$. Then $R_{b}^{m+1} \subseteq R_{b}^{m} \subseteq\{O u t\} \times T_{b}$. (The second inclusion follows from the induction hypothesis.) Since $R_{a}^{m} \cap\left(\{U p\} \times T_{a}\right) \neq \varnothing$, there is a type $t_{b}$ that assigns probability 1 to $R_{a}^{m}$ at each information set. Any such type assigns probability 1 to each $R_{a}^{n}$, for $n \leq m$, at each information set. So $R_{b}^{m+1} \neq \varnothing$. Thus, $\operatorname{proj}_{S_{b}} R_{b}^{m}=\{O u t\}$.

Next, for each $n \leq m, \varnothing \neq R_{b}^{n} \subseteq\{O u t\} \times T_{b}$. So there is a CPS $\mu_{a}$ with $\mu_{a}\left(R_{b}^{m} \mid S_{b} \times T_{b}\right)=1$. Any such CPS $\mu_{a}$ strongly believes each $R_{b}^{n}$ where $n \leq m$. (Here we use the fact that, for each $n \leq m, R_{b}^{m} \cap\left(\{\right.$ In-Left, In-Right $\left.\} \times T_{b}\right)=\varnothing$.) For any such CPS, viz. $\mu_{a}$, there is a type $t_{a}$ whose belief is $\mu_{a}$. As such, there is a type $t_{a}$ so that $\left(U p, t_{a}\right) \in R_{a}^{m+1}$ (resp. $\left(\right.$ Down,$\left.t_{a}\right) \in R_{a}^{m+1}$ ).

Example 4. Return to Example 2, i.e., the BoS with an outside option game and a complete type structure. In this case, an RCSBR analysis corresponds to the typical forward induction analysis: The strategy In-Left is dominated and so there does not exist a type $t_{b}$ with (In-Left, $t_{b}$ ) rational. But for each $s_{b} \in\{O u t$, In-Right $\}$, there is a type $t_{b}$ with ( $s_{b}, t_{b}$ ) rational. Likewise, for each $s_{a} \in\{U p$, Down $\}$, there is a type $t_{a}$ with $\left(s_{a}, t_{a}\right)$ rational. It follows that

$$
\operatorname{proj}_{S_{a}} R_{a}^{1} \times \operatorname{proj}_{S_{b}} R_{b}^{1}=\{U p, \text { Down }\} \times\{O u t, \text { In-Right }\} .
$$

Now if $t_{a}$ strongly believes $R_{b}^{1}$, then $t_{a}$ must assign probability 1 to $\{\operatorname{In}-\operatorname{Right}\} \times T_{b}$, conditional on BoS being reached. So $\operatorname{proj}_{S_{a}} R_{a}^{2} \subseteq\{$ Down $\}$. Moreover, since $\beta_{a}$ is onto, there is a type $t_{a}$ that strongly believes $R_{b}^{1}$, so

$$
\operatorname{proj}_{S_{a}} R_{a}^{2} \times \operatorname{proj}_{S_{b}} R_{b}^{2}=\{\text { Down }\} \times\{\text { Out }, \text { In-Right }\} .
$$

With this, if $t_{b}$ strongly believes $R_{a}^{2}$, then $t_{b}$ must assign probability 1 to In-Right, conditional on In being played. So $\operatorname{proj}_{S_{b}} R_{b}^{3} \subseteq\{I n$-Right $\}$. Moreover, since $\beta_{b}$ is onto, there is a type $t_{b}$ that strongly believes $R_{a}^{2}$, so

$$
\operatorname{proj}_{S_{a}} R_{a}^{3} \times \operatorname{proj}_{S_{b}} R_{b}^{3}=\{\text { Down }\} \times\{I n-\text { Right }\} .
$$

A standard induction argument shows that, for each $m \geq 3, \operatorname{proj}_{S_{a}} R_{a}^{m} \times \operatorname{proj}_{S_{b}} R_{b}^{m}=$ $\{$ Down $\} \times\{I n$-Right $\}$. This is the extensive-form rationalizable set.

Comparing Examples 3 and 4 we see that there is a nonmonotonicity in behavioral prediction of RCSBR: even if a type structure contains "more" beliefs, the RCSBR analysis in this "larger" structure can exclude an outcome allowed by an RCSBR analysis in the "smaller" one. To review why this can happen, observe that in the complete type structure (Example 4), there are types of Ann that assign positive probability to Bob's playing In-Left, conditional on Ann's information set being reached. But unlike the case of the lady's choice convention (Example 3), no such type can strongly believe the event that Bob is rational. The reason is that, unlike the case of the lady's choice convention, here there are types $t_{b}$ so that (In-Right, $t_{b}$ ) is rational. Thus, in a sense, the nonmonotonicity in the behavioral prediction can be seen as arising from the nonmonotonicity of strong belief.

Example 5. For a given game and epistemic type structure, it may well be the case that $\bigcap_{m} R_{a}^{m}=\varnothing$ and $\bigcap_{m} R_{b}^{m}=\varnothing$. For instance, consider BoS with the outside option and a type structure where $\beta_{a}\left(t_{a}\right)\left(\{I n-L e f t\} \times T_{b} \mid S_{b} \times T_{b}\right)=1$ for each $t_{a}$. Each type of Ann initially assigns positive probability to a strictly dominated strategy of Bob. So $\mathrm{SB}_{a}\left(R_{b}^{1}\right)=$ $\varnothing$. Hence, $R_{a}^{2}=\varnothing$. It follows that $\mathrm{SB}_{b}\left(R_{a}^{2}\right)=\varnothing$ and so $R_{b}^{3}=\varnothing$.

## 5. Characterization theorem: EFBRS's

We now turn to characterizing RCSBR. For this it is useful to introduce a best reply correspondence, viz. $\rho_{a}: \mathcal{C}\left(S_{b}\right) \rightarrow 2^{S_{a}}$, where $\rho_{a}\left(\mu_{a}\right)$ is the set of strategies that are sequentially optimal under $\mu_{a}$. We begin with extensive-form best response sets.

Definition 9. Call $Q_{a} \times Q_{b} \subseteq S_{a} \times S_{b}$ an extensive-form best response set (EFBRS) if the following hold:
a. For each $s_{a} \in Q_{a}$, there is a CPS $\mu_{a} \in \mathcal{C}\left(S_{b}\right)$ so that
(i) $s_{a} \in \rho_{a}\left(\mu_{a}\right)$,
(ii) $\mu_{a}$ strongly believes $Q_{b}$, and
(iii) $\rho_{a}\left(\mu_{a}\right) \subseteq Q_{a}$.
b. And, likewise, for each $s_{b} \in Q_{b}$.

Example 6. Return to BoS with the outside option as in Figure 1. There are three EFBRS: $\{U p, D o w n\} \times\{O u t\},\{U p\} \times\{O u t\}$, and $\{$ Down $\} \times\{I n-R i g h t\}$. The first of these is the set of strategies consistent with RCSBR when we append to the game the type structure associated with the lady's choice convention. (See Example 3.) The latter of these is the set of strategies consistent with RCSBR when we append to the game a complete type structure. (See Example 4.)

Why is the EFBRS definition "right" for characterizing RCSBR? Fix some $\left(s_{a}, t_{a}\right) \in$ $\cap R_{a}^{m}$. We can immediately identify the first two properties of Definition 9. For the first, recall that $s_{a}$ is optimal under the CPS associated with $t_{a}$, namely $\beta_{a}\left(t_{a}\right)$. It follows that $s_{a}$ is optimal under the marginal of $\beta_{a}\left(t_{a}\right)$ on $S_{b}$ (a CPS on Bob's strategies). For the second, recall that $t_{a}$ strongly believes the events $R_{b}^{1}, R_{b}^{2}, R_{b}^{3}$, etc. So, by the conjunction property of strong belief, $t_{a}$ strongly believes the event $\bigcap R_{b}^{m}$. It then follows from a marginalization property of strong belief that the marginal of $\beta_{a}\left(t_{a}\right)$ on $S_{b}$ strongly believes $Q_{b}$ (i.e., the projection of $\bigcap R_{b}^{m}$ onto $S_{b}$ ). Thus, $Q_{a} \times Q_{b}$ satisfies both conditions (i) and (ii) of an EFBRS for $\left(s_{a}, \mu_{a}\right)$, where we take $\mu_{a}$ to be the marginal of $\beta_{a}\left(t_{a}\right)$ on $S_{b}$.

But conditions (i) and (ii) do not suffice to characterize RCSBR: We can have a set $Q_{a} \times Q_{b}$ that satisfies conditions (i) and (ii) but is inconsistent with RCSBR (for every type structure). This is illustrated by the next example.

Example 7. Consider the game in Figure 2 and the set $Q_{a} \times Q_{b}=\{O u t\} \times\{$ Left, Center $\}$. We see that the set $Q_{a} \times Q_{b}$ satisfies conditions (i) and (ii) of Definition 9. But for each type structure, $\operatorname{proj}_{S_{a}} \cap_{m} R_{a}^{m} \cap\{O u t\}=\varnothing$. That is, for each type structure, Out is inconsistent with RCSBR.

First we show that $Q_{a} \times Q_{b}$ satisfies conditions (i) and (ii) of Definition 9. Begin with Ann and consider the CPS that assigns probability $\frac{1}{2}: \frac{1}{2}$ to Left :Center at each information set. The strategy Out is sequentially optimal under this CPS. Of course, this CPS strongly believes $Q_{b}$. Turning to Bob, consider a CPS that assigns probability 1 to Out at the initial node and probability $\frac{1}{4}: \frac{1}{4}: \frac{1}{2}$ to In-Up:In-Middle:In-Down conditional on Bob's subgame being reached. The strategies Left and Center are sequentially optimal under this CPS, and this CPS strongly believes $Q_{a}$. So conditions (i) and (ii) are satisfied for $Q_{a} \times Q_{b}$.

Next we show that for each type structure, $\operatorname{proj}_{S_{a}} \cap_{m} R_{a}^{m} \cap\{O u t\}=\varnothing$. Suppose, contra hypothesis, that there exist some type structure and some type $t_{a}$ so that $\left(\right.$ Out, $\left.t_{a}\right) \in$ $\bigcap_{m} R_{a}^{m}$. Certainly, (Out, $t_{a}$ ) is rational and $t_{a}$ strongly believes each $R_{b}^{m}$. Since each


Figure 2. The need for maximality.
pair in $\{\operatorname{Right}\} \times T_{b}$ is irrational and $t_{a}$ strongly believes "Bob is rational," the type $t_{a}$ is associated with a CPS that (at each node) assigns probability 1 to $\{$ Left, Center $\} \times T_{b}$. Now, since ( $O u t, t_{a}$ ) is rational, the CPS associated with $t_{a}$ must assign probability $\frac{1}{2}: \frac{1}{2}$ to $\{L e f t\} \times T_{b}:\{$ Center $\} \times T_{b}$ at each node. With this, (In-Up, $t_{a}$ ) and (In-Middle, $t_{a}$ ) are also rational. Indeed, since $t_{a}$ strongly believes each of the $R_{b}^{m}$ sets, both (In-Up, $t_{a}$ ) and (In-Middle, $t_{a}$ ) must be contained in $\bigcap_{m} R_{a}^{m}$. Now, consider some ( $s_{b}, t_{b}$ ) $\in \bigcap_{m} R_{b}^{m}$. Conditional on Bob's information set being reached, $t_{b}$ must assign probability 1 to $\{I n-U p, I n-M i d d l e\} \times T_{a}$. (To see this, note that this event contains rational strategy-type pairs, while the event $\{$ In-Down $\} \times T_{a}$ does not contain any rational strategy-type pairs.) Since ( $s_{b}, t_{b}$ ) is rational, $s_{b}=$ Center. Thus, $\bigcap_{m} R_{b}^{m} \subseteq\{$ Center $\} \times T_{b}$. But, now notice that the CPS associated with $t_{a}$ does not strongly believe the event $\bigcap_{m} R_{b}^{m}$. By the conjunction property of strong belief, this implies that $t_{a}$ does not strongly believe some $R_{m}^{b}$, a contradiction.

What went wrong in this example? We began with a set $Q_{a} \times Q_{b}$ satisfying conditions (i) and (ii). In particular, we had a strategy $s_{a} \in Q_{a}$ for which there was a unique CPS $\mu_{a}\left(s_{a}\right)$, so that $s_{a}$ and $\mu_{a}\left(s_{a}\right)$ satisfy conditions (i) and (ii). But there was also a strategy $r_{a} \in S_{a} \backslash Q_{a}$ that was sequentially optimal under $\mu_{a}\left(s_{a}\right)$. (Actually, there were two such strategies.) As a result, if ( $s_{a}, t_{a}$ ) is consistent with RCSBR, then ( $r_{a}, t_{a}$ ) must also be consistent with RCSBR. Thus, there may be a strategy of Ann that is consistent with RCSBR, but is not contained in $Q_{a}$. And, if so, we may be able to find an $s_{b}$ and a CPS $\mu_{b}\left(s_{b}\right)$ (on $S_{a}$ ) so that $s_{b}$ and $\mu_{b}\left(s_{b}\right)$ satisfy conditions (i) and (ii), despite the fact that $s_{b}$ is not optimal under any CPS (on $S_{a} \times T_{a}$ ) that strongly believes the RCSBR strategy-type pairs for Ann.

This suggests that we need to add a maximality criterion to conditions (i) and (ii) of Definition 9. Indeed, this is what condition (iii) achieves.

Theorem 1. Fix an extensive-form game $\Gamma$.
(i) For any $\Gamma$-based type structure, $\operatorname{proj}_{S_{a}} \bigcap_{m} R_{a}^{m} \times \operatorname{proj}_{S_{b}} \bigcap_{m} R_{b}^{m}$ is an EFBRS.
(ii) Fix a nonempty EFBRS $Q_{a} \times Q_{b}$. There exists a $\Gamma$-based type structure, so that $Q_{a} \times$ $Q_{b}=\operatorname{proj}_{S_{a}} \cap_{m} R_{a}^{m} \times \operatorname{proj}_{S_{b}} \bigcap_{m} R_{b}^{m}$.

Proof. Begin by showing part (i) of the theorem. Fix a $\Gamma$-based type structure. If $\bigcap_{m} R_{a}^{m} \times \bigcap_{m} R_{b}^{m}=\varnothing$, then the result is immediate. So suppose $\bigcap_{m} R_{a}^{m} \times \bigcap_{m} R_{b}^{m} \neq \varnothing$. Fix $\left(s_{a}, s_{b}\right) \in \operatorname{proj}_{S_{a}} \bigcap_{m} R_{a}^{m} \times \operatorname{proj}_{S_{b}} \bigcap_{m} R_{b}^{m}$. Then there exists ( $t_{a}, t_{b}$ ) such that

$$
\left(s_{a}, t_{a}, s_{b}, t_{b}\right) \in \bigcap_{m} R_{a}^{m} \times \bigcap_{m} R_{b}^{m} .
$$

We show that the CPS $\operatorname{marg}_{S_{b}} \beta_{a}\left(t_{a}\right)$ satisfies conditions (i)-(iii) of an EFBRS for the strategy $s_{a}$. A similar argument holds for $s_{b}$.

Begin with the fact that

$$
\left(s_{a}, t_{a}\right) \in \rho_{a}\left(\operatorname{marg}_{S_{b}} \beta_{a}\left(t_{a}\right)\right) \times\left\{t_{a}\right\} \subseteq R_{a} .
$$

Now use the fact that $t_{a}$ strongly believes each $R_{b}^{m}$ to get that

$$
\rho_{a}\left(\operatorname{marg}_{S_{b}} \beta_{a}\left(t_{a}\right)\right) \times\left\{t_{a}\right\} \subseteq \bigcap_{m} R_{a}^{m} .
$$

So, $s_{a} \in \rho_{a}\left(\operatorname{marg}_{S_{b}} \beta_{a}\left(t_{a}\right)\right) \subseteq \operatorname{proj}_{S_{a}} \bigcap_{m} R_{a}^{m}$, establishing conditions (i) and (iii) of an EFBRS. Next, use the conjunction property of strong belief (Property 1) to get that $\beta_{a}\left(t_{a}\right)$ strongly believes $\bigcap_{m} R_{b}^{m}$. Using the marginalization property (Property 2), $\operatorname{marg}_{S_{a}} \beta_{a}\left(t_{a}\right)$ strongly believes $\operatorname{proj}_{S_{b}} \cap_{m} R_{b}^{m}$. This establishes condition (ii) of an EFBRS.

Now turn to part (ii) of the theorem. Fix an EFBRS $Q_{a} \times Q_{b} \neq \varnothing$. Let $T_{a}=Q_{a}$ and $T_{b}=Q_{b}$. Fix a type $t_{a} \in T_{a}=Q_{a}$. There is a CPS $\mu_{a}\left(t_{a}\right) \in \mathcal{C}\left(S_{b}\right)$ satisfying conditions (i)-(iii) of an EFBRS. Now construct a CPS $\beta_{a}\left(t_{a}\right) \in \mathcal{C}\left(S_{b} \times T_{b}, \mathcal{S}_{b} \otimes T_{b}\right)$ as follows. If $Q_{b} \cap S_{b}(h) \neq \varnothing$, set $\beta_{a}\left(t_{a}\right)\left(\left(t_{b}, t_{b}\right) \mid S_{b}(h) \times T_{b}\right)=\mu_{a}\left(t_{a}\right)\left(t_{b} \mid S_{b}(h)\right)$ for each $t_{b} \in Q_{b}=T_{b}$. Next fix some arbitrary element $t_{b}^{*} \in T_{b}$. If $Q_{b} \cap S_{b}(h)=\varnothing$, set $\beta_{a}\left(t_{a}\right)\left(\left(s_{b}, t_{b}^{*}\right) \mid S_{b}(h) \times T_{b}\right)=$ $\mu_{a}\left(t_{a}\right)\left(s_{b} \mid S_{b}(h)\right)$ for each $s_{b} \in S_{b}$. (Type $t_{b}^{*}$ is the same for each information set with $Q_{b} \cap S_{b}(h)=\varnothing$.)

Indeed, each $\beta_{a}\left(t_{a}\right)$ is a CPS on $\mathcal{S}_{b} \otimes T_{b}$. Conditions (i) and (ii) of a CPS are immediate. For condition (iii), fix an event $E_{b}$ and two information sets $h, i \in H_{a}$ with $E_{b} \subseteq S_{b}(h) \times T_{b} \subseteq S_{b}(i) \times T_{b}$. First, consider the case where $Q_{b} \cap S_{b}(h) \neq \varnothing$. In this case, $Q_{b} \cap S_{b}(i) \neq \varnothing$. So

$$
\begin{aligned}
\beta_{a}\left(t_{a}\right)\left(E_{b} \mid S_{b}(i) \times T_{b}\right) & =\mu_{a}\left(t_{a}\right)\left(\left\{t_{b} \in Q_{b}:\left(t_{b}, t_{b}\right) \in E_{b}\right\} \mid S_{b}(i)\right) \\
& =\mu_{a}\left(t_{a}\right)\left(\left\{t_{b} \in Q_{b}:\left(t_{b}, t_{b}\right) \in E_{b}\right\} \mid S_{b}(h)\right) \times \mu_{a}\left(t_{a}\right)\left(S_{b}(h) \mid S_{b}(i)\right) \\
& =\mu_{a}\left(t_{a}\right)\left(\left\{t_{b} \in Q_{b}:\left(t_{b}, t_{b}\right) \in E_{b}\right\} \mid S_{b}(h)\right) \times \mu_{a}\left(t_{a}\right)\left(Q_{b} \cap S_{b}(h) \mid S_{b}(i)\right) \\
& =\beta_{a}\left(t_{a}\right)\left(E_{b} \mid S_{b}(h) \times T_{b}\right) \times \beta_{a}\left(t_{a}\right)\left(S_{b}(h) \times T_{b} \mid S_{b}(i) \times T_{b}\right),
\end{aligned}
$$

where the first and fourth lines follow from the construction, the second line follows from the fact that $\mu_{a}\left(t_{a}\right)$ is a CPS, and the third line follows from the fact that $\mu_{a}\left(t_{a}\right)\left(Q_{b} \mid S_{b}(h)\right)=1$ (since $Q_{b} \cap S_{b}(h) \neq \varnothing$ and $\mu_{a}\left(t_{a}\right)$ strongly believes $\left.Q_{b}\right)$. This establishes condition (iii) of a CPS when $Q_{b} \cap S_{b}(h) \neq \varnothing$. So suppose $Q_{b} \cap S_{b}(h)=\varnothing$
and recall $E_{b} \subseteq S_{b}(h) \times T_{b}$. If $Q_{b} \cap S_{b}(i) \neq \varnothing$, then $\mu_{a}\left(t_{a}\right)\left(\operatorname{proj}_{S_{b}} E_{b} \mid S_{b}(i)\right)=0$ and $\mu_{a}\left(t_{a}\right)\left(S_{b}(h) \mid S_{b}(i)\right)=0$. (This uses the fact that $\mu_{a}\left(t_{a}\right)\left(Q_{b} \mid S_{b}(i)\right)=1$, which follows from strong belief.) So, here too,

$$
\begin{aligned}
\beta_{a}\left(t_{a}\right)\left(E_{b} \mid S_{b}(i) \times T_{b}\right) & =\beta_{a}\left(t_{a}\right)\left(E_{b} \mid S_{b}(h) \times T_{b}\right) \times \beta_{a}\left(t_{a}\right)\left(S_{b}(h) \times T_{b} \mid S_{b}(i) \times T_{b}\right) \\
& =0
\end{aligned}
$$

Finally, suppose $Q_{b} \cap S_{b}(i)=\varnothing$. Here

$$
\begin{aligned}
\beta_{a}\left(t_{a}\right)\left(E_{b} \mid S_{b}(i) \times T_{b}\right) & =\mu_{a}\left(t_{a}\right)\left(\left\{s_{b}:\left(s_{b}, t_{b}^{*}\right) \in E_{b}\right\} \mid S_{b}(i)\right) \\
& =\mu_{a}\left(t_{a}\right)\left(\left\{s_{b}:\left(s_{b}, t_{b}^{*}\right) \in E_{b}\right\} \mid S_{b}(h)\right) \times \mu_{a}\left(t_{a}\right)\left(S_{b}(h) \mid S_{b}(i)\right) \\
& =\beta_{a}\left(t_{a}\right)\left(E_{b} \mid S_{b}(h) \times T_{b}\right) \times \beta_{a}\left(t_{a}\right)\left(S_{b}(h) \times\left\{t_{b}^{*}\right\} \mid S_{b}(i) \times T_{b}\right) \\
& =\beta_{a}\left(t_{a}\right)\left(E_{b} \mid S_{b}(h) \times T_{b}\right) \times \beta_{a}\left(t_{a}\right)\left(S_{b}(h) \times T_{b} \mid S_{b}(i) \times T_{b}\right)
\end{aligned}
$$

as required.
We conclude the proof by showing

$$
\begin{align*}
Q_{a} & =\bigcup_{t_{a} \in T_{a}}\left[\rho_{a}\left(\operatorname{marg}_{S_{b}} \beta_{a}\left(t_{a}\right)\right)\right]  \tag{1}\\
R_{a}^{m} & =\bigcup_{t_{a} \in T_{a}}\left[\rho_{a}\left(\operatorname{marg}_{S_{b}} \beta_{a}\left(t_{a}\right)\right) \times\left\{t_{a}\right\}\right] \quad \text { for each } m, \tag{2}
\end{align*}
$$

and likewise with $a$ and $b$ interchanged. Taken together, they give the desired result.
Part (1): Recall that for each $t_{a} \in T_{a}=Q_{a}, \mu_{a}\left(t_{a}\right)=\operatorname{marg}_{S_{b}} \beta_{a}\left(t_{a}\right)$. So it is immediate from the construction that $Q_{a} \subseteq \bigcup_{t_{a} \in T_{a}} \rho_{a}\left(\operatorname{marg}_{S_{b}} \beta_{a}\left(t_{a}\right)\right)$. Conversely, fix any strategy $s_{a}$ in $\bigcup_{t_{a} \in T_{a}} \rho_{a}\left(\operatorname{marg}_{S_{b}} \beta_{a}\left(t_{a}\right)\right)$. Then there is a type $t_{a} \in T_{a}=Q_{a}$ so that $s_{a}$ is sequentially optimal under $\mu_{a}\left(t_{a}\right)(\cdot \mid \cdot)$. It follows from part (iii) of the definition of an EFBRS that $s_{a} \in Q_{a}$.

Part (2): The proof is by induction on $m$. The equation is immediate for $m=1$. Assume the result holds for $m$. To show that it holds for $m+1$, it suffices to show that each $t_{a} \in T_{a}$ strongly believes $R_{b}^{m}$. For this, fix an information set $h$ such that $R_{b}^{m} \cap$ $\left[S_{b}(h) \times T_{b}\right] \neq \varnothing$. Observe that

$$
\begin{aligned}
{\left[\operatorname{proj}_{S_{b}} R_{b}^{m}\right] \cap S_{b}(h) } & =\left[\bigcup_{t_{b} \in T_{b}} \rho_{b}\left(\operatorname{marg}_{S_{a}} \beta_{b}\left(t_{b}\right)\right)\right] \cap S_{b}(h) \\
& =Q_{b} \cap S_{b}(h)
\end{aligned}
$$

(The first equality follows from the induction hypothesis for $b$; the second equality follows from (1).) Since $R_{b}^{m} \cap\left[S_{b}(h) \times T_{b}\right] \neq \varnothing$, it follows that $Q_{b} \cap S_{b}(h) \neq \varnothing$ and so $\mu_{a}\left(t_{a}\right)\left(Q_{b} \mid S_{b}(h)\right)=1$. (Here, we use part (ii) of the definition of an EFBRS.) So, by construction, $\beta_{a}\left(t_{a}\right)\left(R_{b}^{m} \mid S_{b}(h) \times T_{b}\right)=1$, as required.

Part (i) of Theorem 1 says that the projection of the RCSBR event on $S_{a} \times S_{b}$ is an EFBRS. But this may form an empty EFBRS. That said, there is always a nonempty EFBRS.

Remark 1. For any game, there exists a nonempty EFBRS-namely, the set of extensiveform rationalizable strategy profiles.

Battigalli and Siniscalchi (1999a) show that for each $\Gamma$, there exists a complete $\Gamma$ based type structure with compact metrizable type sets. ${ }^{4}$ Proposition 6 in Battigalli and Siniscalchi (2002) says that for each such complete structure, the projection of the RCSBR event onto $S_{a} \times S_{b}$ is the set of extensive-form rationalizable strategies. So using Theorem 1(i), this set is an EFBRS. The fact that it is nonempty is shown as Corollary 1 in Battigalli (1997).

## 6. Alternate characterization theorem: Directed rationalizability

Return to the lady's choice convention example, i.e., Example 1. There, each type of Bob is associated with some CPS that assigned probability 1 to $\{U p\} \times T_{a}$. This gives a restriction on Bob's first-order beliefs, i.e., his beliefs about what Ann chooses. Let $\Delta_{b}$ represent this restriction on first-order beliefs. So $\Delta_{b}$ is a subset of the CPS's on $S_{a}$ and, in our example, $\Delta_{b}$ contains only the CPS that assigns probability 1 to $U p$ at each information set. We do not have a restriction on Ann's first-order beliefs. So we write $\Delta_{a}$ for the set of all CPS's on $S_{b}$.

With $\Delta=\Delta_{a} \times \Delta_{b}$ in hand, we can take an iterative approach to analyzing the game tree-much like a "typical rationalizability" procedure. In round one, we eliminate In-Left and In-Right for Bob, since these strategies are not sequentially optimal under the CPS in $\Delta_{b}$. We do not eliminate any of Ann's strategies, since they are each sequentially optimal under some CPS (in $\Delta_{a}$ ). So in round one, we are left with the set $\{U p, D o w n\} \times\{O u t\}$. Turning to round two, Out is sequentially optimal under the CPS in $\Delta_{b}$ and that CPS strongly believes $\{U p$, Down $\}$. Thus, we cannot eliminate Out in round two. Likewise, $U p$ (resp. Down) is sequentially optimal under a CPS that assigns probability 1 to Out at the initial node and probability 1 to Left (resp. Right) at Bob's subgame. This CPS is contained in $\Delta_{a}$ and strongly believes $\{O u t\}$. So we also get $\{U p, D o w n\} \times\{O u t\}$ in round two. Indeed, a standard induction argument gives that $\{U p, D o w n\} \times\{O u t\}$ is the outcome of the procedure. Of course, this is the EFBRS we identify in Section 4.

The procedure we use above is called $\Delta$-rationalizability; see Battigalli and Siniscalchi (2003). ${ }^{5}$ More generally, let $\Delta_{a}$ (resp. $\Delta_{b}$ ) be a nonempty subset of $\mathcal{C}\left(S_{b}\right)$ (resp. $\mathcal{C}\left(S_{a}\right)$ ), i.e., a set of first-order beliefs of Ann (resp. Bob). Call $\Delta=\Delta_{a} \times \Delta_{b}$ a set of firstorder beliefs. Set $S_{a}^{\Delta, 0}=S_{a}$ and $S_{b}^{\Delta, 0}=S_{b}$. Inductively define $S_{a}^{\Delta, m}$ and $S_{b}^{\Delta, m}$ as follows: Let $S_{a}^{\Delta, m+1}$ be the set of all $s_{a} \in S_{a}^{\Delta, m}$ so that there is some CPS $\mu_{a} \in \Delta_{a}$ with (i) $s_{a} \in \rho_{a}\left(\mu_{a}\right)$ and (ii) $\mu_{a}$ strongly believes $S_{b}^{\Delta, 1}, \ldots, S_{b}^{\Delta, m}$. And likewise with $a$ and $b$ interchanged. ${ }^{6}$

[^4]Definition 10 (Battigalli and Siniscalchi 2003). Call $S_{a}^{\Delta}=\bigcap_{m \geq 0} S_{a}^{\Delta, m}$ (resp. $S_{b}^{\Delta}=$ $\bigcap_{m \geq 0} S_{b}^{\Delta, m}$ ) the $\Delta$-rationalizable strategies of Ann (resp. Bob). Call $S_{a}^{\Delta} \times S_{b}^{\Delta}$ the $\Delta$ rationalizable strategy set.

Since the sets $S_{a}^{\Delta, m} \times S_{b}^{\Delta, m}$ form a decreasing sequence and $S_{a} \times S_{b}$ is finite, there is some (finite) $M$ so that $S_{a}^{\Delta} \times S_{b}^{\Delta}=S_{a}^{\Delta, M} \times S_{b}^{\Delta, M}$.

Of course, there may be many $\Delta$-rationalizable sets, each of which is obtained by beginning the procedure with a different set of first-order beliefs $\Delta=\Delta_{a} \times \Delta_{b}$. We use the phrase directed rationalizability to refer to the set of all $S_{a}^{\Delta} \times S_{b}^{\Delta}$. So, for a given game $\Gamma$, the directed rationalizability concept gives $\left\{S_{a}^{\Delta} \times S_{b}^{\Delta}: \Delta=\Delta_{a} \times \Delta_{b} \subseteq \mathcal{C}\left(S_{b}\right) \times \mathcal{C}\left(S_{b}\right)\right\}$.

Beginning from the lady's choice example, we can use the type structure to construct an associated set of first-order beliefs $\Delta$ and this set of first-order beliefs $\Delta$ can be used to perform $\Delta$-rationalizability. The output is the EFBRS we identified earlier. But the lady's choice convention has a particular feature: it is a restriction on first-order beliefs and a requirement that the restriction be "transparent" to the players. So the only restriction on second-order beliefs (i.e., beliefs about strategy the other player chooses and the other player's the first-order beliefs) is the requirement that at each information set, Ann must believe that Bob believes she will play $U p$ and so on. It is this transparency of (only) first-order restrictions that allows us to directly compute the associated directed rationalizability set.

More generally, when we begin from a given type structure, we impose substantive assumptions about which beliefs players do versus do not consider possible. These assumptions may correspond to restrictions (only) on players' first-order beliefs, which are transparent to the players. But they need not: they may involve additional restrictions on higher-order beliefs, and if they do, the procedure we outline above fails.

To see the failure, begin with an epistemic type structure and use the structure itself to form the set $\bar{\Delta}=\bar{\Delta}_{a} \times \bar{\Delta}_{b}$. Specifically, for each type $t_{a} \in T_{a}$, consider the marginal of $\beta_{a}\left(t_{a}\right)$ on $S_{b}$. These CPS's form the set $\bar{\Delta}_{a}$. Construct the set $\bar{\Delta}_{b}$ analogously. Here, the strategies that survive one round of $\bar{\Delta}$-rationalizability are exactly the strategies that are consistent with $\mathrm{R}_{0} \mathrm{SBR}_{a} \times{\mathrm{R} 0 \mathrm{SBR}_{b} \text {. But, in round two, we lose the equivalence: If } \beta_{a}\left(t_{a}\right)}^{\text {. }}$ strongly believes the event "Bob is rational," then the marginal of $\beta_{a}\left(t_{a}\right)$ also strongly believes that "Bob chooses a strategy consistent with one round of elimination of $\bar{\Delta}$ rationalizability." (Here, we use a marginalization property of strong belief, plus the round-one equivalence.) But the converse need not hold. So the strategies that survive two rounds of $\bar{\Delta}$-rationalizability may strictly contain the R1SBR strategies. And on round three, we loose the inclusion. If the $\operatorname{CPS} \beta_{a}\left(t_{a}\right)$ strongly believes the R1SBR event for Bob, then the marginal of $\beta_{a}\left(t_{a}\right)$ also strongly believes that "Bob chooses a strategy consistent with R1SBR." But recall that the strategies consistent with R1SBR may

[^5]be strictly contained in the strategies that survive two rounds of $\bar{\Delta}$-rationalizability. So there may be information sets consistent with this latter event, but not the former. This implies that even if $\beta_{a}\left(t_{a}\right)$ strongly believes the R1SBR event for Bob, it need not strongly believe that Ann's behavior is consistent with two rounds of $\bar{\Delta}$-rationalizability. (This is an instance of the fact that strong belief is not monotonic.) As such, we can lose (any) relationship between the RCSBR strategies and the $\bar{\Delta}$-rationalizable strategy set. In fact, Appendix B illustrates an example where the RCSBR strategy set and the $\bar{\Delta}$-rationalizable strategy set are disjoint.

There is another route that instead uses the EFBRS properties to form a set $\Delta=$ $\Delta_{a} \times \Delta_{b}$ of first-order beliefs. Fix an epistemic structure. The RCSBR strategies form an EFBRS, viz. $Q_{a} \times Q_{b}$. For each $s_{a} \in Q_{a}$, we have some CPS $\mu_{a}\left(s_{a}\right)$ satisfying the conditions of an EFBRS. Take $\Delta_{a}$ to be the set of such CPS's, i.e., one for each $s_{a} \in Q_{a}$, and construct $\Delta_{b}$ similarly. Now we do have an equivalence between the RCSBR strategies and the $\Delta$-rationalizable strategies. More precisely, for each $m \geq 1, Q_{a} \times Q_{b}$ is the set of strategies that survives $m$-rounds of elimination of $\Delta$-rationalizability. The case of $m=1$ follows from properties (i) and (iii) of an EFBRS, the case of $m=2$ uses condition (ii) of an EFBRS, and so on, by induction.

Proposition 1. Fix an extensive-form game $\Gamma$.
(i) Given an EFBRS, viz. $Q_{a} \times Q_{b}$, there exists a set offirst-order beliefs, viz. $\Delta=\Delta_{a} \times \Delta_{b}$, so that $S_{a}^{\Delta} \times S_{b}^{\Delta}=Q_{a} \times Q_{b}$.
(ii) Given a set of first-order beliefs, viz. $\Delta=\Delta_{a} \times \Delta_{b}, S_{a}^{\Delta} \times S_{b}^{\Delta}$ is an EFBRS.

Thus, in conjunction with Theorem 1, we have the following alternate characterization theorem.

## Corollary 1. Fix an extensive-form game $\Gamma$.

(i) For any $\Gamma$-based type structure, there exists a set of first-order beliefs, viz. $\Delta=\Delta_{a} \times$ $\Delta_{b}$, so that $S_{a}^{\Delta} \times S_{b}^{\Delta}=\operatorname{proj}_{S_{a}} \bigcap_{m} R_{a}^{m} \times \operatorname{proj}_{S_{b}} \bigcap_{m} R_{b}^{m}$.
(ii) Fix a set of first-order beliefs, viz. $\Delta_{a} \times \Delta_{b}$. Then there exists $a \Gamma$-based structure so that $S_{a}^{\Delta} \times S_{b}^{\Delta}=\operatorname{proj}_{S_{a}} \bigcap_{m} R_{a}^{m} \times \operatorname{proj}_{S_{b}} \bigcap_{m} R_{b}^{m}$.

Proof of Proposition 1. Begin with part (i). Fix an EFBRS set $Q_{a} \times Q_{b}$. For each $s_{a} \in Q_{a}$, there exists a corresponding CPS $\mu_{a}\left(s_{a}\right) \in \mathcal{C}\left(S_{b}\right)$ satisfying conditions (i)-(iii) of an EFBRS for $Q_{a} \times Q_{b}$. Take $\Delta_{a}$ so that, for each $s_{a} \in Q_{a}, \Delta_{a}$ contains exactly one such CPS $\mu_{a}\left(s_{a}\right)$. There are no other CPS's in $\Delta_{a}$. Define $\Delta_{b}$ analogously. We show that for each $m \geq 1, S_{a}^{\Delta, m} \times S_{b}^{\Delta, m}=Q_{a} \times Q_{b}$. This establishes the result.

The proof is by induction. Begin with $m=1$. Certainly $Q_{a} \subseteq S_{a}^{\Delta, 1}$. Fix $s_{a} \in S_{a}^{\Delta, 1}$. Then there exists some $\mu_{a} \in \Delta_{a}$ so that $s_{a}$ is sequentially optimal under $\mu_{a}$. This CPS $\mu_{a}$ is associated with some $r_{a} \in Q_{a}$, i.e., so that $r_{a}$ and $\mu_{a}$ jointly satisfy conditions (i)-(iii) of an EFBRS. Now apply condition (iii) of an EFBRS to get that $s_{a} \in Q_{a}$.

Now fix $m \geq 2$ and assume $S_{a}^{\Delta, n} \times S_{b}^{\Delta, n}=Q_{a} \times Q_{b}$ for all $n \leq m$. We show that it also holds for $m+1$. Fix $s_{a} \in Q_{a}=S_{a}^{\Delta, m}$. Then using the construction of $\Delta_{a}$, there exists some $\mu_{a} \in \Delta_{a}$ satisfying conditions (i) and (ii) of an EFBRS for $Q_{a} \times Q_{b}$, so that $s_{a} \in \rho_{a}\left(\mu_{a}\right)$ and $\mu_{a}$ strongly believes $Q_{b}=S_{b}^{\Delta, n}$ for all $n \leq m$. So certainly, $Q_{a} \subseteq S_{a}^{\Delta, m+1}$. Conversely, fix some $s_{a} \in S_{a}^{\Delta, m+1}$. Then there exists a CPS $\mu_{a} \in \Delta_{a}$ so that $s_{a} \in \rho_{a}\left(\mu_{a}\right)$ and $\mu_{a}$ strongly believes $S_{b}^{\Delta, m}$. Again, since each element of $\Delta_{a}$ satisfies conditions (i)-(iii) of an EFBRS for some $r_{a} \in Q_{a}$, it follows that $\rho_{a}\left(\mu_{a}\right) \subseteq Q_{a}$ and so $s_{a} \in Q_{a}$.

Now turn to part (ii) of the proposition. Fix some set of first-order beliefs, viz. $\Delta=$ $\Delta_{a} \times \Delta_{b}$. There exist some $M$ with $S_{a}^{\Delta} \times S_{b}^{\Delta}=S_{a}^{\Delta, M} \times S_{b}^{\Delta, M}$. Fix $s_{a} \in S_{a}^{\Delta}$. There exists a CPS $\mu_{a}$ so that $s_{a} \in \rho_{a}\left(\mu_{a}\right)$ and $\mu_{a}$ strongly believes each $S_{b}^{\Delta, m}$ for $m \leq M$. Thus $s_{a}$ and $\mu_{a}$ satisfy conditions (i) and (ii) of an EFBRS for $Q_{a} \times Q_{b}=S_{a}^{\Delta} \times S_{b}^{\Delta}$. Moreover, if $r_{a} \in \rho_{a}\left(\mu_{a}\right)$, then $r_{a}$ is optimal under a CPS that strongly believes each $S_{b}^{\Delta, m}$ for $m \leq M$. As such, $r_{a} \in S_{a}^{\Delta, m}$ for each $m \leq M$, establishing that $r_{a} \in S_{a}^{\Delta}$. Therefore, condition (iii) of an EFBRS is also satisfied. A similar argument applies to $b$. Therefore, $S_{a}^{\Delta} \times S_{b}^{\Delta}$ is an EFBRS.

The proof of Proposition 1 gives an ancillary result. Begin with some finite set of firstorder beliefs, viz. $\Delta=\Delta_{a} \times \Delta_{b}$. Proposition 1 (ii) says that $S_{a}^{\Delta} \times S_{b}^{\Delta}$ is an EFBRS. Conversely, begin with some EFBRS. The proof of Proposition 1(i) says that we can find a finite set of first-order beliefs, viz. $\Delta=\Delta_{a} \times \Delta_{b}$, so that $S_{a}^{\Delta} \times S_{b}^{\Delta}$ is this EFBRS.

Remark 2. Fix a game tree $\Gamma$. The directed rationalizability set is

$$
\left\{S_{a}^{\Delta} \times S_{b}^{\Delta}: \Delta=\Delta_{a} \times \Delta_{b} \subseteq \mathcal{C}\left(S_{b}\right) \times \mathcal{C}\left(S_{b}\right)\right\}=\left\{S_{a}^{\Delta} \times S_{b}^{\Delta}: \Delta=\Delta_{a} \times \Delta_{b} \text { is finite }\right\}
$$

Thus, using the EFBRS properties, we can see that we need only to compute the $\Delta$ rationalizable sets for finite sets of first-order beliefs. Of course, much as is the case with EFBRS's, the $\Delta$-rationalizable strategy set may be empty. When $\Delta=\mathcal{C}\left(S_{a}\right) \times \mathcal{C}\left(S_{b}\right)$, $S_{a}^{\Delta} \times S_{b}^{\Delta}$ is the extensive-form rationalizable strategy set. So in keeping with Remark 1, there always exists a nonempty $\Delta$-rationalizable strategy set.

While the EFBRS and directed rationalizability concepts are equivalent, it often is useful to focus on the former definition. The reason is that properties (i), (ii), and (iii) of an EFBRS give some immediate implications in terms of behavior. In Sections 7 and 8, we discuss the consequences of context-dependent forward reasoning for some specific games. There the EFBRS properties play an important role, much in the same way that the properties of a self-admissible set (Brandenburger et al. 2008) play an important role in analyzing games. Indeed, we see that these properties help to analyze games such as centipede, the finitely repeated prisoner's dilemma, and perfect information games.

## 7. Analyzing games

In this section, we analyze the predictions of RCSBR in games of interest. We do so by making use of the properties of an EFBRS and not the (equivalent) directed rationalizability definition.


Figure 3. Three-legged centipede.


Figure 4. Prisoner's dilemma.

Example 8. Consider the three-legged centipede game given in Figure 3. Here, the EFBRS's are $\{O u t\} \times\{D o w n\}$ and $\{O u t\} \times\{$ Down, Across $\}$. In particular, there is no EFBRS where Ann plays In at the first node. To see this, suppose otherwise, i.e., suppose there exists an EFBRS $Q_{a} \times Q_{b}$ and a strategy $s_{a} \in Q_{a}$, where $s_{a}$ plays In at the first node. By condition (i) of an EFBRS, we must have that $Q_{a} \subseteq\{O u t$, In-Down $\}$, so that $s_{a}=$ In-Down. Now, fix $s_{b} \in Q_{b}$ and recall that $s_{b}$ must be sequentially optimal under a CPS that strongly believes $Q_{a}$. Then, at Bob's information set, this CPS must assign probability 1 to $I n$-Down. Since $s_{b}$ is sequentially optimal under this CPS, $s_{b}=$ Down. So we have that $Q_{b}=\{$ Down $\}$. But then In-Down cannot simultaneously satisfy conditions (i) and (ii) of an EFBRS.

The argument we present for the three-legged centipede is more general: Fix an EFBRS of the $n$-legged centipede game. Then the first player chooses Out. This result is a consequence of Proposition 3(i) to come.

Example 9. Figure 4 gives the prisoner's dilemma. Consider the 3-repeated version of the game. Let $Q_{a} \times Q_{b}$ be a nonempty EFBRS. Then each $\left(s_{a}, s_{b}\right) \in Q_{a} \times Q_{b}$ results in the Defect-Defect path. ${ }^{7}$

Let us give an intuition: By condition (i) of an EFBRS, each strategy $s_{a} \in Q_{a}$ (resp. $s_{b} \in Q_{b}$ ) is sequentially justifiable. As such, $s_{a}$ (resp. $s_{b}$ ) plays Defect in the last period at each history allowed by $s_{a}$ (resp. $s_{b}$ ). Now consider a second period information set $h$, where $s_{a} \in S_{a}(h)$ and $Q_{b} \cap S_{b}(h) \neq \varnothing$. By conditions (i) and (ii) of an EFBRS, $s_{a}$ must be sequentially optimal under a CPS $\mu_{a}\left(s_{a}\right)$ with $\mu_{a}\left(s_{a}\right)\left(Q_{b} \mid S_{b}(h)\right)=1$. Then, conditional

[^6]on $h, \mu_{a}\left(s_{a}\right)$ assigns probability 1 to Bob defecting in the third period, irrespective of Ann's play. As such, $s_{a}$ plays $D$ at $h$. And likewise with $a$ and $b$ reversed.

Turn to the first period and suppose, contra hypothesis, there is some $s_{a} \in Q_{a}$ so that $s_{a}$ initially chooses $C$. For each $s_{a} \in Q_{b},\left(s_{a}, s_{b}\right)$ results in the Defect-Defect path in periods two and three. So Ann's expected payoffs from $s_{a}$ corresponds to her first period expected payoffs from playing $s_{a}$. With this, the Defect-always strategy yields a strictly higher expected payoff in the first period and an expected payoff of at least zero in subsequent periods. This contradicts $s_{a}$ being optimal under $\mu_{a}\left(s_{a}\right)\left(\cdot \mid S_{b}\right)$.

An analogous result holds for the $N$-repeated prisoner's dilemma for $N$ finite. The proof is given in Appendix C.

Let us take stock of the examples above. First, in battle of the sexes with the outside option, we get that either (i) Bob plays Out or (ii) Bob plays In-Right and Ann plays Down. Each of these were subgame perfect paths of play. In centipede, we get the backward induction path (but not necessarily the backward induction strategies). Likewise, in the finitely repeated prisoner's dilemma, we get the unique Nash (and so subgame perfect) path, where each player plays Defect in all periods.

In each of these cases, the outcomes allowed by an EFBRS coincide with the outcomes allowed by some subgame perfect equilibrium (SPE). This raises the question, Are the EFBRS concept and the SPE concept equivalent? If so, then we have a good idea what the EFBRS concept delivers (in games of interest), since we have a good idea about what SPE delivers.

The EFBRS and SPE concepts are not equivalent, but in a particular class of games, any pure-strategy SPE corresponds to some EFBRS. Each of the examples we mentioned is contained in this class of games.

Definition 11. Say a game $\Gamma$ has observable actions if each information set is a singleton.

To understand the definition, recall that in our setup, both $a$ and $b$ have a choice at each history. (Of course, it may be the case that only one of the players is active.) So a game with observable actions is a game where the players begin by making simultaneous choices, learn the realization of the choices, and then perhaps make simultaneous choices, etc., until a terminal history is reached.

Given distinct terminal histories, viz. $z$ and $z^{\prime}$, we can write $z=\left(x, c^{1}, \ldots, c^{K}\right)$ and $z^{\prime}=\left(x, d^{1}, \ldots, d^{L}\right)$, where $x$ is the last common predecessor of $z$ and $z^{\prime}$, i.e., $c^{1} \neq d^{1}$. (Recall, $c^{k}=\left(c_{a}^{k}, c_{b}^{k}\right)$ and $d^{l}=\left(d_{a}^{l}, d_{b}^{l}\right)$.)

Definition 12. Fix a game of observable actions and two distinct terminal nodes, viz. $z=\left(x, c^{1}, \ldots, c^{K}\right)$ and $z^{\prime}=\left(x, d^{1}, \ldots, d^{L}\right)$. Say a is decisive for $\left(z, z^{\prime}\right)$ if $a$ moves at $x, c_{a}^{1} \neq d_{a}^{1}$, and $c_{b}^{1}=d_{b}^{1}$. And likewise with $a$ and $b$ interchanged.

Definition 13 (Battigalli 1997). A game of observable actions satisfies no relevant ties (NRT) if, whenever $a$ (resp. $b$ ) is decisive for $\left(z, z^{\prime}\right)$, then $\Pi_{a}(z) \neq \Pi_{a}\left(z^{\prime}\right)$.


Figure 5. A modification of Figure 2.

A game with no ties satisfies NRT, but the converse does not hold. Reny's (1993, Figure 1) take-it-or-leave-it game is one such example.

Fix a strategy $s_{a}$ and write $\left[s_{a}\right.$ ] for the set of all $r_{a}$ that induce the same plan of action as $s_{a}$, i.e., the set of all $r_{a}$ so that $\zeta\left(r_{a}, \cdot\right)=\zeta\left(s_{a}, \cdot\right)$, and likewise define $\left[s_{b}\right]$.

Proposition 2. Fix a game $\Gamma$ with observable actions and a pure-strategy SPE, viz. ( $s_{a}, s_{b}$ ).
(i) There is an EFBRS, viz. $Q_{a} \times Q_{b}$, so that $\left[s_{a}\right] \times\left[s_{b}\right] \subseteq Q_{a} \times Q_{b}$.
(ii) If $\Gamma$ satisfies NRT, then $\left[s_{a}\right] \times\left[s_{b}\right]$ is an EFBRS.

Each of the examples we have seen satisfies both observable actions and NRT. In those examples, any pure-strategy subgame perfect equilibrium ( $s_{a}, s_{b}$ ) belongs to an EFBRS, where the EFBRS only allows the terminal node $\zeta\left(s_{a}, s_{b}\right)$. This fits with part (ii) of the proposition. Part (i) says that even if the game fails NRT, ( $s_{a}, s_{b}$ ) still is contained in some EFBRS. Example 12 in Appendix C provides a game that fails NRT, so that any EFBRS that contains a certain pure-strategy SPE also allows other paths of play.

Proposition 2 does not say that the pure-strategy SPE concept and the EFBRS concept are equivalent. A game without observable actions may have a pure-strategy subgame perfect equilibrium whose outcome is precluded by any EFBRS. Conversely, a given EFBRS may allow outcomes that are precluded by any (even randomized) subgame perfect equilibrium. (This can happen even in a game with observable actions and NRT.) The next examples demonstrate these points.

Example 10. The game in Figure 5 satisfies NRT but fails the observable actions condition. It is obtained from the game in Figure 2 by two transformations. First, the simultaneous move subgame is transformed into a game where Ann moves first and then Bob moves not knowing Ann's choice. Second, two of Ann's decision nodes are coalesced.

Here, (Out, Right) is a pure-strategy subgame perfect equilibrium. But applying the argument in Section 5, Out is not contained in any EFBRS. ${ }^{8}$

[^7]

Figure 6. A common interest game.

Example 11. The game in Figure 6 satisfies both NRT and the observable actions condition. The unique subgame perfect equilibrium is (In-Across, Across), which results in the $(3,3)$ outcome. Indeed, this profile induces an EFBRS, viz. $\{$ In-Across $\} \times\{$ Across $\}$. But there are two EFBRS's that give the $(2,2)$ outcome, namely $\{$ Out $\} \times\{$ Down $\}$ and $\{$ Out $\} \times\{$ Down, Across $\}$.

Taken together with the main theorem (Theorem 1), Example 11 says that a nonbackward induction outcome, namely ( 2,2 ), is consistent with RCSBR. To understand this better, notice that Out is the unique best response for Ann under a CPS that assigns probability 1 to the event "Bob plays Down." So if each type of Ann assigns probability 1 to $\{D o w n\} \times T_{b}$, then conditional on Bob's node being reached, he must conclude that Ann is irrational. In this case, Bob may very well believe that Ann is playing In-Down; if so, Down is a unique (sequential) best response for Bob.

## 8. Perfect-information games

Example 10 shows that in games without observable actions, the SPE concept allows for outcomes that are excluded by every EFBRS. Alternatively, Proposition 2 and Example 11 show that in games with observable actions, the SPE concept is a strict refinement of the EFBRS concept. Thus, even in these games, we cannot use the SPE concept to analyze the consequences of RCSBR.

Now we turn to a particular class of games with observable actions, namely perfectinformation games (i.e., games with observable actions and with at most one active player at each information set). We have seen some examples of perfect-information games, e.g., Examples 8 and 11. In the former case, each EFBRS yields the backward induction path (and so the backward induction outcome). Of course, for that game, the Nash and backward induction paths coincide. Alternatively, in Example 11, one EFBRS corresponds to backward induction, but others do not. However, there we do get that the EFBRS paths correspond (exactly) to the Nash paths (and so Nash outcomes) of the game.

The examples suggest there may be a connection between EFBRS's and Nash outcomes, at least for perfect-information (PI) games. (Of course, for non-PI games, an EFBRS may give non-Nash outcomes.) Indeed, there is a connection for PI games satisfying a "no ties" condition.

Definition 14 (Marx and Swinkels 1997). A game satisfies transference of decisionmaker indifference (TDI) if $\pi_{a}\left(s_{a}, s_{b}\right)=\pi_{a}\left(r_{a}, s_{b}\right)$ implies $\pi_{b}\left(s_{a}, s_{b}\right)=\pi_{b}\left(r_{a}, s_{b}\right)$. And likewise with $a$ and $b$ interchanged.

If a game satisfies NRT, it also satisfies TDI. Yet many games of interest satisfy TDI, but fail to satisfy NRT. For example, zero sum games satisfy TDI, but may fail to satisfy NRT.

Proposition 3. (i) Fix a PI game $\Gamma$ that satisfies TDI. If $Q_{a} \times Q_{b}$ is an EFBRS, then there exists a pure-strategy Nash equilibrium, viz. $\left(s_{a}, s_{b}\right)$, so that each profile in $Q_{a} \times Q_{b}$ is outcome equivalent to $\left(s_{a}, s_{b}\right)$.
(ii) Fix a PI game $\Gamma$ that satisfies NRT. If $\left(s_{a}, s_{b}\right)$ is a pure-strategy Nash equilibrium in sequentially justifiable strategies, then there is an EFBRS, viz. $Q_{a} \times Q_{b}$, so that $\left(s_{a}, s_{b}\right) \in Q_{a} \times Q_{b}$.

The proof can be found in Appendix D. Taken together, Theorem 1 and Proposition 3 give the following corollary.

Corollary 2. (i) Fix a PI game $\Gamma$ that satisfies TDI and has an epistemic type structure. If there is RCSBR at the state $\left(s_{a}, t_{a}, s_{b}, t_{b}\right)$, then $\left(s_{a}, s_{b}\right)$ is outcome equivalent to $a$ pure-strategy Nash equilibrium.
(ii) Fix a PI game $\Gamma$ that satisfies NRT and has a pure-strategy Nash equilibrium, viz. $\left(s_{a}, s_{b}\right)$, in sequentially justifiable strategies. Then there exist an epistemic structure and a state thereof, viz. ( $r_{a}, t_{a}, r_{b}, t_{b}$ ), at which there is RCSBR and $\left(r_{a}, r_{b}\right)=\left(s_{a}, s_{b}\right)$.

Why the connection between EFBRS's and Nash equilibria? Recall that if each player is "rational" (i.e., maximizes subjective expected utility) and places probability 1 on the actual strategy choices by the other player, then the strategy choices constitute a Nash equilibrium. In a PI game that satisfies TDI, RCSBR imposes a form of correct beliefs about the actual outcomes that obtain. Let us recast this at the level of the solution concept: In a PI game that satisfies TDI, each strategy profile in a given EFBRS is outcome equivalent. (This is Lemma 8 in Appendix D.) So along the path of play, the associated CPS('s) must assign probability 1 to a particular outcome-the outcome associated with the EFBRS, i.e., the "correct" outcome. (This uses condition (ii) of an EFBRS.) With this, we get a Nash outcome (but not necessarily the Nash strategies). ${ }^{9}$

This was the intuition for part (i) of Corollary 2. The proof closely follows the proof of Proposition 6.1a in Brandenburger and Friedenberg (2010), although now making use of the EFBRS properties. (The proof in Brandenburger and Friedenberg 2010 makes use of properties of self-admissible sets.)

[^8]The converse, i.e., part (ii), is novel. (In particular, both the "no ties" condition and the proof are quite different from the analysis in Brandenburger and Friedenberg 2010.) A Nash equilibrium in sequentially justifiable strategies, in general, satisfies conditions (i) and (ii) of an EFBRS. However, it may fail the maximality criterion. Indeed, the proof makes use of all three properties of Definition 9; see Appendix D.

There is a gap between parts (i) and (ii) of Proposition 3. In particular, part (i) says that starting from an EFBRS, we can get a pure Nash outcome, while part (ii) says that starting from a sequentially justifiable pure-strategy Nash equilibrium, we can get an EFBRS.

We cannot improve part (ii) to say that starting from any pure Nash equilibrium, we get an EFBRS. (This is because a Nash equilibrium may not be sequentially justifiable; see Appendix D.) We do not know if we can improve part (i) to say that starting from an EFBRS, we get a pure-strategy Nash equilibrium in sequentially justifiable strategies. (Appendix D elaborates on this issue.) However, starting from an EFBRS, we can get a mixed-strategy Nash equilibrium that satisfies a "sequential justifiability" condition.

Consider a pure-strategy profile $\left(s_{a}, s_{b}\right)$ and a mixed-strategy profile $\left(\varpi_{a}, \varpi_{b}\right) \in$ $\mathcal{P}\left(S_{a}\right) \times \mathcal{P}\left(S_{b}\right)$. Call $\left(s_{a}, s_{b}\right)$ and $\left(\varpi_{a}, \varpi_{b}\right)$ outcome equivalent if $\pi\left(s_{a}, s_{b}\right)=\pi\left(\varpi_{a}, \varpi_{b}\right)$. Likewise, call $Q_{a} \times Q_{b} \subseteq S_{a} \times S_{b}$ and $\left(\varpi_{a}, \varpi_{b}\right) \in \mathcal{P}\left(S_{a}\right) \times \mathcal{P}\left(S_{b}\right)$ outcome equivalent if each $\left(s_{a}, s_{b}\right) \in Q_{a} \times Q_{b}$ is outcome equivalent to ( $\left.\varpi_{a}, \varpi_{b}\right)$.

Proposition 4. Fix a PIgame that satisfies TDI. If $Q_{a} \times Q_{b}$ is an EFBRS, then there exists a mixed-strategy Nash equilibrium, viz. ( $\sigma_{a}, \sigma_{b}$ ), so that
(i) $Q_{a} \times Q_{b}$ is outcome equivalent to ( $\sigma_{a}, \sigma_{b}$ ) and
(ii) each $s_{a} \in \operatorname{Supp} \sigma_{a}\left(\right.$ resp. $\left.s_{b} \in \operatorname{Supp} \sigma_{b}\right)$ is sequentially justifiable.

Proposition 4 gives that if we begin with an EFBRS, we can construct an equivalent mixed-strategy Nash equilibrium. The Nash equilibrium has the property that each strategy in its support is sequentially justifiable. But it is important to note that this does not necessarily give that the mixed-strategy itself is sequentially justifiable. ${ }^{10}$ More to the point, given a PI game that satisfies TDI and some mixed-strategy Nash equilibrium, viz. ( $\sigma_{a}, \sigma_{b}$ ), does there exist some pure-strategy Nash equilibrium, viz. ( $s_{a}, s_{b}$ ), so that $s_{a}$ (resp. $s_{b}$ ) is contained in the support of $\sigma_{a}$ (resp. $\sigma_{b}$ )? If so, using Proposition 4, we get that starting from an EFBRS, there is a pure-strategy Nash equilibrium in sequentially justifiable strategies. But this too is not known.

## 9. Discussion

In this section, we discuss some conceptual aspects of the paper as well as some extensions.

[^9]
## 9.a Context-dependent forward induction

We characterize the behavioral implications of forward induction reasoning across all type structures. Why the interest in such a result?

When we analyze a strategic situation, we specify the game (matrix or tree). But, in practice, there is a context to the strategic situation studied-e.g., players come to the game with social conventions, a history, etc. This context influences what beliefs players do vs. do not consider possible. If this is the case, it may be of interest to study a given game relative to different type structures, depending on the context within which the game is played.

One case of particular interest is where the analyst does not know the context, i.e., does not know which beliefs are vs. are not "transparent" to the players. If this is the case, the analyst will want to understand the behavioral implications of forward induction reasoning across all type structures. By Theorem 1, he should apply the EFBRS concept. (Contrast this with extensive-form rationalizability: The analyst should apply the extensive-form rationalizability concept, if he is interested in forward induction reasoning and understands that the players consider all possible beliefs. This is the implication of Proposition 6 in Battigalli and Siniscalchi 2002.)

## 9.b Restrictions on beliefs

In Section 9.a, we implicitly equated analyzing forward induction reasoning across all "transparent restrictions on players beliefs" with analyzing forward induction reasoning across all type structures. We can make this step precise. First, formalize the idea that certain (events about) beliefs are transparent to the players. For this, begin with Battigalli and Siniscalchi's (1999a) canonical construction of a type structure; this type structure contains all hierarchies of conditional beliefs (satisfying coherency and common belief of coherency). Let us look at the self-evident events within this structure. Loosely, we look at events $S_{a} \times E_{a} \times S_{b} \times E_{b} \in \mathcal{B}\left(S_{a} \times T_{a} \times S_{b} \times T_{b}\right)$ such that whenever $E=S_{a} \times E_{a} \times S_{b} \times E_{b}$ obtains, there is "common belief of $E$ " in the following sense: each player assigns probability 1 to $E$ at each node, each player assigns probability 1 at each node to the other player assigning probability 1 to $E$ at each node, etc. ${ }^{11}$ These selfevident events represent transparent restrictions on players' beliefs. Each type structure can be mapped into the canonical construction and, in a certain sense, each type structure forms a self-evident event in the canonical construction, i.e., under this mapping. ${ }^{12}$ Furthermore, each such self-evident event in the canonical type structure corresponds to a "smaller" type structure. Forward induction reasoning is preserved under these mappings. (There is an equivalence between rationality in the small structure and "rationality and the self-evident event" in the large structure, and similarly for strong belief; see Battigalli and Friedenberg 2009 for the formal statement.)

[^10]

Figure 7. A modification of Figure 6.

There is a special type of transparent restriction on beliefs: those generated only by restrictions on first-order beliefs. In this case, there are explicit restrictions on first-order beliefs and the only restrictions on higher-order beliefs are those generated implicitly by the restrictions on first-order beliefs. (For instance, in the lady's choice convention, we explicitly restrict Bob's first-order beliefs, requiring that he assign probability 1 to Ann playing $U p$. This implicitly imposes a strong restriction on Ann's second-order beliefs, requiring that she assign probability 1 to the event "Bob assigns probability 1 to Ann playing $U p$ " and so on; see Example 1.) The restrictions on first-order beliefs, viz. $\Delta$, generate a particular type of self-evident event. Analyzing RCSBR within the associated type structure leads to the $\Delta$-rationalizable strategy set. Indeed, this is related to Battigalli and Siniscalchi's (2003) motivation in defining directed rationalizability. ${ }^{13}$

## 9.c Two versus three player games

Here we have focused on two-player games. The main results (Theorem 1 and Corollary 1) extend to games with three or more players, up to issues of correlation. Specifically, if we allow for correlated assessments in Definition 8, then we must also allow for correlated assessments in Definition 9. A similar statement holds for the case of independence-although, of course, care is needed in defining independence for CPS's. The central issue is that Charlie's belief about Bob should not change after Charlie learns information only about Ann. (The idea dates back to Hammond 1987 and is related to the "do not signal what you do not know" condition of Fudenberg and Tirole 1991. See Battigalli 1996 for a formalization of the idea and a discussion of Fudenberg and Tirole 1991.)

There is an additional issue that arises in the three-player case: Should we require that Ann strongly believes "Bob and Charlie are rational" or should we instead require that Ann strongly believes "Bob is rational" and strongly believes "Charlie is rational"? Arguably, in the case of independence, we should require the latter.

How does this affect our analysis of games? Amend Figure 6, so that it is a threeplayer game as in Figure 7. Consider a state at which there is RCSBR in the sense explained above (i.e., Bob has an independent assessment and strongly believes both "Ann

[^11]is rational" and "Charlie is rational"). Let us ask which strategies can be played. Of course, using rationality, Charlie must play Across (at this state). Next we require that a type of Bob strongly believes "Ann is rational" and also "Charlie is rational." So, conditional on Bob's information set being reached, this type must maintain a hypothesis Charlie is rational, and so that Charlie plays Across. In this case, Bob's unique best response is to play In. Turning to Ann, we see that under an RCSBR analysis, she chooses In. So we only get the backward induction outcome. (Battigalli and Siniscalchi 1999b provide a "context free" epistemic analysis of this notion of independent rationalization.)

This example also shows that in the case of independence, Proposition 3(ii) does not hold. If we instead consider the case of correlation, then it may also be natural to instead require that Bob strongly believes "Ann and Charlie are rational" (i.e., as opposed to strong belief of "Ann is rational" and strong belief of "Charlie is rational"). Of course, it may be the case that when Bob's node is reached, he must forgo the hypothesis that "Ann and Charlie are rational." Thus, in this case, we do have an analogue of Proposition 3(ii). Indeed, both parts (i) and (ii) of Proposition 3 hold for the case of correlation.

## Appendix A: Proofs for Section 4

Proof of Property 1. Fix an event $F \in \mathcal{E}$ with $F \cap \bigcap_{m} E_{m} \neq \varnothing$. Then $F \cap E_{m} \neq \varnothing$ for all $m$. So for each $m, \mu\left(E_{m} \mid F\right)=1$. (This is because $\mu$ strongly believes each $E_{m}$.) But then $\mu\left(\bigcap_{m} E_{m} \mid F\right)=1$.

Proof of Property 2. Fix an event $F \in \mathcal{E}$ with $F \cap \operatorname{proj}_{\Omega_{1}} E \neq \varnothing$. Then $\left(F \times \Omega_{2}\right) \cap E \neq \varnothing$. Since, by assumption, proj$\Omega_{\Omega_{1}} E$ is Borel, $\operatorname{marg}_{\Omega_{1}} \mu\left(\operatorname{proj}_{\Omega_{1}} E \mid F\right)$ is well defined. Since $\mu$ strongly believes $E, \mu\left(E \mid F \times \Omega_{2}\right)=1$. Then $\left(\operatorname{marg}_{\Omega_{1}} \mu\right)\left(\operatorname{proj}_{\Omega_{1}} E \mid F\right)=1$, as required.

## Appendix B: Directed rationalizability

In the text, we argue that for each epistemic type structure, there is a set of first-order beliefs $\Delta$ so that the projection of the RCSBR set is the $\Delta$-rationalizable strategy set. The purpose of this appendix is to illustrate that this set of first-order beliefs may not correspond to the set of all first-order beliefs allowed by the epistemic type structure.

Figure 8 is a game of battle of the sexes preceded by an observed "money burning" move by Bob. (See Ben-Porath and Dekel 1992.) Here, Ann and Bob are playing a BoS game. However, prior to the game, Bob has the option to Burn (B) or Not Burn (NB) \$2.

Suppose society has formed a modified version of the lady's choice convention. Now, there are no restrictions on players' first-order beliefs. (So, in particular, there are types of Bob who think Ann does not go for her best payoff.) But there is a restriction on Ann's second-order beliefs. Specifically, conditional on observing so-called normal behavior (i.e., a decision to Not Burn), Ann thinks that Bob thinks she goes for her best payoff and chooses $U p$. There is no restriction on Ann's second-order belief conditional on


Figure 8. Battle of the sexes with money burning.
observing "strange" behavior, i.e., on observing a decision to Burn. Likewise, there are no restrictions on Bob's second-order beliefs, etc.

We can model this modified version of the lady's choice convention by a type structure $\left\langle S_{a}, S_{b} ; \mathcal{S}_{a}, \mathcal{S}_{b} ; T_{a}, T_{b} ; \beta_{a}, \beta_{b}\right\rangle$ based on the game in Figure 8. Now, $\beta_{b}$ is onto but $\beta_{a}$ is not. Formally, write $[U p]_{a}$ for the event "Ann plays $U p$, if Bob does Not Burn," i.e., $[U p]_{a}=\{U p-$ down, $U p-u p\} \times T_{a}$, and write $[N B]_{b}$ for the event "Bob does Not Burn," i.e., $[N B]_{b}=\{N B$-Left, $N B$-Right $\} \times T_{b}$. Let $U_{b}$ be the set of types $t_{b} \in T_{b}$ with $\beta_{b}\left(t_{b}\right)\left([U p]_{a} \mid S_{a} \times T_{a}\right)=1$, i.e., the set of types of Bob that assign probability 1 to the event "Ann plays $U p$, when Bob chooses Not Burn." Then, for each type $t_{a} \in T_{a}$,

$$
\beta_{a}\left(t_{a}\right)\left(S_{b} \times U_{b} \mid[N B]_{b}\right)=1
$$

i.e., conditional on Bob choosing Not Burn, each type of Ann assigns probability 1 to the event that "Bob believes that 'Ann plays $U p$, when Bob does Not Burn.'" For any belief $\mu_{a}$ of Ann with $\mu_{a}\left(S_{b} \times U_{b} \mid[N B]_{b}\right)=1$, there is a type $t_{a}$ so that $\beta_{a}\left(t_{a}\right)=\mu_{a}$. (See Appendix A in Battigalli and Friedenberg 2009 on how to construct such a type structure.)

The set of first-order beliefs induced by this type structure is $\Delta=\mathcal{C}\left(S_{b}\right) \times \mathcal{C}\left(S_{a}\right)$. The $\Delta$-rationalizable set is $\{D o w n-d o w n\} \times\{N B$-Right $\}$. (This is also the set of extensive-form rationalizable strategies.) It is obtained as follows: In round one, the strategy $B$-left is dominated by $N B$-Left, but all other strategies (of both players) are optimal under some CPS. It follows that

$$
S_{a}^{\Delta, 1} \times S_{b}^{\Delta, 1}=S_{a} \times\{N B-L e f t, N B-\text { Right }, B-r i g h t\}
$$

But now note that the choice of $u p$ by Ann cannot be optimal under any CPS that strongly believes $\{N B$-Left, $N B$-Right, B-right $\}$. (If a CPS strongly believes $\{N B$-Left, NB-Right, $B$-right $\}$, then conditional on Burn being played, the CPS must assign probability 1 to right, in which case up is not a best response.) So

$$
S_{a}^{\Delta, 2} \times S_{b}^{\Delta, 2}=\{\text { Up-down, Down-down }\} \times S_{b}^{\Delta, 1}
$$

Turning to Bob, if a CPS strongly believes $\{U p$-down, Down-down\}, then $B$-right yields an expected payoff of 2 and $N B$-Left yields an expected payoff of at most 1 . So

$$
S_{a}^{\Delta, 3} \times S_{b}^{\Delta, 3}=S_{a}^{\Delta, 2} \times\{N B-\text { Right }, B-r i g h t\}
$$

Now, if a CPS strongly believes $\{N B$-Right, $B$-right $\}$, Down-down is the only sequentially optimal strategy, so

$$
S_{a}^{\Delta, 4} \times S_{b}^{\Delta, 4}=\{\text { Down-down }\} \times S_{b}^{\Delta, 3}
$$

Finally, if a CPS strongly believes $\{$ Down-down $\}, N B$-Right is the only sequentially optimal strategy, so

$$
S_{a}^{\Delta, 5} \times S_{b}^{\Delta, 5}=\{\text { Down-down }\} \times\{N B-\text { Right }\}
$$

But the projection of event RCSBR onto $S_{a} \times S_{b}$ is $\{U p$-down $\} \times\{B$-right $\}$. It is obtained as follows. In round one, for each belief about the strategies of the other player, there is a type that holds that belief. So, here too,

$$
\operatorname{proj}_{S_{a}} R_{a}^{1} \times \operatorname{proj}_{S_{b}} R_{b}^{1}=S_{a} \times\{N B-L e f t, N B-R i g h t, B-r i g h t\}
$$

Now consider a type $t_{a}$ that strongly believes $R_{b}^{1}$. Recall that, conditional on Bob choosing not to burn, each type of Ann assigns probability 1 to the event that "Bob believes that 'Ann plays $U p$, when Bob does not burn.'" So if $t_{a}$ strongly believes $R_{b}^{1}$, it must assign zero probability to $\{N B-R i g h t\} \times T_{b}$. For such a type $t_{a}$, $\left(\right.$ Down-down, $\left.t_{a}\right)$ is irrational. So

$$
\operatorname{proj}_{S_{a}} R_{a}^{2} \times \operatorname{proj}_{S_{b}} R_{b}^{2}=\{U p-d o w n\} \times \operatorname{proj}_{S_{b}} R_{b}^{1}
$$

But now, if $\left(s_{b}, t_{b}\right)$ is rational and $t_{b}$ strongly believes $R_{a}^{2}$, then $s_{b}=B$-right, and so

$$
\operatorname{proj}_{S_{a}} R_{a}^{3} \times \operatorname{proj}_{S_{b}} R_{b}^{3}=\{U p-d o w n\} \times\{B-r i g h t\}
$$

Why the difference between the two approaches? We began with an epistemic structure and used the structure itself to form the set of first-order beliefs $\Delta=\mathcal{C}\left(S_{b}\right) \times \mathcal{C}\left(S_{a}\right)$. (So for each $\mu_{a} \in \Delta_{a}=\mathcal{C}\left(S_{b}\right)$, there is type $t_{a} \in T_{a}$ such that the marginal of $\beta_{a}\left(t_{a}\right)$ on $S_{b}$ is $\mu_{a}$, and likewise for $b$.) With this set of first-order beliefs, the strategies that survive one round of $\Delta$-rationalizability are exactly the strategies that are consistent with rationality. But in the next round, we lose the equivalence: If $\beta_{a}\left(t_{a}\right)$ strongly believes $R_{b}^{1}$, then the marginal of $\beta_{a}\left(t_{a}\right)$ must strongly believe $S_{b}^{\Delta, 1}=\operatorname{proj}_{S_{b}} R_{b}^{1}$. (Here, we use the marginalization property of strong belief.) Thus $\operatorname{proj}_{S_{a}} R_{a}^{2} \subseteq S_{a}^{\Delta, 2}$. But the converse does not hold. We have Down-down $\in S_{a}^{\Delta, 2}$, but Down-down $\notin \operatorname{proj}_{S_{a}} R_{a}^{2}$. The reason is that, conditional on Bob choosing $N B$, each $\beta_{a}\left(t_{a}\right)$ assigns probability 1 to the event "Bob assigns probability 1 to $[U p]_{a}$." So if Bob does not burn, Ann can only maintain a hypothesis that Bob is rational if she assigns probability 1 to Bob's playing NB-Left, in which case the choice Down is not a best response. With this, $S_{a}^{\Delta, 2}=\{U p-d o w n, D o w n-d o w n\}$ and $\operatorname{proj}_{S_{a}} R_{a}^{2}=\{U p-d o w n\}$. As a result, $S_{b}^{\Delta, 3}=\{N B-R i g h t, B-r i g h t\}$ and $\operatorname{proj}_{S_{b}} R_{b}^{3}=\{B-r i g h t\}$. It follows that $S_{a}^{\Delta, 4}=\{$ Down-down $\}$, despite the fact that $\operatorname{proj}_{S_{a}} R_{a}^{4}=\{U p-d o w n\}$. The key to this last step is that Up-down is optimal under a CPS that strongly believes $\operatorname{proj}_{S_{b}} R_{b}^{3} \subsetneq S_{b}^{\Delta, 3}$, but not optimal under a CPS that strongly believes $S_{b}^{\Delta, 3}$. This can occur because strong belief fails a monotonicity requirement.

## Appendix C: Examples and proofs for Section 7

We begin by showing that for the finitely repeated prisoner's dilemma, any EFBRS results in the Defect-Defect path of play. To show this, we need to make use of certain properties of EFBRS's. We again make use of these properties in Appendix D. We begin with the best response property.

Definition 15. Say $Q_{a} \times Q_{b} \subseteq S_{a} \times S_{b}$ satisfies the best response property if, for each $s_{a} \in Q_{a}$, there is a CPS $\mu_{a} \in \mathcal{C}\left(S_{b}\right)$, so that $s_{a} \in \rho_{a}\left(\mu_{a}\right)$ and $\mu_{a}$ strongly believes $Q_{b}$, and similarly for $b$.

An EFBRS satisfies the best response property. But the converse need not hold, i.e., $Q_{a} \times Q_{b}$ may satisfy the best response property, but fail to be an EFBRS because it violates the maximality condition. (See the example in Section 5.)

Let us introduce some notation to relate the whole game to its parts. Fix a game $\Gamma$ and a subgame $\Sigma$. Write $H_{a}^{\Sigma}$ for the set of $a$ 's information sets that are contained in $\Sigma$. We abuse notation and write $S_{a}(\Sigma)$ for the set of strategies of $\Gamma$ that allow $\Sigma$. We also write $S_{a}^{\Sigma}=\prod_{h \in H_{a}^{\Sigma}} C_{a}(h)$ for the set of strategies of $a$ in the subgame $\Sigma$. Each strategy $s_{a}^{\Sigma} \in S_{a}^{\Sigma}$ can be viewed as the projection of a strategy $s_{a} \in S_{a}(\Sigma)$ into $S_{a}^{\Sigma}$. Given a set $E_{a} \subseteq S_{a}$, write $E_{a}^{\Sigma}$ for the set of strategies $s_{a}^{\Sigma} \in S_{a}^{\Sigma}$ so that there is some $s_{a} \in E_{a} \cap S_{a}(\Sigma)$ whose projection into $S_{a}^{\Sigma}$ is $s_{a}^{\Sigma}$. We write $\pi_{a}^{\Sigma}$ and $\pi_{b}^{\Sigma}$ for the payoff functions associated with the subtree $\Sigma$. So if $\left(s_{a}, s_{b}\right)$ allows $\Sigma$, then $\pi^{\Sigma}\left(s_{a}^{\Sigma}, s_{b}^{\Sigma}\right)=\pi\left(s_{a}, s_{b}\right)$.

Lemma 1. Fix a game $\Gamma$ and a subgame $\Sigma$. If $Q_{a} \times Q_{b}$ satisfies the best response property for the game $\Gamma$, then $Q_{a}^{\Sigma} \times Q_{b}^{\Sigma}$ satisfies the best response property for the subgame $\Sigma$.

Proof. If $Q_{a}^{\Sigma} \times Q_{b}^{\Sigma}=\varnothing$ (if no profile in $Q_{a} \times Q_{b}$ allows $\Sigma$ ), then it is immediate that $Q_{a}^{\Sigma} \times Q_{b}^{\Sigma}$ satisfies the best response property. So we suppose $Q_{a}^{\Sigma} \times Q_{b}^{\Sigma} \neq \varnothing$.

Fix a strategy $s_{a}^{\Sigma} \in Q_{a}^{\Sigma}$. Then there exists a strategy $s_{a} \in Q_{a} \cap S_{a}(\Sigma)$ whose projection into $\prod_{h \in H_{a}^{\Sigma}} C_{a}(h)$ is $s_{a}^{\Sigma}$. Since $s_{a} \in Q_{a}$, we can find a CPS $\mu_{a} \in \mathcal{C}\left(S_{b}\right)$ so that $s_{a} \in \rho_{a}\left(\mu_{a}\right)$ and $\mu_{a}$ strongly believes $Q_{b}$.

Let $\mathcal{S}_{b}^{\Sigma}$ be the set of all $S_{b}^{\Sigma}(h)$ for $h \in H_{a}^{\Sigma}$. Given an event $E_{b}^{\Sigma} \subseteq S_{b}^{\Sigma}$, write $E_{b} \subseteq S_{b}$ for the set of all $s_{b} \in S_{b}(\Sigma)$ so that the projection of $s_{b}$ into $S_{b}^{\Sigma}$ is in $E_{b}^{\Sigma}$. Then, define $\nu_{a}^{\Sigma}(\cdot \mid \cdot): \mathcal{B}\left(S_{b}^{\Sigma}\right) \times \mathcal{S}_{b}^{\Sigma} \rightarrow[0,1]$ so that, for each event $E_{b}^{\Sigma} \subseteq S_{b}^{\Sigma}$ and each $S_{b}^{\Sigma}(h) \in \mathcal{S}_{b}^{\Sigma}$, $\nu_{a}^{\Sigma}\left(E_{b}^{\Sigma} \mid S_{b}^{\Sigma}(h)\right)=\mu_{a}\left(E_{b} \mid S_{b}(h)\right)$. It is readily verified that $\nu_{a}^{\Sigma}$ is a CPS on $\left(S_{b}^{\Sigma}, \mathcal{S}_{b}^{\Sigma}\right)$.

Since $s_{a}$ allows $\Sigma$ and $s_{a}$ is sequentially optimal under $\mu_{a}$, it follows that $s_{a}^{\Sigma}$ is sequentially optimal under $\nu_{a}^{\Sigma}$. Fix some $S_{b}^{\Sigma}(h) \in \mathcal{S}_{b}^{\Sigma}$. If $Q_{b}^{\Sigma} \cap S_{b}^{\Sigma}(h) \neq \varnothing$, then $Q_{b} \cap S_{b}(h) \neq \varnothing$. So, in this case, $\nu_{a}^{\Sigma}\left(Q_{b}^{\Sigma} \mid S_{b}^{\Sigma}(h)\right) \geq \mu_{a}\left(Q_{b} \mid S_{b}(h)\right)=1$. This establishes that $\nu_{a}^{\Sigma}$ strongly believes $Q_{b}^{\Sigma}$ 。

Interchanging $a$ and $b$ establishes the result.

We use Lemma 1 to show the next lemma.

Lemma 2. Consider the $N$-repeated prisoner's dilemma as given in Figure 4. If $Q_{a} \times Q_{b}$ satisfies the best response property for this game, then each strategy profile in $Q_{a} \times Q_{b}$ results in the Defect-Defect path.

Proof. The proof very closely follows the proof of Example 3.2 in Brandenburger and Friedenberg (2010). It is by induction on $N$. For $N=1$, the result is immediate. Assume the result holds for some $N$ and we show it holds for $N+1$.

Consider some $Q_{a} \times Q_{b}$ of the $N+1$ repeated prisoner's dilemma that satisfies the best response property. Suppose there is a strategy $s_{a} \in Q_{a}$ that plays Cooperate in the first period. Fix a strategy $s_{b} \in Q_{b}$. If $s_{b}$ plays Cooperate (resp. Defect) in the first period, Ann gets $c$ (resp. $e$ ) in the first period. By Lemma 1 and the induction hypothesis, Ann gets a payoff of zero in periods $2, \ldots, N$. So for each $s_{b}$ in $Q_{b}, \pi_{a}\left(s_{a}, s_{b}\right)=c$ if $s_{b}$ plays Cooperate in the first period and $\pi_{a}\left(s_{a}, s_{b}\right)=e$ if $s_{b}$ plays Defect in the first period.

Now, instead, consider the strategy $r_{a}$ that plays Defect in every period, irrespective of the history. Again, fix a strategy $s_{b} \in Q_{b}$. If $s_{b}$ plays Cooperate in the first period, then $\pi_{a}\left(r_{a}, s_{b}\right) \geq d$, and if $s_{b} \in Q_{b}$ plays Defect in the first period, then $\pi_{a}\left(r_{a}, s_{b}\right) \geq 0$.

Putting the above together gives that under any CPS that strongly believes $Q_{b}$, we must have that $r_{a}$ is a strictly better response than $s_{a} \in Q_{a}$ at the first information set. But this contradicts $Q_{a} \times Q_{b}$ satisfying the best response property.

Corollary 3. Consider the $N$-repeated prisoner's dilemma as given in Figure 4. If $Q_{a} \times Q_{b}$ is an EFBRS, then each strategy profile in $Q_{a} \times Q_{b}$ results in the Defect-Defect path.

Now we turn to Proposition 2. We show the result for a somewhat more general set of games, i.e., games where, in a sense, the information structure is determined by the subgames.

Definition 16. Fix a game $\Gamma$. Say a subgame $\Sigma$ is sufficient for an information set $h \in H$ if $h$ is contained in $\Sigma$ and the set of strategy profiles that allow $\Sigma$ is exactly $S_{a}(h) \times S_{b}(h)$.

Notice that there may be two subgames, viz. $\Sigma$ and $\bar{\Sigma}$, that are sufficient for $h .^{14}$ If so, either $\Sigma$ is a subgame of $\bar{\Sigma}$ or $\bar{\Sigma}$ is a subgame of $\Sigma$. When there are two subgames that are sufficient for $h$, we typically are interested in the last subgame $\Sigma$ sufficient for $h$, i.e., so that no proper subgame of $\Sigma$ is sufficient for $h$. Also notice that there may be no subgame that is sufficient for an information set $h$. Refer to the game in Figure 5. There the only subgame is the entire game. But this subgame is not sufficient for the information set, viz. $h$, at which Bob moves. To see this, notice that the strategy $s_{a}=$ Out (trivially) allows the subgame, but does not allow $h$.

Definition 17. Say a game $\Gamma$ is determined by its subgames if, for each information set $h \in H$, there is a subgame $\Sigma$ that is sufficient for $h$.

[^12]The game in Figure 5 is not determined by its subgame; as we have seen, there is no subgame that is sufficient for the information set at which Bob moves. Battigalli and Friedenberg (2009) characterize Definition 17 in terms of primitives of the game (as opposed to a condition about strategies).

Before stating the generalization of Proposition 2, we need to extend the definition of NRT to cover games with imperfectly observable actions.

Definition 18. Fix two distinct terminal nodes $z=\left(x, c^{1}, \ldots, c^{K}\right)$ and $z^{\prime}=\left(x, d^{1}, \ldots\right.$, $d^{L}$ ). Say $a$ is decisive for ( $z, z^{\prime}$ ) if the following conditions hold.
(i) $c_{a}^{1} \neq d_{a}^{1}$,
(ii) $c_{b}^{1}=d_{b}^{1}$, and
(iii) if $\left(x, c^{1}, \ldots, c^{k}\right)$ and $\left(x, d^{1}, \ldots, d^{l}\right)$ are in the same information set for $b$, then $c_{b}^{k+1}=d_{b}^{l+1}$.

The idea is that $a$ is decisive for $\left(z, z^{\prime}\right)=\left(\left(x, c^{1}, \ldots, c^{K}\right),\left(x, d^{1}, \ldots, d^{L}\right)\right)$ if $a$ is the only player who determines which of the two terminal histories occurs. So $a$ moves at the last common predecessor of $z$ and $z^{\prime}$, viz. $x$, and makes distinct choices at this node, i.e., $c_{a}^{1} \neq d_{a}^{1}$. But $b$ 's choice along these paths does not determine which of $z$ vs. $z^{\prime}$ occurs. So $b$ makes the same choice whenever he cannot observe $a$ 's choice among $c_{a}^{1}$ vs. $d_{a}^{1}$.

Remark 3. If the game has observable actions, then $a$ is decisive for $\left(z, z^{\prime}\right)=\left(\left(x, c^{1}, \ldots\right.\right.$, $\left.\left.c^{K}\right),\left(x, d^{1}, \ldots, d^{L}\right)\right)$ if and only if $c_{a}^{1} \neq d_{a}^{1}$ and $c_{b}^{1}=d_{b}^{1}$.

Definition 19 (Battigalli 1997). A game satisfies no relevant ties (NRT) if whenever a (resp. $b$ ) is decisive for $\left(z, z^{\prime}\right), \Pi_{a}(z) \neq \Pi_{a}\left(z^{\prime}\right)$.

Now, here is the generalization of Proposition 2.
Proposition 5. Fix a game $\Gamma$ that is determined by its subgames and a pure-strategy SPE, viz. $\left(s_{a}, s_{b}\right)$.
(i) There is an EFBRS, viz. $Q_{a} \times Q_{b}$, so that $\left[s_{a}\right] \times\left[s_{b}\right] \subseteq Q_{a} \times Q_{b}$.
(ii) If $\Gamma$ satisfies NRT, then $\left[s_{a}\right] \times\left[s_{b}\right]$ is an EFBRS.

Before coming to the proof, it is useful to record some facts about games determined by their subgames. Fix a pure-strategy SPE, viz. $\left(s_{a}, s_{b}\right)$, of a game $\Gamma$ determined by its subgames. Construct maps $f_{a}: H \rightarrow S_{a}$ and $f_{b}: H \rightarrow S_{b}$ that depend on this SPE. To do so, fix some $h \in H$ and let $\Sigma$ be the last subgame sufficient for $h$. Write $x$ for the root of subgame $\Sigma$ (which may be $\Gamma$ itself). If $\Sigma=\Gamma$, set $f_{a}(h)=s_{a}$. If $\Sigma$ is a proper subtree of $\Gamma$, then we can write $x=\left(c^{1}, \ldots, c^{K}\right)$. In this case, let $f_{a}(h)$ be the strategy that (i) chooses $c_{a}^{1}$ at $\{\phi\}$, (ii) chooses $c_{a}^{k}$ at an information set that contains ( $c^{1}, \ldots, c^{k-1}$ ), i.e., an initial segment of $\left(c^{1}, \ldots, c^{K}\right)$, and (iii) makes the same choice as $s_{a}$ at all other information sets. So if $s_{a}$ allows $h$, then $f_{a}(h)=s_{a}$. Also, $f_{a}(h)$ is well defined and allows $h$ precisely
because $\Gamma$ is determined by its subgames. (Again, refer to the game in Figure 5, and take $h$ to be the information set at which Bob moves. Consider the SPE $\left(s_{a}, s_{b}\right)=($ Out, Right $)$. Then $f_{a}(h)=$ Out, which precludes $h$.)

Write $S(h)$ for the set of strategy profiles that allow an information set $h$. In games determined by their subgames, there is a natural order on sets of the form $S(h)$ for $h \in H$. Specifically, for any pair of information sets $h$ and $i$ (in $H$ ), either $S(h) \subseteq S(i), S(i) \subseteq S(h)$, or $S(h) \cap S(i)=\varnothing .{ }^{15}$ To see this, let $\Sigma_{h}$ (resp. $\Sigma_{i}$ ) be sufficient for $h$ (resp. $i$ ). We have that either $\Sigma_{h}$ is a subgame of $\Sigma_{i}, \Sigma_{i}$ is a subgame of $\Sigma_{h}$, or they are disjoint subgames. With this, the order follows from the definition of sufficiency. If $S(h) \subseteq S(i)$, say $h$ follows $i$. Say $h$ and $i$ are ordered if either $h$ follows $i$ or $i$ follows $h$. Say $h$ and $i$ are unordered otherwise, i.e., if $S(h) \cap S(i)=\varnothing$.

The proofs of the following results are immediate.
Lemma 3. Fix a game $\Gamma$ that is determined by its subgames. Also fix some SPE, viz. $\left(s_{a}, s_{b}\right)$. Construct $\left(f_{a}, f_{b}\right)$ as above. If $f_{a}(h)$ allows $i$, and either $h$ and $i$ are unordered or $i$ follows $h$, then $f_{a}(i)=f_{a}(h)$.

Lemma 4. Fix a game $\Gamma$ that is determined by its subgames and some $\operatorname{SPE}\left(s_{a}, s_{b}\right)$. For each $h \in H_{a}$,

$$
\pi_{a}\left(f_{a}(h), f_{b}(h)\right) \geq \pi_{a}\left(r_{a}, f_{b}(h)\right) \quad \text { for all } r_{a} \in S_{a}(h)
$$

Lemma 5. Fix some $\mu_{a} \in \mathcal{C}\left(S_{b}\right)$. If $s_{a} \in \rho_{a}\left(\mu_{a}\right)$, then $\left[s_{a}\right] \subseteq \rho_{a}\left(\mu_{a}\right)$.
Proof of Proposition 5. Fix a pure-strategy SPE, viz. ( $s_{a}, s_{b}$ ). Construct maps $f_{a}: H \rightarrow S_{a}$ and $f_{b}: H \rightarrow S_{b}$ as above. We use these maps to construct CPS's $\mu_{a} \in \mathcal{C}\left(S_{b}\right)$ and $\mu_{b} \in \mathcal{C}\left(S_{a}\right)$. Specifically, set $\mu_{a}\left(f_{b}(h) \mid S_{b}(h)\right)=1$ for each $h \in H_{a}$. And likewise for $a$ and $b$ interchanged.

First we show that $\mu_{a}$ is indeed a CPS. It is immediate that $\mu_{a}$ satisfies conditions (i) and (ii) of Definition 1. For condition (iii), fix information sets $h, i \in H_{a}$ so that $S_{b}(i) \subseteq$ $S_{b}(h)$. If $f_{b}(h) \in S_{b}(i)$, then $f_{b}(i)=f_{b}(h)$ (Lemma 3). So for each event $E \subseteq S_{b}(i)$,

$$
\mu_{a}\left(E \mid S_{b}(h)\right)=\mu_{a}\left(E \mid S_{b}(i)\right) \times 1=\mu_{a}\left(E \mid S_{b}(i)\right) \mu_{a}\left(S_{b}(i) \mid S_{b}(h)\right) .
$$

If $f_{b}(h) \notin S_{b}(i)$, then for each event $E \subseteq S_{b}(i)$,

$$
\mu_{a}\left(E \mid S_{b}(h)\right)=0=\mu_{a}\left(E \mid S_{b}(i)\right) \times 0=\mu_{a}\left(E \mid S_{b}(i)\right) \mu_{a}\left(S_{b}(h) \mid S_{b}(i)\right),
$$

as required. And likewise for $b$.
Now let $Q_{a}=\rho_{a}\left(\mu_{a}\right)$, i.e., the set of all strategies $r_{a}$ that are sequentially optimal under $\mu_{a}$, and likewise set $Q_{b}=\rho_{b}\left(\mu_{b}\right)$. We show that $Q_{a} \times Q_{b}$ is an EFBRS.

Fix some $r_{a} \in Q_{a}$. We show that $r_{a}$ and $\mu_{a}$ jointly satisfy conditions (i)-(iii) of an EFBRS. In fact, it is immediate that conditions (i) and (iii) are satisfied, so we show condition (ii), i.e., that $\mu_{a}$ strongly believes $Q_{b}$.

[^13]Fix an information set $h \in H_{a}$ with $Q_{b} \cap S_{b}(h) \neq \varnothing$. We show that $f_{b}(h) \in Q_{b}$, so that $\mu_{a}\left(Q_{b} \mid S_{b}(h)\right)=1$. To show that $f_{b}(h) \in Q_{b}$, it suffices to show that for each information set $i \in H_{b}$ allowed by $f_{b}(h)$,

$$
\begin{equation*}
\pi_{b}\left(f_{a}(i), f_{b}(h)\right) \geq \pi_{b}\left(f_{a}(i), r_{b}\right) \quad \text { for all } r_{b} \in S_{b}(i) \tag{C.1}
\end{equation*}
$$

Note that if either $i$ follows $h$ or $h$ and $i$ are unordered, then $f_{b}(h)=f_{b}(i)$. In either case, we can apply Lemma 4 to the information set $i$ and get the desired result. So we focus on the case where $h$ follows $i$.

Take $S(h) \subseteq S(i)$. Since $Q_{b} \cap S_{b}(h) \neq \varnothing$, there is a strategy $r_{b} \in Q_{b} \cap S_{b}(h)$. For this strategy $r_{b}$, we have that $\pi_{b}\left(f_{a}(i), r_{b}\right) \geq \pi_{b}\left(f_{a}(i), f_{b}(h)\right)$, because $r_{b}$ is sequentially optimal under $\mu_{b}, \mu_{b}\left(f_{a}(i) \mid S_{a}(i)\right)=1$, and $f_{b}(h) \in S_{b}(h) \subseteq S_{b}(i)$. We show that $\pi_{b}\left(f_{a}(i), r_{b}\right)=$ $\pi_{b}\left(f_{a}(i), f_{b}(h)\right)$, establishing (C.1).

Suppose, contra hypothesis, that $\pi_{b}\left(f_{a}(i), r_{b}\right)>\pi_{b}\left(f_{a}(i), f_{b}(h)\right)$. Consider the information set $j$, so that the last common predecessor of $\zeta\left(f_{a}(i), r_{b}\right)$ and $\zeta\left(f_{a}(i), f_{b}(h)\right)$ is contained in $j$. Now use the fact that $r_{b}$ and $f_{b}(h)$ both allow $h$ to get that either $j$ follows $h$ or $j$ and $h$ are unordered. In these cases, we have that $\pi_{b}\left(f_{a}(j), f_{b}(h)\right) \geq \pi_{b}\left(f_{a}(j), r_{b}\right)$. (This was established in the previous paragraph.) But now notice that, since either $j$ follows $h$ or $j$ and $h$ are unordered, we also have that either $j$ follows $i$ or $j$ and $i$ are unordered. In either case, using the fact that $f_{a}(i)$ allows $j$, we have $f_{a}(i)=f_{a}(j)$ (Lemma 3). So putting the above facts together, we get

$$
\begin{aligned}
\pi_{b}\left(f_{a}(i), f_{b}(h)\right) & =\pi_{b}\left(f_{a}(j), f_{b}(h)\right) \\
& \geq \pi_{b}\left(f_{a}(j), r_{b}\right) \\
& =\pi_{b}\left(f_{a}(i), r_{b}\right) \geq \pi_{b}\left(f_{a}(i), f_{b}(h)\right) .
\end{aligned}
$$

But this contradicts the assumption that $\pi_{b}\left(f_{a}(i), r_{b}\right)>\pi_{b}\left(f_{a}(i), f_{b}(h)\right)$.
We have established that $Q_{a} \times Q_{b}=\rho_{a}\left(\mu_{a}\right) \times \rho_{b}\left(\mu_{b}\right)$ is an EFBRS. By construction, $\left(s_{a}, s_{b}\right) \in \rho_{a}\left(\mu_{a}\right) \times \rho_{b}\left(\mu_{b}\right)$. So using Lemma $5,\left[s_{a}\right] \times\left[s_{b}\right] \subseteq Q_{a} \times Q_{b}$. Now suppose the game tree has NRT. We show that if $\left(r_{a}, r_{b}\right) \in Q_{a} \times Q_{b}$, then $\left(r_{a}, r_{b}\right) \in\left[s_{a}\right] \times\left[s_{b}\right]$.

Fix some strategy $r_{a} \notin\left[s_{a}\right]$. Then there exists some $r_{b} \in S_{b}$ with $\zeta\left(s_{a}, r_{b}\right) \neq \zeta\left(r_{a}, r_{b}\right)$. Consider the last common predecessor of $\zeta\left(s_{a}, r_{b}\right)$ and $\zeta\left(r_{a}, r_{b}\right)$, viz. $x$, and let $h$ be the information set that contains this node. Then there exists $\left(c^{1}, \ldots, c^{K}\right)$ and $\left(d^{1}, \ldots, d^{L}\right)$ so that $\zeta\left(s_{a}, r_{b}\right)=\left(x, c^{1}, \ldots, c^{K}\right), \zeta\left(r_{a}, r_{b}\right)=\left(x, d^{1}, \ldots, d^{L}\right)$. Clearly, $c_{a}^{1}=s_{a}(h) \neq r_{a}(h)=d_{a}^{1}$ and $c_{b}^{k}=r_{b}\left(h^{\prime}\right)=d_{b}^{l}$ whenever $\left(x, c^{1}, \ldots, c^{k-1}\right),\left(x, d^{1}, \ldots, d^{L}\right) \in h^{\prime} \in H_{b}$. So $a$ is decisive for $\left(\zeta\left(s_{a}, r_{b}\right), \zeta\left(r_{a}, r_{b}\right)\right)$.

Now, by the analysis above, we have that $\pi_{a}\left(s_{a}, f_{b}(h)\right) \geq \pi_{a}\left(r_{a}, f_{b}(h)\right)$. NRT says that, in fact, $\pi_{a}\left(s_{a}, f_{b}(h)\right)>\pi_{a}\left(r_{a}, f_{b}(h)\right)$. This implies that $r_{a} \notin Q_{a}$, as required.

## Lemma 6. If $\Gamma$ has observable actions, then $\Gamma$ is determined by its subgames.

Proof. Fix an information set $h$. Since $\Gamma$ has observable actions, $h=\{x\}$ for some node/history $x$. Now consider a node $y$ that follows $x$. Then by observable actions, $y$ is contained in the information set $\{y\}$. It follows that there is a subgame whose initial


Figure 9. A PI game with relevant ties.
node is $x$, written $\Sigma$. Moreover, the set of strategies that allow $\Sigma$ is exactly $S_{a}(h) \times S_{b}(h)$. So $\Gamma$ is determined by its subgames.

The proof of Proposition 2 is immediate from Proposition 5 and Lemma 6.
Finally, we conclude by pointing out the need for NRT in Proposition 5(ii).
Example 12. Figure 9 gives a game that fails NRT. Since it is a perfect-information game, it is determined by its subgames. Here, (In, Across) is a pure-strategy SPE, but $\{\operatorname{In}\} \times$ \{Across\} is not an EFBRS.

There is an EFBRS, viz. $Q_{a} \times Q_{b}$, with $\{$ In $\} \times\{$ Across $\} \subseteq Q_{a} \times Q_{b}$, e.g., $\{\operatorname{In}\} \times$ \{Across, Down\}. (Of course, part (i) of Proposition 2 says there must be some such EFBRS.) But every EFBRS, viz. $Q_{a} \times Q_{b}$, must have $Q_{b}=\{$ Across, Down $\}$. (Here we use condition (iii) of an EFBRS.) So $\{\operatorname{In}\} \times\{$ Across $\}$ is not an EFBRS.

## Appendix D: Examples and proofs for Section 8

In this appendix, we prove Propositions 3 and 4 . We also provide examples to better understand the results.

## D.I No ties and Proposition 3

Part (i) of Proposition 3 requires TDI and part (ii) of Proposition 3 requires NRT. Example 13 explains why part (i) requires TDI.

Example 13. Return to Example 12, which fails TDI. There we see that (In, Down) is contained in an EFBRS. But it is not outcome equivalent to a pure-strategy Nash equilibrium.

Observe that when Bob moves, he is indifferent between In and Out. Now turn to a type of Ann that strongly believes Bob is rational. This type has a correct belief about what Bob's payoff will be if she plays In. But because the game fails TDI, she may have an incorrect belief about what her own payoff will be if she plays In. As such, a Nash outcome need not obtain.

Example 14 explains why we cannot replace NRT with the (weaker) TDI condition in part (ii) of Proposition 3.


Figure 10. A game with TDI that fails NRT.

Example 14. Consider the game in Figure 10, which satisfies TDI, but violates NRT. Here, (Out, Out) is a Nash equilibrium in sequentially justifiable strategies. But if $Q_{a} \times Q_{b}$ is a (nonempty) EFBRS, then $Q_{a} \times Q_{b}=\{I n-A c r o s s\} \times\{I n-D o w n\}$. To see this, let $Q_{a} \times Q_{b} \neq \varnothing$ be an EFBRS. In this case, $Q_{a} \subseteq\{$ Out, In-Across $\}$ and $Q_{b} \subseteq\{$ Out, In-Down $\}$. (The strategy In-Down for Ann is dominated at her second information set, and the strategy In-Across for Bob is dominated at his second information set.) Also, In-Across is a weakly dominant strategy for Ann. So condition (iii) of an EFBRS implies that In-Across $\in Q_{a}$. It follows that if $\mu_{b}$ strongly believes $Q_{a}$, then $\mu_{b}$ must assign probability 1 to In-Across conditional on the event "Ann plays In." So In-Down is Bob's only strategy that is sequentially optimal given a CPS that strongly believes $Q_{a}$. This implies that $Q_{b}=\{$ In-Down $\}$ and so $Q_{a}=\{$ In-Across $\}$.

In the above example, $\{($ Out, Out $)\}$ is disjoint from any EFBRS. While it satisfies conditions (i) and (ii) of an EFBRS, it fails condition (iii): If (Out, Out) is played, Ann gets a payoff of 2 . But by going In, she can also assure herself an expected payoff of at least 2 . As such, condition (iii) requires that we include In-Across.

To better understand what is going on, let us recast this at the epistemic level: If (Out, $t_{a}$ ) is rational, so is (In-Across, $t_{a}$ ). With this, if Bob strongly believes that Ann is rational, then when his first information set is reached, he must maintain a hypothesis that Ann is playing In-Across; that is, he must maintain a hypothesis that Ann is playing a particular strategy that is not in $Q_{a}=\{O u t\}$. As such, Out cannot be a best response for Bob.

The key is that the rationality of $\left(O u t, t_{a}\right)$ has implications for Ann's rationality at information sets precluded by Out. Notice that this happens because Ann is indifferent between the terminal nodes reached by (Out, Out) and (In-Across, Out). (If Ann's payoffs from (In-Across, Out) are strictly less than 2, (Out, $t_{a}$ ) can be rational without (In-Across, $t_{a}$ ) being rational. Similarly, if Ann's payoffs from (In-Across, Out) are strictly greater than 2, then (Out, Out) would not be a Nash equilibrium.) This is where the NRT condition comes in-it says that if Ann is decisive between two terminal nodes (as she is here), then she cannot be indifferent between those nodes.

## D.II Proof of Proposition 3(i)

The proof follows immediately from the following lemma.

Lemma 7. Fix a perfect-information game that satisfies TDI. If $Q_{a} \times Q_{b}$ satisfies the best response property, then each $\left(s_{a}, s_{b}\right) \in Q_{a} \times Q_{b}$ is outcome equivalent to a Nash equilibrium.

The proof of this lemma closely follows the proof of Proposition 6.1a in Brandenburger and Friedenberg (2010). It is by induction on the length of the tree. Specifically, fix a game $\Gamma$ and a subgame $\Sigma$. The induction hypothesis states that if a set satisfies the best response property on $\Sigma$, then it is outcome equivalent to some Nash equilibrium. We know that if a set $Q_{a} \times Q_{b}$ satisfies the best response property on $\Gamma$, it also satisfies the best response property on the subgame $\Sigma$. (This is Lemma 1.) So if we fix a set that satisfies the best response property on the whole tree, then, by the induction hypothesis, it is outcome equivalent to a Nash equilibrium on each reached subgame. The proof uses this fact to construct a pure-strategy Nash equilibrium on the whole tree that is outcome equivalent to each profile in $Q_{a} \times Q_{b}$.

Definition 20. Call $Q_{a} \times Q_{a} \subseteq S_{a} \times S_{b}$ a constant set if, for each $\left(s_{a}, s_{b}\right),\left(r_{a}, r_{b}\right) \in$ $Q_{a} \times Q_{b}, \pi\left(s_{a}, s_{b}\right)=\pi\left(r_{a}, r_{b}\right)$.

Lemma 8. Fix a perfect-information game that satisfies TDI. If $Q_{a} \times Q_{b}$ satisfies the best response property, then $Q_{a} \times Q_{b}$ is a constant set.

Proof. The proof is by induction on the length of the tree. First, fix a tree of length 1 and suppose Ann moves at the initial node. Then Bob's strategy set is a singleton. So if $Q_{a} \times Q_{b}$ satisfies the best response property, then Ann is indifferent between each ( $s_{a}, s_{b}$ ) and ( $r_{a}, s_{b}$ ) in $Q_{a} \times Q_{b}$. By TDI, each profile in $Q_{a} \times Q_{b}$ is outcome equivalent.

Assume the result holds for any tree of length $l$ or less. Fix a tree of length $l+1$ and a set $Q_{a} \times Q_{b}$ satisfying the best response property. Suppose Ann moves at the initial node and can choose among nodes $n_{1}, \ldots, n_{K}$. Each $n_{k}$ can be identified with an information set and each is associated with a subgame $\Sigma=k$.

In particular, fix some subgame $k$ with $Q_{a}^{k} \times Q_{b}^{k} \neq \varnothing$. Then $Q_{a}^{k} \times Q_{b}^{k}$ satisfies the best response property for the subgame $k$. (This is Lemma 1.) So by the induction hypothesis, $\pi^{k}\left(s_{a}^{k}, s_{b}^{k}\right)=\pi^{k}\left(r_{a}^{k}, r_{b}^{k}\right)$ for $\left(s_{a}^{k}, s_{b}^{k}\right),\left(r_{a}^{k}, r_{b}^{k}\right) \in Q_{a}^{k} \times Q_{b}^{k}$. Now note that for each $s_{b} \in Q_{b}, s_{b}^{k} \in Q_{b}^{k}$. (Here, we use the fact that Ann moves at the initial node.) Thus, given two strategies $s_{a}, r_{a} \in Q_{a} \cap S_{a}(\Sigma)$ and $s_{b}, r_{b} \in Q_{b}$, we have that $\pi\left(s_{a}, s_{b}\right)=\pi\left(r_{a}, r_{b}\right)$.

Now fix some $\left(s_{a}, s_{b}\right),\left(r_{a}, r_{b}\right) \in Q_{a} \times Q_{b}$, where $s_{a} \in S_{a}(k)$ and $r_{a} \in S_{a}(j)$. We have already established that $\pi\left(s_{a}, s_{b}\right)=\pi\left(r_{a}, r_{b}\right)$, for $k=j$. Suppose $k \neq j$. Since $s_{a} \in Q_{a}, s_{a}$ is sequentially optimal under some $\mu_{a}(\cdot \mid \cdot)$ that strongly believes $Q_{b}$. So, in particular, $s_{a}$ is optimal under $\mu_{a}\left(\cdot \mid S_{b}\right)$ with $\mu_{a}\left(Q_{b} \mid S_{b}\right)=1$. With this,

$$
\begin{aligned}
\pi_{a}\left(s_{a}, s_{b}\right) & =\sum_{q_{b} \in Q_{b}} \pi_{a}\left(s_{a}, q_{b}\right) \mu_{a}\left(q_{b} \mid S_{b}\right) \\
& \geq \sum_{q_{b} \in Q_{b}} \pi_{a}\left(r_{a}, q_{b}\right) \mu_{a}\left(q_{b} \mid S_{b}\right) \\
& =\pi_{a}\left(r_{a}, r_{b}\right) .
\end{aligned}
$$

(The first equality follows from the fact that for each $q_{b} \in Q_{b}, \pi_{a}\left(s_{a}, s_{b}\right)=\pi_{a}\left(s_{a}, q_{b}\right)$. This is a consequence of the last line in the preceding paragraph; likewise for the last equality.) By an analogous argument, $\pi_{a}\left(r_{a}, r_{b}\right) \geq \pi_{a}\left(s_{a}, s_{b}\right)$. So, $\pi_{a}\left(r_{a}, r_{b}\right)=\pi_{a}\left(s_{a}, s_{b}\right)$. By TDI, $\pi_{b}\left(r_{a}, r_{b}\right)=\pi_{b}\left(s_{a}, s_{b}\right)$.

Proof of Lemma 7. The proof is by induction on the length of the tree. First, fix a tree of length 1 and suppose Ann moves at the initial node. Then Bob's strategy set is a singleton. The result follows from the fact that each $s_{a} \in Q_{a}$ is sequentially optimal under a CPS.

Now assume the result holds for any tree of length $l$ or less. Suppose Ann moves at the initial node, and can choose among nodes $n^{1}, \ldots, n^{K}$. Each $n^{k}$ can be identified with an information set and each is associated with a subgame $\Sigma=k$.

Fix some $\left(s_{a}, s_{b}\right) \in Q_{a} \times Q_{b}$ and suppose $s_{a} \in S_{a}(1)$. Note that $Q_{a}^{1} \times Q_{b}^{1}$ satisfies the best response property (Lemma 1). So by the induction hypothesis, there is a Nash equilibrium of subgame 1 , viz. $\left(r_{a}^{1}, r_{b}^{1}\right)$, so that $\pi\left(s_{a}^{1}, s_{b}^{1}\right)=\pi\left(r_{a}^{1}, r_{b}^{1}\right)$. Consider a strategy $r_{a} \in S_{a}(1)$ so that the projection of $r_{a}$ onto $\prod_{h \in H_{a}^{1}} C_{a}(h)$ is $r_{a}^{1}$. We need to show that we can choose $r_{b}^{2}, \ldots, r_{b}^{K} \in Х_{k=2}^{K} S_{b}^{k}$ so that, for each $q_{a} \in Q_{a}$ and associated $q_{a}^{k} \in S_{a}^{k}$, $\pi_{a}\left(r_{a}^{1}, r_{b}^{1}\right) \geq \pi_{a}\left(q_{a}^{k}, r_{b}^{k}\right)$. The profile $\left(r_{a},\left(r_{b}^{1}, r_{b}^{2}, \ldots, r_{b}^{K}\right)\right)$ is then a Nash equilibrium of the game.

Since $s_{a} \in Q_{a}$, there exists a CPS and an associated measure $\mu_{a}\left(\cdot \mid S_{b}\right)$ so that

$$
\sum_{s_{b} \in S_{b}}\left[\pi_{a}\left(s_{a}, s_{b}\right)-\pi_{a}\left(q_{a}, s_{b}\right)\right] \mu_{a}\left(s_{b} \mid S_{b}\right) \geq 0
$$

for all $q_{a} \in S_{a}$. Fix $k$ from $2, \ldots, K$. Using Lemma 8 ,

$$
\pi_{a}\left(r_{a}^{1}, r_{b}^{1}\right)=\pi_{a}\left(s_{a}^{1}, s_{b}^{1}\right) \geq \sum_{s_{b}^{k} \in S_{k}^{b}} \pi_{a}\left(q_{a}^{k}, s_{b}^{k}\right)\left(\operatorname{marg}_{s_{b}^{k}} \mu\left(\cdot \mid S_{b}\right)\right)\left(s_{b}^{k}\right)
$$

for any $q_{a}^{k} \in S_{a}^{k}$. Letting $\left(\bar{q}_{a}^{k}, \bar{q}_{b}^{k}\right) \in \arg \max _{S_{a}^{k}} \min _{S_{b}^{k}} \pi_{a}(\cdot, \cdot)$, we have in particular

$$
\pi_{a}\left(r_{a}^{1}, r_{b}^{1}\right) \geq \sum_{s_{b}^{k} \in S_{k}^{b}} \pi_{a}\left(\bar{q}_{a}^{k}, s_{b}^{k}\right)\left(\operatorname{marg}_{S_{k}^{b}} \mu\left(\cdot \mid S_{b}\right)\right)\left(s_{b}^{k}\right) .
$$

But $\pi_{a}\left(\bar{q}_{a}^{k}, q_{b}^{k}\right) \geq \pi_{a}\left(\bar{q}_{a}^{k}, \bar{q}_{b}^{k}\right)$ for any $q_{b}^{k} \in S_{b}^{k}$, by definition. So

$$
\pi_{a}\left(r_{a}^{1}, r_{b}^{1}\right) \geq \sum_{s_{b}^{k} \in S_{k}^{b}} \pi_{a}\left(\bar{q}_{a}^{k}, \bar{q}_{b}^{k}\right)\left(\operatorname{marg}_{S_{b}^{k}} \mu\left(\cdot \mid S_{b}\right)\right)\left(s_{b}^{k}\right)=\pi_{a}\left(\bar{q}_{a}^{k}, \bar{q}_{b}^{k}\right) .
$$

Set $\left(\underline{q}_{a}^{k}, \underline{q}_{b}^{k}\right) \in \arg \min _{S_{b}^{k}} \max _{S_{a}^{k}} \pi_{a}(\cdot, \cdot)$. By the minimax theorem for PI games (see, e.g., Ben-Porath 1997), $\pi_{a}\left(\bar{q}_{a}^{k}, \bar{q}_{b}^{k}\right)=\pi_{a}\left(\underline{q}_{a}^{k}, \underline{q}_{b}^{k}\right)$. It follows that $\pi_{a}\left(r_{a}^{1}, r_{b}^{1}\right) \geq \pi_{a}\left(\bar{q}_{a}^{k}, \bar{q}_{b}^{k}\right)=$ $\pi_{a}\left(\underline{q}_{a}^{k}, \underline{q}_{b}^{k}\right)$. But $\pi_{a}\left(\underline{q}_{a}^{k}, \underline{q}_{b}^{k}\right) \geq \pi_{a}\left(q_{a}^{k}, \underline{q}_{b}^{k}\right)$ for any $q_{a}^{k} \in S_{a}^{k}$, by definition. So $\pi_{a}\left(r_{a}^{1}, r_{b}^{1}\right) \geq$ $\pi_{a}\left(q_{a}^{k}, \underline{q}_{b}^{k}\right)$ for each $q_{a}^{k} \in S_{a}^{k}$. Setting each $r_{b}^{k}=\underline{q}_{b}^{k}$ gives the desired profile.

## D.III Proof of Proposition 3(ii)

Let us give the idea of the proof. We start with a set $Q_{a} \times Q_{b}=\left\{\left(s_{a}, s_{b}\right)\right\}$, where $\left(s_{a}, s_{b}\right)$ is a pure Nash equilibrium in sequentially justifiable strategies. This set satisfies the best response property. (See Lemma 10 below.) In particular, the set $Q_{a}$ is associated with a single CPS $\mu_{a}$, satisfying the conditions of the best response property. We look at the set $P_{a}$ of all strategies $r_{a}$ that are sequentially optimal under $\mu_{a}$. We use the fact that $\mu_{a}$ strongly believes $Q_{b}$ (so assigns probability 1 to $s_{b}$ at the initial information set) to get that Ann is indifferent between all outcomes associated with $P_{a} \times Q_{b}$. Indeed, by NRT, these strategy profiles must reach the same terminal node. Likewise, we define $P_{b}$ and, using standard properties of a PI game tree, we get that all strategies in $P_{a} \times P_{b}$ reach the same terminal node.

So what have we done? We began with a set $Q_{a} \times Q_{b}$ and we expanded it to a set $P_{a} \times P_{b}$, with (i) $Q_{a} \times Q_{b} \subseteq P_{a} \times P_{b}$, (ii) all the profiles in $P_{a} \times P_{b}$ reach the same terminal node, and (iii) there is a CPS $\mu_{a}$ (resp. $\mu_{b}$ ) that strongly believes $Q_{b}$ (resp. $Q_{a}$ ) and such that $P_{a}$ (resp. $P_{b}$ ) is the set of strategies that are sequentially optimal under $\mu_{a}(\cdot \mid \cdot)$ (resp. $\mu_{b}(\cdot \mid \cdot)$ ). We have successfully in constructed an EFBRS if the CPS $\mu_{a}$ (resp. $\mu_{b}$ ) strongly believes $P_{b}$ (resp. $P_{a}$ ) instead of $Q_{b}$ (resp. $Q_{a}$ ). The key is that we can similarly expand $P_{a} \times P_{b}$ so that the new set satisfies similar properties. Since the game is finite, eventually the expanded set must coincide with the original set; that is, condition (i) must hold with equality. This gives the desired result.

Now we turn to the proof. First, we give a technical lemma.
Lemma 9. Fix some $(\Omega, \mathcal{E})$ where $\Omega$ is finite. Let $\mu(\cdot \mid \cdot)$ be a CPS on $(\Omega, \mathcal{E})$ and let $\varpi$ be a measure on $\Omega$. Construct $\nu(\cdot \mid \cdot): \mathcal{B}(\Omega) \times \mathcal{E} \rightarrow[0,1]$ as follows: If $F \in \mathcal{E}$ with $\operatorname{Supp} \varpi \cap F \neq \varnothing$, then $\nu(\cdot \mid F)=\varpi(\cdot \mid F)$. Otherwise, $\nu(\cdot \mid F)=\mu(\cdot \mid F)$. Then $\nu(\cdot \mid \cdot)$ is a CPS.

Proof. Let $\mu, \varpi$, and $\nu$ be as in the statement of the lemma. Conditions (i) and (ii) of a CPS are immediate. Turn to condition (iii). For this, fix $E \in \mathcal{B}(\Omega)$ and $F, G \in \mathcal{E}$ with $E \subseteq F \subseteq G$.

First suppose that Supp $\varpi \cap F \neq \varnothing$. Then

$$
\begin{aligned}
\nu(E \mid G) & =\frac{\varpi(E)}{\varpi(G)} \\
& =\frac{\varpi(E)}{\varpi(F)} \frac{\varpi(F)}{\varpi(G)}=\nu(E \mid F) \nu(F \mid G),
\end{aligned}
$$

where the first equality makes use of the fact that $E \subseteq G$, and the last equality makes use of the fact that $E \subseteq F$ and $F \subseteq G$. Next suppose that Supp $\varpi \cap G=\varnothing$. Then Supp $\varpi \cap F=$ $\varnothing$, so that

$$
\begin{aligned}
\nu(E \mid G) & =\mu(E \mid G) \\
& =\mu(E \mid F) \mu(F \mid G)=\nu(E \mid F) \nu(F \mid G)
\end{aligned}
$$

as required. Finally, suppose that Supp $\varpi \cap F=\varnothing$ but Supp $\varpi \cap G \neq \varnothing$. Then

$$
0 \leq \nu(E \mid G) \leq \nu(F \mid G)=\varpi(F \mid G)=0,
$$

where the last equality follows from the fact that $\operatorname{Supp} \varpi \cap F=\varnothing$. Then

$$
\begin{aligned}
\nu(E \mid G) & =0 \\
& =\mu(E \mid F) \varpi(F \mid G)=\nu(E \mid F) \nu(F \mid G)
\end{aligned}
$$

as required.
Lemma 10. Let $\left(s_{a}, s_{b}\right)$ be a Nash equilibrium in sequentially justifiable strategies. Then $\left\{\left(s_{a}, s_{b}\right)\right\}$ satisfies the best response property.

Proof. Let $\left(s_{a}, s_{b}\right)$ be a Nash equilibrium in sequentially justifiable strategies. Then there exists a CPS $\mu_{a}(\cdot \mid \cdot)$ so that $s_{a}$ is sequentially optimal under $\mu_{a}(\cdot \mid \cdot)$. Construct a CPS $\nu_{b}(\cdot \mid \cdot)$ so that $\nu_{b}\left(s_{b} \mid S_{b}(h)\right)=1$ if $s_{b} \in S_{b}(h)$ and $\nu_{b}\left(\cdot \mid S_{b}(h)\right)=\mu_{a}\left(\cdot \mid S_{b}(h)\right)$ otherwise. By Lemma $9, \nu_{b}(\cdot \mid \cdot)$ is a CPS. It is immediate from the construction that $s_{a}$ is sequentially optimal under $\nu_{b}(\cdot \mid \cdot)$ and that $\nu_{b}(\cdot \mid \cdot)$ strongly believes $\left\{s_{b}\right\}$, and, similarly with $a$ and $b$ reversed.

Definition 21. Fix a constant set $Q_{a} \times Q_{a} \subseteq S_{a} \times S_{b}$. Call $P_{a} \times P_{a} \subseteq S_{a} \times S_{b}$ an expansion of $Q_{a} \times Q_{b}$ if the following hold:
a. There exists a CPS $\mu_{a} \in \mathcal{C}\left(S_{b}\right)$ so that
(i) $Q_{a} \subseteq P_{a}=\rho_{a}\left(\mu_{a}\right)$,
(ii) $\mu_{a}$ strongly believes $Q_{b}$, and
(iii) if $r_{a}$ is optimal under $\mu_{a}\left(\cdot \mid S_{b}\right)$ then $\pi_{a}\left(r_{a}, s_{b}\right)=\pi_{a}\left(s_{a}, s_{b}\right)$ for all $\left(s_{a}, s_{b}\right) \in$ $Q_{a} \times Q_{b}$.
b. And, likewise, there is a CPS $\mu_{b} \in \mathcal{C}\left(S_{a}\right)$ satisfying analogous conditions.

Notice that we define only an expansion of a set $Q_{a} \times Q_{b}$ if $Q_{a} \times Q_{b}$ is a constant set. Also, if $P_{a} \times P_{b}$ is an expansion of $Q_{a} \times Q_{b}$, then there are CPS's $\mu_{a}$ and $\mu_{b}$ that satisfy conditions (i)-(iii) of Definition 21. We refer to these as the associated CPS's.

Lemma 11. Fix a PI game satisfying NRT. Suppose $P_{a} \times P_{b}$ is an expansion of $Q_{a} \times Q_{b}$, and fix associated CPS's $\mu_{a}$ and $\mu_{b}$. Let $X_{a}$ be the set of strategies that are optimal under $\mu_{a}\left(\cdot \mid S_{b}\right)$ and likewise define $X_{b}$. Then $X_{a} \times X_{b}$ is a constant set.

Proof. Since $P_{a} \times P_{b}$ is an expansion of $Q_{a} \times Q_{b}$, then $Q_{a} \times Q_{b}$ is a constant set. (This is by definition.) It follows from condition (iii) of Definition 21 and NRT that $X_{a} \times Q_{b}$ and $Q_{a} \times X_{b}$ are constant sets. Then using NRT, each profile in $X_{a} \times Q_{b}$ reaches the same terminal node. And likewise for $Q_{a} \times X_{b}$. In fact, the terminal node reached by $X_{a} \times Q_{b}$ and $Q_{a} \times X_{b}$ must be the same one, since $\left(X_{a} \times Q_{b}\right) \cap\left(Q_{a} \times X_{b}\right)=\left(Q_{a} \times Q_{b}\right)$. Now fix a profile $\left(s_{a}, r_{b}\right) \in\left(X_{a} \backslash Q_{a}\right) \times\left(X_{b} \backslash Q_{b}\right)$. Note that there is a profile $\left(s_{a}, s_{b}\right) \in\left(X_{a} \backslash Q_{a}\right) \times Q_{b}$ and a profile $\left(r_{a}, r_{b}\right) \in Q_{a} \times\left(X_{b} \backslash Q_{b}\right)$. These profiles reach the same terminal node and so ( $s_{a}, r_{b}$ ) must also reach that terminal node. This establishes that $X_{a} \times X_{b}$ is a constant set.

Corollary 4. Fix a PI game satisfying NRT. If $P_{a} \times P_{b}$ is an expansion of some $Q_{a} \times Q_{b}$, then $P_{a} \times P_{b}$ is constant.

The next result is standard, so the proof is omitted.
Lemma 12. Fix a measure $\varpi_{a} \in \mathcal{P}\left(S_{b}\right)$ so that $s_{a}$ is optimal under $\varpi_{a}$ given $S_{a}$. Then, for any information set $h$ with $s_{a} \in S_{a}(h)$ and $\varpi_{a}\left(S_{b}(h)\right)>0, s_{a}$ is optimal under $\varpi_{a}\left(\cdot \mid S_{b}(h)\right)$ given $S_{a}(h)$.

Lemma 13. Fix a PI game that satisfies NRT. If $P_{a} \times P_{b}$ is an expansion of $Q_{a} \times Q_{b}$, then there exists some $W_{a} \times W_{b}$ that is an expansion of $P_{a} \times P_{b}$.

Proof. Begin with the fact that $P_{a} \times P_{b}$ is an expansion of $Q_{a} \times Q_{b}$ and choose an associated CPS $\mu_{a}$ (resp. $\mu_{b}$ ) that satisfies the conditions of Definition 21. Let $X_{a}$ (resp. $X_{b}$ ) be the set of strategies that are optimal under $\mu_{a}\left(\cdot \mid S_{b}\right)$ (resp. $\left.\mu_{b}\left(\cdot \mid S_{a}\right)\right)$. By Lemma 11, $X_{a} \times X_{b}$ is a constant set.

Construct a measure $\varpi_{a} \in \mathcal{P}\left(S_{b}\right)$ as follows: Begin with a measure $\bar{\varpi}_{a}$ with Supp $\bar{\varpi}_{a}=$ $P_{b}$. Construct $\varpi_{a}$ so that, for each $r_{b} \in P_{b}$,

$$
\varpi_{a}\left(r_{b}\right)=(1-\varepsilon) \mu_{a}\left(r_{b} \mid S_{b}\right)+\varepsilon \overline{\boldsymbol{w}}_{a}\left(r_{b}\right),
$$

where $\varepsilon \in(0,1)$. Note that $\mu_{a}$ strongly believes $Q_{b} \subseteq P_{b}$ so Supp $\mu_{a}\left(\cdot \mid S_{b}\right) \subseteq P_{b}$. With this and the fact that Supp $\overline{\boldsymbol{\sigma}}_{a}=P_{b}$, we have Supp $\varpi_{a}=P_{b}$. Using the fact that $X_{a} \times P_{b}$ is a constant set, then $\pi_{a}\left(s_{a}, \varpi_{a}\right)=\pi_{a}\left(r_{a}, \varpi_{a}\right)$ for all $s_{a}, r_{a} \in X_{a}$. Moreover, when $\varepsilon$ is sufficiently small, $\pi_{a}\left(s_{a}, \varpi_{a}\right)>\pi_{a}\left(r_{a}, \varpi_{a}\right)$ for all $s_{a} \in X_{a}$ and $r_{a} \in S_{a} \backslash X_{a}$. So we can choose $\varpi_{a}$ so that $s_{a}$ is optimal under $\varpi_{a}$ if and only if $s_{a} \in X_{a}$.

Now construct a CPS $\nu_{a} \in \mathcal{C}\left(S_{b}\right)$ as follows: If $P_{b} \cap S_{b}(h) \neq \varnothing$, let $\nu_{a}\left(\cdot \mid S_{b}(h)\right)=$ $\varpi_{a}\left(\cdot \mid S_{b}(h)\right)$. (This is well defined since, in this case, $\varpi_{a}\left(S_{b}(h)\right)>0$.) If $P_{b} \cap S_{b}(h)=\varnothing$, let $\nu_{a}\left(\cdot \mid S_{b}(h)\right)=\mu_{a}\left(\cdot \mid S_{b}(h)\right)$. Lemma 9 establishes that $\nu_{a}(\cdot \mid \cdot)$ is a CPS. Construct a measure $\varpi_{b} \in \mathcal{P}\left(S_{a}\right)$ and a CPS $\nu_{b} \in \mathcal{C}\left(S_{a}\right)$ analogously.

Take $W_{a}=\rho_{a}\left(\nu_{a}\right)$ and $W_{b}=\rho_{b}\left(\nu_{b}\right)$. We show that $W_{a} \times W_{b}$ is an expansion of $P_{a} \times P_{b}$.
Begin with condition (i). By definition, $W_{a}=\rho_{a}\left(\nu_{a}\right)$. So, we need to show only that $P_{a} \subseteq W_{a}$. Fix some $s_{a} \in P_{a}$. By construction, $s_{a}$ is optimal under $\varpi_{a}$. Let $h \in H_{a}$ with $s_{a} \in S_{a}(h)$. If $P_{b} \cap S_{b}(h) \neq \varnothing$, then $\varpi_{a}\left(\cdot \mid S_{b}(h)\right)=\nu_{a}\left(\cdot \mid S_{b}(h)\right)$ and $s_{a}$ is optimal under $\nu_{a}\left(\cdot \mid S_{b}(h)\right)$ among all strategies in $S_{a}(h)$. (See Lemma 12.) If $P_{b} \cap S_{b}(h)=\varnothing$, then $\nu_{a}\left(\cdot \mid S_{b}(h)\right)=\mu_{a}\left(\cdot \mid S_{b}(h)\right)$. So, again, $s_{a}$ is optimal under $\nu_{a}\left(\cdot \mid S_{b}(h)\right)$ given all strategies in $S_{a}(h)$. With this, $s_{a} \in \rho_{a}\left(\nu_{a}(\cdot \mid \cdot)\right.$ ), as required.

Next, turn to condition (ii). We need to show that $\nu_{a}$ strongly believes $P_{b}$. For this, notice that if $P_{b} \cap S_{b}(h) \neq \varnothing$, then $\nu_{a}\left(P_{b} \mid S_{b}(h)\right)=\varpi_{a}\left(P_{b} \mid S_{b}(h)\right)=1$.

Finally, we show condition (iii). Suppose $r_{a}$ is optimal under $\nu_{a}\left(\cdot \mid S_{b}\right)$. We show that $\pi_{a}\left(r_{a}, s_{b}\right)=\pi_{a}\left(s_{a}, s_{b}\right)$ for all $\left(s_{a}, s_{b}\right) \in P_{a} \times P_{b}$. To see this, recall, $\nu_{a}\left(\cdot \mid S_{b}\right)=\omega_{a}$. So if $r_{a}$ is optimal under $\nu_{a}\left(\cdot \mid S_{b}\right)$, then $r_{a} \in X_{a}$. The claim now follows from the fact that $X_{a} \times X_{b}$ is a constant set that contains $P_{a} \times P_{b}$.

Replacing $b$ with $a$ establishes that $W_{a} \times W_{b}$ is an expansion of $P_{a} \times P_{b}$.


Figure 11. A PI game with NRT.
Lemma 14. Fix a PI game that satisfies NRT. Let $\left(s_{a}, s_{b}\right)$ be a Nash equilibrium in sequentially justifiable strategies. Then there exists an EFBRS, viz. $Q_{a} \times Q_{b}$, that contains $\left(s_{a}, s_{b}\right)$.

Proof. Fix a Nash equilibrium in sequentially optimal strategies, viz. $\left(s_{a}, s_{b}\right)$. Let $Q_{a}^{0} \times Q_{b}^{0}=\left\{s_{a}\right\} \times\left\{s_{b}\right\}$. By Lemma 10, $Q_{a}^{0} \times Q_{b}^{0}$ satisfies the best response property. So there is a CPS $\mu_{a}$ (resp. $\mu_{b}$ ) that strongly believes $\left\{s_{b}\right\}$ (resp. $\left\{s_{a}\right\}$ ) and so that $s_{a}$ (resp. $s_{b}$ ) is sequentially optimal under $\mu_{a}$ (resp. $\mu_{b}$ ). Let $Q_{a}^{1}=\rho_{a}\left(\mu_{a}\right)$ (resp. $Q_{b}^{1}=\rho_{b}\left(\mu_{a}\right)$ ). Note that $Q_{a}^{1} \times Q_{b}^{1}$ is an expansion of $Q_{a}^{0} \times Q_{b}^{0}$ (associated with the CPS's $\mu_{a}$ and $\mu_{b}$ ). Now repeatedly apply Lemma 13 to get sets $Q_{a}^{0} \times Q_{b}^{0}, Q_{a}^{1} \times Q_{b}^{1}, Q_{a}^{2} \times Q_{b}^{2}, \ldots$, where each $Q_{a}^{m+1} \times Q_{b}^{m+1}$ is an expansion of $Q_{a}^{m} \times Q_{b}^{m}$. Since the game is finite, there is some $M$ with $Q_{a}^{m} \times Q_{b}^{m}=Q_{a}^{M} \times Q_{b}^{M}$ for all $m \geq M$. The set $Q_{a}^{M} \times Q_{b}^{M}$ is an EFBRS.

## D.IV Closing the gap

In the text, we mentioned that there is a gap between parts (i) and (ii) of Proposition 3.
We begin by pointing out that we cannot improve part (ii) to say that, starting from any pure Nash equilibrium, we get an EFBRS. To see this, refer to Figure 11. There is a unique EFBRS, namely $\{I n\} \times\{$ Across $\}$. That said, the pair (Out,Down) is a Nash equilibrium-of course, it is not a Nash equilibrium in sequentially justifiable strategies.

We do not know if part (i) can be improved to read, If $Q_{a} \times Q_{b}$ satisfies the best response property, then each $\left(s_{a}, s_{b}\right) \in Q_{a} \times Q_{b}$ is outcome equivalent to a sequentially justifiable Nash equilibrium. Let us better understand the problem.

Return to Lemma 7 and the proof thereof. Suppose, we strengthened the induction hypothesis so that we can look at a sequentially justifiable Nash equilibrium of subgame 1, viz. ( $r_{a}^{1}, r_{b}^{1}$ ). Following the proof, we use this to construct a Nash equilibrium $\left(r_{a},\left(r_{b}^{1}, \underline{q}_{b}^{2}, \ldots, \underline{q}_{b}^{K}\right)\right.$ ), where each $\underline{q}_{b}^{k}$ is the minimax strategy on subtree $k$. But now we need to show that the constructed equilibrium is sequentially justifiable. Here is where the problem arises: the strategy $q_{b}^{k}$ (on subtree $k$ ) may not be a best response to any strategy on that subtree. Thus, the proof breaks down. Of course, it may very well be that there is another method of proof.

In the text, we mentioned a related result (Proposition 4), which speaks to the gap. To show this result, it suffices to show the following lemma.

Lemma 15. Suppose $Q_{a} \times Q_{b}$ is a constant set that satisfies the best response property. Then there exists a mixed-strategy Nash equilibrium, viz. ( $\sigma_{a}, \sigma_{b}$ ), so that
(i) $Q_{a} \times Q_{b}$ is outcome equivalent to ( $\sigma_{a}, \sigma_{b}$ ) and
(ii) each $s_{a} \in \operatorname{Supp} \sigma_{a}\left(\right.$ resp. $\left.s_{b} \in \operatorname{Supp} \sigma_{b}\right)$ is sequentially justifiable.

Proof. Pick some $\left(r_{a}, r_{b}\right) \in Q_{a} \times Q_{b}$ and let $\mu_{a} \in \mathcal{C}\left(S_{b}\right)$ be a CPS so that $r_{a} \in \rho_{a}\left(\mu_{a}\right)$ and $\mu_{a}$ strongly believes $Q_{b}$. Set $\sigma_{b}=\mu_{a}\left(\cdot \mid S_{b}\right)$. Construct $\sigma_{a}$ analogously.

First notice that ( $\sigma_{a}, \sigma_{b}$ ) is a mixed-strategy Nash equilibrium. Begin by using the fact that $\mu_{b}\left(Q_{a} \mid S_{a}\right)=1$ and $\mu_{a}\left(Q_{b} \mid S_{b}\right)=1$. As such, Supp $\sigma_{a} \times \operatorname{Supp} \sigma_{b} \subseteq Q_{a} \times Q_{b}$. Since $Q_{a} \times Q_{b}$ is a constant set, for each $\left(s_{a}, s_{b}\right) \in \operatorname{Supp} \sigma_{a} \times \operatorname{Supp} \sigma_{b}, \pi\left(s_{a}, s_{b}\right)=\pi\left(r_{a}, r_{b}\right)$. So for each $s_{a} \in \operatorname{Supp} \sigma_{a}$ and each $q_{a} \in S_{a}$,

$$
\begin{aligned}
\pi_{a}\left(s_{a}, \sigma_{b}\right) & =\pi_{a}\left(r_{a}, r_{b}\right) \\
& =\pi_{a}\left(r_{a}, \sigma_{b}\right) \geq \pi_{a}\left(q_{a}, \sigma_{b}\right)
\end{aligned}
$$

where the inequality holds because $r_{a} \in \rho_{a}\left(\mu_{a}\right)$ and $\mu_{a}\left(\cdot \mid S_{b}\right)=\sigma_{b}$. Applying an analogous argument to $b$ establishes that ( $\sigma_{a}, \sigma_{b}$ ) is indeed a Nash equilibrium.

Next notice that $Q_{a} \times Q_{b}$ is outcome equivalent to $\left(\sigma_{a}, \sigma_{b}\right)$. To see this, recall that Supp $\sigma_{a} \times \operatorname{Supp} \sigma_{b} \subseteq Q_{a} \times Q_{b}$ and $Q_{a} \times Q_{b}$ is a constant set. So it is immediate that, for each $\left(s_{a}, s_{b}\right) \in Q_{a} \times Q_{b}, \pi\left(s_{a}, s_{b}\right)=\pi\left(\sigma_{a}, \sigma_{b}\right)$.

Last, notice that each $s_{a} \in \operatorname{Supp} \sigma_{a}$ is sequentially justifiable and likewise for $b$. To see this, recall that Supp $\sigma_{a} \times \operatorname{Supp} \sigma_{b} \subseteq Q_{a} \times Q_{b}$. So if $s_{a} \in \operatorname{Supp} \sigma_{a}$, then $s_{a} \in Q_{a}$ and so $s_{a}$ is sequentially justifiable.

The proof of Proposition 4 is immediate from Lemmata 8 and 15 .

## References

Battigalli, Pierpaolo (1996), "Strategic independence and perfect Bayesian equilibria." Journal of Economic Theory, 70, 201-234. [80]

Battigalli, Pierpaolo (1997), "On rationalizability in extensive form games." Journal of Economic Theory, 74, 40-61. [69, 74, 86]

Battigalli, Pierpaolo (1999), "Rationalizability in incomplete information games." Working Paper ECO 99/17, EUI. [69]

Battigalli, Pierpaolo and Marciano Siniscalchi (1999a), "Hierarchies of conditional beliefs and interactive epistemology in dynamic games." Journal of Economic Theory, 88, 188-230. [62, 69, 79]

Battigalli, Pierpaolo and Marciano Siniscalchi (1999b), "Interactive beliefs, epistemic independence and strong rationalizability." Research in Economics, 53, 247-273. [81]

Battigalli, Pierpaolo and Marciano Siniscalchi (2002), "Strong belief and forward induction reasoning." Journal of Economic Theory, 106, 356-391. [57, 58, 60, 62, 69, 79]

Battigalli, Pierpaolo and Marciano Siniscalchi (2003), "Rationalization and incomplete information." Advances in Theoretical Economics, 3 (1). [57, 58, 69, 70, 80]

Battigalli, Pierpaolo and Marciano Siniscalchi (2007), "Interactive epistemology in games with payoff uncertainty." Research in Economics, 61, 165-184. [80]

Battigalli, Pierpaolo and Amanda Friedenberg (2009), "Context-dependent forward induction reasoning." Working Paper 351, IGIER, Università Bocconi. [61, 79, 82, 86]

Battigalli, Pierpaolo and Andrea Prestipino (2011), "Transparent restrictions on beliefs and forward induction reasoning in games with asymmetric information." Working Paper 376, IGIER, Università Bocconi. [70, 80]

Ben-Porath, Elchanan (1997), "Rationality, Nash equilibrium and backwards induction in perfect-information games." Review of Economic Studies, 64, 23-46. [77, 92]

Ben-Porath, Elchanan and Eddie Dekel (1992), "Signaling future actions and the potential for sacrifice." Journal of Economic Theory, 57, 36-51. [81]

Brandenburger, Adam (2003), "On the existence of a 'complete' possibility structure." In Cognitive Processes and Economic Behavior (Marcello Basili, Nicola Dimitri, and Itzhak Gilboa, eds.), 30-34, Routledge, London. [62]

Brandenburger, Adam, Amanda Friedenberg, and H. Jerome Keisler (2008), "Admissibility in games." Econometrica, 76, 307-352. [72]

Brandenburger, Adam and Amanda Friedenberg (2010), "Self-admissible sets." Journal of Economic Theory, 145, 785-811. [77, 78, 85, 91]

Fudenberg, Drew and Jean Tirole (1991), "Perfect Bayesian equilibrium and sequential equilibrium." Journal of Economic Theory, 53, 236-260. [80]

Hammond, Peter J. (1987), "Extended probabilities for decision theory and games." Unpublished paper, Department of Economics, Stanford University. [80]

Marx, Leslie and Jeroen Swinkels (1997), "Order independence for iterated weak dominance." Games and Economic Behavior, 18, 219-245. [77]

Osborne, Martin J. and Ariel Rubinstein (1994), A Course in Game Theory. MIT Press, Cambridge, Massachusetts. [58, 59]

Pearce, David G. (1984), "Rationalizable strategic behavior and the problem of perfection." Econometrica, 52, 1029-1050. [58]

Reny, Philip J. (1993), "Common belief and the theory of games with perfect information." Journal of Economic Theory, 59, 257-274. [75]

Rényi, Alfréd (1955), "On a new axiomatic theory of probability." Acta Mathematica Hungarica, 6, 285-335. [60]

Stalnaker, Robert (1998), "Belief revision in games: Forward and backward induction." Mathematical Social Sciences, 36, 31-56. [58]

Submitted 2009-7-30. Final version accepted 2010-12-4. Available online 2010-12-7.


[^0]:    Pierpaolo Battigalli: pierpaolo.battigalli@unibocconi.it Amanda Friedenberg: amanda.friedenberg@asu.edu
    We are indebted to Adam Brandenburger, John Nachbar, and Marciano Siniscalchi for many helpful conversations. Jeff Ely and three referees provided important input-much thanks. We also thank Ethan Bueno de Mesquita, Alfredo Di Tillio, Alejandro Manelli, Elena Manzoni, Andres Perea, Larry Samuelson, Adam Szeidl, and seminar participants at Bocconi University, Boston University, Maastricht University, New York University, Northwestern University, Toulouse, UC Berkeley, the 2009 Southwest Economic Theory Conference, the 2009 North American Econometric Society Meetings, the Kansas Economic Theory Conference, the 2009 SAET conference, and the 2009 European Econometric Society Meetings for important input. Battigalli thanks MIUR and Bocconi University. Friedenberg thanks the W.P. Carey School of Business and the Olin Business School.

[^1]:    ${ }^{1}$ This definition incorporates repeated games. Our analysis does not depend on the specific definition used.

[^2]:    ${ }^{2}$ The analysis extends to $n$-player games, up to issues of correlation. See Section 9.b.

[^3]:    ${ }^{3}$ There is no restriction on which strategies the players can vs. cannot play.

[^4]:    ${ }^{4}$ Battigalli and Siniscalchi (1999a) canonical construction is a type structure in the sense of Definition 2. Specifically, in the case of a game tree, the basic conditioning events are clopen and so Battigalli and Siniscalchi (1999a) get $T_{a}$ and $T_{b}$ to be compact metrizable as an output.
    ${ }^{5}$ Battigalli and Siniscalchi (2003) use the concept to study a different problem from the one studied here. In their problem, the set $\Delta$ is given to the analyst. In our problem, $\Delta$ may be unknown to the analyst and we obtain a characterization across all $\Delta$ 's. See Section 9.a.
    ${ }^{6}$ This definition is as in Battigalli (1999). It is a stronger requirement than the definition in Battigalli and Siniscalchi (2003). They put $s_{a} \in S_{a}^{\Delta, m+1}$ if $s_{a} \in S_{a}^{\Delta, m}$ and there is some CPS $\mu_{a} \in \Delta_{a}$ with (i) $s_{a} \in \rho_{a}$ ( $\mu_{a}$ ) and

[^5]:    (ii) $\mu_{a}$ strongly believes $S_{b}^{\Delta, m}$. Any set that satisfies the requirements here also satisfies the requirements in Battigalli and Siniscalchi (2003), but the converse does not hold. (See Battigalli and Prestipino 2011 for an example.) Thus, using Theorem 1 here, it can be shown that the definition of Battigalli and Siniscalchi (2003) is conceptually incorrect. (Battigalli and Prestipino 2011 point out that the two definitions are equivalent when $\Delta$ satisfies a "closedness under composition" condition. Since Battigalli and Siniscalchi 2003 focus on the case where this condition is satisfied, their results hold with the definition given here.)

[^6]:    ${ }^{7}$ In the once or twice repeated prisoner's dilemma, we have a stronger result: If ( $s_{a}, s_{b}$ ) is contained in an EFBRS, then each of $s_{a}$ and $s_{b}$ specify Defect at each information set.

[^7]:    ${ }^{8}$ Unlike the subgame perfect concept, the EFBRS concept is invariant to coalescing decision nodes.

[^8]:    ${ }^{9}$ Ben-Porath (1997) gives another epistemic analysis of perfect-information games. His analysis is based on "rationality and common initial belief of rationality" plus a grain of truth assumption. It also gives Nash outcomes.

[^9]:    ${ }^{10}$ In non-PI games, we can construct a mixed-strategy Nash equilibrium, viz. ( $\sigma_{a}, \sigma_{b}$ ), where each strategy in the support of $\sigma_{a}$ and $\sigma_{b}$ is sequentially justifiable, but $\sigma_{a}$ is itself not sequentially justifiable. The question remains whether the same can occur in PI games.

[^10]:    ${ }^{11}$ This is equivalent to the requirement that at each state where $E=S_{a} \times E_{a} \times S_{b} \times E_{b}$ obtains, each player assigns probability 1 to $E$ at each of his information sets.
    ${ }^{12}$ This statement presumes that the image of the type set (under the mapping to the canonical construction) is measurable.

[^11]:    ${ }^{13}$ The treatment here is due to Battigalli and Prestipino (2011). It is related to, but somewhat different from, the epistemic assumptions of Battigalli and Siniscalchi (2003, 2007). It is important to note that under either treatment, an amendment is needed to Battigalli and Siniscalchi's (2003) definition of $\Delta$-rationalizability; see footnote 6 .

[^12]:    ${ }^{14}$ This may happen if there is a node $x$ where no player is active, i.e., $C_{a}(x)$ and $C_{b}(x)$ are singletons.

[^13]:    ${ }^{15}$ Note that in all perfect recall games, whenever $h, i \in H_{a}$, either $S(h) \subseteq S(i), S(i) \subseteq S(h)$, or $S(h) \cap S(i)=$ $\varnothing$. Here we have an analogous statement, when $h \in H_{a}$ and $i \in H_{b}$.

