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An anti-folk theorem for finite past equilibria in repeated games
with private monitoring

Marcin Pęski
Department of Economics, University of Toronto

We prove an anti-folk theorem for repeated games with private monitoring. We
assume that the strategies have a finite past (they are measurable with respect
to finite partitions of past histories), that each period players’ preferences over
actions are modified by smooth idiosyncratic shocks, and that the monitoring is
sufficiently connected. In all repeated game equilibria, each period play is an equi-
librium of the stage game. When the monitoring is approximately connected and
equilibrium strategies have a uniformly bounded past, then each period play is an
approximate equilibrium of the stage game.
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1. Introduction

The basic result of the repeated game literature, the folk theorem, shows that any fea-
sible and individually rational payoff can be attained in an equilibrium when players
are sufficiently patient (Rubinstein 1979, Fudenberg and Maskin 1986, Fudenberg et al.
1994). Recent results extend the folk theorem to classes of repeated games with private
monitoring (Ely and Välimäki 2002, Matsushima 2004, Hörner and Olszewski 2006). The
equilibrium strategies constructed in these results are very complex; the strategies often
depend on minute details of past histories. It is hard to imagine that such strategies can
be used in real-world interactions.

This paper argues that the folk theorem fails when the environment is sufficiently
rich and the players have a limited capability of processing information. We make three
assumptions.

1. We assume that the private monitoring is infinite (i.e., it has infinitely many signals)
and connected. To explain the last property, observe first that given the players’
strategies, each private signal leads to ex post beliefs about the realized actions
and signals of the other players. We say that the monitoring is connected if each
player’s space of signals cannot be divided into two sets so that the beliefs induced
by the signals from the first set are significantly different from the beliefs induced
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by the signals from the other set. We show that connectedness is a generic property
of monitoring technologies with infinitely many signals.

2. We assume a finite past, i.e., each period’s continuation strategies are measurable
with respect to finite partitions of the past histories. The finite past assumption
bites only because the connected monitoring has infinitely many signals. Because
the assumption’s absence requires players to handle infinite amounts of informa-
tion, the assumption does not seem too restrictive.

3. Finally, we assume that, in each period, the payoffs are affected by smooth inde-
pendent and identically distributed (i.i.d.) shocks. The payoff shocks correspond
to idiosyncratic events that modify the stage-game preferences over actions.

The main result shows that, in any repeated game equilibrium, each period play is
an equilibrium of the stage game. The result is a simple consequence of the follow-
ing observations. Because the monitoring is connected, the set of beliefs induced by i’s
past histories is topologically connected. Because each period’s payoffs are affected by
smooth i.i.d. shocks, the probability that player i plays action ai in period t is contin-
uous in the expected continuation payoffs and, as a consequence, in the beliefs about
the opponents’ private histories. Because the continuation strategies are measurable
with respect to a finite partition of past histories, the probability of playing ai is con-
stant over each of the elements of the partition. Finally, the result follows from the fact
that any continuous function that is constant over the elements of finite partition of a
topologically connected set must be constant over the entire set.

Our result helps to clarify the assumptions behind the folk theorems in repeated
games with private monitoring. The infinite and connected monitoring eliminates the
possibility of constructions based on finite, almost-public monitoring, as in Mailath
and Morris (2002, 2006), Hörner and Olszewski (2009), and Mailath and Olszewski
(2011). The smooth payoff shocks eliminate belief-free equilibria (Ely and Välimäki
2002, Piccione 2002, Ely et al. 2005). The finite past condition excludes the possibility of
fine tuning strategies in the belief-based constructions of Sekiguchi (1997) and Bhaskar
and Obara (2002). In fact, each of the assumptions is necessary for the result in the fol-
lowing sense: If the monitoring is finite, or the strategies can have an infinite past, or
there are no smooth shocks, there exist repeated games with nontrivial equilibria (i.e.,
equilibria that are not repetitions of the stage-game equilibria).

A version of the main result holds when the connectedness assumption is weakened.
We measure the connectedness of monitoring ρ by the supremum C(ρ) over distances
between belief sets that are induced by two-element partitions of the players’ signals.
Then C(ρ) ∈ [0�1] and monitoring ρ is connected if and only if C(ρ) = 0. There exist
finite monitoring technologies with arbitrarily small (but strictly positive) C(ρ). A strat-
egy has a K-bounded past if the size of the partitions of the past histories that make
the continuation strategies measurable is uniformly bounded by K across all periods.
For example, finite automata strategies (Aumann 1981, Rubinstein 1986) have bounded
pasts. We show that any equilibrium in strategies with a K-bounded past is a repetition
of the approximate stage-game equilibria. The approximation is better when the mem-
ory size K is smaller or the number of signals and the connectedness of the monitoring
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(inverse C(ρ)) are higher. The negative relation between the number of continuation
strategies and the number of signals stands in some contrast to the main message of the
literature of imperfect monitoring, where more signals usually lead to more outcomes.

Mailath and Morris (2002, 2006) raise the importance of bounded rationality, while
discussing the robustness of public equilibria to small amounts of private monitoring.
Harsanyi (1973) introduces smooth payoff perturbations to show that a large class of
(static) mixed strategy equilibria can be purified, i.e., approximated by pure strategy
equilibria of incomplete information games. Bhaskar et al. (2008) study the purifiability
of strategies in the prisoner’s dilemma, and show that the one-period memory equilib-
rium of Ely and Välimäki (2002) cannot be purified by the one-period memory equilibria
of the perturbed game. Recently, Bhaskar et al. (2009) show that all purifiable equilibria
of repeated games of perfect information in bounded recall strategies are Markovian.1

In a companion paper, Pęski (2009) studies asynchronous repeated games with a finite
past and rich monitoring. The latter assumption is stronger than connectedness, and
requires that the set of induced beliefs is a connected and open subset of the space of
beliefs. The main result shows that any equilibrium has a version of the belief-free prop-
erty: in each period t, the set of best responses does not depend on the information re-
ceived before period t, with a possible exception of the information received in the first
period of the game. Additionally, if the payoffs are subject to smooth i.i.d. shocks, all
equilibria must be Markovian.

The next section presents the model and the definition of connected monitoring.
Section 3 defines connected monitoring and studies its genericity. Section 4 describes
the finite past assumption. Section 5 states and proves the main result. The last section
discusses the model and extensions.

2. Model

2.1 Notation

We start with some notation. For each measurable space X , let MX be the space of
(signed) measures on X with bounded total variation and let �X be the space of the
probability measures. For any measure π ∈ �X and any integrable function f :X → R,
let π[f ] = ∫

X f(x)dπ(x) denote the integral of f with respect to π. For any π ∈ MX , let
‖π‖X = ∑

x |π(x)| denote the total variation of measure π.
For each collection of sets X1� � � � �XN and for each i ≤ N , we denote X =×i X

i for
the product of the sets and X−i =×j �=i X

j for the product of all sets except Xi. Similarly,

if μ1� � � � �μN are measures on sets Xi, then we write μ =×i μ
i and μ−i =×j �=i μ

j for

independent products of measures on, respectively, sets X and X−i.

2.2 Stage game

There are N players. Each player i observes random variable εi ∈ [0�1], chooses action
ai from a finite set Ai, observes signal ωi from finite or countably infinite set 	i, and

1An early example of the use of payoff shocks to eliminate repeated game equilibria is contained in
Bhaskar (1998).
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receives payoffs equal to the sum of complete information payoffs and payoff shock

ui(ai�ωi� εi) = gi(ai�ωi)+βi(ai� εi)�

Shocks εi are drawn independently across players from distribution λi ∈ �[0�1]. The
profile of signals ω = (ω1� � � � �ωN) is drawn jointly from distribution ρ(a) ∈ �	, where
a ∈ A is the profile of actions. The function ρ :A → �	 is called the monitoring tech-
nology (or monitoring). We assume that |gi(ai�ωi)| ≤ M for all actions ai and signals
ωi. We assume that βi(·� ·) is a measurable function such that supεi�ai |βi(ai� εi)| ≤ 1.2

Notice that βi(·� εi) ∈ RAi
can be treated as a random variable (as a function of random

variable εi); we assume that the random variable βi(·� εi) ∈RAi
has a distribution with a

Lebesgue density bounded by L−|Ai| for some L≥ 1.
A (stage game) strategy of player i is a measurable mapping αi : [0�1] → �Ai. We write

αi(ai|εi) to denote the probability of action ai after payoff shock εi. Let Ai be the space of
strategies. A strategy profile α = (α1� � � � �αN) ∈ A is an x (interim) equilibrium for some
x > 0 if, for all players i, λi-almost all εi, and all actions ai�ai′ ∈Ai, such that α(ai|εi) > 0,

λ−i[α−i(ε−i)[ρ(ai� a−i)[ui(ai�ωi� εi)]]] ≥ x+ λ−i[α−i(ε−i)[ρ(ai′� a−i)[ui(ai′�ωi� εi)]]]�

2.3 Repeated game

The stage game is repeated for infinitely many periods, and shocks εi and signal pro-
files ω are drawn independently across time (and across players in the case of shocks).
In particular, in each period t, players observe shocks εit to payoffs in period t, choose

actions ait , and observe signals ωi
t . Let Hi

t = (Ai × 	i)t−1 and Jit = [0�1](t−1) be, respec-
tively, the informative and noninformative histories before period t with typical ele-
ments hi

t = (ai1�ω
i
1� � � � � a

i
t−1�ω

i
t−1) and jit = (εi1� � � � � ε

i
t−1). Let Hi∞ and Ji∞ be the sets

of infinite histories.
A (repeated game) strategy of player i is a mapping σi :

⋃
t H

i
t × Jit+1 → �Ai with the

interpretation that σi
t (a

i|hi
t� j

i
t � ε

i
t) is the probability of action ai. Let �i be the set of

strategies of player i. For each strategy σi ∈ �i, let σi(·|hi
t� j

i
t ) : [0�1] → �Ai denote the

stage-game strategy after histories hi
t and jit . Let σi(hi

t� j
i
t ) denote the continuation strat-

egy at the beginning of period t after histories hi
t and jit . Each continuation strategy is an

element of the strategy space �i.
Players discount the future with discount factor δ < 1. Let

Gi(h
i∞� ji∞) = (1 − δ)

∑
t≥1

δt−1ui(ait �ω
i
t� ε

i
t)

denote the repeated game payoffs of player i given infinite histories hi∞ and ji∞. A strat-
egy profile σ = (σ1� � � � �σN) induces a distribution over histories πσ ∈ �(×i H

i∞ × Ji∞).
Let Gi(σ) = πσ [Gi(h

i∞� ji∞)] denote the expected payoff of player i given strategy pro-
file σ .

2The exact value of the bound on the payoff from shocks is not important.
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A strategy profile σ is an equilibrium if, for each player i, for each strategy si,
Gi(σ) ≥ Gi(s

i�σ−i). We do not require that the equilibrium satisfy any notion of sub-
game perfection. Because of the negative character of our result, not requiring subgame
perfection makes the result stronger.

The main results of this paper do not depend on the value of the discount factor.
In fact, the results of this paper do not change if the discount factor is not constant or
the game is played for finitely many periods. We focus on that case with constant dis-
counting and infinitely many periods, because in that case, the comparison between
our results and the folk theorem literature is most striking.

3. Connected monitoring

Upon playing action ai and observing signal ωi, player i forms beliefs about the actions
taken and signals observed by the opponents. The beliefs are based on the opponents’
strategies as well as the monitoring. For each mixed action profile of the opponents’
strategies σ−i, each action ai, and each signal ωi, let

bρ(a−i�ω−i|ai�ωi;σ−i)= ρ(ωi�ω−i|ai�a−i)σ−i(a−i)∑
ω′−i�a′−i ρ(ωi�ω′−i|ai�a′−i)σ−i(a′−i)

be the ex post belief that the other players played a−i and observed ω−i. The ex post
beliefs bρ(ai�ωi;σ−i) ∈ �(A−i × 	−i) are well defined if signal ωi has a strictly positive
probability for each action profile a. In particular, the ex post beliefs are well defined
when monitoring ρ has full support if, for each player i, each action profile (ai� a−i), and
each signal ωi, ρ(ωi|ai�a−i) > 0.

We say that two signal–action pairs (ai�ωi) and (ai′�ωi′) are γ-close if the distance
between the induced beliefs is at most γ uniformly over the opponents’ strategies,

sup
σ−i∈�A−i

‖bρ(ai�ωi;σ−i)− bρ(ai′�ωi′;σ−i)‖ ≤ γ�

We say that monitoring is (approximately) connected if it has full support and, for
each player i, the set of on-path action–signal pairs cannot be divided into two sets such
that the beliefs induced by the action–signal pairs from the first set are significantly dif-
ferent from the beliefs induced by the action–signal pairs from the other set. Formally,
for any γ > 0, monitoring ρ is γ-connected if, for each player i, the following conditions
are satisfied.

• For each action ai ∈Ai and each subset W � 	i, there exist ωi ∈ W and ωi′ ∈	i \W
such that (ai�ωi) and (ai�ωi′) are γ-close.

• For all actions ai�ai′ ∈Ai, there exist ωi�ωi′ ∈	i such that (ai�ωi) and (ai′�ωi′) are
γ-close.

Notice that, with full support, the set of on-path action–signal pairs after histories
(hi

t� j
i
t+1) is equal to Ei ×	i, where Ei is the support of mixed action σi

t (·|hi
t� j

i
t+1). Then,

for any set W � Ei × 	i, there exist (ai�ωi) ∈ W and (ai′�ωi′) ∈ (Ai × 	i) \ W that are
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γ-close. Indeed, there are two cases: If there are ai, ωi, ωi′ such that (ai�ωi) ∈ W and
(ai�ωi′) ∈ (Ei ×	i)\W , then the claim follows from the first part of the definition; if not,
the claim follows from the second part.

Let the connectedness of monitoring ρ, C(ρ), be equal to the infimum over γ > 0 such
that ρ is γ-connected. Say that the monitoring is connected if C(ρ) = 0. Any nontrivial
connected monitoring must be infinite (i.e., |	| = ∞).

3.1 Genericity of connected monitoring technologies

We say that monitoring is extremely rich if its signals approximate signals from any other
monitoring. Formally, monitoring ρ is extremely rich if it has full support and for each
action ai, any other full support monitoring ρ′, any signal ω′i ∈	i, and each γ > 0, there
exists a signal ωi ∈ 	i such that the beliefs induced by (ai�ω′i) under monitoring ρ′ are
γ-close to the beliefs induced by (ai�ωi) under monitoring ρ uniformly over all distribu-
tions over the opponents’ actions

sup
σ−i∈�A−i

‖bρ(ai�ωi�σ−i� ρ)− bρ
′
(ai�ω′i;σ−i)‖ ≤ γ�

In an extremely rich monitoring, any belief about the opponents’ actions and signals
is approximated by beliefs induced by some action–signal pairs. For example, there are
action–signal pairs that assign arbitrarily high weight to any single action profile of the
opponent. Similarly, there are action–signal pairs that assign arbitrarily high weight to
the opponents’ signals that assign arbitrarily high weight to any of the player’s own ac-
tions or signals. It is easy to show that an extremely rich monitoring is connected (see
Lemma 1 in Appendix A).

Suppose that 	i is countably infinite for each player i. Let � = (�	)A be the space
of monitoring technologies. Define the norm on �: for any ρ�ρ′ ∈ �,

‖ρ− ρ′‖� = sup
a

‖ρ(a)− ρ′(a)‖	�

The norm makes � a Polish space. Recall that a II category subset of � contains a count-
able intersection of open and dense subsets. Because any Polish space is a Baire space,
a II category subset is nonempty and dense in �.

Theorem 1. The set of extremely rich monitoring technologies is II category in �.

Because extremely rich monitoring technologies are connected, the theorem implies
that the connected monitoring technologies are II category. Because II category sets are
dense, the theorem implies that any monitoring can be approximated by an extremely
rich, hence connected, monitoring.

To make the idea of approximation clearer, we argue that any convex combination of
a monitoring with finite support and an extremely rich monitoring is extremely rich. For
any two monitoring technologies ρ and ρ′, each α ∈ (0�1), define a convex combination,
so that for all action and signal profiles a and ω,

(αρ+ (1 − α)ρ′)(ω|a) = αρ(ω|a)+ (1 − α)ρ′(ω|a)�
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Theorem 2. Take any monitoring ρ0 with finite support, i.e., such that there exists finite
set 	0 ⊆ 	 so that ρ0(	0|a) = 1 for each a ∈ A. If ρ is an extremely rich monitoring, then,
for any α ∈ [0�1), monitoring αρ0 + (1 − α)ρ is extremely rich.

Theorem 2 implies that any monitoring ρ with finite support can be approximated
by a sequence of extremely rich monitoring technologies that are obtained as convex
combinations of ρ with some (fixed) extremely rich monitoring. The proofs of Theorems
1 and 2 can be found in Appendix A.

Despite being generic in the sense described above, the connectedness assumption
eliminates some theoretically important types of private monitoring. For example, no
conditionally independent monitoring in the sense of Matsushima (2004) can be con-
nected. Indeed, conditional independence requires that signals observed by a player
are independent from the signals observed by the opponents, given the action profile.
In particular, given any action profile of the opponents, two different actions of player i
may (and typically do) lead to very different sets of beliefs about the opponent’s actions,
regardless of player i’s signal. This may (and typically does) lead to a violation of the
second part of the definition of the connected monitoring.3

Below, we explain that public monitoring is not connected.

3.2 Comparison to public and almost-public monitoring

Monitoring ρ is public if the sets of signals are equal, 	1 = · · · = 	N , and all play-
ers observe the same signal with full probability: For each action profile a ∈ A,
ρ(ωi =ωj|a) = 1 for all i and j. A nontrivial (|	i| > 1 for at least one player i) public
monitoring ρ is not connected and C(ρ) = 1. Indeed, for any two signals ωi �= ωi′ of
player i, any action profile a ∈ A, and any strategy profile σ−i, the ex post beliefs after
signal ωi assign probability 0 to signal ωi′ and

‖bρ(ai�ωi;σ−i)− bρ(ai′�ωi′;σ−i)‖ = 1�

Say that the monitoring ρ′ is γ-public if there exists public monitoring ρ that is γ-
close to ρ′, ‖ρ − ρ′‖� ≤ γ. In other words, if monitoring ρ′ is almost public, then the
player expects to receive a signal that is equal to the signals received by other players.
By Theorem 1, any public monitoring can be approximated by almost-public and con-
nected monitoring technologies.

The notion of closeness used in Theorem 1 (i.e., the norm ‖ · ‖�) is an ex ante notion
of closeness. If the signal spaces 	1 = · · · =	N are finite and the public monitoring ρ has
full support, then the ex ante notion implies a stronger interim notion. For sufficiently
small γ > 0, for each signal ωi ∈ 	i, player i assigns at least 1 − γ probability to other
players observing the same signal ωi uniformly across signals ωi. In other words, players
always assume that there is an approximate common knowledge of the observed signals.
In such a case, an almost-public monitoring can be interpreted as a public monitoring
perturbed by mistakes in which, with small probability, players observe the public signal

3I am grateful to an anonymous referee for pointing this out.
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incorrectly. This interpretation is present in two recent papers that show the folk theo-
rem with almost-public monitoring and finite automata (Hörner and Olszewski 2009,
Mailath and Olszewski 2011). Notice that if γ is sufficiently small, then with finite signal
spaces, almost public monitoring is not connected.

In this paper, we assume that the signal space is infinite. Then almost-public moni-
toring is not close to the public in the interim sense. For example, there exist signals that
do not provide any information about the opponents’ signals or that provide informa-
tion that the opponents observed the public signal incorrectly. In a way, our notion of
closeness allows for more types than the notion of closeness based on finite type spaces.

4. Finite past

A player i’s strategy σi has a finite past if, in each period t, there exists a finite partition
�i

t of t-period histories Hi
t × Jit such that the t-period continuation strategy σi(hi

t� j
i
t )

is measurable with respect to �i
t . Equivalently, strategy σi has a finite past if, in each

period t, there are finitely many different continuation strategies. The finite past bites
only when the signal space and, as a consequence, the history space, is infinite.

A strategy has a K-bounded past if, in each period t, strategy σi induces finitely
many continuation strategies, |{σi(hi

t� j
i
t ) : (hi

t � j
i
t ) ∈ Hi

t × Jit }| ≤ K < ∞. A strategy has
a bounded past if it has a K-bounded past for some K. Thus, a bounded past strategy
is a finite past strategy with a bound on the size of partitions of past histories that is
uniform across all periods.

The finite and bounded past generalize an assumption that is often used in the re-
peated game literature. Say that a strategy σi is implementable by a finite automaton if
there exists a finite set of continuation strategies �i

0 such that σi(hi
t� j

i
t ) ∈ �i

0 for each t

and each (hi
t� j

i
t ).4 Clearly, a finite automaton has a finite and |�i

0|-bounded past, but
not all bounded past strategies are implementable by finite automata.

These assumptions have a number of interpretations. First, finite and bounded past
capture a notion of complexity of repeated game strategies: Complex strategies depend
on infinitely many details of past histories, whereas simple strategies depend only on
finite representation of the past.

Second, one can think about the finite past as an assumption about memory. In
general, the implementation of a strategy may require players to remember an infinite
amount of information (or more precisely, which of the infinitely many feasible histories
took place). If the latter is impossible, players are forced to use finite past strategies: they
must replace infinitely many possible signals observed in any given period with a finite
partition of the signal space.

Finally, we describe an important consequence of the finite past assumption. Con-
sider an action taken by player i in period t. In general, this action depends on history

4Our definition of finite automata is equivalent to the standard definition with states and transition func-
tions. One can think about states as continuation strategies. If transitions are not stochastic, then they are
directly determined by the associated continuation strategies. To model stochastic transitions, a minor
reinterpretation of εit shocks is required. The full generality of the model allows us to treat εit shocks as
composed of two parts: one that affects the value of function β(·� ·), and one that does not and can be used
for pure randomization.
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(hi
t� j

i
t ) observed before period t and the payoff shock εit observed in the beginning of pe-

riod t. In other words, it is measurable with respect to some partition of Hi
t × Jit × [0�1].

Because the number of actions is finite, the partition can be chosen so that it has a finite
number of elements.

The finite past assumption requires that the partition can be chosen so that it has a
product representation. Indeed, if player i’s strategy has finite past, then the continua-
tion strategy at the beginning of period t is measurable with respect to finite partition
�i

t of the set of period t histories Hi
t × Jit . The interpretation is that, at the end of pe-

riod t − 1, the detailed information contained in histories (hi
t� j

i
t ) is effectively processed

and replaced by coarse information contained in an element of the partition π ∈ �i
t .

The actual action played by player i in period t may also depend on the payoff shock
observed in period t. For each π ∈ �i

t , let sit(a;π) ⊆ [0�1] denote the subset of period t

payoff shocks such that action a is played after history (hi
t� j

i
t ) ∈ π if and only if the pay-

off shock belongs to set sit(a;π). That implies that the period t action is measurable with
respect to the product partition �i

t ×�i
t , where �i

t is a partition of set [0�1] generated by
{sit(a;π)}a∈Ai�π∈�i

t
. Notice that partition �i

t consists of at most |Ai||�i
t |< ∞ elements.

One can think about the procedure of replacing a signal from an infinite space by
an element of a partition of the space to which the signal belongs as information pro-
cessing. Then a finite past precludes that the information contained in history hi

t and
shock εit is processed simultaneously. In Section 6, we discuss the implications of an
alternative modelling choice with a different kind of information processing constraint.

5. Main result

The main result of the paper characterizes finite past equilibria in repeated games with
connected monitoring.

Theorem 3. Suppose that the monitoring is connected and that σ is a (repeated game)
equilibrium in finite past strategies. Then, for each player i, for each t, there exists stage-
game profile αi

t such that (i) αi
t = σi(·|ht� jt), πσ -almost surely, and (ii) αi

t is an equilib-
rium of the stage game.

Theorem 3 has two parts. The first part says that finite past equilibria are essen-
tially history-independent. Because any history-independent strategy has a finite past,
the theorem completely characterizes finite past equilibria. The second part is a simple
corollary to the first: if the past does not affect the history, then in each period players
must play an equilibrium of the stage game.

We explain the intuition behind the theorem using a repeated game with two pe-
riods t = 1�2 and two actions for player i, Ai = {a�b}.5 Fix the strategies of the other
players σ−i and suppose that the monitoring is connected. We argue that if σi is the

5In such a game, the players act and receive payoffs only for two periods. As we commented at the end of
Section 2.3, the main results remain unchanged when the repeated game is played for finitely many (instead
of infinitely many) periods.
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best response strategy of player i with a finite past, then player i’s period 2 action does
not depend on the signals and shocks observed in period 1.

Denote the expected difference between player i’s period 2 complete information
payoff (i.e., absent the payoff shock) from action a and action b conditional on period 1
history hi

1:

�i
2(h

i
1) =E(g(a� ·)|hi

1)−E(g(b� ·)|hi
1)�

Then �i
2(h

i
1) depends on the beliefs about the private histories of the other players after

observing history hi
1.

Similarly, define the difference between payoff shocks associated with actions a

and b,

βi(εi2) = βi(a�εi2)−βi(b�εi2)� (1)

The assumptions on the payoff shocks imply that βi(εi2) is chosen from a distribution
with a Lebesgue density. If strategy σi is the best response against the strategies of the
opponents, then it should prescribe action a if

�i
2(h

i
1)+βi(εi2) > 0 (2)

and action b if the inequality has the opposite sign.
Contrary to our claim, suppose that player i’s action in period 2 depends nontriv-

ially on period 1’s history. Based on the discussion from the previous section, there
exists a positive probability set S ⊆ [0�1] of period 2 payoff shocks and partition of
H(a) ∪ H(b) = Hi

1 such that for each shock εi2 ∈ S, action x is played after period 1 his-
tories in H(x). Because set S has positive probability and because of the assumptions
on function βi, there exist εa�εb ∈ S such that βi(εa) > βi(εb). Because H(a) and H(b)

partition set Hi
1, and due to the connectedness of the monitoring, there exist sequences

of histories hn�a ∈H(a) and hn�b ∈H(b) such that limn �
i
2(h

n�a) = limn �
i
2(h

n�b). But then,
for sufficiently high n, either

�i
2(h

n�b)+βi(εia) > 0 or �i
2(h

n�a)+βi(εib) < 0�

This leads to a contradiction to (2).
All three assumptions—infinite and connected monitoring, finite past, and smooth

payoff shocks—are important for the theorem. The result may fail if the monitoring is
infinite but not connected. For example, if the monitoring is public and it satisfies suffi-
cient identifiability conditions, then the folk theorem in finite past strategies holds. This
claim follows from an appropriately modified standard folk theorem with finite public
monitoring (Fudenberg et al. 1994). Any public monitoring with infinitely many signals
can be reduced to a finite monitoring with subsets of signals treated as a single signal.
(Some additional care is required to deal with smooth i.i.d. payoff shocks.) Indeed, when
the monitoring is finite, all strategies have a finite past and the finite past assumption
does not bite.
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The result may fail if the monitoring is private and finite. In Appendix D, we show
that if players have sufficiently many actions and signals, and the finite monitoring sat-
isfies a certain generic property, then there exist repeated games with nontrivial equilib-
ria.6 More specifically, we construct payoffs and equilibria with the following property:
In odd periods, the actions do not depend on the past history and they form a strict
stage-game Nash equilibrium. In even periods, the actions nontrivially depend on the
signals observed in the preceding period and they form a correlated equilibrium of the
stage game with all best responses being strict. The constructed strategies remain a re-
peated game equilibrium even when payoffs are perturbed by sufficiently small shocks.

The theorem may fail if the monitoring is infinitely connected, but the strategies are
not required to have a finite past. We use the construction from Appendix D to show
that for any monitoring (possibly infinite and connected) that is appropriately close to
a finite monitoring with a certain generic property, there are nontrivial repeated game
equilibria in strategies without finite past. The idea is to take the construction of equi-
librium strategies from the game with finite monitoring and show that the construction
extends to sufficiently close infinite monitoring. Note that Theorem 1 implies that each
finite monitoring can be approximated arbitrarily closely with connected (hence, infi-
nite) monitoring technologies.

Finally, when there are no smooth payoff shocks, Ely and Välimäki (2002) show that
it is possible to approximate full cooperation in the repeated prisoner’s dilemma with
almost perfect monitoring. Because almost perfect monitoring technologies may be
connected, this indicates that the smooth payoff shocks are important for the result.

5.1 Approximately connected monitoring

Define distance on the space of stage-game strategies Ai: for any α�α′ ∈ Ai, let

‖α− α′‖Ai =
∫

‖α(ε)− α′(ε)‖Ai dλi(ε)�

Also, define constant

B = 1 − δ

100ML|A|2 �

Theorem 4. Suppose that σ is a (repeated game) equilibrium in K-bounded past strate-
gies. If C(ρ) < B, then, for each player i, for each t, there exists stage-game pro-
file αi

t such that (i) ‖αi
t − σi(·|ht� jt)‖A < B−1KC(ρ), πσ -almost surely, and (ii) αi

t is a
(2MNKB−1/(1 − δ))C(ρ) equilibrium of the stage game, πσ -almost surely.

By Theorem 4, any equilibrium in bounded-past strategies is approximately history-
independent and consists of a series of approximate stage-game equilibria. The quality

6A recent paper, Sugaya (2011), claims that the folk theorem holds for repeated games with finite private
generic monitorings. Sugaya’s construction relies heavily on belief-free techniques; for this reason, it is not
clear whether the result extends to games with finite monitoring and smooth payoff shocks.
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of approximation improves with the connectedness of the monitoring (i.e., it decreases
with C(ρ)) and decreases with the size of memory K.

The theorems remain true under various modifications of the basic model: For ex-
ample, the discount factors may differ across players or time, or the payoffs or the dis-
tribution of shocks may depend on time. Section 6 discusses how Theorem 3 changes
under an alternative specification of the model timeline.

5.2 Weaker equilibrium notion

Recall that strategy profile (σ1� � � � �σI) is an equilibrium if there exists no other strat-
egy σi′ that is a profitable deviation. If finite past is interpreted as a constraint on
memory, one may argue that profitable deviations also have a finite past. Formally,
let �i�<∞ be the set of strategies with a finite past. Say that finite past strategy pro-
file (σ1� � � � �σI) ∈×i �

i�<∞ is a finite past equilibrium if for all players i and finite past
strategies σi′ ∈ �i�<∞, Gi(σ

i′�σ−i) ≤ Gi(σ
i�σ−i). Similarly, let �i�K denote the set of

strategies with K-bounded past and define K-bounded past equilibrium as the pro-
file of K-bounded past strategies such that there exists no profitable K-bounded past
deviation.

It is easy to notice that Theorem 3 implies that any finite past equilibrium in games
with connected monitoring is a sequence of stage-game Nash equilibria. Indeed, this
follows from the fact that any (not necessarily finite past) strategy can be appropriately
approximated by finite past strategies.7 No similar result is known for K-bounded past
equilibria.

6. Alternative timeline and one-period memory

As we discuss in Section 5, finite past stops players from simultaneously processing in-
formation contained in the private history and the payoff shock. To analyze this inter-
pretation more deeply, we discuss a modification of the model timeline that leads to a
different type of constraint.

So far, we have assumed that the shock to t-period payoffs εti is observed in the
beginning of period t. In this section, suppose that the shock εit to t-period payoffs
is observed in the end of period t − 1 (and the first shock εi1 is observed immediately
before period 1). This change implies that εti is part of a noninformative history ob-
served before period t and that Jit = [0�1]t (instead of Jit = [0�1]t−1). Let σ(hi

t� j
i
t ), where

jit = (εi1� � � � � ε
i
t), be the continuation strategies at the beginning of period t. The defini-

tion of strategy σi with a finite past remains the same: A player i’s strategy σi has a finite
past if, in each period t, there exists a finite partition �i

t of t-period histories Hi
t ×Jit such

that the t-period continuation strategy σi(hi
t� j

i
t ) is measurable with respect to �i

t ; alter-
natively, strategy σi has a finite past if, in each period t, there are finitely many different
continuation strategies.

As in the original model, the finite past assumption makes it impossible for play-
ers to simultaneously process information that arrives in different periods. With the

7The notion of approximation is an appropriate version of L1 closeness, and the above claim is analogous
to the fact that any measurable function can be approximated by step functions with finitely many steps.
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alternative timeline, this means that information prior to period t − 1 is processed sep-
arately from information (ait−1�ω

i
t−1� ε

i
t) received in period t − 1. More precisely, one

can show that player i action in period t must be measurable with respect to the prod-
uct of finite partitions �i

t−1 ×�i
t−1, where �i

t−1 is a partition of histories observed before
period t − 1 and �i

t−1 is a (finite) partition of the space of observations in period t − 1,
Ai ×	i × [0�1]. The difference between the original model and the alternative timeline
is that in the latter case, information about the period t payoff shock εit can be processed
(i.e., replaced by a finite partition) simultaneously with the action and signal observed
in period t − 1, (ait−1�ω

i
t−1).

We describe an important class of strategies with a finite past under the alternative
timeline. Say strategy σi has one-period memory if, for each t, there exist measurable
functions αi

t :Ai ×	i × [0�1] → �Ai such that

αi
t(a

i
t−1�ω

i
t−1� ε

i
t)= σi(·|hi

t−1� j
i
t−1� a

i
t−1�ω

i
t−1� ε

i
t)�

Thus, period t action depends only on a partition of the space of observations in period
t − 1, Ai × 	i × [0�1]. Because there are finitely many actions, such a partition �i

t−1
can be chosen to be finite. The actions in periods t ′ > t do not depend on t − 1 or any
earlier information. In particular, the continuation strategy in the beginning of period t

is measurable with respect to finite partition {Hi
t−1 × Jit−1} ×�i

t−1, where {Hi
t−1 × Jit−1} is

the trivial partition of histories observed before period t − 1.

Theorem 5. Consider the alternative timeline. Suppose that the monitoring is extremely
rich and that σ is a (repeated game) equilibrium in finite past strategies. Then, for each
player i, for each t, there exists a measurable function αi

t :Ai ×	i ×[0�1] → �Ai such that

αi
t(a

i
t−1�ω

i
t−1� ε

i
t) = σi(·|hi

t−1� j
i
t−1� a

i
t−1�ω

i
t−1� ε

i
t)�

πσ -almost surely. Moreover, for almost all realizations of εit , α
i
t(a

i
t−1�ω

i
t−1� ε

i
t) is a degen-

erate probability distribution concentrated only on one action.

With the alternative timeline and extremely rich monitoring, all finite past equilibria
have a one-period memory. The result provides a foundation for one-period memory
strategies. This contributes to the literature that analyzes the properties of such strate-
gies (for example, see Ely and Välimäki 2002 and Bhaskar et al. 2008).

One can easily show that the strategies αi
t(a

i
t−1�ω

i
t−1� ε

i
t) must take values in pure

actions for almost all realizations of payoff shocks εit . Thus, with the exception of zero-
probability events, the strategies in each period depend on partition of the last period
strategies, where the size of the partition is finite and uniformly bounded across periods.

The intuition behind Theorem 5 is similar to the intuition behind Theorem 3. Sup-
pose that player i has only two actions, Ai = {a�b}, and that there are t < ∞ periods. As
in the original model, the actions are continuous in beliefs and payoff shocks, and the
belief space is connected, so the same argument implies that only information received
in the same period as information about the recent payoff shock may affect period t ac-
tions. In the same time, period t actions might depend on action ait−1 and signal ωi

t−1,
because the action–signal pair (ait−1�ω

i
t−1) is processed jointly with payoff shock εit .
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For each history hi
t , let �(hi

t) denote the difference between the expected complete
information payoff (i.e., absent the payoff shock) from actions a and b in period t af-
ter observing history hi

t . As in Section 5, we can show that if player i’s action depends
nontrivially on histories before period t − 1, then there exist a positive probability set
S ⊆ Ai ×	i × [−1�1]Ai

and two sequences of histories hn�a�hn�b ∈Hi
t−1 such that

lim
n→∞|�(hn�a� s)−�(hn�b� s)| = 0 for each s ∈ S

and such that player i plays action a after histories (hn�a� s) and plays action b after his-
tories (hn�b� s) for all s ∈ S. Due to the assumptions on the shock and because set S has
a positive probability, there are action and signal pairs (ai�ωi) and shocks εa, εb such
that (ai�ωi� εa)� (a

i�ωi� εb) ∈ S and βi(εa) > β(εb) (recall that βi(ε) is defined in (1) as
the difference between shock payoffs from actions a and b). But then either

lim sup
n→∞

�(hn�b�ai�ωi� εa) > 0 or lim inf
n→∞�(hn�a�ai�ωi� εb) < 0

and at least one of the actions a or b is not a best response after some histories. The
proof of the theorem can be found in Appendix C.

Appendix A: Genericity

Let �+ ⊆ � be the class of monitoring technologies with full support. Let �∗ ⊆ �+ be the
set of extremely rich monitoring technologies.

A.1 Extremely rich monitoring is connected

Lemma 1. Each extremely rich monitoring is connected.

Proof. Each action–signal (ai�ωi) and monitoring ρ can be represented by a belief
mapping bρ(ai�ωi) :�A−i → �(A−i ×	−i), where

bρ(ai�ωi)(σ−i) = bρ(ai�ωi;σ−i)�

Let B be the space of all continuous mappings b :�A−i → �(A−i ×	−i) and let

B∗ = {bρ(ai�ωi) : (ai�ωi) ∈Ai ×	i�ρ ∈ �+}�

Then B∗ is the set of belief mappings. One checks that, with the sup norm, B∗ is a convex
(hence, connected) subset of B. Moreover, if monitoring ρ is extremely rich, then for
each action ai, set

Bρ(ai) = {bρ(ai�ωi) :ωi ∈	i}
is a dense subset of B∗.

Suppose that monitoring ρ is extremely rich. We check that ρ satisfies the first con-
dition of the definition of a connected monitoring. Take any action ai ∈ Ai and subset
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W � 	i. Let

B0 = {bρ(ai�ωi) :ωi ∈W }
B1 = {bρ(ai�ωi) :ωi ∈	i \W }�

Then B0 ∪ B1 = Bρ(ai). Because ρ is extremely rich, clB0 ∪ clB1 = B∗. Because B∗ is
connected, clB0 ∩ clB1 �= ∅ and, for each γ > 0, there exist belief mappings b0 ∈ B0 and
b1 ∈ B1 such that

sup
σ−i

‖b0(σ
−i)− b1(σ

−i)‖ ≤ γ�

The signals associated with these belief mappings are γ-close.
We check the second condition. Take any two actions ai�ai′ ∈Ai. Because clBρ(ai) =

Bρ(ai′), for each γ > 0, there exist b ∈ Bρ(ai) and b′ ∈ Bρ(ai′) such that

sup
σ−i

‖b(σ−i)− b′(σ−i)‖ ≤ γ�

The signals associated with these belief mappings are γ-close. �

A.2 Proof of Theorem 1

Lemma 2. For each ε > 0, full support monitoring ρ′, player i, action ai, and signal ω′,
there exists an open and dense subset U ⊆ � such that for each ρ ∈ U , there exists signal
ω ∈ �i so that

sup
σ−i∈�A−i

‖bρ(ai�ω;σ−i)− bρ
′
(ai�ω′;σ−i)‖ ≤ ε�

Proof. Fix player i, monitoring ρ′, action ai, and signal ω′. We show that for each η> 0
and each monitoring ρ∗, there exist monitoring ρ0 and signal ω such that ‖ρ∗ − ρ0‖ ≤ η,
and for each σ−i ∈ �A−i,

bρ0(ai�ω;σ−i)= bρ
′
(ai�ω′;σ−i)� (3)

Indeed, assume without loss of generality that 1/(1 − 1
100η) ≤ 2. Find a signal ω ∈ 	i

such that supa−i ρ∗(ω|ai�a−i) ≤ 1
100η. Let ρ∗∗ be a monitoring such that for each action

profile a, ρ∗∗(a) is equal to ρ∗(·|a) conditionally on the fact that the signal of player i is
not equal to ω:

ρ∗∗(a) = ρ∗(·|ωi �= ω|a)�
Let ρ be a monitoring obtained by a convex combination between ρ′ and ρ∗∗:

ρ0(a) = 1
100γρ

′(a)+ (
1 − 1

100γ
)
ρ∗∗(a)�

Because monitoring ρ′ has full support, ρ0(ω|a) > 0 for each action profile a and
bρ0(ai�ω;σ−i) is well defined. Because

ρ0(ω�ω−i|a)= 1
100γρ

′(ω′�ω−i|a)
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for each a and ω−i, (3) holds for any distribution σ−i. Additionally,

‖ρ∗ − ρ0‖ ≤ ‖ρ∗ − ρ∗∗‖ + ‖ρ∗∗ − ρ0‖ ≤ 2
100η+ 1

100η≤ η�

Due to the continuity of conditional beliefs given positive probability signals, there
exists η′ > 0 such that bρ0(ai�ω;σ−i) is well defined for each ρ so that ‖ρ− ρ0‖ ≤ η′ and

sup
σ−i∈�A−i

‖bρ(ai�ω;σ−i)− bρ
′
(ai�ω′;σ−i)‖ ≤ 2η�

The lemma follows. �

Lemma 3. For each player i and each signal ωi, there exists an open and dense subset
U ⊆ � such that for each ρ ∈U , ρ(ωi|a) > 0 for each profile a ∈ A.

Proof. Fix player i and signal ωi. We show that for each η> 0 and each monitoring ρ∗,
there exists monitoring ρ such that ‖ρ − ρ∗‖ ≤ η and ρ(ωi|a) > 0 for each profile a ∈ A.
Indeed, assume without loss of generality that η< 1.

Define monitoring ρ. For each profile a such that ρ∗(ωi|a) > 0, let ρ(ω|a) = ρ∗(ω|a)
for each signal profile ω ∈ 	. If ρ∗(ωi|a) = 0, then take any distribution μ ∈ �	−i, and
let

ρ(ωi�ω−i|a) = ημ(ω−i)

and

ρ(ωi′�ω−i|a) = (1 −η)ρ∗(ωi′�ω−i|a) for each signal ωi′ ∈	i \ {ωi}�
Then ‖ρ− ρ∗‖ ≤ η and ρ(ωi|a) > 0 for each a ∈A.

The continuity of measure implies that there exists η′ > 0 such that for each moni-
toring ρ′ such that ‖ρ−ρ′‖ ≤ η′, ρ(ωi|a) > 0 for each profile a ∈A. The lemma follows. �

Proof of Theorem 1. Because space � is separable, �+ is separable and there exists a
countable dense subset �+

0 ⊆ �+. Due to the continuity of conditional beliefs given pos-
itive probability signals, for each ρ′ ∈ �+, action ai, and ω′ ∈ 	i, there exists a sequence
ρ′
n ∈ �+

0 such that

lim
n→∞ sup

σ−i∈�A−i

‖bρ′
n(ai�ω′;σ−i)− bρ

′
(ai�ω′;σ−i)‖ = 0�

For each q = (ai�ω′�ρ′�m) ∈Ai ×	i ×�+
0 ×N , use Lemma 2 to find open and dense

set Ui
q ⊆ � such that for each ρ ∈Ui

q, there exists signal ω so that

sup
σ−i∈�A−i

‖bρ(ai�ω;σ−i)− bρ
′
(ai�ω′;σ−i)‖ ≤ 1

m
�

For each player i and signal ωi, use Lemma 3 to find open and dense set Ui
ωi ⊆ � such

that for each ρ ∈Ui
ωi , ρ(ω

i|a) > 0 for each profile a ∈A. Define the set

U∗ =
(⋂

i

⋂
q∈Qi

Ui
q

)
∩

(⋂
i

⋂
ωi∈	i

Ui
ωi

)
�
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Then U∗ ⊆ �∗ and U∗ is a II category subset of �. �

A.3 Proof of Theorem 2

Let ρ′ = αρ0 + (1 −α)ρ. Because α< 1, ρ′ has full support. There are finite sets of signals
	i

0 ⊆ 	i such that ρ0(×i 	
i
0|a) = 1 for each a ∈ A. Signals ωi /∈ 	i

0 do not occur with
positive probability under monitoring ρ0. Hence, for each action–signal pair (ai�ωi)

such that ωi /∈ 	i
0, the associated ρ′ ex post beliefs given ai and ωi are equal to the ρ ex

post beliefs given the same pair and the same distribution over opponents’ actions,

bρ(ai�ωi;σ−i) = bρ
′
(ai�ωi;σ−i)�

Because ρ is extremely rich, 	i
0 is finite, and for each action ai, and any other moni-

toring ρ′′, any signal ω′′ ∈ 	i, each γ > 0, there exists a signal ωi ∈ 	i \ 	i
0 such that the

beliefs induced by (ai�ω′′) under monitoring ρ′′ are γ-close to the beliefs induced by
(ai�ωi) under monitoring ρ uniformly over all distributions over opponents’ actions,

sup
σ−i∈�A−i

‖bρ(ai�ωi�σ−i� ρ)− bρ
′
(ai�ω′i;σ−i)‖ ≤ γ�

It follows that monitoring ρ′ is extremely rich.

Appendix B: Proofs of results from Section 5

B.1 Proof of Theorems 3 and 4

The theorems follow from the following three lemmas. The proofs of the lemmas can be
found in Sections B.5–B.7.

Fix equilibrium σ . The first result establishes an equilibrium continuity of actions
and ε-shock payoffs with respect to the beliefs. For each player i and each history hi�t

that occurs with positive πσ probability, let πi�σ(hi�t) ∈ �(H−i
t × J−i

t ) denote the equilib-
rium beliefs of player i about the private histories of the opponents. For all histories hi

t

and jit , denote the expected utility from the payoff shock after history hi
t as

β(hi
t� j

i
t ) = λi

[∑
ai

β(ai� εi)σi(ai|hi
t� j

i
t � ε

i)

]
�

Lemma 4. For each player i, period t, and positive πσ -probability histories (hi
t� j

i
t ) and

(hi′
t � j

i′
t ),

‖σi(·|hi
t� j

i
t )− σi(·|hi′

t � j
i′
t )‖Ai ≤ x

(4)
|βi(hi

t� j
i
t )−βi(h

i′
t � j

i′
t )| ≤ x�

where

x= 1
50B

−1‖πi�σ(hi
t)−πi�σ(hi′

t )‖H−i
t ×J−i

t
�

If ‖πi�σ(hi
t)−πi�σ(hi′

t )‖H−i
t ×J−i

t
< B, then there exists an action ai ∈ Ai that is played with

positive probability after histories (hi
t� j

i
t ) and (hi′

t � j
i′
t ).
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We explain the first bound in (4). The bound says that the probability of εit for which
the action played after history (hi

t� j
i
t � ε

i
t) is different from the action played (hi′

t � j
i′
t � ε

i
t)

can be bounded by the difference between the beliefs induced by the respective histo-
ries. To see why, fix an action ait . The payoff consequences of playing ait can be divided
into the current complete information game payoffs, the current payoff from shock, and
the future continuation payoffs. The sum of the current complete information game
payoffs and future continuation payoffs depends, and is continuous in, the beliefs about
the private histories of the opponents. Trivially, the current payoff from the shock de-
pends only on the realization of εit . Thus, for any εit , if action ait is the best response
following history (hi

t� j
i
t � ε

i
t), and the beliefs induced by histories (hi

t� j
i
t ) and (hi′

t � j
i′
t ) are

sufficiently close, then ait is an almost best response after history (hi′
t � j

i′
t � ε

i
t). If, instead,

shock εit is replaced by a nearby shock ε′
t that is slightly more favorable toward ait , then ait

becomes the best response after (hi
t� j

i
t � ε

′
t ) and (hi′

t � j
i′
t � ε

′
t ). Similarly, if ait is not the best

response after (hi
t� j

i
t � ε

i
t), then it is not the best response after (hi

t� j
i
t � ε

′
t ) and (hi′

t � j
i′
t � ε

′
t )

for nearby shocks ε′
t that are slightly less favorable toward ait . Thus, for the majority of

shocks εit , the actions played after histories (hi
t� j

i
t � ε

i
t) and (hi′

t � j
i′
t � ε

i
t) are similar.

The second bound follows from the first, and the last part of the lemma is a conse-
quence of the fact that if stage-game strategies σi(·|hi

t� j
i
t ) and σi(·|hi′

t � j
i′
t ) have disjoint

support, then their ‖ · ‖Ai distance is equal to 1.
The second result shows that if the monitoring is approximately connected, then for

any strategy profile and any division of the positive probability histories into two sets,
there are histories on both sides of the division with close beliefs.

Lemma 5. Take any set F � Hi
t of histories such that 0 < πσ(F) < 1. If C(ρ) < B, then

there are πσ -positive probability histories hi
t ∈ F and hi′

t ∈Hi
t \ F such that

‖πi�σ(hi
t)−πi�σ(hi′

t )‖H−i
t ×J−i

t
≤ 50C(ρ)� (5)

Suppose that the strategies in equilibrium profile σ have a finite past. Fix player i.
For each t < ∞, let Hi�σ

t ⊆ Hi
t be the set of all πσ -positive probability histories. Let Kt =

|{σi(hi
t) :hi

t ∈ Hi�σ
t }| < ∞ be the number of continuation strategies that are played by

player i starting from period t. If σi has a K-bounded past, then Kt ≤ K for each t. Let
F1� � � � �FKt ⊆ Hi�σ

t × Jit be a partition of Hi�σ
t × Jit into disjoint sets such that, for each

k≤Kt , continuation strategies after histories (hi
t� j

i
t )� (h

i′
t � j

i′
t ) ∈ Fk are equal.

Consider a graph � with Kt nodes such that there is an edge between nodes k and
k′ if and only if there exist histories (hi

k�t� j
i
k�t) ∈ Fk and (hi

k′�t � j
i
k′�t) ∈ Fk′ such that

‖πi�σ(hi
k�t) − πi�σ(hi′

k�t)‖H−i
t ×J−i

t
≤ 50C(ρ). By Lemma 4, and because of the choice of

sets Fk, if there is an edge between nodes k and k′, then inequalities (4) hold for all
(hi

t� j
i
t ) ∈ Fk, (hi′

t � j
i′
t ) ∈ Fk′ , and x= B−1C(ρ).

By Lemma 5, if C(ρ) < B, then graph � is connected, i.e., there is a path of links
between each pair of nodes. Because the minimum length of such a path is bounded
by Kt , it must be that, for all πσ -positive probability histories, inequalities (4) hold for
πσ -almost all histories (hi

t� j
i
t ) and (hi′

t � j
i′
t ) with x = B−1KtC(ρ) if C(ρ) > 0 and any x > 0

if the monitoring is connected.
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The last lemma shows that inequalities (4) for sufficiently small x imply an approxi-
mate equilibrium of the stage game.

Lemma 6. Suppose that σ is an equilibrium profile such that for each player i, period t,
inequalities (4) hold for some x > 0 and πσ -almost all histories (hi

t� j
i
t ) and (hi′

t � j
i′
t ). Then,

for all players i and πσ -almost all histories (hi
t� j

i
t ), (mixed) action profile σi(·|hi

t� j
i
t ) is

(2MN/(1 − δ))x equilibrium of the stage game.

B.2 Preliminary results

Suppose that V is a normed vector space with norm ‖ · ‖∗.

Lemma 7. For all f� f ′ ∈ V , ‖(1/‖f‖∗)f − (1/‖f ′‖∗)f ′‖∗ ≤ 2‖f − f ′‖∗/‖f‖∗.

Proof. The triangle inequality implies that |‖f ′‖∗ − ‖f‖∗| ≤ ‖f − f ′‖∗ and
∥∥∥∥ 1
‖f‖∗

f − 1
‖f ′‖∗

f ′
∥∥∥∥∗

≤
∥∥∥∥ 1
‖f‖∗

f − 1
‖f‖∗

f ′ + 1
‖f‖∗

f ′ − 1
‖f ′‖∗

f ′
∥∥∥∥

≤ 1
‖f‖∗

(
‖f − f ′‖∗ + |‖f ′‖∗ − ‖f‖∗|

‖f ′‖∗
‖f ′‖∗

)
≤ 2

‖f − f ′‖∗
‖f‖∗

� �

Take any countable sets X and Y . For each π ∈ �X and each function f :X → �Y ,
define probability distribution π ∗ f ∈ �(X ×Y),

(π ∗ f )(x� y) = π(x)f (y|x)�
For each π ∈ �(X × Y), for each y ∈ Y such that π(y) > 0, let π(·|y) ∈ �X denote the
conditional distribution given y.

Lemma 8. For any countable sets X , Y , and Z, any two measures π�π ′ ∈ �X , and any
function f :X → �(Y ×Z), there exists y0 ∈ Y such that (π ∗ f )(y0)� (π

′ ∗ f )(y0) > 0 and

‖(π ∗ f )(·|y0)− (π ′ ∗ f )(·|y0)‖X×Z ≤ 2‖π −π ′‖X�

Proof. First we show that there exists positive probability y0 such that (π ∗ f )(y0) > 0
and ∑

x�z

|π(x)−π′(x)|f (y0� z|x)≤ ‖π −π ′‖X
∑
x�z

π(x)f (y0� z|x)� (6)

If not, then

‖π −π ′‖X = ‖π −π ′‖X
∑
x�y�z

π(x)f (y� z|x)

<
∑
x�y�z

|π(x)−π′(x)|f (y� z|x)

=
∑
x

|π(x)−π′(x)| = ‖π −π ′‖X�
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which yields a contradiction. Inequality (6) implies that

(π′ ∗ f )(y0)≥ (1 − ‖π −π ′‖X)(π ∗ f )(y0) > 0�

The lemma follows from Lemma 7. �

Lemma 9. For all countable sets X1� � � � �XN , and for X =×i X
i and probability mea-

sures πi�π
′
i ∈ �Xi, i = 1� � � � �N , if π =×i πi and π ′ =×i π

′
i ∈ �X are independent prod-

uct measures, then

‖π −π ′‖X ≤
∑
i

‖πi −π ′
i‖Xi�

Proof. It is enough to show the claim for n = 2. Then

‖π −π′‖X1×X2

=
∑

x1∈X1�x2∈X2

|π1(x1)π2(x2)−π ′
1(x1)π

′
2(x2)|

≤
∑

x1∈X1�x2∈X2

π1(x1)|π2(x2)−π′
2(x2)| +

∑
x1∈X1�x2∈X2

π ′
2(x2)|π1(x1)−π′

1(x1)|

= ‖π2 −π ′
2‖ + ‖π1 −π ′

1‖� �

B.3 Close signals

Lemma 10. For each monitoring with full support ρ, for any two γ-close action–signal
pairs (ai�ωi) and (ai′�ωi′), there exists a constant c∗ such that, for all a−i,

‖ρ(ωi� ·|ai�a−i)− c∗ρ(ω′� ·|ai′� a−i)‖	−i ≤ 11γρ(ωi|ai�a−i)�

Proof. By the definition of γ-close pair, for each a−i,

∥∥∥∥ρ(ω
i� ·|ai�a−i)

ρ(ωi|ai�a−i)
− ρ(ωi′� ·|ai′� a−i)

ρ(ωi′|ai�a−i)

∥∥∥∥ ≤ γ�

Additionally, we show that for all γ ≤ 1
10 , all a−i and a−i∗ ,

ρ(ωi′|ai′� a−i)

ρ(ωi′|ai′� a−i∗ )
≤ (1 + 10γ)

ρ(ωi|ai�a−i)

ρ(ωi|ai�a−i∗ )
≤ (1 + 10γ)2ρ(ω

i′|ai′� a−i)

ρ(ωi′|ai′� a−i∗ )
�

It is enough to show that the first inequality holds for all a−i and a−i∗ . On the contrary,
suppose that the first inequality does not hold for some γ ≤ 1

10 . Let

β= ρ(ωi|ai�a−i∗ )

ρ(ωi|ai�a−i)
� β′ = ρ(ωi′|ai′� a−i)

ρ(ωi′|ai′� a−i∗ )
� and s = 1

1 +β
�
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Then s = (1 − s)β. Consider a distribution σ−i such that σ−i(a−i) = s and σ−i(a−i∗ ) =
1 − s. Then

‖bρ(ai�ωi;σ−i)− bρ(ai′�ωi′;σ−i)‖ ≥ |b(a−i|ai�ωi;σ−i)− bρ(a−i|ai′�ωi′;σ−i)|
= s

s + (1 − s)β
− s

s + (1 − s)β′

≥ s(1 − s)(10γ)β
(s + (1 − s)(1 + 10γ)β)

≥ s2

(3s)2γ ≥ 10
9
γ > γ�

which contradicts the fact that action–signal pairs (ai�ωi) and (ai′�ωi′) are γ-close.
Thus, ∣∣∣∣1 − ρ(ωi|ai�a−i∗ )ρ(ωi′|ai′� a−i)

ρ(ωi|ai�a−i)ρ(ωi′|ai′� a−i∗ )

∣∣∣∣ ≤ 10γ�

Fix a strategy profile a−i∗ ∈A−i and define constant

c∗ = ρ(ωi|ai�a−i∗ )

ρ(ωi′|ai′� a−i∗ )
�

Then, for all a−i,

‖ρ(ωi� ·|ai�a−i)− c∗ρ(ω′� ·|ai′� a−i)‖	−i

≤
∥∥∥∥ρ(ωi� ·|ai�a−i)− ρ(ωi|ai�a−i)

ρ(ωi′|ai′� a−i)
ρ(ω′� ·|ai′� a−i)

∥∥∥∥
	−i

+
∥∥∥∥ ρ(ωi|ai�a−i)

ρ(ωi′|ai′� a−i)
ρ(ωi′� ·|ai′� a−i)− ρ(ωi|ai�a−i∗ )

ρ(ωi′|ai′� a−i∗ )
ρ(ωi′� ·|ai′� a−i)

∥∥∥∥
	−i

≤
∥∥∥∥ρ(ω

i� ·|ai�a−i)

ρ(ωi|ai�a−i)
− ρ(ωi′� ·|ai′� a−i)

ρ(ωi′|ai�a−i)

∥∥∥∥ρ(ωi|ai�a−i)

+
∣∣∣∣1 − ρ(ωi|ai�a−i∗ )ρ(ωi′|ai′� a−i)

ρ(ωi|ai�a−i)ρ(ωi′|ai′� a−i∗ )

∣∣∣∣ρ(ωi|ai�a−i)

≤ 11γρ(ωi|ai�a−i)� �

B.4 Connected monitoring

For each player i, periods s < t, say that history hi
t = (hi

s� a
i
s� � � � �ω

i
t−1) is a continuation of

history hi
s and write ht ≥ hs. Similarly, define continuation of uninformative histories jit .

Let πJ ∈ �(×i J
i∞) denote the (strategy-independent) distribution over uninformative

histories.
For each player i and strategy σi ∈ �i, say that informative history hi

t is σi-consistent
with strategy σi ∈ �i if there exists a πJ-positive probability set of uninformative histo-
ries J ⊆ Jit+1 such that for each jit+1 ∈ J, s < t, and histories hi

s ≤ hi
t , j

i
s+1 ≤ jit+1, the action

taken in period s is chosen with positive probability by strategy σi, σi(ais|hi
s� j

i
s+1) > 0.



46 Marcin Pęski Theoretical Economics 7 (2012)

Because of full support, for any profile σ , an informative history has positive πσ prob-
ability if and only if it is σi-consistent. In particular, if profile σ is an equilibrium, then
the continuation strategy after any consistent informative history and almost all unin-
formative histories is the best response. (Note that because we do not assume subgame
perfection, the continuation strategies do not need to be best responses after noncon-
sistent histories.)

Let H
i�σi

t ⊆ Hi
t denote the set of σi-consistent histories. For each s ≤ t and each

σi-consistent history hs, let Hi
t (hs) := {ht ∈ Hi�σi

t :ht ≥ hs} be the set of σi-consistent
t-period continuation histories of hs .

Lemma 11. Fix equilibrium σ and player i. For each σi-consistent history hi
t−1, and any

action–signal pairs w�w′ ∈ Ai × 	i that are γ-close for some γ, and such that histories
hi
t = (hi

t−1�w) and hi′
t = (hi

t−1�w
′) are σi-consistent,

‖πi�σ(hi
t)−πi�σ(hi′

t )‖ ≤ 22γ�

Proof. Let hi
t−1 = (ai1�ω

i
1� � � � � a

i
t−2�ω

i
t−2), w = (ai�ωi), and w′ = (ai′�ωi′). Find con-

stant c∗ from Lemma 10. Then

‖πσ(hi
t� ·)− c∗πσ(h′

t � ·)‖H−i
t ×J−i

t

= sup
E⊆H−i

t ×J−i
t �E measurable

|πσ(hi
t�E)− c∗πi�σ(h′

t �E)|

≤
∑
h−i
t

∫
J−i
t

ϕ(h−i
t−1� a

−i
t−1� j

−i
t )|ρ(ωi�ω−i

t |ai�a−i
t )− c∗ρ(ωi′�ω−i

t |ai�a−i
t )|dπJ(j−i

t )

≤ 2γ
∑
h−i
t

∫
J−i
t+1

ϕ(h−i
t−1� j

−i
t )σ−i(a−i

t |h−i
t � j−i

t+1)ρ(ω
i|ai�a−i

s−1)dπ
J(j−i

t+1)

≤ 11γ‖πσ(hi
t� ·)‖�

By Lemma 7,

‖πi�σ(hi
t)−πi�σ(hi′

t )‖ ≤
∥∥∥∥ πσ(hi

t� ·)
‖πσ(hi

t� ·)‖
− πσ(hi′

t � ·)
‖πσ(hi′

t � ·)‖
∥∥∥∥

=
∥∥∥∥ πσ(hi

t� ·)
‖πσ(hi

t� ·)‖
− c∗πσ(hi′

t � ·)
c∗‖πσ(hi′

t � ·)‖
∥∥∥∥

≤ 22γ� �

B.5 Proof of Lemma 4

Fix player i. For each action ai, let �i(ai) be the strategies s that always play ai in the first
period: s(εi1) = ai for each εi1 ∈ [0�1].
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For all actions ai�ai′ ∈ Ai, each threshold x ∈ R, and each belief over the opponents’
histories π ∈ �(H−i

t × J−i
t ), define

v(ai�π) = sup
s∈�(ai)

π[Gi(s�σ
−i(h−i

t−1� j
−i
t−1))] − (1 − δ)λi[β(ai� εi)]

E(ai�ai′�x) = {εi ∈ [0�1] :β(ai� εi)−β(ai′� εi)≥ x}

E(ai�π) =
⋂

ai′ �=ai

E

(
ai�ai′� 1

1 − δ
(v(ai′�π)− v(ai�π))

)
�

Then, v(ai�π) is the expected current and future continuation payoff minus the cur-
rent payoff shock from a strategy that starts with action ai. Set E(ai�ai′�x) consists of
shocks εi such that the corresponding payoff shock to action ai is higher than shock to
ai′ by some specified threshold. Set E(ai�π) consists of shocks for which action ai is the
current best response. In particular, for each history (hi

t� j
i
t ),

σi(ai|hi
t� j

i
t � εt) > 0 only if εit ∈E(ai�πi�σ(hi

t))�

This observation can be used to show that for all histories (hi
t� j

i
t ) and (hi′

t � j
i′
t ),

‖σi(·|hi
t� j

i
t )− σi(·|hi′

t � j
i′
t )‖Ai

≤
∑
ai∈Ai

∣∣λi(E(ai�πi�σ(hi
t)))− λi(E(a�πi�σ(hi′

t )))
∣∣

(7)

≤
∑

ai�ai′∈Ai

λi
(
E

(
ai�ai′� 1

1 − δ

(
v(ai�πi�σ(hi

t))− v(ai′�πi�σ(hi
t))

))

∖
E

(
ai�ai′� 1

1 − δ

(
v(ai�πi�σ(hi′

t ))− v(ai′�πi�σ(hi′
t ))

)))
�

Recall that the λi distribution of βi(·� εi) ∈ RAi
has its Lebesgue density bounded by

L−|Ai|. Then, for all actions ai, ai′, all x� y ∈R,

λi(E(a�a′� y) \E(a�a′�x+ y)) ≤ 1
2Lx�

Additionally, notice that function v(·� ·) is Lipschitz continuous in π with constant M . In
particular, for any two informative histories hi

t�h
i′
t ∈Hi

t such that ‖πi�σ(ht)−πi�σ(ht)‖ ≤
η, for each action ai,

∣∣v(ai�πi�σ(hi
t))− v(ai�πi�σ(hi′

t ))
∣∣ ≤ Mη�

which, together with (7), implies that

‖σi(·|hi
t� j

i
t )− σi(·|hi′

t � j
i′
t )‖Ai ≤ |Ai|2 1

2
L

1
1 − δ

2Mη≤ 1
50

B−1η�

The second bound in (4) follows from the first.
This shows the first part of the lemma. The second part of the lemma follows from

the fact that if stage-game strategies σi(·|ht� jt) and σi(·|h′
t � j

′
t ) have disjoint support,

then ‖σ(·|ht� jt)− σ(·|h′
t � j

′
t )‖Ai = 1.
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B.6 Proof of Lemma 5

There are two steps in the proof. First, we show that there exist a pair of histories that
lead to 50C(ρ)-close beliefs. Second, we show that we can choose these histories so
that they have positive πσ probability. In the proof, we use the notation introduced in
Appendix B.4.

Fix player i and period t, and set F � Hi
t . Say that set F is determined at history hi

s

for some s ≤ t if either Hi
t (h

i
s) ∩ F = ∅ or Hi

t (h
i
s) ⊆ F . Find s ≤ t and history hi

s−1 ∈ Hi
s−1

such that F is not determined at hi
s−1, but it is determined at each hi

s ≥ hi
s−1. Define sets

of action–signal pairs

D0 = {(ai�ωi) ∈Ai ×	i : (hi
s−1� a

i�ωi) is σi-consistent}
F0 = {(ai�ωi) ∈D0 :Ht(h

i
s−1� a

i�ωi)⊆ F}�

By the choice of period s, F0 is a nonempty and proper subset of D0.
There are action–signal pairs w ∈ F0 and w′ /∈ D0 \ F0 that are C(ρ)-close. Indeed, if

there are (ai�ωi) ∈ F0 and (ai�ωi′) ∈ D0 \ F0, then the claim is implied by the first part
of the definition of connected monitoring; otherwise, the claim is implied by the second
part. Then histories hi

s = (hi
s−1�w) and hi′

s = (hi
s−1�w

′) are σi-consistent, Hi
t (h

i
s) ⊆ F ,

Hi
t (h

i′
s )∩ F = ∅, and, by Lemma 11,

‖πi�σ(hi
s)−πi�σ(hi′

s )‖H−i
s ×J−i

s
≤ 22C(ρ)� (8)

We show that there exist σi-consistent histories ht
i and ht′

i that are continuations
of histories hs

i and hs′
i , and that induce 50C(ρ)-close beliefs. Let ξi be some s-period

continuation strategy of player i. (We put more care into the choice of ξi below.) Let

X = H−i
t−1

Y = (Ai ×	i)t−s

Z = (A−i ×	−i)t−s�

For each x, let f (x) ∈ �(Y × Z) be the distribution over s-period continuation histories
induced by strategy profile σ−i (continued after private histories x) and continuation
strategy ξi. By (8) and Lemma 8, there exists player i’s continuation history hi

t−s ∈ Y

such that

‖πi�σ(hi
s�h

i
t−s)−πi�σ(hi′

s �h
i
t−s)‖H−i

t ×J−i
t

≤ 50C(ρ)�

Although histories hs and h′
s are σi-consistent, histories (hi

s�h
i
t−s) and (hi′

s �h
i
t−s) do not

need to be.
We show that histories (hi

s�h
i
t−s) and (hi′

s �h
i
t−s) are σi-consistent given an appro-

priate choice of the continuation strategy ξi and history hi
t−s. The argument follows

by induction on t = s� s + 1� � � � . Suppose that the inductive claim is proven for some
t ≥ s. Then there exist continuation strategy ξi and history hi

t−s such that (hi
s�h

i
t−s) and

(hi′
s �h

i
t−s) are σi-consistent and (5) holds. By Lemma 4, there exists an action ai ∈ Ai
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that is played with positive probability after histories (hi
s�h

i
t−s) and (hi′

s �h
i
t−s). Consider

a continuation strategy ξ̄i that is equal to ξi but such that ξ̄i plays action ai with prob-
ability 1 after histories (hi

s�h
i
t−s) and (hi′

s �ht−s). By the above argument, there exists a
continuation history hi

t+1−s such that

‖πi�σ(hi
s�h

i
t+1−s)−πi�σ(hi′

s �h
i
t+1−s)‖H−i

t ×J−i
t

≤ 50C(ρ)�

By the choice of continuation strategy ξ̄i, histories (hi
s�h

i
t+1−s) and (hi′

s �h
i
t+1−s) are

σi-consistent.

B.7 Proof of Lemma 6

For each player i, fix a σi-consistent infinite history hi∗∞ and a history ji∗∞. Define a strat-
egy si: let si(hi

t� j
i
t ) = σi(hi∗

t � j
i∗
t ) after all informative and uninformative histories h

j∗
t

and jit . Let s = (s1� � � � � sN) be the profile of so-defined strategies. Define

βs(hi
t� j

i
t )= λi

[∑
ai

β(ai� εi)si(ai|hi
t� j

i
t � ε

i)

]
= βs(hi∗

t � j
i∗
t )�

By Lemma 9, for all profiles of histories (ht� jt) ∈Ht × Jt and each player i,

‖σi(·|hi
t� j

i
t )− si(·|hi

t� j
i
t )‖Ai ≤ x

‖σ(·|ht� jt)− s(·|ht� jt)‖Ai ≤ Nx (9)

|β(hi
t� j

i
t )−βs(hi

t� j
i
t )| ≤ x�

Because the strategy profile s does not depend on past histories, for some ht+1 ∈ Ht+1,
let

V i�s = πi�s(hi
t+1)[Gi(s(h

i
t+1)� s(h

−i
t+1))]

be the expected (t + 1)-continuation payoff of player i given profile s.
For each player i, history hi

t , and action ai, let V i�σ(hi
t� a

i) be the expected continua-
tion payoff in period t + 1 after player i chooses ai in period t,

V i�σ(hi
t� a

i) = sup
s∈�i

πi�σ(hi
t)

[
σ−i(a−i|h−i

t � j−i
t )

[ρ(·|ait� a−i)[Gi(s(h
i
t� ε

i
t � a

i�ωi)�σ−i(h−i
t � ε−i

t � a−i�ω−i))]]
]
�

Simple computations involving bounds (9) show that

|V i�σ(hi
t� a

i)− V i�s| ≤ MNx� (10)

Moreover, if σi(ai|hi
t� j

i
t � ε

i
t) > 0 for some action ai, histories (hi

t� j
i
t ), and payoff shock εit ,

then for each action a �= ai,

λ−i
[
α−i(ε−i)

[
ρ(a�a−i)[ui(a�ωi�εi)] − ρ(ai� a−i)[ui(ai�ωi� εi)]]]

≤ 1
1 − δ

|V i�σ(hi
t� a)− V i�σ(hi

t� a
i)|�

(11)

The lemma follows from (10) and (11).
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Appendix C: Proof of Theorem 5

Suppose that strategies in equilibrium profile σ have a finite past. Fix player i. For each
t < ∞, let Hi�σ

t ⊆ Hi
t be the set of all πσ -positive probability histories.

Lemma 12. There exists a function σ̂ i :Hi
t−1 × Pi × Fi × [0�1] → �Ai such that for each

(hi
t−1� a

i
t−1�ω

i
t−1) ∈ H

i�σ
t , almost all (jti−1� ε

i
t) ∈ Jit ,

σi(·|hi
t−1� j

i
t−1� a

i
t−1�ω

i
t−1� ε

i
t)= σ̂ i(hi

t−1� θ
ρ(ait−1�ω

i
t−1)�ε

i
t)

and there exists a constant such that for each hi′
t−1 ∈Hi�σ

t−1, all (p� f ) ∈ Pi × Fi,
∫ ∥∥σ̂ i(·|hi

t−1� (p� f )�ε)− σi(·|hi′
t−1� (p� f )�ε)

∥∥
Ai dλ

i(ε)

≤ C‖πi�σ(hi
t−1)−πi�σ(hi′

t−1)‖H−i
t−1×J−i

t−1
+Cd(θρ(ait−1�ω

i
t−1)�θ

ρ(ai′t−1�ω
i′
t−1))�

The proof of Lemma 12 follows from Lemma 11 and the argument from the proof of
Lemma 4. We omit the details.

The proof of Lemma 5 remains unchanged. This implies that for each γ > 0, each
subset of informative positive probability histories F ⊆ H

i�σ
t−1, action ait−1, and signal

ωi
t−1 such that 0 < πσ(F × {(ait−1�ω

i
t−1)}) < 1, there exists πσ -positive probability his-

tories hi
t ∈ (F × {(ait−1�ω

i
t−1)})∩Hi�σ

t and hi′
t ∈Hi

t−1 \ F × {(ait−1�ω
i
t−1)} so that

‖πi�σ(hi
t)−πi�σ(hi′

t )‖ ≤ γ�

Now, let F1� � � � �FKt−1 be a partition of Hi�σ
t−1 ×Jit−1 into disjoint sets such that for each

k ≤ Kt−1, continuation strategies after histories (hi
t−1� j

i
t−1)� (h

i′
t−1� j

i′
t−1) ∈ Fk are equal.

Let σi�k be a (t − 1)-period continuation strategy after histories in Fk. Let σ̂ i�k :Pi × Fi ×
[0�1] → �Ai be the function that is associated with σi�k through the thesis of Lemma 12.

Lemma 13. For all k and k′, σ̂ i�k = σ̂ i�k′
.

Proof. Consider a graph � with Kt−1 nodes such that there is an edge between nodes
k and k′ if and only if, for each γ > 0, there exist histories (hi

k�t−1� j
i
k�t−1) ∈ Fk and

(hi
k′�t−1� j

i
k′�t−1) ∈ Fk′ such that ‖πi�σ(hi

k�t−1) − πi�σ(hi′
k�t−1)‖H−i

t−1×J−i
t−1

≤ γ. By the proof

of Lemma 5, graph � is (graph-theoretically) connected, i.e., a path exists between any
two vertices.

Fix (p� f ) ∈ Pi ×Fi. Suppose that vertices k and k′ are connected with an edge. Then
there exist sequences of histories (hi�n

t−1� j
i�n
t−1) ∈ Fk and (gi�nt−1� l

i�n
t−1) ∈ Fk′ such that

lim
n→∞‖πi�σ(h

i�n
t−1)−πi�σ(g

i�n
k�t−1)‖H−i

t−1×J−i
t−1

= 0�

Fix any actions ai�k and ai�k
′

that are played with positive probability in the first stage of
the continuation strategies σk and σk′

: σk(ak|∅) > 0 and σk′
(ak′|∅) > 0. Because the

monitoring is extremely rich, there exist sequences of signals ωi�n�ui�n ∈	i such that

θρ(ai�k�ωi�n) → (p� f ) and θρ(ai�k
′
�ui�n) → (p� f )�
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Then, by Lemma 12, for almost all ε ∈ [0�1],
∫ ∥∥σ̂ i�k(·|(p� f )�ε)− σ̂ i�k′

(·|(p� f )�ε)∥∥
Ai dλ

i(ε)

= lim
n→∞

∫
‖σ̂ i�k(·|θρ(ai�kt−1�ω

i�n
t−1)�ε)− σ̂ i�k′

(·|θρ(ai�k′
t−1�u

i�n
t−1)�ε)‖Ai dλi(ε)

= lim
n→∞

∫
‖σi(·|hi�n

t−1� j
i�n
t−1� a

i�k
t−1�ω

i�n
t−1� ε)− σi(·|gi�nt−1� l

i�n
t−1� a

i�k′
t−1�u

i�n
t−1� ε)‖Ai dλi(ε)

≤ C lim
n→∞‖πi�σ(hi�n

t−1)−πi�σ(gi�nk�t−1)‖H−i
t−1×J−i

t−1

+C lim
n→∞d(θρ(ai�k�ωi�n)� θρ(ai�k

′
�ui�n))

= 0�

Thus, σ̂ i�k = σ̂ i�k′
for all k and k′ that are connected by an edge in graph �. The

lemma follows from the fact that graph � is (graph-theoretically) connected. �

Finally, take any σi-consistent histories (hi
t−1� a

i
t−1�ω

i
t−1)� (h

i′
t−1� a

i
t−1�ω

i
t−1) ∈ Hi�σ

t .

Find k and k′ such that (hi
t−1� j

i
t−1) ∈ Fk and (hi′

t−1� j
i′
t−1) ∈ Fk′ . Then, for almost any jit−1,

ji′t−1, and εit ,

σi(·|hi
t−1� j

i
t−1� a

i
t−1�ω

i
t−1� ε

i
t) = σi�k(ait−1�ω

i
t−1� ε

i
t)

= σ̂ i�k(θρ(ait−1�ω
i
t−1)�ε

i
t)

= σ̂ i�k′
(θρ(ait−1�ω

i
t−1)�ε

i
t)

= σi�k′
(ait−1�ω

i
t−1� ε

i
t)

= σi(·|hi′
t−1� j

i′
t−1� a

i
t−1�ω

i
t−1� ε

i
t)�

Appendix D: Nontrivial equilibria with finite monitoring

In this appendix, we show that if players have sufficiently many actions and signals, the
monitoring is finite, and it satisfies a certain generic condition, then there are game pay-
offs such that the repeated game has nontrivial equilibria. First, we describe a generic
property of monitoring technologies. Second, we describe a repeated game without pay-
off shocks and a nontrivial equilibrium of such a game. We construct payoffs and equi-
libria with the following properties: In odd periods, the actions do not depend on the
past history and they form a strict stage-game Nash equilibrium. In even periods, the ac-
tions nontrivially depend on the signals observed in the preceding period and they form
a correlated equilibrium of the stage game with all best responses being strict. Third, we
argue that the constructed strategies remain a repeated game equilibrium even when
payoffs are perturbed by sufficiently small shocks. Finally, we use the same construc-
tion to show that there exist nontrivial equilibria without a finite past in a game with the



52 Marcin Pęski Theoretical Economics 7 (2012)

same payoffs and possibly infinite monitoring technologies that are sufficiently close to
the monitoring described in the finite case.

Fix finite signal spaces. Suppose that at least two players have at least five ac-
tions and at least two signals. Without any further loss of generality, assume that
|A1|� |A2| ≥ 5, and |	1|� |	2| ≥ 2. Consider monitoring technologies ρ that satisfy three
properties.

1. Full support.

2. Convex independence (CI): For each player i, each profile a, the marginal distri-
bution over signals of player i given profile a, marg	i ρ(a), does not belong to the
convex hull of marginal distributions given all other action profiles, {marg	i ρ(a′)�
a′ ∈A \ {a}}.

3. Strong identification (SI): For all players i �= j, action profile a, any two signals
ωi�ωi′ ∈	i, and proper subset 	j

0 � 	j , if ωi �=ωi′, then

ρ(	
j
0|ωi�a) �= ρ(	

j
0|ωi′� a)�

Here, ρ(ωj|ωi�a) is the conditional probability of player j observing a signal in set
	

j
0 given action profile a and player i observing signal ωi.

It is easy to check that when there are sufficiently many (but finitely many) signals,
the above properties are satisfied by an open, dense, and full Lebesgue measure subset
of all monitoring technologies.

Fix an action profile a∗ = (ai∗). Fix positive probability signal ω2∗ ∈ 	2. Find
p1 ∈ (0�1) and e1 > 0 such that sets

	1− = {ω1 ∈	1 :ρ(ω2∗|ω1� a∗)≤ p1 − e1}

and

	1+ = {ω1 ∈	1 :ρ(ω2∗|ω1� a∗)≥ p1 + e1}
are nonempty and 	1 = 	1− ∪ 	1+. Let p2 = ρ(	1+|ω2� a∗) and find e2 > 0 such that
	2 = 	2− ∪ {ω2∗} ∪	2+, where

	2− = {ω2 ∈	2 :ρ(	1+|ω2� a∗)≤ p2 − e2}

and

	2+ = {ω2 ∈ 	2 :ρ(	1+|ω2� a∗) ≥ p2 + e2}�
Such pi and ei exist because of SI.

By CI, we can find payoff functions gi :Ai × 	i → R such that the following state-
ments hold.

• For any player j �= 1�2, action a∗j is strictly dominant.

• Action profile a∗ is stage-game Nash equilibrium.
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• Action a1− is the strict best response of player 1 if player 2 plays action a2− or a2+ with
probability no more than p1 − e1 and action a2

0 with the remaining probability.

• Action a1+ is the strict best response of player 1 if player 2 plays action a2− or a2+
with probability no less than p1 + e1 and action a2

0 with the remaining probability.

• Action a2− is the strict best response of player 2 if player 1 plays action a1+ with
probability no more than p2 − e2 and action a2− with the remaining probability.

• Action a2
0 is the strict best response of player 2 if player 1 plays action a1+ with

probability in the interval (p2 − 1
2e

2�p2 + 1
2e

2) and action a2− with the remaining
probability.

• Action a2+ is the strict best response of player 2 if player 1 plays action a1+ with
probability no less than p2 + e2 and action a2− with the remaining probability.

• The absolute value of player 1 payoffs if player 2 plays one of the actions a2−, a2
0, or

a2+ is smaller than the lowest cost of deviation of player 1 from stage-game equi-
librium a∗.

• The absolute value of player 2 payoffs if player 1 plays one of the actions a1− or a1+
is smaller than the lowest cost of deviation of player 2 from stage-game equilib-
rium a∗.

We construct a nontrivial repeated game equilibrium. In odd periods t = 1�3�5� � � � ,
all players play action profile a∗. In even periods t = 2�4�6� � � � , the play depends on the
signals observed in the previous periods. Specifically, the following statements hold.

• Assuming that player 1 chose a1∗ in period t − 1, player 1 plays action a1− if
ω1

t−1 ∈	1−; otherwise, he plays a1+.

• Assuming that player 2 chose a2∗ in period t − 1, player 2 plays action a2− if
ω2

t−1 ∈	2− and action a2
0 if ω2

t−1 = ω2∗; otherwise, he plays a1+.

• Other players j �= 1�2 choose a∗j .

Because of the choice of payoffs, the play in the even periods is a stage-game corre-
lated equilibrium, and the signals from the previous period play the role of a correlating
device.

We verify that the above profile is a strict repeated game equilibrium. Players j �= 1�2
have no reason to deviate from their stage-game dominant action a∗j . Because the cost
of deviation from the odd-period stage-game Nash equilibrium outweighs any potential
gain for players 1 and 2, the two players follow the strategy in the odd periods. Because
the continuation play does not depend on the signals observed in the even periods, as-
suming that the players followed the equilibrium strategy in the previous period, the
equilibrium prescription is a best response in the even periods.

So far, we have discussed a game without payoff shocks. If the shocks are sufficiently
small, they do not change the fact that the prescribed actions are strict best responses
and the above strategy profile remains a repeated game equilibrium.
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Finally, suppose 	i are infinite for all players and that ρ is a monitoring with fi-
nite support (i.e., there are finite subsets 	i

ρ ⊆ 	i such that for all action profiles a ∈ A,
ρ(×i 	

i
ρ|a) = 1) and such that ρ satisfies full support, CI, and SI when restricted to the

support. Consider any (possibly infinite and connected) monitoring ρ′ that is γ-close to
monitoring ρ in the sense of norm ‖ · ‖ from Section 3.1. For sufficiently small γ > 0, if a
player observes a signal from the support of ρ, his posterior beliefs are very close to the
beliefs that he would hold under the monitoring ρ.

Consider strategies that play a∗ in the odd periods and that replicate the behavior
of the above constructed profile in odd periods after signals from the support of ρ. For
sufficiently small γ > 0, such a behavior is a best response behavior no matter what
the other players are doing on the small probability signals outside the support of ρ.
Using an appropriate equilibrium existence theorem (for incomplete information dy-
namic games with countably many types), we can complete the strategies on the signals
outside the support of ρ so that the strategies are best responses to each other after all
histories. Because of Theorem 3, strategies so obtained do not have a finite past.
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