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Orders of limits for stationary distributions, stochastic
dominance, and stochastic stability

William H. Sandholm
Department of Economics, University of Wisconsin

A population of agents recurrently plays a two-strategy population game. When
an agent receives a revision opportunity, he chooses a new strategy using a noisy
best response rule that satisfies mild regularity conditions; best response with mu-
tations, logit choice, and probit choice are all permitted. We study the long run
behavior of the resulting Markov process when the noise level η is small and the
population size N is large. We obtain a precise characterization of the asymptot-
ics of the stationary distributions μN�η as η approaches zero and N approaches
infinity, and we establish that these asymptotics are the same for either order of
limits and for all simultaneous limits.

In general, different noisy best response rules can generate different stochasti-
cally stable states. To obtain a robust selection result, we introduce a refinement
of risk dominance called stochastic dominance, and we prove that coordination
on a given strategy is stochastically stable under every noisy best response rule if
and only if that strategy is stochastically dominant.

Keywords. Evolutionary game theory, stochastic stability, equilibrium selection.

JEL classification. C72, C73.

1. Introduction

Stochastic stability analysis provides unique predictions of long run behavior in games
played by agents who employ simple, myopic choice rules. Since the early work of Foster
and Young (1990), Kandori et al. (1993), and Young (1993), this approach to modeling re-
curring interactions has burgeoned both in abstract strategic environments and in con-
crete economic applications.1

Much of the appeal of stochastic stability theory lies in its ability to offer unique
predictions in settings with multiple locally stable equilibria. This aspect of the analysis
is most powerful when the prediction is robust to a range of choices about how to model
the agents’ updating processes, so that confidence in the prediction is not predicated on
having precise information about how agents make decisions.

The literature has identified at least two possible sources of nonrobustness. One is
that the identity of the stochastically stable state may depend on how one specifies the
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probabilities of suboptimal choices in the agents’ decision rules. An early version of this
critique was offered by Bergin and Lipman (1996), who show that allowing mistake prob-
abilities to depend directly and arbitrarily on the current population state abrogates the
possibility of general equilibrium selection results. While Bergin and Lipman (1996) al-
low a very wide range of choice rules in obtaining their negative result, the sensitivity
of stochastic stability to the specification of choice rules can persist even if one allows
only rules that admit a convincing economic justification. For instance, Blume (2003)
shows that the best response with mutations (BRM) model of Kandori et al. (1993) and
Young (1993) and the logit choice model from Blume (1993) can generate different sto-
chastically stable states in two-strategy population games. Likewise, Myatt and Wallace
(2003) exhibit a game in which the BRM and probit choice models select different equi-
libria. Ui (1998), Maruta (2002), and Dokumacı and Sandholm (2008) offer examples
along similar lines. To the extent that these examples are representative, confidence in
the predictions of stochastic stability theory must be contingent on precise knowledge
of the agents’ choice rules.

A more subtle source of nonrobustness of predictions, emphasized by Binmore et
al. (1995) and Binmore and Samuelson (1997), concerns the identity and the order of
limits used in defining stochastic stability. The early contributions of Kandori et al.
(1993) and Young (1993) focus on the small noise limit, defining the stochastically stable
states to be those that retain positive mass in the stationary distribution as noise level
in agents’ choices vanishes. A majority of the subsequent literature has followed this
approach, which emphasizes the influence of very rare mistakes on equilibrium selec-
tion relative to that of other factors.2 A second branch of the literature follows Binmore
and Samuelson (1997), Young (1998, Section 4.5), and Benaïm and Weibull (2003) in fo-
cusing on large population limits, defining the stochastically stable states to be those
whose neighborhoods retain positive mass in the stationary distribution as the popula-
tion size approaches infinity, and so emphasizing the influence of population size over
improbability of mistakes in equilibrium selection.3 To ease comparisons between these
approaches, Binmore et al. (1995) and Binmore and Samuelson (1997) propose defini-
tions of stochastic stability that implement the small noise and large population limits
sequentially; because the parameter in the outer limit is held fixed while the parameter
in the inner limit is taken to its extreme, it is the inner limit that governs equilibrium
selection.

The distinction between the small noise and large population definitions of stochas-
tic stability would be of little consequence if both approaches always generated the same
predictions. However, Binmore et al. (1995) and Binmore and Samuelson (1997) demon-
strate that this distinction can matter: they find that when agents’ choices are based on
imitation and mutation, small noise stochastic stability always selects monomorphic
states, while large population stochastic stability can select either boundary or interior
states depending on the incentives in the underlying game.4

2For the furthest developments of this approach, see Ellison (2000) and Beggs (2005).
3Binmore and Samuelson (1997) argue that this emphasis is appropriate for most economic modeling.
4The logic behind these results can be explained as follows. In a model of imitation without mutations,

the monomorphic states are absorbing states of the evolutionary process. This is so even if the underlying



Theoretical Economics 5 (2010) Orders of limits 3

Still, in most work on stochastic evolution, agents’ choices are governed not by im-
itation with mutation, but by noisy best responses. Whether the order of limits used
in defining stochastic stability can affect equilibrium selection in noisy best response
models seems to us to be a fundamental question, but as far as we know it is a question
that the literature has not addressed.

The first goal of this paper is to provide a comprehensive answer to this question in
a simple strategic environment: that of two-strategy population games. We consider a
model of stochastic evolution in which agents employ noisy best response rules from the
class introduced by Blume (2003). Let ρη(a) denote the probability that a revising agent
chooses the strategy with payoff advantage a when the noise level in his choice rule is
η. We require that ρη(a) have a well-defined exponential rate of decay in η, and that
this rate of decay not decline as the payoff disadvantage of an inferior strategy becomes
more severe. All of the noisy best response models noted above—BRM, logit choice, and
probit choice—fall within this class.

In models of stochastic evolution, the stationary distribution μN�η summarizes the
long run behavior of the evolutionary process. Theorem 1 considers the double limits
of the distributions μN�η as the noise level η approaches zero and the population size
N approaches infinity. It provides an exact characterization of the rates of decay of the
stationary distribution weights in η and N , and, most importantly, establishes that these
asymptotics are identical for both orders of limits. Capturing the intermediate cases,
Theorem 2 shows that the same asymptotics obtain when the limits in η and N are taken
simultaneously. Given these descriptions of the limiting behavior of the full stationary
distribution, it follows a fortiori that under noisy best response rules, the identity of the
stochastically stable state is independent of the limits used to define stochastic stability.

With this analysis in hand, we return to the issue we raised first: the robustness of
stochastic stability to the specification of agents’ choice rules. We start with a series of
examples in which different noisy best response rules generate different predictions of
long run behavior. Taking these negative examples as background, we seek a condition
on a game’s payoffs that ensures the invariance of the stochastically stable state across
all noisy best response rules. Ideally, this condition should be both simple and tight,
being not only sufficient for “detail-free” equilibrium selection, but also necessary.

In the case of the BRM model, the necessary and sufficient condition for stochastic
stability in two-strategy coordination games is well known. Kandori et al. (1993) and
Young (1993) show that stochastic stability is determined by risk dominance, where a
strategy is risk dominant if the set of states where it is optimal is larger than the set of
states where the alternative strategy is optimal. The solution concept we introduce in

game is a Hawk–Dove game, whose unique symmetric Nash equilibrium is mixed. In such a game, fixing
a small, positive mutation rate and taking the population size to infinity causes the stationary distribution
to become concentrated in the vicinity of the mixed equilibrium. If instead we fix the population size and
make the noise level sufficiently small, then the probability of escaping from a monomorphic state must
become much smaller than the probability of reaching such a state from one near the mixed equilibrium;
as a result, the stationary distribution becomes concentrated on (typically just one of) the monomorphic
states. Börgers and Sarin (1997) make a similar point in their analysis of reinforcement learning in normal
form games. For recent work on stochastic stability in models of imitation with mutations, see Fudenberg
and Imhof (2006, 2008) and Sandholm (2009b).
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this paper, which we call stochastic dominance, is a natural refinement of risk domi-
nance: a strategy is stochastically dominant if, for every level of payoff advantage a ≥ 0,
the set of states where the strategy outperforms its alternative by at least a is larger than
the set where the alternative outperforms the strategy by at least a. In population games
with linear payoffs, such as those defined by random matching, risk dominance and
stochastic dominance are equivalent, but in general population games, stochastic dom-
inance is the more demanding requirement of the two.

Theorem 3 offers our second robustness result: it establishes that stochastic dom-
inance is a necessary and sufficient condition for a strategy to be stochastically stable
under every noisy best response rule. Thus, if a game possesses a stochastically dom-
inant strategy, our predictions of long run behavior need not be contingent on precise
knowledge of the agents’ decision rules. Conversely, if neither strategy is stochastically
dominant, then such predictions must be made with caution, as different noisy best re-
sponse rules may produce different stochastically stable states.

Section 2 introduces two-strategy population games, noisy best response rules, and
our model of stochastic evolution. Section 3 provides a precise characterization of the
asymptotics of the stationary distributions μN�η, and shows that these asymptotics are
unaffected by the order in which the small noise and large population limits are taken.
Connections between the components of this result and earlier analyses of Blume (2003)
and Sandholm (2007) are also explained here. Section 4 defines stochastic stability and
offers examples in which different noisy best response rules generate different stochasti-
cally stable states. Section 5 introduces the notion of a stochastically dominant strategy,
and proves that coordination on a strategy is stochastically stable under any noisy best
response rule if and only if that strategy is stochastically dominant. Section 6 concludes.

2. The model

2.1 Two-strategy population games

We consider games played by populations of N agents who choose strategies from the
set S = {0�1}. The population state x ∈ XN = {0�1/N�2/N� � � � �1} describes the fraction
of agents currently choosing strategy 1. If N is fixed, we can identify a game with its
payoff function FN :XN → R

2, where FN
i (x) is the payoff to strategy i ∈ S at population

state x ∈ XN .
Because we consider limits as the population size grows large, we find it useful to de-

fine a notion of convergence for sequences of finite-population games. The limit of such
a sequence is a continuous-population game F : [0�1] → R

2, which specifies a payoff for
each strategy at each point in the unit interval. Our notion of convergence for sequences
of games is uniform convergence: we say that the sequence {FN }∞N=N0

converges to F if

lim
N→∞

max
x∈XN

|FN(x)− F(x)| = 0� (1)

We assume throughout that the limit game F is bounded and piecewise continuous.
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As an example, suppose that a population of size N is randomly matched without
self-matching to play the two-player symmetric normal form game A ∈ R

2×2. The pay-
offs of the resulting population game are

FN
0 (x) = N(1−x)−1

N−1 A00 + Nx
N−1A01

FN
1 (x) = N(1−x)

N−1 A10 + Nx−1
N−1 A11�

As N grows large, the games {FN } converge uniformly to the limit game F , where

F0(x) = (1 − x)A00 + xA01

F1(x) = (1 − x)A10 + xA11�

Although random matching generates games with linear payoff functions, our model al-
lows payoffs to depend nonlinearly on the population state, as is often the case in mod-
els of congestion (Beckmann et al. 1956, Rosenthal 1973), macroeconomic coordination
(Topkis 1998, Cooper 1999), and other sorts of multilateral externalities.

2.2 Revision protocols and their cost functions

We consider a model of stochastic evolution based on Blume (2003). Agents in this
model receive revision opportunities via independent Poisson process. When a current
strategy i player receives a revision opportunity, he switches to strategy j �= i with prob-
ability ρη(a) ∈ (0�1), where a ∈ R represents the current payoff advantage of strategy j

over strategy i: that is, the difference between the payoff to strategy j and the payoff to
strategy i. The function ρη :R → (0�1) is called a revision protocol and is parameterized
by a noise level η> 0.

We are interested in revision protocols under which agents typically select optimal
strategies, but occasionally choose suboptimal ones. The protocols we allow satisfy

lim
η→0

ρη(a) =
{

1 if a > 0
0 if a < 0.

To place further structure on the probabilities of suboptimal choices, we impose restric-
tions on the rates at which the probabilities ρη(a) of choosing a suboptimal strategy
approach zero as η approaches zero.

Define the cost of switching to a strategy with payoff disadvantage d ∈ R as

c(d)= − lim
η→0

η logρη(−d)� (2)

When this limit exists, we can express the probability of switching to a strategy with
payoff disadvantage d when the noise level is η as

ρη(−d) = exp
(−η−1(c(d)+ o(1))

)
� (3)

where o(1) represents a term that vanishes as η approaches 0. Our assumptions on the
revision protocols ρη and the cost function c are as follows:
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(i) The limit in (2) exists for all d ∈ R, with convergence uniform on compact inter-
vals.

(ii) c is nondecreasing.

(iii) c(d)= 0 whenever d < 0.

(iv) c(d) > 0 whenever d > 0.

Conditions (ii)–(iv) impose constraints on the rates of decay of switching probabil-
ities.5 Condition (ii) requires the rate of decay to be nondecreasing in the payoff dis-
advantage of the alternative strategy. Condition (iii) requires the switching probability
of an agent currently playing the suboptimal strategy to have rate of decay zero; the
condition is satisfied when the probability is bounded away from zero, although this is
not necessary for the condition to hold. Finally, condition (iv) requires the probability
of switching from the optimal to the suboptimal strategy to have a positive rate of de-
cay. These conditions are consistent with having either c(0) > 0 or c(0) = 0: thus, when
both strategies earn the same payoff, the probability that a revising agent opts to switch
strategies can converge to zero with a positive rate of decay, as in Example 1, or can be
bounded away from zero, as in Examples 2 and 3.

The examples that follow derive the cost functions for the three most prominent
noisy best response models used in the literature. We note that Examples 1 and 2 appear
in a slightly different form in Blume (2003), and that Examples 1 and 3 reparameterize
the noise level before determining the cost functions.

Example 1 (Best response with mutations). Suppose as in Kandori et al. (1993) and
Young (1993) that the probability ε > 0 of abandoning an optimal strategy is indepen-
dent of the payoff consequences of doing so:

ρε(a) =
{

1 − ε if a > 0
ε if a≤ 0.

We call this the best response with mutations protocol (BRM for short).
Let η = −(logε)−1, so that ε = exp(−η−1). Then for d ≥ 0, we have that −η ×

logρη(−d) = 1, and so that c(d) = 1; for d < 0, we have that c(d) = 0, as required by
condition (iii).6 ♦

Example 2 (Logit choice). Following Blume (1993, 1997), suppose that agents employ
the logit choice protocol with noise level η> 0:

ρη(a) = exp(η−1a)

exp(η−1a)+ 1
�

5It is evident from equation (3) that any function c that satisfies conditions (ii)–(iv) is the cost function
of some revision protocol ρη.

6That c(0) = 1 reflects our assumption that an indifferent player switches strategies only in the event of
a mutation. None of our results would change if we assumed instead that an indifferent player has a fixed
positive probability of switching (implying that c(0) = 0) or a probability of switching that decays relatively
slowly (so that c(0) ∈ (0�1)).
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Then, for d ≥ 0, we have that −η logρη(−d) = d + η log(exp(−η−1d) + 1), so that
c(d)= d. ♦

Example 3 (Probit choice). The logit choice protocol from Example 2 can be derived
from a random utility model in which the strategies’ payoffs are perturbed by i.i.d., dou-
ble exponentially distributed random variables.7 The probit choice protocol, studied in
evolutionary contexts by Myatt and Wallace (2003),8 assumes instead that the payoff
perturbations are i.i.d. normal random variables with mean 0 and variance σ2. Thus

ρσ
2
(a) = P(σZ + a > σZ′)�

where Z and Z′ are independent and standard normal. It follows easily that

ρσ
2
(a) =�

(
a√
2σ

)
� (4)

where � is the standard normal distribution function.
It is well known (Durrett 2005, Theorem 1.1.3) that when z < 0,

�(z) =K(z)exp
(−z2

2

)
(5)

for some K(z) ∈ (−1/(
√

2πz)(1−1/z2)�−1/(
√

2πz)). It follows that K(z) ∈ (−1/(2
√

2πz)�

−1/(
√

2πz)) whenever z < −√
2� Also, one can verify directly that (5) holds with K(z) ∈

[e ·�(−√
2)�1/2] whenever z ∈ [−√

2�0]�
Now, letting η= σ2, equations (4) and (5) imply that

−η logρη(−d) = −η log�
( −d√

2η

)
= 1

4d
2 −η logK

( −d√
2η

)
(6)

when d ≥ 0, with our earlier estimates showing that

η logK
( −d√

2η

)
∈

{( 1
2η logη−η log 2

√
πd� 1

2η logη−η log
√

πd
)

if d > 2
√
η[

η
(
1 + log�(−√

2)
)
�η log 1

2

]
if d ∈ [0�2

√
η].

Thus, for any D> 0 and any δ > 0, we have |η logK(−d/
√

2η)| < δ for all d ∈ [0�D] once
η> 0 is sufficiently small. We conclude from equation (6) that −η logρη(−d) converges
to c(d) = 1

4d
2, with convergence uniform on compact intervals. ♦

Further examples of revision protocols and cost functions that satisfy the assump-
tions above can be found in Dokumacı and Sandholm (2008).

2.3 The stochastic evolutionary process

Let a population size N , a population game FN , and a revision protocol ρη be given. To
define the stochastic evolutionary process {XN�η

t }t≥0 on the state space XN , we suppose
that each member of the population is equipped with an independent, rate 1 Poisson

7See Anderson et al. (1992) or Hofbauer and Sandholm (2002).
8See also Ui (1998) and Dokumacı and Sandholm (2008).
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alarm clock. When an agent’s clock rings, he uses the revision protocol ρη to decide
whether to switch strategies.

Because the population size is finite, an agent who switches strategies moves the
population state by an increment of 1/N . Thus, an agent playing strategy 0 at population
state x earns a payoff of FN

0 (x), but if this agent switches to strategy 1, his payoff will not
be FN

1 (x), but rather FN
1 (x+1/N). An agent who accounts for this change when deciding

whether to switch strategies is said to use clever payoff evaluation (Sandholm 1998). By
assuming that agents use clever payoff evaluation, we simplify certain calculations, but
all of our results remain true under the alternative assumption.

Because each of the N agents receives revision opportunities independently at rate 1

and since transitions are always to neighboring states in XN , the process {XN�η
t } is a

birth and death process whose (possibly degenerate) jumps from each state x ∈ XN oc-
cur at rate N .

For a transition from state x to state x + 1/N to occur, the agent who receives the
revision opportunity must initially be playing strategy 0 and his revision protocol must
tell him to switch to strategy 1. Under clever payoff evaluation, the probability that both
of these events occur is

p
N�η
x = (1 − x)ρη

(
FN

1
(
x+ 1

N

) − FN
0 (x)

)
�

Similarly, for a transition from state x to state x − 1/N to occur, the agent who receives
the revision opportunity must initially be playing strategy 1 and his revision protocol
must tell him to switch to strategy 0. The probability that both of these events occur is

q
N�η
x = xρη

(
FN

0
(
x− 1

N

) − FN
1 (x)

)
�

With the remaining probability of 1 − p
N�η
x − q

N�η
x , the agent who receives the revision

opportunity does not switch strategies and the state does not change.
Because ρη is positive-valued, the process {XN�η

t } is irreducible, and so admits a
unique stationary distribution μN�η. This distribution describes the long run behavior
of the process in two distinct ways: it is the limiting distribution of the process and it
describes the limiting empirical distribution of the process along almost every sample
path (see Durrett 2005, Secs. 5.5 and 6.2).

3. The limiting stationary distribution

Our goal in this section is to describe the asymptotics of the stationary distribution μN�η

as the noise level η approaches zero and the population size N approaches infinity. To
simplify the presentation, we offer a few new definitions. First, given a continuous-
population game F : [0�1] → R

2, we let


F(x) ≡ F1(x)− F0(x)

denote the payoff advantage of strategy 1 at state x. Next, given a cost function c :R →
[0�∞) that satisfies the conditions from Section 2.2, we define the relative cost function
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c̃ :R → R by

c̃(d)= c(d)− c(−d) =
⎧⎨
⎩
c(d) if d > 0
0 if d = 0
−c(−d) if d < 0.

(7)

Our assumptions on c imply that c̃ is nondecreasing, sign preserving (sgn(c̃(d)) =
sgn(d)), and odd (c̃(d)= −c̃(−d)).

Now define the continuous function I : [0�1] → R by

I(x) =
∫ x

0
c̃(
F(y))dy� (8)

Observe that by marginally adjusting the state x so as to increase the mass on the op-
timal strategy, we increase the value of I at rate c̃(a), where a is the optimal strategy’s
payoff advantage. It follows that, I is an ordinal potential function for the game F (cf.
Monderer and Shapley 1996). We now show that each of the revision protocols intro-
duced in Section 2.2 generates a particularly simple ordinal potential.

Example 4. If ρη represents best response with mutations (Example 1), then (8) be-
comes the signum potential function

Isgn(x) =
∫ x

0
sgn(
F(y))dy�

The slope of this function at state x is 1, −1, or 0, according to whether the optimal strat-
egy at x is strategy 1, strategy 0, or both. Thus, Isgn embodies the notion of “mutation
counting” that is familiar from Kandori et al. (1993), Young (1993), and their succes-
sors. ♦

Example 5. If ρη represents logit choice (Example 2), then (8) becomes the (linear) po-
tential function

I1(x) =
∫ x

0

F(y)dy�

whose slope at state x is given by the payoff difference at x.9 Compared to Isgn, the
function I1 accounts not only for the widths of the basins of attraction of the locally
stable states, but also their “depths,” as represented by payoff differences.10 ♦

Example 6. If ρη represents probit choice (Example 3), then (8) becomes the quadratic
potential function

I2(x) =
∫ x

0

1
4 〈
F(y)〉2 dy�

where 〈a〉2 = sgn(a)a2 is the signed square function. The values of I2 again depend on
payoff differences, but relative to the logit case, larger payoff differences play a more

9Compare Sandholm (2009a), especially Example 4.4.
10The need to account for both widths and depths in stochastic stability analyses is emphasized by

Fudenberg and Harris (1992), Binmore and Samuelson (1997), and Kandori (1997).
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important role. This contrast can be traced to the fact that at small noise levels, the
double exponential distribution (which underlies the logit protocol—see Example 3) has
fatter tails than the normal distribution. ♦

As a final convenience, we define the function 
I : [0�1] → R− by


I(x) = I(x)− max
y∈[0�1]

I(y)�

In words, 
I is the ordinal potential function obtained from I by shifting its graph ver-
tically until its maximum value is 0; since I(0) = 0, this shift can only be downward or
null.

With these preliminaries in hand, we can now state our first main result, which de-
scribes the asymptotic behavior of the stationary distributions μN�η in the small noise
and large population limits.

Theorem 1. In the model of stochastic evolution above, the stationary distributions μN�η

satisfy

(i) lim
N→∞

lim
η→0

max
x∈XN

∣∣ η
N logμN�η

x −
I(x)
∣∣ = 0

(ii) lim
η→0

lim
N→∞

max
x∈XN

∣∣ η
N logμN�η

x −
I(x)
∣∣ = 0.

Below we offer an interpretation of this result, sketch its proof, and compare the
components of the result to existing analyses.

As we explained in the Introduction, analyses of long run behavior in models of sto-
chastic evolution have proceeded along two distinct lines, with most analyses focus-
ing on small noise limits, but with a significant minority emphasizing large population
limits. When these two approaches lead to different conclusions—as happens, most
notably, under decision rules based on imitation and rare mutations—modelers must
exercise care in choosing which limit to use as the basis for predictions. As Binmore
et al. (1995) and Binmore and Samuelson (1997) explain, the small noise limit, taken
alone or taken first, puts precedence on the rareness of mutations, while taking the large
population limit alone or first emphasizes population size over infrequency of mistakes.
Binmore and Samuelson (1997) argue that in most economic contexts in which evolu-
tionary models are relevant, it is the large population that is most appropriate. Although
we agree with this assessment in broad terms, we also feel that the best modeling choice
may be application-dependent, and may not always be easy to discern. To the extent
that this modeling choice affects predictions, it saps a key strength of the stochastic
evolutionary approach: its ability to provide unique predictions of play in games with
multiple equilibria.

Theorem 1 establishes in a strong sense that this concern about orders of limits is
unnecessary when agents utilize noisy best response rules. Rather than focusing only
on stochastic stability, the theorem characterizes the rates of decay of the stationary
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distribution weights at all population states.11 It establishes that for either order of lim-
its, the rates of decay of the stationary distribution weights are governed by the ordinal
potential 
I, with states that attain lower values of potential experiencing more rapid
decay as η becomes small and N becomes large. The theorem thus shows that when
agents employ noisy best response rules, the choice of the order of limits has essentially
no effect on our predictions of long run behavior.

The proof of Theorem 1 proceeds as follows. It is well known (see Durrett 2005,
Sec. 5.4) that the stationary distribution of an irreducible birth and death chain on XN

can be expressed as

μ
N�η
x

μ
N�η
0

=
Nx∏
j=1

p(j−1)/N

qj/N

for x ∈ XN − {0} = {1/N� � � � �1}, with the value of μN�η
0 being determined by the require-

ment that the probability weights sum to 1. Substituting in the definitions of the transi-
tion probabilities px and qx, taking logarithms, and then multiplying by η/N yields

η

N
log

μ
N�η
x

μ
N�η
0

= 1
N

Nx∑
j=1

η log
ρη

(
FN

1

( j
N

) − FN
0

( j−1
N

))
ρη

(
FN

0

( j−1
N

) − FN
1

( j
N

)) + η

N

Nx∑
j=1

log
N − j + 1

j
� (9)

The first term on the right hand side of (9) is a Riemann sum indexed by N , and when
η is small, the jth summand is a discrete approximation of the relative cost c̃(
F(j/N)).
Repeated application of the dominated convergence theorem reveals that regardless of
the order in which the limits in N and η are taken, this first term on the right hand
side of (9) converges to the definite integral I(x) and that the second term vanishes.
These arguments characterize the rates of decay of the ratios μ

N�η
x /μ

N�η
0 . To complete

the proof, we use arguments that build on the fact that each measure μN�x has total
mass 1 to show that under either order of limits, the weights μN�η

x themselves have rates
of decay given by 
I(x). As maxx∈[0�1]
I(x) ≡ 0, the intuition that the slowest rate of
decay of a stationary distribution weight should equal zero is confirmed. The details of
the foregoing analysis can be found in the Appendix.

The two parts of Theorem 1 are descendants of earlier analyses from Blume (2003)
and Sandholm (2007). Blume (2003) examines the small noise limit of the station-
ary distribution. He proves that in coordination games, when the population size is
large enough, the mass in the limiting stationary distribution becomes concentrated
on state 1 or state 0 according to whether I(1) is greater than or less than I(0). Relative
to Blume’s (2003) analysis, Theorem 1(i) explicitly introduces the population size limit,
allows for arbitrary population games, and characterizes the asymptotics of the entire
stationary distribution. Sandholm (2007) focuses on the large population limit, describ-
ing the rates of decay of the ratio μ

N�η
x /μ

N�η
0 in terms of the sum of I(x) and an entropy

11To see that Theorem 1 concerns rates of decay, bear in mind that (η/N) logμN�η
x = −rx is equivalent to

μ
N�η
x = exp(−η−1Nrx).
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term (see equation (23) in the Appendix). Theorem 1(ii) extends this analysis by intro-
ducing the small noise limit and establishing the uniform convergence of the rates of

decay of the weights μ
N�η
x themselves to the values of 
I(x). Although the main reason

for taking the second limit is to ease comparisons with the analysis in part (i), doing so
also has the side benefit of providing a simple, closed form description of the asymptot-

ics of the probit model.
Although Theorem 1 takes the limits in η and N sequentially, these limits can also be

taken simultaneously. To do so, one can introduce a vanishing sequence of noise levels

{ηN }∞N=N0
, so that while the population size N approaches infinity, the noise level ηN

approaches zero. Theorem 2 shows that taking simultaneous limits generates the same
asymptotic behavior of the stationary distributions as taking either of the sequential
limits. Since Theorem 2 does not control the relative speeds at which the noise level

and population size approach their limits, apart from ruling out the lexicographic cases
considered in Theorem 1, it demonstrates that the conclusions of Theorem 1 persist in
all intermediate cases.

Theorem 2. Let {ηN }∞N=N0
be a sequence of noise levels that converges to zero. Then the

stationary distributions μN�ηN
satisfy

lim
N→∞

max
x∈XN

∣∣ηN

N logμN�ηN

x −
I(x)
∣∣ = 0�

The proof of Theorem 2 is provided in the Appendix.

4. Stochastic stability: Definition and examples

Foster and Young (1990), Kandori et al. (1993), and Young (1993) define a stochastically
stable state to be one that retains positive mass in the limiting stationary distribution as
the noise level η approaches zero. Binmore et al. (1995) and Binmore and Samuelson

(1997) extend this definition to allow the large population limit and multiple limits to
be used. In this section, we introduce definitions of stochastic stability for the present
model and use Theorem 1 to characterize stochastic stability in terms of the ordinal po-

tential function I. We then present a series of examples to illustrate that the identity
of the stochastically stable state can depend on the choice of revision protocol. In Sec-
tion 5, we provide a simple condition on payoffs that is necessary and sufficient for every
noisy best response protocol to select the same stochastically stable state.

As one increases the population size N , the set of population states XN becomes
an increasingly fine grid in the unit interval. To account for this, we say that state x∗ is
stochastically stable if for every open set O ⊆ R that contains x∗, we have

lim
N→∞

lim
η→0

μN�η(O) = lim
η→0

lim
N→∞

μN�η(O) > 0� (10)
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If there is an x∗ such that both double limits in (10) equal 1, we call x∗ uniquely stochas-
tically stable.12

It follows from Theorem 1 that all stochastically stable states are maximizers of the
ordinal potential function I.

Corollary 1. All stochastically stable states are elements of arg maxx∈[0�1] I(x). In par-
ticular, if arg maxx∈[0�1] I(x) = {x∗}, then x∗ is uniquely stochastically stable.

The proof of this corollary is provided in the Appendix.
Although Corollary 1 indicates that a unique maximizer of I must be stochastically

stable, a larger set of maximizers of I may contain states that are not stochastically sta-
ble.13 To account for this, we call the states in arg maxx∈[0�1] I(x) the weakly stochastically
stable states.

Many stochastic stability analyses focus on equilibrium selection in coordination
games. In the present context, we call F : [0�1] → R

2 a coordination game if there is a
state x∗ ∈ (0�1) such that

sgn(
F(x)) = sgn(x− x∗) for all x �= x∗�

Any ordinal potential function I for a coordination game is quasiconvex with two local
maximizers: state x= 0, where all agents coordinate on strategy 0, and state x= 1, where
all agents coordinate on strategy 1. Since I(0) ≡ 0, Corollary 1 tells us that state 1 is
uniquely stochastically stable if I(1) > 0 and that state 0 is uniquely stochastically stable
if I(1) < 0.

It is not difficult to construct examples in which different noisy best response pro-
tocols generate different equilibrium selections. To make our examples as simple as
possible, we use games with payoff functions that are step functions, but similar exam-
ples are easy to construct using games with continuous payoffs. We sometimes use the
notation ei to refer to the equilibrium in which all agents coordinate on strategy i: thus,
e0 = 0 and e1 = 1.

Example 7. For each of the three protocols introduced in Examples 1–3, there are co-
ordination games in which that protocol selects a different equilibrium than the other
two. Consider a game with payoff differences


F(x) =
{

−1 if x ∈ [
0� 2

3

)
k if x ∈ [ 2

3 �1
]
,

12Some subtleties about these definitions should be noted. First, assuming that x∗ is the only stochasti-
cally stable state does not imply that x∗ is uniquely stochastically stable in the sense specified above. Sec-
ond, it can be shown that the requirement that limN→∞ limη→0 μ

N�η = limη→0 limN→∞ μN�η = δx∗ , where
the limits refer to weak convergence of probability measures and δx∗ represents a point mass at x∗, is more
demanding than the requirement that x∗ be uniquely stochastically stable. However, the differences be-
tween these formulations arise only in pathological cases.

13According to Theorem 1, the function 
I describes exponential rates of decay of stationary distribution

weights. It thus can hide subexponential discrepancies between rates of decay. For instance, if μN�η
0 = 1/N

and μ
N�η
1 = 1/

√
N , then limN→∞(η/N) log(1/N) = 0 = 
I(0) and limN→∞(η/N) log(1/

√
N) = 0 = 
I(1),

but limN→∞ μ
N�η
0 /μ

N�η
1 = 0.
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where k> 0. We then have

Isgn(1) = − 2
3 + 1

3 = − 1
3

I1(1) = − 2
3 + 1

3k = 1
3(k− 2)

I2(1) = 1
4

(− 2
3 + 1

3k
2) = 1

12(k
2 − 2)�

Under the BRM rule, the stochastically stable state is state 0 for any positive value of k;
under the logit rule, the stochastically stable state switches from state 0 to state 1 at
k = 2; under the probit rule, this switch occurs at k = √

2. Thus, when k > 2, only the
BRM rule selects equilibrium e0; when k ∈ (

√
2�2), only the probit rule selects equilib-

rium e1. ♦

Example 8. For an example in which the selection of the logit rule is distinct from that
of the other two, suppose that


F(x) =

⎧⎪⎨
⎪⎩

−7 if x ∈ [
0� 1

9

)
−1 if x ∈ [ 1

9 �
2
3

)
k if x ∈ [ 2

3 �1
]
,

where k> 0. Here we have

Isgn(1) = − 1
9 − 5

9 + 1
3 = − 1

3

I1(1) = − 7
9 − 5

9 + 1
3k = 1

3(k− 4)

I2(1) = 1
4

(− 49
9 − 5

9 + 1
3k

2) = 1
12(k

2 − 18)�

When k ∈ (4�
√

18), only the logit rule selects equilibrium e1. ♦

Example 9. If we move beyond coordination games, it is easy to construct examples in
which each of the three choice protocols above generates a distinct equilibrium selec-
tion. For instance, suppose that payoff differences in F are given by


F(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−1 if x ∈ [
0� 5

9

)
6 if x ∈ [ 5

9 �
2
3

)
−3 if x ∈ [ 2

3 �
8
9

)
5 if x ∈ [ 8

9 �1
]
.

The three candidates for stochastic stability are x = 0, x = 2
3 , and x = 1. In Figure 1, we

graph the ordinal potentials 
Isgn, 
I1, and 
I2 generated by F . Evidently, state x = 0 is
stochastically stable under the BRM rule, state x = 2

3 is stochastically stable under the
logit rule, and x= 1 is stochastically stable under the probit rule. ♦

5. Stochastic dominance and stochastic stability

The most basic equilibrium selection result from stochastic evolutionary game theory,
which dates back to Kandori et al. (1993) and Young (1993), states that in two-strategy
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Figure 1. Ordinal potentials 
Isgn (solid), 
I1 (dashed), and 
I2 (dotted) from Example 9.

coordination games, risk dominance is a necessary and sufficient condition for stochas-
tic stability under the BRM rule. In the coordination game F : [0�1] → R

2 with mixed
equilibrium x∗ ∈ (0�1), strategy i is strictly risk dominant if the set of states where it is the
unique best response is larger than the corresponding set for strategy j �= i; thus, strat-
egy 0 is strictly risk dominant if x∗ > 1

2 and strategy 1 is strictly risk dominant if x∗ < 1
2 .

If the relevant inequality holds weakly in either case, we call the strategy in question risk
dominant.

The examples from Section 4 show that beyond the BRM rule, risk dominance is
no longer a necessary or a sufficient condition for stochastic stability.14 In this section,
we introduce a natural refinement of risk dominance called stochastic dominance, and
show that it provides a necessary and sufficient condition for an equilibrium to be sto-
chastically stable under every noisy best response rule.

To work toward our new definition, let us first observe that any function on the unit
interval [0�1] can be viewed as a random variable by regarding the interval as a sample
space endowed with Lebesgue measure λ. With this interpretation in mind, we define
the advantage distribution of strategy i as the cumulative distribution function of the
payoff advantage of strategy i over the alternative strategy j �= i:

Gi(a) = λ
({x ∈ [0�1] :Fi(x)− Fj(x) ≤ a})�

14Risk dominance retains its importance for equilibrium selection when payoffs are linear in the popu-
lation state; see Corollary 2 below.
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We let Ḡi denote the corresponding decumulative distribution function:

Ḡi(a) = λ
({x ∈ [0�1] :Fi(x)− Fj(x) > a}) = 1 −Gi(a)�

In words, Ḡi(a) is the measure of the set of states at which the payoff to strategy i exceeds
the payoff to strategy j by more than a.

It is easy to restate the definition of risk dominance in terms of the advantage distri-
bution.

Observation 1. Let F be a coordination game. Then strategy i is risk dominant if and
only if Ḡi(0) ≥ Ḡj(0), and strategy i is strictly risk dominant if and only if Ḡi(0) > Ḡj(0).

To obtain our refinement of risk dominance, we require not only that strategy i be
optimal at a larger set of states than strategy j, but also that strategy i have a payoff
advantage of at least a at a larger set of states than strategy j for every a ≥ 0.

Definition 1. Let F be a coordination game. Then strategy i is stochastically dominant
if Ḡi(a) ≥ Ḡj(a) for all a ≥ 0. If in addition Ḡi(0) > Ḡj(0), we say that strategy i is strictly
stochastically dominant.

Evidently, the notion of stochastic dominance for strategies proposed here is ob-
tained by applying the usual definition of stochastic dominance from utility theory to
the strategies’ advantage distributions.

Blume (2003, Theorem 4) introduces three conditions on payoffs that are sufficient
for an equilibrium of a coordination game to be stochastically stable in any noisy best
response model; the conditions involve concavity, convexity, and skew-symmetry re-
quirements on the payoff differences 
F(x). In Theorem 3, we prove that stochastic
dominance is both sufficient and necessary to ensure stochastic stability under every
noisy best response rule.

Theorem 3. Suppose that the finite-population games {FN }∞N=N0
converge to the coordi-

nation game F : [0�1] → R
2.

(i) State ei is weakly stochastically stable under every noisy best response protocol if
and only if strategy i is stochastically dominant in F .

(ii) If strategy i is strictly stochastically dominant in F , then state ei is uniquely stochas-
tically stable under every noisy best response protocol.

The idea behind Theorem 3 is simple. The definitions of I, c̃, c, 
F , and Gi imply
that

I(1) =
∫ 1

0
c̃(
F(y))dy

=
∫ 1

0
c(F1(y)− F0(y))dy −

∫ 1

0
c(F0(y)− F1(y))dy (11)

=
∫ ∞

−∞
c(a)dG1(a)−

∫ ∞

−∞
c(a)dG0(a)�
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As we have seen, whether state 1 or state 0 is stochastically stable depends on whether
I(1) is greater than or less than I(0) = 0. This in turn depends on whether the value of
the first integral in the final line of (11) exceeds the value of the second integral. Once
we recall that the cost function c is monotone, Theorem 3 reduces to a variation on the
standard characterization of first-order stochastic dominance; namely, that distribution
G1 stochastically dominates distribution G0 if and only if

∫
c dG1 ≥ ∫

c dG0 for every
nondecreasing function c.

Proof of Theorem 3. Again view [0�1] as a sample space by endowing it with
Lebesgue measure and define Yi : [0�1] → R+ by

Yi(ω) = sup{a :Gi(a) < ω}�
Then it is easy to verify (or see Durrett 2005, Theorem 1.1.1) that Yi is a random variable
with distribution Gi. It thus follows from equation (11) that

I(1) =
∫ 1

0
c(Y1(ω))dω−

∫ 1

0
c(Y0(ω))dω� (12)

By construction we have that

Yi(ω)

⎧⎨
⎩
< 0 when ω ∈ [0�Gi(0−))

= 0 when ω ∈ [Gi(0−)�Gi(0)]
> 0 when ω ∈ (Gi(0)�1]

and that

G1(0)−G1(0−) = λ
({x ∈ [0�1] :F1(x) = F0(x)}

) = G0(0)−G0(0−)�

Thus, because c equals 0 on (−∞�0), we can rewrite (12) as

I(1) =
∫ 1

G1(0−)
c(Y1(ω))dω−

∫ 1

G0(0−)
c(Y0(ω))dω

(13)

=
∫ 1

G1(0)
c(Y1(ω))dω−

∫ 1

G0(0)
c(Y0(ω))dω�

To prove the “if” direction of part (i), suppose without loss of generality that strat-
egy 1 is stochastically dominant in F . Then G1(a) ≤ G0(a) for all a ≥ 0, so the definition
of Yi implies that Y1(ω) ≥ Y0(ω) for all ω ∈ [G1(0)�1]. Because c is nondecreasing and
nonnegative, it follows from equation (13) that I(1) ≥ I(0) and, hence, that state 1 is
weakly stochastically stable.

To prove part (ii), suppose without loss of generality that strategy 1 is strictly stochas-
tically dominant in F . Then G1(a) ≤ G0(a) for all a ≥ 0 and G1(0) < G0(0). In this case,
we not only have that Y1(ω) ≥ Y0(ω) for all ω ∈ [G1(0)�1], but also that Y1(ω) > 0 when
ω ∈ (G1(0)�G0(0)]. Because c is nondecreasing and because it is positive on (0�∞), it
follows from equation (13) that

I(1) ≥
∫ G0(0)

G1(0)
c(Y1(ω))dω> 0 = I(0)�
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and, hence, that state 1 is uniquely stochastically stable.
Finally, to prove the “only if” direction of part (i), suppose without loss of generality

that strategy 1 is not stochastically dominant in F . Then G1(b) > G0(b) for some b ≥ 0.
Now consider a noisy best response protocol with cost function

c(a) =
⎧⎨
⎩

0 if a≤ 0
1 if a ∈ (0� b]
C if a > b,

where C >G1(b)/(G1(b)−G0(b)). Then∫ ∞

−∞
c(a)dGi(a) = (Gi(b)−Gi(0))+C(1 −Gi(b))�

Therefore, equation (11) implies that

I(1) = (
(G1(b)−G1(0))− (G0(b)−G0(0))

) +C
(
(1 −G1(b))− (1 −G0(b))

)
≤ G1(b)+C(G0(b)−G1(b))

< 0�

implying that state 1 is not weakly stochastically stable. This completes the proof of the
theorem. �

Theorem 3 allows a simple proof of Blume’s (2003) characterization of stochastic
stability in coordination games with linear payoffs under noisy best response rules. The
proof of the corollary below boils down to the observation that in linear coordination
games, risk dominance and stochastic dominance are equivalent.

Corollary 2. Let F be a coordination game with linear payoffs. Then under any noisy
best response protocol, state ei is uniquely stochastically stable if and only if strategy i is
strictly risk dominant.

Proof. Since F is a linear coordination game, 
F(x) = k(x − x∗) for some k > 0, im-
plying that Ḡ0(a) = max{x∗ − k−1a�0} and that Ḡ1(a) = max{(1 − x∗) − k−1a�0} when
a ≥ 0. It follows immediately from Observation 1 that strategy i is strictly risk dominant
if and only if it is strictly stochastically dominant. The corollary then follows from The-
orem 3. �

6. Conclusion

This paper considers the robustness of stochastic stability analysis to the order of limits
used in defining stochastic stability and to the specification of the agents’ choice rule.
We show that in noisy best response models, the asymptotics of the stationary distribu-
tion are independent of the order in which the small noise and large population limits
are taken; thus, definitions of stochastic stability based on either order of limits yield
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identical predictions. We then introduce the notion of a stochastically dominant strat-
egy, and establish that coordination on a strategy is stochastically stable under any noisy
best response rule if and only if that strategy is stochastically dominant.

By focusing on games with just two strategies, we are able to exploit the existence of
an explicit formula for the stationary distribution μη�N . However, the questions studied
here can be posed just as easily in the context of games with many strategies. Extending
the foregoing analysis to this broader strategic context is an important and challenging
direction for future research.

Appendix

Proof of Theorem 1. To begin, we define ρ̃η :R → R by

ρ̃η(a) = ρη(a)

ρη(−a)
�

Note that by the definition (7) of the relative cost function, we have

c̃(a) = lim
η→0

η log ρ̃η(a)�

and that rewriting equation (9) in terms of ρ̃ yields

log
μ
N�η
x

μ
N�η
0

=
Nx∑
j=1

(
log ρ̃η

(
FN

1

(
j

N

)
− FN

0

(
j − 1
N

))
+ log

N − j + 1
j

)
� (14)

To begin the proof of part (i), use equation (14) and the definition of c̃ to show that

lim
η→0

η

N
log

μ
N�η
x

μ
N�η
0

= lim
η→0

Nx∑
j=1

η

N

(
log ρ̃η

(
FN

1

(
j

N

)
− FN

0

(
j − 1
N

))
+ log

(N − j + 1)
j

)

= 1
N

Nx∑
j=1

c̃

(
FN

1

(
j

N

)
− FN

0

(
j − 1
N

))

for all x ∈ XN . Because XN is a finite set, this limit is uniform in x: if we let

IN(x) = 1
N

Nx∑
j=1

c̃

(
FN

1

(
j

N

)
− FN

0

(
j − 1
N

))

(which implies, in particular, that IN(0) = 0), we have

lim
η→0

max
x∈XN

∣∣∣∣ ηN log
μ
N�η
x

μ
N�η
0

− IN(x)

∣∣∣∣ = 0� (15)

Recall that the finite-population games FN :XN → R
2 converge uniformly to the

limit game F : [0�1] → R
2 as described in equation (1), that F is bounded and piecewise
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continuous, and that c̃ is nondecreasing and, hence, bounded on compact intervals. It
follows that if we define the functions vN : [0�1] → R by

vN(x) =
{
c̃
(
FN

1

( �Nx�
N

) − FN
0

( �Nx�−1
N

))
if x ∈ (0�1]

c̃(F1(0)− F0(0)) if x= 0,

then the vN are uniformly bounded and converge almost surely to v(x) ≡ c̃(F1(x) −
F0(x)). By construction, we have that IN(x) = ∫ x

0 vN(y)dy for all x ∈ XN . Thus, because
I(x) = ∫ x

0 v(y)dy for all x ∈ [0�1], equation (15), the triangle inequality, and the bounded
convergence theorem imply that

lim
N→∞

lim
η→0

max
x∈XN

∣∣∣∣ ηN log
μ
N�η
x

μ
N�η
0

− I(x)

∣∣∣∣ ≤ lim
N→∞

max
x∈XN

|IN(x)− I(x)| = 0� (16)

For each fixed N , let xN∗ be a maximizer of IN on XN . Then the uniform convergence
established in (16) implies that

lim
N→∞

IN(xN∗ ) = I(x∗)� where x∗ ∈ arg max
x∈[0�1]

I(x)� (17)

We claim that

lim
η→0

η
N logμN�η

xN∗
= 0� (18)

If this is true, then equation (15) implies that

lim
η→0

max
x∈XN

∣∣∣∣ ηN logμN�η
x − (IN(x)− IN(xN∗ ))

∣∣∣∣
= lim

η→0
max
x∈XN

∣∣∣∣
(
η

N
log

μ
N�η
x

μ
N�η
0

− IN(x)

)
(19)

−
(
η

N
log

μ
N�η

xN∗
μ
N�η
0

− IN(xN∗ )

)
+ η

N
logμN�η

xN∗

∣∣∣∣
= 0�

Then (19), (16), and (17) yield

lim
N→∞

lim
η→0

max
x∈XN

∣∣∣∣ ηN logμN�η
x −
I(x)

∣∣∣∣
= lim

N→∞
lim
η→0

max
x∈XN

∣∣(IN(x)− IN(xN∗ ))− (I(x)− I(x∗))
∣∣ = 0�

(20)

proving part (i) of the theorem.
To establish (18), first suppose to the contrary that there is a sequence {ηk} con-

verging to zero along which the limit in (18) is −c < 0. In this case, the reasoning in
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equation (19) implies that

lim
ηk→0

max
x∈XN

∣∣∣∣ηk

N
logμN�ηk

x − (IN(x)− IN(xN∗ )− c)

∣∣∣∣ = 0�

Because IN(x) ≤ IN(xN∗ ) for all x ∈ XN , it follows that for ηk far enough along the se-

quence, we have (ηk/N) logμN�ηk

x ≤ −c/2 for all x ∈ XN and, hence,

∑
x∈XN

μ
N�ηk

x =
∑

x∈XN

exp
(
N

ηk
· η

k

N
logμN�ηk

x

)
≤ (N + 1)exp

(
− cN

2ηk

)
�

The last expression vanishes as k grows large, contradicting the fact that μN�ηk
is a prob-

ability measure.

Second, suppose contrary to (18) that there is a sequence {ηk} converging to zero

along which the limit in (18) is c > 0. Then by definition, there is a sequence {δk} con-

verging to zero such that

μ
N�ηk

xN∗
= exp

(
N
ηk (c + δk)

)
�

The right hand expression grows without bound as k grows large, contradicting the fact
that μN�ηk

is a probability measure. This completes the proof of part (i).

We proceed with the proof of part (ii). Equation (14) implies that

η

N
log

μ
N�η
x

μ
N�η
0

= η

N

Nx∑
j=1

log ρ̃η
(
FN

1

(
j

N

)
− FN

0

(
j − 1
N

))

+ η

N

Nx∑
j=1

log
N − j + 1

N
− η

N

Nx∑
j=1

log
j

N
�

(21)

Now ρη is bounded away from zero, and 0 ≥ log(�Nx�/N) ≥ log(x) and 0 ≥ log((N −
�Nx� + 1)/N) ≥ log(1 − x) for x ∈ (0�1). Thus, following the logic used to establish (16)

(but applying the dominated convergence theorem to the second and third sums in (21))

yields

lim
N→∞

η

N
log

μ
N�η
x

μ
N�η
0

=
∫ x

0
η

(
log ρ̃η(F1(y)− F0(y))+ log(1 − y)− log(y)

)
dy

(22)
=

∫ x

0
η log ρ̃η(
F(y))dy −η(x logx+ (1 − x) log(1 − x))�

where the limit is taken over those N for which x ∈ XN and where we follow the conven-

tion that 0 log 0 = 0. Moreover, because increasing the length of the interval of integra-
tion [0�x] only worsens the bound on the speed of convergence in (22), the worst bound
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obtains when x= 1. This implies that convergence in (22) is uniform in x: if we let

h(x) = −(x logx+ (1 − x) log(1 − x))
(23)

Iη(x) =
∫ x

0
η log ρ̃η(
F(y))dy +ηh(x)�

we have

lim
N→∞

max
x∈XN

∣∣∣∣ ηN log
μ
N�η
x

μ
N�η
0

− Iη(x)

∣∣∣∣ = 0� (24)

Because payoffs are bounded and convergence in (2) is uniform on compact intervals,
the bounded convergence theorem implies that

lim
η→0

∫ x

0
η log ρ̃η(
F(y))dy =

∫ x

0

(
lim
η→0

η log ρ̃η(
F(y))
)
dy

=
∫ x

0
c̃(
F(y))dy

= I(x)

uniformly in x. This fact, the previous two equations, and the triangle inequality yield

lim
η→0

lim
N→∞

max
x∈XN

∣∣∣∣ ηN log
μ
N�η
x

μ
N�η
0

− I(x)

∣∣∣∣ = 0� (25)

The remainder of the proof of part (ii) is similar to the second part of the proof of part
(i). For each η, let xη∗ be a maximizer of Iη on [0�1]. Evidently, limη→0 I

η(x
η∗ ) = I(x∗)�

where x∗ maximizes I on [0�1]. Now we claim that

lim
N→∞

η

N
logμN�η

x
η∗

= 0� (26)

If this is true, then using equations (24) and (25) to mimic the analogous argument
(equations (19) and (20)) from the proof of part (i) establishes part (ii) of the theorem.
However, (26) can be verified through essentially the same argument used to verify (18)
in the proof of part (i). Thus, part (ii) is established and the proof of the theorem is com-
plete. �

Proof of Theorem 2. Equation (14) implies that

ηN

N
log

μ
N�ηN

x

μ
N�ηN

0

= 1
N

Nx∑
j=1

ηN log ρ̃η
N
(
FN

1

(
j

N

)
− FN

0

(
j − 1
N

))

+ηN

(
1
N

Nx∑
j=1

log
N − j + 1

j

)
�

(27)

The proof of Theorem 1(ii) shows that the expression in parentheses converges to
h(x) uniformly in x as N approaches infinity. Because h is bounded on [0�1] and
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limN→∞ ηN = 0, the second summand in (27) converges to zero uniformly in x as N

approaches infinity.
To contend with the first summand in (27), recall that (i) FN :XN → R

2 converges
uniformly to the bounded, piecewise continuous function F :X → R

2 as N approaches
infinity, (ii) η log ρ̃η(π) converges to c̃(π) as η approaches zero, with convergence uni-
form on compact intervals, and (iii) c̃ is nondecreasing and, hence, bounded on com-
pact intervals. Therefore, if we define the functions wN : [0�1] → R by

wN(x) =
{
ηN log ρ̃η

N (
FN

1

( �Nx�
N

) − FN
0

( �Nx�−1
N

))
if x ∈ (0�1]

ηN log ρ̃η
N
(F1(0)− F0(0)) if x = 0,

then the wN are uniformly bounded and converge almost surely to v(x) ≡ c̃(F1(x) −
F0(x)). Because the first summand in (27) is equal to

∫ x
0 wN(y)dy, the bounded con-

vergence theorem implies that this summand converges to I(x) = ∫ x
0 v(y)dy uniformly

in x as N approaches infinity.
Combining these arguments shows that

lim
N→∞

max
x∈XN

∣∣∣∣ηN

N
log

μ
N�ηN

x

μ
N�ηN

0

− I(x)

∣∣∣∣ = 0�

The remainder of the proof is similar to the second half of the proof of Theorem 1(i). �

Proof of Corollary 1. We consider only the first double limit in (10); the proof for
the other double limit is virtually identical. Moreover, once we prove the first statement
in the corollary, the second follows immediately.

To prove the first statement, suppose that x ∈ [0�1] does not maximize I, so that

I(x) < 0. Because I is continuous, we can find an open set O containing x such that for
some ε > 0, we have 
I(y) <−ε for all y ∈O. Now define

d
N�η
x = η

N logμN�η
x −
I(x)� dN�η = max

x∈XN
|dN�η

x |� and dN = lim
η→0

dN�η�

Theorem 1 tells us that dN exists for all large enough N and that limN→∞ dN = 0. It
follows that there is an N such that dN < ε/3 whenever N ≥ N and, thus, that for each
such N there is an η(N) > 0 such that dN�η < 2ε/3 whenever N ≥ N and η≤ η(N).

Using Theorem 1 once more, we see that for N ≥N , η≤ η(N), and y ∈ O, we have

μ
N�η
y = exp

(
η−1N(
I(y)+ d

N�η
y )

)
< exp

(−η−1N · 1
3ε

)
�

Therefore, μN�η(O) < (N + 1)exp(−η−1N · 1
3ε), which implies that

lim
N→∞

lim
η→0

μN�η(O) = 0�
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Thus, x is not stochastically stable. This competes the proof of the corollary. �
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