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Non-Bayesian updating: a theoretical framework
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This paper models an agent in a multi-period setting who does not update accord-
ing to Bayes’ Rule, and who is self-aware and anticipates her updating behavior
when formulating plans. Choice-theoretic axiomatic foundations are provided to
capture updating biases that reflect excessive weight given to either prior beliefs,
or, alternatively, to observed data. A counterpart of the exchangeable Bayesian
learning model is also described.
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1. I

Epstein (2006) models an agent who does not update according to Bayes’ Rule, but is
self-aware and anticipates her updating behavior when formulating plans. He provides
axiomatic foundations for his model in the form of a representation theorem for suit-
ably defined preferences such that both the prior and the way in which it is updated are
subjective. The model is nested in a three-period framework, where the agent updates
once and consumption occurs only at the terminal time. This paper extends the model
to an infinite horizon setting, thereby enabling it to address dynamic issues and making
it more amenable to applications.

The benchmark for the present model is the standard specification of utility in dy-
namic modeling, whereby utility at time t is given by

Ut (c ) = E t

� ∞
∑

τ=t

δτ−t u (cτ)
�

t = 0, 1, . . . , (1)
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where c = (cτ) is a consumption process, δ and u have the familiar interpretations,
and E t denotes the expectation operator associated with a subjective prior updated by
Bayes’ Rule. Our model generalizes (1), to which it reduces when updating conforms to
Bayes’ Rule.

The model shares some similarities with the Gul and Pesendorfer (2001, 2004) model
of temptation and self-control.1 While these authors (henceforth GP) focus on behav-
ior associated with non-geometric discounting, we adapt their approach to model non-
Bayesian updating. The connection drawn here between temptation and updating is
as follows: at period t , the agent has a prior view of the relationship between the next
observation s t+1 and the future uncertainty (s t+2, s t+3, . . . ) that she considers ‘correct.’
But after observing a particular realization s t+1, she changes her view on the noted re-
lationship. For example, she may respond exuberantly to a good (or bad) signal after it
is realized and decide that it is an even better (or worse) signal about future states than
she had thought ex ante. She tries to resist the temptation to behave in accordance with
the new view rather than in accordance with the view she considers correct. Temptation
might be resisted but at a cost. Thus she acts as though forming a compromise posterior
belief; it differs from what would be implied by Bayesian updating of the original prior
and in that sense reflects non-Bayesian updating. The exuberant agent described above
would appear to an outside observer as someone who overreacts to data.

An important feature of our model from the point of view of applications is its rich-
ness: just as the Savage and Anscombe–Aumann theorems provide foundations for sub-
jective expected utility theory without restricting beliefs, the present framework im-
poses a specific structure for preferences without unduly restricting the nature of up-
dating. We demonstrate richness by describing specializations that capture excessive
weight given, at the updating stage, to prior beliefs, or alternatively, to the observed data.
In addition, we describe a counterpart of the exchangeable Bayesian learning model.

To illustrate the scope of our framework, consider an agent who is trying to learn the
true parameter in a setΘ. Updating of beliefs in response to observations s1, . . . , s t , leads
to the process of posteriors {µt }, where each µt is a probability measure onΘ. Bayesian
updating leads to the process

µt+1 = BU (µt ; s t+1),

where BU (µt ; s t+1) denotes the Bayesian update of µt . One alternative consistent with
our model is the process

µt+1 = (1−κt+1)BU (µt ; s t+1)+κt+1µt ,

where κt+1 ≤ 1. If κt+1does not depend on the latest observation s t+1 and if κt+1 > 0,
then the updating rule can be interpreted as attaching too much weight to prior beliefs
µt and hence underreacting to observations. Another alternative has the form

µt+1 = (1−κt+1)BU (µt ; s t+1)+κt+1ψt+1,

1At a technical level, we rely heavily on generalizations of the Gul–Pesendorfer model proved by Kopylov
(2007).
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where ψ0 is a suitable noninformative prior and subsequent ψt ’s are obtained via
Bayesian updating. This updating rule for the posteriors µt can be interpreted (under
the assumptions for κt+1 stated above) as attaching too much weight to the sample.2

Several systematic deviations from Bayesian updating have been observed in ex-
perimental psychology; see Tversky and Kahneman (1974) and the surveys by Camerer
(1995) and Rabin (1998), for example. This evidence deals with the updating of objective
probabilities. Thus models such as Rabin (2002) and Mullainathan (2000), for example,
that address the experimental evidence take probabilities as directly observable. In con-
trast, we follow the Savage tradition and address the seemingly more relevant case where
probabilities are subjective; indeed, our model of (or story about) updating, is more in-
tuitive if probabilities are subjective. This forces us to focus on behavior, in the form of
axioms on preferences, that reveals both beliefs and updating. (The cited models that
assume objective probabilities are not explicit about the associated model of choice.)
Though our model does not address the experimental evidence directly, the two never-
theless are related. This is because one suspects that some of the biases noted in the
experimental literature would be exhibited also when updating subjective probabilities,
and because, as will become evident, our framework is rich enough to accommodate a
wide range of deviations from Bayesian updating.

The paper proceeds as follows. Section 2 defines the formal domain of choice, the
space of contingent menus, and then functional forms for conditional utility functions.
Some specializations corresponding to specific updating biases and to learning about
parameters are described in Section 3. Finally, axiomatic foundations are provided in
Section 4. Proofs are collected in the Appendix.

2. U

2.1 Primitives

Time is discrete and varies over t = 0, 1, 2, . . . . Uncertainty is represented by a (finite)
period state space S, one element of which is realized at each t . Thus the complete
uncertainty is represented by the full state space ×∞t=1St , where St = S for all t > 0. The
period consumption space is C t = C , a compact metric mixture space.3 Though we
often refer to c t in C t as period t consumption, it is more accurately thought of as a
lottery over period t consumption. Thus we adopt an Anscombe–Aumann style domain
where outcomes are lotteries. Information available at t is given by the history s t

1 =
(s1, . . . , s t ). Thus time t consumption, conditional beliefs, conditional preferences, and
so on, are taken to be suitably measurable, though dependence on s t

1 is often suppressed
in the notation.

2While this paper focuses on presenting the framework, in Epstein et al. (2008) we apply the framework
to ask: what do non-Bayesian updaters learn? We show, for instance, that multiple repetitions of non-
Bayesian updating rules that underreact to observations uncover the true data generating process with
probability one, while non-Bayesian updaters who overreact can, with positive probability, become certain
that a false parameter is true and thus converge to incorrect forecasts.

3We use this term to include the property that the mixture operation (c , c ′,α) 7−→ αc + (1−α)c ′ is con-
tinuous with respect to the product metric on C ×C × [0, 1].
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choose (c0, F0) choose (c1, F1)∈ F0(s1) choose (c2, F2)∈ F1(s2)

t = 0 t = 1 t = 2
observe s1 observe s2

F 1. The time line.

For any compact metric space X , the set of acts from S into X is XS ; it is endowed
with the product topology. A closed (hence compact) subset of C ×XS is called a menu
(of pairs (c , F ), where c ∈C and F ∈ XS). Denote byM (X ) the set of all compact subsets
of X , endowed with the Hausdorff metric. Analogously,M (C ×XS) is the set of menus
of pairs (c , F ) as above; it inherits the compact metric property (Aliprantis and Border
1994, Section 3.16).

Consider a physical action taken at time t , where consumption at t has already been
determined. The consequence of that action is a menu, contingent on the state s t+1,
of alternatives for t + 1, where these alternatives include both choices to be made at
t +1—namely, the choice of both consumption and also another action. This motivates
identifying each physical action with a contingent menu, denoted F , where

F : S −→M (C ×C ), (2)

and C denotes the space of all contingent menus. The preceding suggests that C can
be identified with (M (C ×C ))S . Appendix A shows the existence of a (compact metric)
C satisfying the homeomorphism

C ≈
homeo

(M (C ×C ))S . (3)

Hence, we identify any element ofC with a mapping F as in (2).
Though the domainC is time stationary and applies at every t , when we wish to em-

phasize that a particular choice is made at t , we write that the agent chooses contingent
menu Ft ∈Ct ,

Ft : St+1 −→M (C t+1×Ct+1), (4)

where Ct = Ct+1 = C . (Keep in mind that we have previously defined St+1 = S and
C t+1 =C .)

The final primitive is a process of preference relations (�t )∞t=0, one for each time t
and history s t

1 , where the domain of�t is C t ×Ct . At time 0, the agent uses�0 to choose
(c0, F0) in C0×C0. She does this as though anticipating the following: at 1−, a signal s1 is
realized, and this determines a menu F0(s1)⊂C1×C1; at time 1, she updates and uses the
order �1 (which corresponds to the history s1) to choose some (c1, F1) from F0(s1). She
consumes c1 and her (contingent) options for the future are described by F1. Continuing
in this way, and given some previous choice of contingent menu Ft , she observes a signal
s t+1, updates and then uses the order�t+1 (corresponding to the history (s1, s2, . . . , s t+1))
to choose some (c t+1, Ft+1) from Ft (s t+1). (See Figure 1.)

This completes the description of the primitives and the setting. Before presenting
the formal model we outline the story behind it with the help of the above time line.
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At time 0 the agent formulates a prior over the full state space ×∞t=1St . She uses this
to evaluate any alternative (c0, F0), which describes contingent options. She is forward-
looking and so her evaluation of (c0, F0) also takes into consideration what choice she
expects to make from F0(s1) at time 1, for each s1. She anticipates that her choice will
be subject to temptation: she will be tempted at that time to deviate from the view of
the world she possesses at time 0, and to use a ‘temptation belief’ to guide her choice.
Depending on how successful she is at exerting self-control, she will end up using a
compromise belief to guide her choice at time 1: this is a mixture of the temptation
belief and the Bayesian update of her time 0 belief. To an outside observer, she is thus
not a Bayesian updater. At time 1 she will be in the same position she was at time 0,
possessing some view of the world and anticipating a struggle at time 2 with temptation
to deviate from this view. So on and so forth for all t .

2.2 Functional form

We describe the representation of (�t ); axiomatic foundations are deferred to Section 4.
Components of the functional form include: a discount factor 0 < δ < 1, u : C −→ R1

linear, continuous, and nonconstant, a probability measure p0 on S1 with full support,
and an adapted process (p t ,qt ,αt )∞t=1, where,4

αt ∈ (0, 1], p t ,qt ∈∆(St+1), and each p t has full support.

For each (c t , Ft )∈C t ×Ct , define

Ut (c t , Ft ) = u (c t )+δ

∫

St+1

Ut+1(Ft (s t+1), s t+1)d p t , t ≥ 0, (5)

Vt (c t , Ft ) = u (c t )+δ

∫

St+1

Ut+1(Ft (s t+1), s t+1)d qt , t > 0, (6)

where Ut+1(·, s t+1) :M (C t+1×Ct+1)−→R1 is defined recursively by5

Ut+1(M , s t+1) = max
(ct+1,Ft+1)∈M

�

Ut+1(c t+1, Ft+1)

+
1−αt+1

αt+1

�Vt+1(c t+1, Ft+1)− max
(c ′t+1,F ′t+1)∈M

Vt+1(c ′t+1, F ′t+1)
�

�

.
(7)

Then �0 is represented by U0(·) and for each t > 0, �t is represented by αtUt (·) +
(1−αt )Vt (·).

The Bayesian intertemporal utility model (1) is specified by u , δ, and a process (p t )
of one-step-ahead conditionals, which determines a unique prior on the full state space

4∆(S) is the set of probability measures on the finite set S. A stochastic process (X t ) on ×∞1 Sτis adapted
if X t is measurable with respect to theσ-algebraSt that is generated by all sets of the form {s1}×· · ·×{s t }×
×∞t+1Sτ. Below we often write p t (·) rather than p t (· | s t

1 ). When we want to emphasize dependence on the
last observation s t , we write p t (· | s t ). Similarly, history is suppressed from our notation when we write
Ut (c t , Ft ) and Vt (c t , Ft ).

5See Theorem 1 for conditions under which utility is well-defined by this recursion.
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×∞1 St . It is obtained as the special case where (1−αt )(qt − p t ) ≡ 0 for all t . Then (7)
reduces to

Ut+1(M , s t+1) = max
(ct+1,Ft+1)∈M

Ut+1(c t+1, Ft+1),

and �t is represented by

Ut (c t , Ft ) = u (c )+δ

∫

St+1

�

max
(ct+1,Ft+1)∈Ft+1(st+1)

Ut+1(c t+1, Ft+1)
�

d p t , (c t , Ft )∈C t ×Ct .

This is the standard model in the sense that it extends the model of utility over consump-
tion processes given by (1) to contingent menus by assuming that menus are valued ac-
cording to the best alternative they contain (a property termed strategic rationality by
Kreps 1988). In particular, time t conditional beliefs about the future are obtained by
applying Bayes’ Rule to the prior on×∞1 St that is induced by the one-step-ahead condi-
tionals (p t ).

More generally, two processes of one-step-ahead conditionals, p t ’s and qt ’s, must be
specified, as well as the process ofαt ’s. The way in which these deliver non-Bayesian up-
dating is explained below along with further discussion and interpretation. Sections 3.1
and 3.2 provide several examples. See also Epstein (2006) for discussion in the context
of a three-period model.

2.3 Interpretation

To facilitate interpretation, and also for later purposes, consider some subclasses ofCt .
The contingent menu Ft provides commitment for the next period if Ft (s t+1) is a sin-
gleton for each s t+1. The set of contingent menus that provide commitment for all fu-
ture periods is denoted by C c

t =C c ⊂C . Each Ft in C c
t determines a unique (random

variable) consumption process c Ft = (c Ft
τ )τ≥t . If each c Ft

τ is measurable with respect to
information at time t +1, then all uncertainty is resolved next period; the set of all such
contingent menus is C c ,+1

t = C c ,+1 ⊂ C c .6 An example is a (one-step-ahead) bet on
the event G ⊂St+1, which pays off with a good deterministic consumption stream if the
state next period lies in G and with a poor one otherwise.

For any c t and contingent menu Ft that provides commitment (Ft ∈C c
t ), we have

Ut (c , F ) = u (c t )+δ

∫

St+1

Ut+1(Ft (s t+1), s t+1)d p t (s t+1).

It follows that if F ∈C c
0 , then

U0(c , F ) =

∫

S1×S2×...

∞
∑

1

δt−1u (c F
t )d P0(·),

where c F is the consumption process induced by F as just explained, and P0(·) is the
unique measure on ×∞1 St satisfying, for every T ,

P0(s1, s2, . . . , sT+1) = p0(s1)× · · ·×p t (s t+1 | s t
1 )× · · ·×pT (sT+1 | s T

1 ).

6See Appendix A for some formal details regardingC c andC c ,+1.
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Thus�0 restricted toC c
0 conforms to subjective expected (intertemporally additive)

utility with prior P0. The ranking of commitment prospects at 0 leaves no choices to be
made later and thus reveals nothing about future updating—P0 reflects only an ex ante
view.

To interpret P0 further, consider its one-step-ahead conditionals p t for t ≥ 1. Be-
cause these conditional beliefs are formed for contingencies that are ‘distant’ (at least
two periods ahead), they are based on a degree of detachment and objectivity and thus
the agent views them as ‘correct.’7 She continues to view them as correct as time passes.
If she were not subject to other influences, her posterior at t would be

Pt (s t+1, s t+2, . . . , sT+1 | s t
1 ) = p t (s t+1 | s t

1 )× · · ·×pT (sT+1 | s T
1 ),

the Bayesian update of P0. However, as explained shortly, she may update differently
and be led to different posteriors.

Her actual updating underlies the preference�t prevailing after an arbitrary history
s t

1 . By assumption, �t is represented by αtUt (·) + (1−αt )Vt (·). To proceed, define the
one-step-ahead conditional measure m t by: m0 = p0 and, for t > 0,

m t (s t+1) =m t (s t+1 | s t
1 ) =αt p t (s t+1 | s t

1 )+ (1−αt )qt (s t+1 | s t
1 ).

Next, compute that for any c t and any contingent menu Ft ∈C c
t that provides commit-

ment for periods beyond t ,

αtUt (c t , Ft )+ (1−αt )Vt (c t , Ft ) = u (c t )+δ

∫

St+1

Ut+1(Ft (s t+1), s t+1)d m t (s t+1)

=

∫

St+1×St+2×···

∞
∑

t+1

δτ−t−1u (c Ft
τ )dQt (· | s t

1 ),

where Qt (· | s t
1 ) is the unique measure on ×∞t+1Sτ satisfying, for every T ,

Qt (s t+1, s t+2, . . . , sT+1|s t
1 ) =m t (s t+1 | s t

1 )×p t+1(s t+2 | s t+1
1 )× · · ·×pT (sT+1 | s T

1 ).

Evidently, at t the agent’s behavior (at least within C c
t ) corresponds to the posterior

Qt (· | s t
1 ), and this differs from the period 0 perspective Pt (· | s t

1 ). Note that Qt is not the
Bayesian update of P0, nor is it the Bayesian update of Qt−1. The difference between Pt

and Qt lies in the way that one-step-ahead beliefs over St+1 are formulated—the condi-
tional one-step-ahead belief actually adopted at t is m t (·), whereas the one that seems
appropriate from the perspective of the initial period is p t (·).8

7Since p0 is not relevant to the subsequent response to signals, its interpretation is less important here.
See the comments at the end of the section.

8The behavioral meaning of m t is sharper if we restrict attention to contingent menus in C c ,+1
t (pro-

viding perfect commitment and such that all uncertainty resolves at t + 1). Then beliefs about states in
St+2 ×St+3 × · · · are irrelevant, so we conclude that m t guides the ranking of such contingent menus; for
example, it guides the ranking of bets on St+1. Because the ranking of one-step-ahead bets, and more
specifically the way in which it depends on past observations, is a common and natural way to understand
updating behavior, we refer to m t frequently below when considering more specific models.
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The story underlying the noted difference between Pt and Qt is as follows: consider
the evaluation of a pair (c t , Ft ) in C t ×Ct after having observed the history s t

1 . The
functions Ut and Vt describe two ways that (c t , Ft ) may be evaluated. Both evaluate
immediate consumption c t in the same way, and they discount the expected utility of
the contingent menu Ft in the same way as well. However, they disagree on how to
compute the expected utility of Ft : Ut uses p t and Vt uses qt . The former is the ‘cor-
rect’ one-step-ahead conditional. But in our model, after having observed s t

1 , the agent
changes her view of the world to the one-step-ahead conditional qt . For instance, if s t

1
represents a run of bad signals, she may believe that the likelihood of another bad state
is higher than her ex ante assessment. Alternatively, she may feel that a good signal ‘is
due’ and thus assign it a higher conditional probability than she did when anticipating
possibilities with the cool-headedness afforded by temporal distance. Thus there are
conflicting incentives impinging on the agent at t . The period 0 perspective calls for
maximizingUt , but having seen the sample history s t

1 and having changed her view of
the world, she is tempted to maximize Vt . Resisting temptation is costly and she recog-
nizes that the time 0 perspective is ‘correct.’ She is led to compromise and to maximize
αtUt (·) + (1−αt )Vt (·), the utility function representing �t . The corresponding behav-
ior is as though she used the compromise one-step-ahead conditional αt p t +(1−αt )qt ,
which is just m t . The parameter αt captures her ability to resist temptation.

The cost of self-control incurred when compromising betweenUt (·) and Vt (·) is re-
flected not in the representation of�t , but rather in that of�t−1, specifically in the utility
of a menu M t ∈M (C t ×Ct ) given by the function Ut (M t , s t ). The nonpositive term

1−αt

αt

�

Vt (c t , Ft )− max
(c ′t ,F ′t )∈M t

Vt (c ′t , F ′t )
�

≤ 0,

appearing in (7) can be interpreted as the utility cost of self-control. Thus (7) states that
for any menu M t received after the history s t

1 , Ut (M t , s t ) is the maximum over M t of
Ut (·) net of self-control costs. Observe that this maximization is equivalent to

max
(ct ,Ft )∈M t

�

Ut (·)+ 1−αt

αt
Vt (·)

�

,

and that Ut (·) + ((1− αt )/αt )Vt (·) represents �t . Thus (7) suggests that choosing the
�t -best element in M t involves incurring a utility cost of self-control.

Unlike a standard agent, our agent may later deviate from her current view of con-
ditional likelihoods. Indeed, she is “dynamically inconsistent” in the sense that she may
not follow through with a committed contingent consumption plan in C c

t if somehow
she has the opportunity to undo previous commitments. Our agent is also self-aware
and forward looking—she anticipates at any time t that she will later adopt conditional
beliefs different from those that seem correct now. Thus she may value commitment: a
smaller menu may be strictly preferable because it could reduce self-control costs.9 In
spite of the value of commitment, the above constitutes a coherent model of dynamic

9Indeed, since temptation arises only because of non-Bayesian updating, the agent exhibits a preference
for commitment if and only if she is a non-Bayesian updater.
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choice. Unlike the case in the modeling approach growing out of Strotz (1955), there
is no need to add assumptions about how the agent resolves her intertemporal incon-
sistencies. If you like, these resolutions are already embedded in her utility function
defined on contingent menus. This aspect of the model uses the insight of GP.

A difference from GP is in terms of the primitives of the model. The primitive
adopted by GP, and also by Epstein (2006), is a single preference ordering that describes
choices at one point in time. A story about choices in subsequent periods is only “sug-
gested” by the primitive preference and, in particular, its representation. In our model,
the primitive consists of in-principle-observable preferences in each period.10 Foun-
dations for our model thus specify the testable implications for dynamic choice, as op-
posed to implications only for period 0 preference as in GP and Epstein (2006).

Finally, a comment on the seeming asymmetry in the representations of �0 and �t

for t > 0 is in order. The utility function αtUt (·) + (1−αt )Vt (·) for t > 0 makes explicit
the conflict experienced by the agent in forming the belief m t over St+1. The repre-
sentation U0(·) for �0 is agnostic in this regard: it says nothing beyond the fact that at
0 the agent has some belief p0 over S1, which may or may not have been formed after
resolving some conflict. Thus the representations tell the same story, except that the
decomposition of p0 into its ‘correct’ and temptation components is not specified. The
reason for the latter stems from the fact that, as in GP, we take a preference for commit-
ment as the behavioral manifestation of a conflict—the decomposition of the belief m t

into its correct ‘p t ’ and temptation ‘qt ’ components is based on preferences, in partic-
ular on attitudes towards commitment opportunities, prevailing at time t −1. A similar
decomposition of p0 would involve preferences in (unmodeled) periods prior to time
0. The reader should note, however, that p0 is not relevant for understanding updating
behavior, and consequently, its decomposition is of little interest for our purposes.

3. S 

The framework described above is rich. One way to see this is to focus on one-step-
ahead beliefs at any time t + 1. As pointed out in the previous section, these are repre-
sented by m t+1 = αt+1p t+1 + (1−αt+1)qt+1, while Bayesian updating of time t beliefs
would lead to beliefs described by p t+1. Thus, speaking roughly, updating deviates from
Bayes’ Rule in a direction given by qt+1−p t+1 and to a degree determined by αt+1, nei-
ther of which is constrained by our framework. Consequently, the modeler is free to
specify the nature and degree of the updating bias, including how these vary with his-
tory, in much the same way that a modeler who works within the Savage or Anscombe–
Aumann framework of subjective expected utility theory is free to specify beliefs as she
sees fit. To illustrate, we describe specializations of the model that impose structure on
updating. Two alternatives are explored, whereby excess weight at the updating stage is
given to either (i) prior beliefs, or (ii) the sample frequency. In both cases, restrictions
are imposed on the relation between qt+1 and p t+1, but not on αt+1; thus they limit the
direction but not the magnitude of the updating bias.11 We also consider a specification

10In this respect, our model is related to Noor (2008).
11Axiomatic characterizations of these specializations are given in Section 4.2.
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choose (c t , Ft ) ∈ Ft−1(s t ) choose (c t+1, Ft+1)∈ Ft (s t+1)

t t +1
observe s t observe s t+1 observe s t+2

F 2. The time line.

of our model so as to capture the case where the data generating process is unknown up
to a parameter.

3.1 Updating biases

The first specialization, termed prior-bias, corresponds to the restriction

qt+1(· | s t+1) = (1−λt+1)p t+1(· | s t+1)+λt+1

∑

s ′t+1

m t (s ′t+1)p t+1(· | s ′t+1), (8)

for some adapted process (λt ) with λt+1 ≤ 1.12 We use the term (i) positive prior-bias or
(ii) negative prior-bias if (8) is satisfied with respectively (i) 0≤λt+1 ≤ 1 and (ii) λt+1 ≤ 0.
Note that (8) defines all qt ’s inductively given the p t ’s and λt ’s. Thus the corresponding
model of utility is completely specified by δ ,u , p0, and the process (p t ,αt ,λt )t≥1.

To interpret (8), think of the agent at time t > 0, after the history s t
1 has been realized,

holding a view about ×∞t+1Sτ, and in particular about St+2. On observing the further
realization s t+1 at t + 1, she forms new beliefs about St+2 by updating this view. (See
Figure 2.) The restriction (8) implies that when updating, she attaches inordinate weight
to prior (time t ) beliefs over St+2.

To see why, recall from the previous section that at t , after the history s t
1 , the agent’s

beliefs about future uncertainty are captured by the measure

Qt (s t+1, s t+2, . . . , sT+1 | s t
1 ) =m t (s t+1)p t+1(s t+2 | s t+1

1 )× · · ·×pT (sT+1 | s T
1 ).

Refer to this measure as the agent’s prior view at t . The measure

∑

s ′t+1

m t (s ′t+1)p t+1(· | s ′t+1)

represents beliefs about St+2 held at t ; refer to it as the prior view of St+2 at t , while the
measure p t+1(· | s t+1) over St+2 is the Bayesian update of the prior view at t conditional
on observing s t+1. If λt+1 = 0 or qt+1 = p t+1, then updating consists of responding to
data by applying Bayes’ Rule to the prior view. On the other hand, if λt+1 = 1, then
the prior view of St+2 (expressed by

∑

s ′t+1
m t (s ′t+1)p t+1(· | s ′t+1)) is also the posterior,

which gives all the weight to prior beliefs and none to data. Thus an agent who updates
according to the average scheme in (8) exhibits a positive bias to the prior if λt+1 > 0 and
a negative bias if λt+1 < 0.

12When λt+1 < 0 in (10), qt+1 is well-defined as a probability measure only under special conditions.
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Though qt+1 leads to urges for making choices at t + 1, the agent balances it with
the view represented by p t+1 as described in Section 2.3, and acts as though she forms
the compromise one-step-ahead posterior m t+1 =αt+1p t+1+(1−αt+1)qt+1. The above
noted bias of qt+1 extends to this mixture of p t+1 and qt+1: substitute for qt+1 from (8)
and deduce that

m t+1 = (1−λt+1(1−αt+1))p t+1+λt+1(1−αt+1)
∑

s ′t+1

m t (s ′t+1)p t+1(· | s ′t+1), (9)

which admits an interpretation analogous to that described above.13

Further content can be introduced into the model described in (8) by imposing
structure on the way in which λt+1 depends on the history s t+1

1 . For example, it might
depend not only on the empirical frequency of observations but also on their order due
to sensitivity to streaks or other patterns. While each specialization we have described
fixes a sign for λt+1 that is constant across times and histories, one can imagine that
an agent might react differently depending on the history. Formulating a theory of the
λt+1’s is a subject for future research.

Denote by Ψt+1 the empirical frequency measure on S given the history s t+1
1 ; that

is, Ψt+1(s ) is the relative frequency of s in the sample s t+1
1 . The second bias, termed

sample-bias, corresponds to the restriction

qt+1(· | s t+1) = (1−λt+1)p t+1(· | s t+1)+λt+1Ψt+1(·), (10)

for some adapted process (λt ) with λt+1 ≤ 1.14 We use the term (i) positive sample-bias
or (ii) negative sample-bias if (10) is satisfied with respectively (i) 0 ≤ λt+1 ≤ 1 and (ii)
λt+1 ≤ 0.

The interpretation is similar to that for prior-bias. The implied adjustment rule for
one-step-ahead beliefs is

m t+1 = (1−λt+1(1−αt+1))p t+1+λt+1(1−αt+1)Ψt+1.

Under positive sample-bias (λt+1 ≥ 0), the Bayesian update p t+1(s t+2) is adjusted in
the direction of the sample frequency Ψt+1(s t+2), implying a bias akin to the hot-hand
fallacy—the tendency to over-predict the continuation of recent observations. For neg-
ative sample-bias,

m t+1 = p t+1+(−λt+1(1−αt+1))(p t+1−Ψt+1),

and the adjustment is proportional to (p t+1−Ψt+1), as though expecting the next realiza-
tion to compensate for the discrepancy between p t+1 and the past empirical frequency.
This is a form of negative correlation with past realizations as in the gambler’s fallacy.

13We considered naming these biases underreaction and overreaction respectively, because attaching
too much weight to the prior (as in positive prior-bias) presumably means that in a sense too little weight
is attached to data (and similarly for the other axiom). However, the term underreaction suggests low sen-
sitivity of the posterior to the signal s t+1, which need not be the case in (9) unless αt+1 and λt+1 do not
depend on s t+1. See Section 3.2 for more on underreaction and overreaction.

14When λt+1 < 0 in (10), qt+1 is well-defined as a probability measure only under special conditions; for
example, it suffices that −λt+1/(1−λt+1)≤min

st+2
p t+1(s t+2 | s t+1).
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In each case the agent is assumed to suffer from the indicated fallacy at all times
and histories. However, it is intuitive that she may move from one fallacy to another
depending on the sample history. Thus one would like a theory that explains which
fallacy applies at each history. Our framework gives this task a concrete form: one must
explain ‘only’ how the weights λt+1 vary with history.

Because she uses the empirical frequency measure to summarize past observations,
the temptation facing an agent satisfying sample-bias depends equally on all past ob-
servations, although it might seem more plausible that more recent observations have
a greater impact on temptation. This can be accommodated if Ψt+1 is redefined as a
weighted empirical frequency measure

Ψt+1(·) =
t+1
∑

1

wτ,t+1δsτ (·).

Here δsτ (·) is the Dirac measure on the observation at time τ and wτ,t+1 ≥ 0 are weights;
the special case wτ,t+1 = 1/(t + 1) for all τ yields the earlier model. An agent who is
influenced only by the most recent observation is captured by the law of motion

m t+1 = (1−λt+1(1−αt+1))p t+1+λt+1(1−αt+1)δst+1 .

If λt+1 < 0, the resulting model admits an interpretation (in terms of sampling with-
out replacement from changing urns) analogous to that offered by Rabin (2002) for his
model of the law of small numbers.

3.2 Learning about parameters

This section specializes our model so as to capture the case where the data generating
process is unknown up to a parameter θ ∈Θ. In the benchmark Bayesian model, for any
sequence of signals of length T , time t beliefs have the form

Pt (·) =
∫

Θ

⊗T
t+1`(· | θ )dµt , (11)

where `(· | θ ) is a likelihood function (measure on S), µ0 represents prior beliefs on Θ,
andµt denotes Bayesian posterior beliefs about the parameter at time t and after obser-
vations s t

1 . The de Finetti Theorem shows that beliefs admit such a representation if and
only if P0 is exchangeable. We describe (without axiomatic foundations) a generalization
of (11) that accommodates non-Bayesian updating.

To accommodate parameters, adopt a suitable specification for (p t ,qt ), taking (αt ),
δ, and u as given. We fix (Θ,`,µ0) and suppose for now that we are also given a process
(νt ), where each νt is a probability measure on Θ. (The σ-algebra associated with Θ is
suppressed.) The prior µ0 on Θ induces time 0 beliefs about S1 given by

p0(·) =m0(·) =
∫

Θ

`(· | θ )dµ0.
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Proceed by induction: suppose that µt has been constructed and define µt+1 by

µt+1 =αt+1 BU (µt ; s t+1)+ (1−αt+1)νt+1, (12)

where BU (µt ; s t+1)(·) is the Bayesian update of µt . This equation constitutes the law of
motion for beliefs about parameters. Finally, define (p t+1,qt+1) by

p t+1(·) =
∫

Θ

`(· | θ )d (BU (µt ; s t+1))

qt+1(·) =
∫

Θ

`(· | θ )dνt+1.

This completes the specification of the model for any given process (νt ).
Notice that

m t+1(·) =αt+1p t+1+(1−αt+1)qt+1 =

∫

Θ

`(· | θ )dµt+1.

In light of the discussion in Section 2.3, preferences at t + 1 are based on the beliefs
about parameters represented by µt+1. If αt+1 ≡ 1, then (µt ) is the process of Bayesian
posteriors and the above collapses to the exchangeable model (11).15 More generally,
differences from the Bayesian model depend on (νt ), examples of which are given next.16

Prior-Bias with Parameters Consider first the case where

νt+1 = (1−λt+1)BU (µt ; s t+1)+λt+1µt ,

where λt+1 ≤ 1. This is readily seen to imply (8) and hence prior-bias; the bias is positive
or negative according to the sign of the λ’s. Posterior beliefs about parameters satisfy
the law of motion

µt+1 = (1−λt+1(1−αt+1))BU (µt ; s t+1)+λt+1(1−αt+1)µt .

The latter equation reveals something of how the inferences of an agent with prior-
bias differ from those of a Bayesian updater. We find that (assuming αt+1 6= 1)

µt+1(θ )
µt+1(θ ′)

<
`(s t+1 | θ )
`(s t+1 | θ ′)

µt (θ )
µt (θ ′)

if and only if λt+1`(s t+1 | θ ′)<λt+1`(s t+1 | θ ). (13)

For a concrete example, consider coin tossing, with S = {H , T }, Θ⊂ (0, 1), and `(H | θ ) =
θ and consider beliefs after a string of H ’s. If there is positive prior-bias (positive λ’s),
then repeated application of (13) establishes that the agent underinfers in the sense that

µt+1(θ )
µt+1(θ ′)

<
µB

t+1(θ )

µB
t+1(θ

′)
, θ > θ ′,

where µB
t+1 is the posterior of a Bayesian who has the same prior at time 0. Similarly,

negative prior-bias leads to overinference.

15Recall that α0 is not defined for the representation.
16One general point is that, in contrast to the exchangeable Bayesian model, µt+1 depends not only on

the set of past observations, but also on the order in which they were realized.
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Sample-Bias with Parameters Learning about parameters is consistent also with
sample-bias. Take as primitive a process (ψt+1) of probability measures on Θ that pro-
vides a representation for empirical frequency measures Ψt+1 of the form

Ψt+1 =

∫

`(· | θ )dψt+1(θ ). (14)

Let µ0 be given and define µt+1 and νt+1 inductively for t ≥ 0 by (12) and

νt+1 = (1−λt+1)BU (µt , s t+1)+λt+1ψt+1,

for λt+1 ≤ 1. Then one obtains a special case of sample-bias; the bias is positive or
negative according to the sign of the λ’s. The implied law of motion for posteriors is

µt+1 = (1−λt+1(1−αt+1))BU (µt ; s t+1)+λt+1(1−αt+1)ψt+1. (15)

To illustrate, suppose that S = {s 1, . . . , s K } and `(s k | θ ) = θk for each θ = (θ1, . . . ,θK )
in Θ, the interior of the K -simplex. Then one can ensure (14) by takingψ0 to be a suit-
able noninformative prior; subsequently, Bayesian updating leads to the desired process
(ψt+1). For example, the improper Dirichlet prior density

dψ0(θ )
×K

k=1dθk
∝×K

k=1θ
−1
k

yields the Dirichlet posterior with parameter vector (n t (s 1), . . . , n t (s K )), where n t (s k )
equals the number of realizations of s k in the first t periods; that is,

dψt (θ )
×K

k=1dθk
∝×K

k=1θ
n t (s k )−1
k . (16)

By the property of the Dirichlet distribution,

∫

`(s k | θ )dψt (θ ) =

∫

θk dψt (θ ) =
n k (t )

t
,

the empirical frequency of s k , as required by (14).
Finally, we find from (15) and (16) that (assuming αt+1 6= 0)

µt+1(θ )
µt+1(θ ′)

>
`(s t+1 | θ )
`(s t+1 | θ ′)

µt (θ )
µt (θ ′)

if and only if λt+1
ψt (θ )
ψt (θ ′)

>λt+1
µt (θ )
µt (θ ′)

. (17)

Suppose that all λt+1’s are negative (negative sample-bias) and consider the coin-
tossing example. As above, we denote by (µB

t ) the Bayesian process of posteriors with
initial prior µB

0 =µ0. Then it follows from repeated application of (16) and (17) that

µt+1(θ )
µt+1(θ ′)

>
µB

t+1(θ )

µB
t+1(θ

′)
,
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if s t+1
1 = (H , . . . , H ), |θ − 1

2 |> |θ ′− 1
2 |, and the common initial prior µ0 is uniform.17 After

seeing a string of H ’s the agent described herein exaggerates (relative to a Bayesian) the
relative likelihoods of extremely biased coins. If instead we consider a point at which
the history s t+1

1 has an equal number of realizations of T and H , then

µt+1(θ )
µt+1(1−θ ) >

θ

1−θ
µt (θ )
µt (1−θ ) =

BU (µt , H )(θ )
BU (µt , H )(1−θ )

for any θ such that µt (θ )>µt (1−θ ). If there have been more realizations of H , then the
preceding displayed inequality holds if

�

θ

1−θ
�n t+1(H )−n t+1(T )

<
µt (θ )
µt (1−θ ) ,

for example if θ < 1
2 andµt (θ )≥µt (1−θ ). Note that the bias in this case is towards coins

that are less biased (θ < 1
2 ). The opposite biases occur in the case of positive sample-

bias.

4. A 

4.1 The general model

In what follows, states s vary over S, consumption c varies over C , and unless otherwise
specified, time t varies over 0, 1, . . . . A generic element of C t ×Ct is f t = (c t , Ft ); t -
subscripts are dropped where there is no risk of confusion. Denote by [G−st+1 , M ] the
contingent menu inCt that yields G (s ′t+1) if s ′t+1 6= s t+1 and M otherwise. The menu M
is identified with the constant contingent menu that delivers M in all states.

The first two axioms are standard.

A 1 (Order). �t is complete and transitive.

A 2 (Continuity). Both { f ∈C t ×Ct : f �t g } and { f ∈C t ×Ct : g �t f } are closed.

In Appendix A, we describe a way to mix any two elements in C t ×Ct . Thus we can
state the Independence axiom appropriate for our setting.

A 3 (Independence). For every 0<λ≤ 1 and all f and g in C t ×Ct ,

f �t g ⇐⇒λ f +(1−λ)h �t λg +(1−λ)h.

The intuition for Independence is similar to that provided in Epstein (2006) for a three-
period setting, and thus we do not elaborate here.

Given two contingent menus F and G inCt , define their union statewise, that is,

(F ∪G )(s ) = F (s )∪G (s ).

The counterpart of GP’s central axiom is the following.

17More generally, the latter two conditions can be replaced by θ ′(1−θ ′)/(θ (1−θ ))>µ0(θ )/µ0(θ ′).
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A 4 (Set-Betweenness). For all states s t+1, consumption c ∈ C t , and all F and G in
Ct such that G (s ′t+1) = F (s ′t+1) for all s ′t+1 6= s t+1,

(c , F )�t (c ,G ) =⇒ (c , F )�t (c , F ∪G )�t (c ,G ).

Since immediate consumption and the outcome in states other than s t+1 is the same
in all the above rankings, the axiom is essentially a statement about how the agent feels
about receiving the menus F (s t+1),G (s t+1), or F (s t+1)∪G (s t+1) conditional on s t+1. As
a statement about the ranking of menus, Set-Betweenness may be understood as the
behavioral manifestation of temptation and self-control. GP show this in their setting
and Epstein (2006) adapts their interpretation to the domain of (three-period) contin-
gent menus. The ranking of (c , F ) and (c , F ∪G ) reveals anticipation of temptation: the
strict preference

(c , F )�t (c , F ∪G ) (18)

suggests that the decision-maker prefers that some elements of G (s t+1) not be avail-
able as an option conditional on s t+1, and presumably this preference for commitment
reveals that she anticipates being tempted by some element of G (s t+1) when choosing
from the menu F (s t+1)∪G (s t+1) conditional on s t+1. For perspective, note that temp-
tations do not exist for a standard decision-maker who evaluates a menu by its best
element. In particular, she does not exhibit a preference for commitment and satisfies
the stronger axiom

F �t G =⇒ F ∼t F ∪G

for all F and G that agree in all but one state s . Following Kreps (1988, Ch. 13), we call
this axiom strategic rationality.

Set-Betweenness allows us to infer the agent’s anticipated time t + 1 choices from
menus, for example, whether she expects to succumb to temptation or to exert self-
control. To illustrate, suppose that F = [H−st+1 ,{ f }] and G = [H−st+1 ,{g }] and also that
the decision-maker exhibits the preference

(c , [H−st+1 ,{ f }])�t (c , [H−st+1 ,{g }]). (19)

This ranking suggests that from the ex ante perspective of period t , she prefers to end up
with f rather than with g conditional on s t+1, and in particular, that she prefers f to be
chosen from { f , g } conditional on s t+1. Whether she anticipates f actually being chosen
from { f , g } is then revealed by her ranking of (c , [H−st+1 ,{ f , g }]) and (c , [H−st+1 ,{g }]). For
instance, if

(c , [H−st+1 ,{ f , g }])�t (c , [H−st+1 ,{g }]), (20)

then she has a strict preference for f being available ex post, which reveals that she
anticipates choosing f from { f , g } at t + 1. On the other hand, if she is indifferent to f
being available ex post, that is,

(c , [H−st+1 ,{ f , g }])∼t (c , [H−st+1 ,{g }]), (21)

then she anticipates a weak preference at t + 1 for choosing g from { f , g }. To see this,
observe that given (19), (21) implies (18), which in turn implies that g is tempting. Thus,
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the indifference in (21) implies that she expects either to submit to g , or to be indifferent
between submitting to g and resisting it. That is, she anticipates a weak preference for
g at t +1.

Discussion of (20)–(21) revolved around what the decision-maker anticipates at time
t about her choices at time t + 1. The next axiom connects her time t expectations
regarding future behavior and her actual future behavior.

A 5 (Sophistication). If (c , [G−st+1 ,{ f }])�t (c , [G−st+1 ,{g }]), then

(c , [G−st+1 ,{ f , g }])�t (c , [G−st+1 ,{g }])⇐⇒ f �t+1 g ,

where �t and �t+1 correspond to histories (s1, . . . , s t ) and (s1, . . . , s t , s t+1) respectively.

The axiom states that she is sophisticated in that her expectations are correct (at
least for anticipated choices out of binary menus { f , g }). To see this, start by taking f ,
g such that in period t she would prefer to commit to f rather than g conditionally
on s t+1 (as in the hypothesis). As in the earlier discussion, this relationship between f
and g allows us to deduce her expected t + 1 choice out of { f , g } from her �t -ranking
of (c , [G−st+1 ,{ f , g }]) and (c , [G−st+1 ,{g }]). Her actual choice out of { f , g } is given by her
�t+1-ranking of f and g . The axiom states that the decision-maker expects to choose f
at t +1 if and only if she in fact chooses f at t +1.

Some axioms below involve the evaluation of streams of lotteries (or lottery streams),
and it is convenient to introduce relevant notation at this point. Any risky consumption
stream for the time period [t + 1,∞), that is, where a unique (independent of states)
consumption level cτ is prescribed for each τ≥ t +1, may be identified with an element
of C t+1×C t+2× . . . . Denote byLt+1 the subset of all such risky consumption streams; a
generic element is `= (`τ)∞τ=t+1.

In order to obtain meaningful probabilities, a form of state independence is needed.

A 6 (State Independence). For all s t+1, contingent menus F inCt+1 and `′,`∈Lt+1,

(c ,{`′})�t (c ,{`})⇐⇒ (c , [F−st+1 ,{`′}])�t (c , [F−st+1 ,{`}]).
The axiom states that the ranking of the lottery streams `′ and ` received uncondi-

tionally does not change if they are received conditionally on any specific s t+1 obtaining.
Thus time preferences and risk attitudes are not state-dependent.

In our model, temptation arises only because of a change in beliefs. This is reflected
in the next axiom.18

A 7 (Restricted Strategic Rationality (RSR)). For all states s t+1, s t+2, consumption
c , c ′ ∈ C , and contingent menus F ∈ Ct and H , H ′ ∈ Ct+1 such that H (s ′t+2) = H ′(s ′t+2)
for all s ′t+2 6= s t+2, if

(c ′, [F−st+1 ,{(c , H ′)}])�t (c ′, [F−st+1 ,{(c , H )}]), (22)

18As in Sophistication, the preferences �t and �t+1 correspond to histories (s1, . . . , s t ) and (s1, . . . , s t , s t+1)
respectively.
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then
(c ′, [F−st+1 ,{(c , H ′)}])∼t (c ′, [F−st+1 ,{(c , H ′), (c , H )}]) (23)

(c , H ′)�t+1 (c , H ). (24)

Suppose that, on observing s t+1, the agent at t + 1 has to choose from the menu
{(c , H ′), (c , H )} where H ′(s ′t+2) = H (s ′t+2) for all s ′t+2 6= s t+2 for some s t+2. Since H ′ and
H differ only in the single state s t+2, their ranking does not depend on beliefs over St+2:
there are no trade-offs across states that must be made. Consequently, there is no temp-
tation when choosing out of {(c , H ′), (c , H )}, and, therefore, conditional on any s t+1, the
agent never exhibits a preference for commitment. In particular, her preference �t sat-
isfies a form of strategic rationality. This is the content of the implication ‘(22)=⇒(23)’.
The implication ‘(22)=⇒(24)’ is another expression of the absence of temptation: if the
t + 1 choice between the prospects (c , H ′) and (c , H ) is not subject to temptation, then
there is no reason for her t +1 perspective to deviate from her prior, time t perspective
regarding the two prospects. The latter perspective is revealed by (22), the agent’s time
t preference for committing to (c , H ′) versus (c , H ) conditionally on s t+1.

The final axiom places structure on the agent’s preferences over lottery streams.

A 8 (Risk Preference). There exist 0 < δ < 1 and u : C −→ R1 nonconstant, linear
and continuous, such that, for each `′ and ` inLt+1,

`′ �t ` ⇐⇒
∞
∑

t+1

δτ−(t+1)u (`′τ)≥
∞
∑

t+1

δτ−(t+1)u (`τ).

The axiomatic characterization of the utility function over streams of lotteries ap-
pearing in (8) is well known (see Epstein 1983, for example). Because time and risk pref-
erences are not our primary focus, we content ourselves with the statement of the above
unorthodox ‘axiom.’

Say that (δ, u , p0, (αt , p t ,qt )1≤t≤T ) represents (�t ) if�0 is represented byU0(·) and, for
each t > 0,�t is represented by αtUt (·)+(1−αt )Vt (·), where these functions are defined
in (5)–(7) and where u ,δ, p0, and (αt , p t ,qt )t≥1 satisfy the properties stated there. For
any c ∈C t+1 and M ⊂Ct+1, write (c , M ) instead of {c}×M ∈M (C t+1×Ct+1).

T 1. If the process of preferences (�t ) satisfies Axioms 1–8, then there exists some
(δ, u , p0, (αt , p t ,qt )t≥1) representing (�t ) .

Conversely, suppose that

�

1+2 sup
t ,s t

1

|α−1
t −1|�δ< 1. (25)

Then equations (5)–(7) admit a unique solution (Ut ), where Ut (·, s t
1 ) :M (C ×C ) −→ R1

is continuous and uniformly bounded in the sense that

‖(Ut )‖ ≡ sup
t ,s t

1 ,M
|Ut (M ; s t

1 )|<∞.
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Define Ut (·, s t
1 ) and Vt (·, s t

1 ) by (5)–(6) and let �0 be represented by U0(·), and, for each
t > 0, let �t be represented by αtUt (·)+ (1−αt )Vt (·). Then (�t ) satisfies Axioms (1)–(8).

Finally, if (δ, u , p0, (αt , p t ,qt )t≥1) and (δ′, u ′, p ′0, (α′t , p ′t ,q ′t )t≥1) both represent (�t ),
then δ′ =δ, u ′ = a u +b for some a > 0, and

p ′0 = p0, α′t p ′t +(1−α′t )q ′t =αt p t +(1−αt )qt for t > 0.

If t and s t+1 are such that

(F−st+1 , (c , M ′))�t (F−st+1 , (c , M ′ ∪M )) (26)

for some c ∈C t+1 and M ′, M ⊂Ct+1, then

(α′t+1(s t+1),q ′t+1(· | s t+1)) = (αt+1(s t+1),qt+1(· | s t+1)). (27)

The restriction (25) implies that the recursion (7) defines a contraction mapping
which then yields a unique solution. The second part of the theorem deals with unique-
ness. Absolute uniqueness of all components is not to be expected. For example, if
αt+1(s t+1) = 0, then every measure qt+1(· | s t+1) leads to the same s t+1-conditional pref-
erence; similarly, if qt+1(· | s t+1) = p t+1(· | s t+1), then αt+1(s t+1) is of no consequence and
hence indeterminate. These degenerate cases constitute precisely the circumstances
under which s t+1-conditional preference is strategically rational, which is what is ex-
cluded by condition (26). Once strategic rationality is excluded, the strong uniqueness
property in (27) obtains.

4.2 Foundations for prior-bias and sample-bias

The specializations prior-bias and sample-bias introduced in Section 3 are character-
ized here (we use upper case names for the axioms corresponding to each bias).

It is convenient to define the preference �t |st+1 onM (C t+1×Ct+1) by

M �t |st+1 M ′⇐⇒ (c , [H−st+1 , M ])�t (c , [H−st+1 , M ′])

for some (c , H ) ∈ C t × Ct ; the additive separability of the representation ensures
that the choice of (c , H ) is irrelevant. For any (c t+1, Ft+1) ∈ C t+1 × Ct+1, denote by
(c ,{(c t+1, Ft+1)}) the alternative that yields immediate consumption c and a contingent
menu that commits the agent to (c t+1, Ft+1) in every state s t+1. Evidently, the evalua-
tion of any such prospect reflects marginal beliefs about St+2 held at time t , that is, the
agent’s period t prior on St+2. Say that s t+1 is a neutral signal if, for all c t , c t+1 ∈ C and
Ft+1,G t+1 ∈Ct+1,

{(c t+1, Ft+1)} �t |st+1 {(c t+1,G t+1)}⇐⇒ (c t ,{(c t+1, Ft+1)})�t (c t ,{(c t+1,G t+1)}).

Given our representation, s t+1 is a neutral signal if and only if p t+1(s t+2 | s t+1) =
∫

p t+1(s t+2 | s ′t+1)d m t (s ′t+1) for all s t+2.
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A 9 (Prior-Bias). Let s t+1 ∈St+1 and suppose that for c ∈C t+1 and Ft+1,G t+1 ∈Ct+1,

{(c , Ft+1)} �t |st+1 {(c ,G t+1)}. (28)

If either s t+1 is a neutral signal, or if, for some c t ∈C t ,

(c t ,{(c , Ft+1)})∼t (c t ,{(c ,G t+1)}), (29)

then
{(c , Ft+1)} ∼t |st+1 {(c , Ft+1), (c ,G t+1)}. (30)

To interpret the axiom, we suppress the fixed consumption c t and c t+1 (and do the
same for interpretations in the sequel). Condition (28) states that at time t , the agent
strictly prefers to commit to F rather than to G conditionally on s t+1. There are two
situations in which she would not be tempted by G conditionally on s t+1 at time t + 1
(and thus not exhibit a preference for commitment (30)). The first is when s t+1 is a neu-
tral signal, and thus does not lead to any updating of the prior. The second is when
she is indifferent between F and G if they are received unconditionally (29), that is, if
prior beliefs about St+2 make both look equally attractive. That the presence of temp-
tation conditionally on s t+1 depends not only on how F and G are ranked conditionally
but also on how attractive they were prior to the realization of s t+1, indicates excessive
influence of prior beliefs at the updating stage (time t +1).

Prior-Bias begs the question what happens to temptation if the indifference in (29)
is not satisfied. We consider two alternative strengthenings of the axiom that provide
different answers.

Label by Positive Prior-Bias the axiom obtained when (29) is replaced by

(c ′,{(c , F )})�t (c ′,{(c ,G )}).

This implies that G is tempting conditionally on s t+1 only if it was more attractive ac-
cording to (time t ) prior beliefs about St+2. An alternative, labeled Negative Prior-Bias,
is the axiom obtained when (29) is replaced by

(c ′,{(c , F )})�t (c ′,{(c ,G )}).

In this case, G is preferred at time t , but the signal s t+1 reverses the ranking in favor of
F . Thus s t+1 is a strong positive signal for F . The agent is greatly influenced by signals.
Thus she is not tempted by G after seeing s t+1.

C 1. Suppose that (�t ) has a representation (δ, u , p0, (αt , p t ,qt )t≥1). Then (�t )
satisfies Prior-Bias if and only if it admits a representation satisfying (8) for some adapted
process (λt ) with λt+1 ≤ 1. Further, (�t ) satisfies (i) Positive Prior-Bias or (ii) Negative
Prior-Bias if and only if (8) is satisfied with respectively (i) 0≤λt+1 ≤ 1 and (ii) λt+1 ≤ 0.19

19The proofs of this corollary and of the one to follow are similar to the proof of Epstein (2006, Corollary
3.5), and thus we do not include them.
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Sample-bias can be characterized along the same lines. We need some additional
notation: denote by Ψt+1 the empirical frequency measure on S given the history
s t+1

1 . For any G in Ct+1, G (s t+2) is a subset of C t+2 × Ct+2 and so is the mixture
∫

G (s ′t+2)dΨt+1. Consider the contingent menu in Ct+1, denoted
∫

G dΨt+1, that as-

signs
∫

G (s ′t+2)s dΨt+1 to every s t+2. Then (c t+1,
∫

G dΨt+1) denotes an alternative that
yields the obvious singleton menu.

The axioms to follow parallel the trio of axioms just stated. One difference is that the
contingent menus F and G appearing in these axioms are assumed, for reasons given
below, to lie in C c ,+1

t+1 ⊂ Ct+1. Thus F and G provide perfect commitment and are such
that all relevant uncertainty is resolved by t +2. In this setting, say that s t+1 is a neutral
signal if, for all c ∈C t+1 and F , G ∈C c ,+1

t+1 ,

{(c , F )} �t |st+1 {(c ,G )}⇐⇒
��

c ,

∫

F dΨt+1

��

�t |st+1

��

c ,

∫

G dΨt+1

��

. (31)

The right-hand side can be interpreted as saying that the sample s t+1
1 makes F look

more attractive than G : F delivers F (s t+2) in state s t+2 and s t+2 appears with frequency
Ψt+1(s t+2) in the sample. Thus ‘on average’, F yields

∫

F dΨt+1. But the agent is indiffer-
ent between F and its average because she satisfies Independence. Thus the right-hand
side in (31) implies that, underΨt+1, the average for F is better than that of G . Thus for a
neutral signal s t+1, F is more attractive than G under commitment (conditional on s t+1)
if and only if F is more attractive than G on average under the sample history. Given our
representation, s t+1 is a neutral signal if and only if p t+1(s t+2 | s t+1) = Ψt+1(s t+2 | s t+1)
for all s t+2.

A 10 (Sample-Bias). For s t+1 ∈St+1, c ∈C t+1 and F , G inC c ,+1
t+1 such that

{(c , F )} �t |st+1 {(c ,G )},
if either s t+1 is a neutral signal, or if, for some c t ∈C t ,

��

c ,

∫

F dΨt+1

��

∼t |st+1

��

c ,

∫

G dΨt+1

��

, (32)

then
{(c , F )} ∼t |st+1 {(c , F ), (c ,G )}.

The next two axioms provide alternative strengthenings of Sample-Bias. Label by
Positive Sample-Bias the axiom obtained if (32) is replaced by

��

c ,

∫

F dΨt+1

��

�t |st+1

��

c ,

∫

G dΨt+1

��

.

Similarly, ‘define’ Negative Sample-Bias by using the hypothesis

��

c ,

∫

F dΨt+1

��

�t |st+1

��

c ,

∫

G dΨt+1

��

.



214 Epstein, Noor, and Sandroni Theoretical Economics 3 (2008)

We now interpret Positive Sample-Bias; the other interpretations are similar. The ax-
iom asserts that if commitment to F is preferred (conditionally on s t+1) to commitment
to G , and if the sample makes F look more attractive than G , or if s t+1 is neutral, then G
is not tempting conditionally. The fact that the sample may influence temptation after
realization of s t+1, above and beyond its role in the conditional ranking, reveals the ex-
cessive influence of the sample at the updating stage. The influence is ‘positive’ because
G can be tempting conditionally only if it was more attractive according to the sample
history.

The preceding intuition, specifically the indifference between F and
∫

F dΨt+1

posited when interpreting (31), relies on F lying inC c ,+1
t+1 . That is because as s t+2 varies,

not only does F (s t+2) vary but so also does the information upon which the agent bases
evaluation of the menu F (s t+2). Independence implies indifference to the former varia-
tion but not to the latter. For F in C c ,+1

t+1 , however, information is irrelevant because all
uncertainty is resolved once s t+2 is realized.

C 2. Suppose that (�t ) has a representation (δ, u , p0, (αt , p t ,qt )t≥1). Then (�t )
satisfies Sample-Bias if and only if it admits a representation satisfying (10) for some
adapted process (λt ) with λt+1 ≤ 1. Further, (�t ) satisfies (i) Positive Sample-Bias or
(ii) Negative Sample-Bias if and only if (10) is satisfied with respectively (i) 0 ≤ λt+1 ≤ 1
and (ii) λt+1 ≤ 0.

A

A. C 

The construction of the space of contingent menus is analogous to familiar construc-
tions of type spaces (Mertens and Zamir 1985 and Brandenburger and Dekel 1993), and
to related constructions in Epstein and Wang (1996) and Gul and Pesendorfer (2004).
The difficulty arises from a problem of infinite regress. In the context of type spaces, the
solution is to employ suitable hierarchies of spaces of probability measures. Here and in
the other studies cited, hierarchies of alternative topological spaces are used. The tech-
nical details are now well understood and thus we omit a formal proof for the theorem
that follows.20 The properties of the space of contingent menus spelled out in the the-
orem are invoked in proving our main representation result Theorem 1. Readers who
are not interested in that proof and who are willing to accept the intuitive description of
contingent menus provided in the discussion leading to (3) may skip this section of the
appendix entirely.

Define the following spaces:

D1 = [M (C ×C∞)]S

Dt = [M (C ×Dt−1)]S for t > 1.

20When S is a singleton, a contingent menu is simply a menu, hence a closed subset, and the proof is a
corollary of Epstein and Wang (1996, Theorem 6.1). See also Epstein and Peters (1999, Appendix B), which
deals with hierarchies of upper-semicontinuous functions taking values in [0, 1]; the indicator function of
a closed set is such a function, hence the relevance to hierarchies of closed sets.
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For interpretation, G in D1 yields the set G (s ) of consumption streams if s is realized
at t = 1. Thus think of G as a contingent menu for which there is no uncertainty and
no flexibility (in the sense of nonsingleton menus) after time 1. Similarly, G in Dt can
be thought of as a contingent menu for which there is no uncertainty or flexibility after
time t .

Each Dt is compact metric. In addition, there is a natural mixing operation on each
Dt : given any space X where mixtures λx + (1−λ)y are well defined, mix elements of
M (X ) by

λM +(1−λ)N = {λx +(1−λ)y : x ∈M , y ∈N }.
Mixtures are defined in the obvious way on X =C∞. On D1 define λG ′+(1−λ)G by

(λG ′+(1−λ)G )(s ) =λG (s )+ (1−λ)G (s ).
Proceed inductively for all Dt .

T A.1. There existsC ⊂×∞1 Dt such that

(i) C is compact metric under the induced product topology.

(ii) C is homeomorphic to [M (C ×C )]S .

(iii) Under a suitable identification,

Dt−1 ⊂Dt ⊂C .

(iv) Let πt be the projection map from ×∞1 Dt into Dt . Then πt (C )⊂C and

πt (F ) −→
t−→∞ F for every F inC .

(v) Let F ′ = (G ′t ) and F = (G t ) be in C . Then (λG ′t + (1− λ)G t ) is an element of C ,
denoted λ ◦ F ′+(1−λ) ◦ F . Under the homeomorphism in (i),

(λ ◦ F ′+(1−λ) ◦ F )(s )

= {(λc ′+(1−λ)c ,λ ◦H ′+(1−λ) ◦H ) : (c ′, H ′)∈ F ′(s ), (c , H )∈ F (s )}.

Part (i) asserts that the topological structure of C is inherited by C . Part (ii) is the
homeomorphism (3) used in the text.

We note above that each G in Dt implies no uncertainty or flexibility after time t .
Think of such a G as a special contingent menu in which all uncertainty and flexibility
beyond t have been somehow collapsed into period t . Then (iii) and (iv) imply that the
set ∪∞1 Dt of all such special contingent menus is dense inC .

Part (v) provides the mixing operation promised in Section 4. Roughly it shows that
‘◦’, which is the natural mixing operation induced by×∞1 Dt onC , is consistent with that
suggested by the homeomorphism in (ii). Thus, there is no danger of confusion and in
the text we have written simply λF ′+(1−λ)F rather than λ ◦ F ′+(1−λ) ◦ F .
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Finally, define the spacesC c ,+1 ⊂C c ⊂C introduced in Section 2.3. First,C c is the
unique subspace ofC satisfying

C c ≈
homeo

(C ×C c )S

under the homeomorphism in the theorem. (Details are as in Epstein and Wang 1996,
Theorem 6.1(a).) TakeC c ,+1 = (C ×C∞)S .

B. P    

B.1 Necessity of the axioms

Denote by X the set of all processes U = (Ut ), where Ut (·, s t
1 ) :M (C ×C )−→R1 is con-

tinuous and where
‖U‖= ‖(Ut )‖ ≡ sup

t ,s t
1 ,M
|Ut (M , s t

1 )|<∞.

The norm ‖ · ‖makes X a Banach space. Define Γ : X −→X by

(Γ(U ))t+1(M t+1, s t+1) =

max
(ct+1,Ft+1)∈M t+1

1

αt+1

�

u (c t+1)+δ

∫

St+2

Ut+2(Ft+1(s t+2), s t+2)d (αt+1p t+1+(1−αt+1)qt+1)
�

− max
(c ′t+1,F ′t+1)∈M t+1

1−αt+1

αt+1

�

u (c ′t+1)+δ

∫

St+2

Ut+2(F ′t+1(s t+2), s t+2)d qt+1(s t+2)
�

.

Then Γ is a contraction under assumption (25) and thus has a unique fixed point (Ut ).
It is a routine matter to verify the axioms.

B.2 Preliminaries for sufficiency

For any compact metric space D endowed with a continuous mixture operation, say that
a preference � overM (D) has a (U , V ) representation if the functions U , V : D → R are
continuous and linear, and if � is represented by WU ,V :M (D)→R, where

WU ,V (M ) =max
c∈M
{U +V }−max

c ′∈M
V, M ∈M (D).

Say that � is strategically rational if for all M , M ′ ∈M (D),

M �M ′ =⇒M ∼M ∪M ′.

L B.1. If � has a (U , V ) representation with U nonconstant, then

(i) � is strategically rational if and only if V = aU +b for some a ≥ 0. In particular, if
V is nonconstant then � is strategically rational if and only if U +V = a V +b for
some a > 1.
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(ii) � is strategically rational if and only if for all c , c ∈D,

{c} � {c}=⇒{c} ∼ {c , c}. (B.1)

P. (i) The argument is similar to Gul and Pesendorfer (2001, p. 1414).
(ii) Sufficiency is clear. For necessity, suppose that � is not strategically rational so

that, as in Gul and Pesendorfer (2001, p. 1414), U and V are nonconstant and U is not a
positive affine transformation of V . Consequently, there exist c , c ∈ D such that either
[U (c ) >U (c ′) and V (c ) ≤ V (c ′)], or [U (c ) ≥U (c ′) and V (c ) < V (c ′)]. Linearity and non-
constancy of U and V imply the existence of c and c close to c and c ′, respectively, such
that all inequalities are strict. Then

{c} � {c} and {c} � {c , c},
which violates (B.1) and yields the result. �

L B.2. Suppose that � has a (U , V ) representation and that there exist c , c such that
{c , c} � {c}. Then a preference �∗ over D is represented by U +V if and only if it satisfies
the vNM axioms and the restriction

if {c} � {d }, then {c , d } � {d }⇐⇒ c �∗ d .

For a proof of this result, see Noor (2008, Theorem 2.2). For any state s t+2, G ∈Ct+1,
and L ⊂M (C t+2×Ct+2), define the set Ls t+2G of contingent menus by

Ls t+2G = {[G−st+2 , M ] : M ∈ L} ⊂Ct+1.

Define �t |st+1,st+2 on closed subsets ofM (C t+2×Ct+2) by L′ �t |st+1,st+2 L if and only if

(c ′, [F−st+1 , (c , L′s t+2G )])�t (c ′, [F−st+1 , (c , Ls t+2G )]),

for some c , c ′ ∈C , F inCt , and G inCt+1.

L B.3. Suppose that (�t ) satisfies Axioms 1–8 and that �t |st+1,st+2 has a (U , V ) repre-
sentation with nonconstant U. Then �t |st+1,st+2 is strategically rational.

P. By Lemma B.1(ii), we need only establish that for any M , M ′ ∈M (C t+2×Ct+2),

{M } �t |st+1,t+2 {M ′}=⇒{M } ∼t |st+1,t+2 {M , M ′}.
Observe that

{M } �t |st+1,t+2 {M ′}
⇐⇒ (c ′, [F−st+1 ,{(c , [G−st+2 , M ])}])�t (c ′, [F−st+1 ,{(c , [G−st+2 , M ′])}])
=⇒∗ (c ′, [F−st+1 ,{c , [G−st+2 , M ])}])∼t (c ′, [F−st+1 ,{(c , [G−st+2 , M ]), (c , [G−st+2 , M ′])}])
=⇒{M } ∼t |st+1,t+2 {M , M ′},

where the implication =⇒∗ is by RSR. �

In the next lemma, �t and �t+1 are the preferences corresponding to histories
(s1, . . . , s t ) and (s1, . . . , s t , s t+1) respectively.
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L B.4. Suppose that (�t ) satisfies Axioms 1–8. If H , H ′ ∈ Ct+1 are such that
H (s ′t+2) =H ′(s ′t+2) for all s ′t+2 6= s t+2, then for any s t+1, c , c ′ and F ,

(c , H )�t+1 (c , H ′)⇐⇒ (c ′, [F−st+1 ,{(c , H )}])�t (c ′, [F−st+1 ,{(c , H ′)}]).
P. ⇐= follows from RSR. Conversely, suppose that (c , H ) �t+1 (c , H ′) and
(c ′, [F−st+1 ,{(c , H ′)}])�t (c ′, [F−st+1 ,{(c , H )}]). Sophistication implies

(c ′, [F−st+1 ,{(c , H ′), (c , H )}])�t (c ′, [F−st+1 ,{(c , H )}]);
by Set-Betweenness, this weak preference is in fact indifference. Therefore,

(c ′, [F−st+1 ,{(c , H ′)}])�t (c ′, [F−st+1 ,{(c , H ′), (c , H )}]),
which contradicts RSR. �

B.3 Sufficiency of the axioms

The proof of sufficiency begins by establishing the desired representation of �0 on
C ×DT ⊂ C ×C (see Appendix A). Later the representation of �0 is extended to all of
C ×C by letting T →∞ and exploiting the denseness indicated in Theorem A.1(iv). The
desired representations for (�t ) follow.

Until specified otherwise, we derive a representation for the restriction of �0 to C ×
DT , for given T > 0. The argument involves deriving, for each 0 ≤ t < T , an appro-
priate representation for the restriction of �t to C t ×DT−t . This proceeds by backward
induction on t . Define U r :M (C ×C∞)→R1 by

U r (M ) =max
`∈M

∞
∑

0

δτu (`τ),

where δ and u are provided by Risk Independence. We begin by showing that �T−1 is
represented on CT−1×D1 by the function

WT−1(cT−1, FT−1) = u (cT−1)+δ

∫

ST

U r (FT−1(sT ))d mT−1, (cT−1, FT−1)∈C ×D1, (B.2)

where mT−1 ∈∆(ST ) and mT−1 has full support.
Identify (C ×C∞)S with the obvious subset ofM (C ×C∞). We claim that the restric-

tion of �T−1 to CT−1× (C ×C∞)S may be represented by

WT−1(c , FT−1) = u 1(c )+u 2(FT−1), (B.3)

where u 1(·) and u 2(·) are continuous and linear. We argue as follows. Since CT−1 ×
(C ×C∞)S is a mixture space and �T−1 satisfies Order, Continuity, and Independence,
there exists a continuous linear representationWT−1(·) of �T−1 on CT−1× (C ×C∞)S . By
definition of the mixture operation, for any c , c ′ ∈CT−1 and F , F ′ ∈D1,

1
2 (c , F )+ 1

2 (c
′, F ′) = 1

2 (c
′, F )+ 1

2 (c , F ′).
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Thus

WT−1( 12 (c , F )+ 1
2 (c
′, F ′)) =WT−1( 12 (c

′, F )+ 1
2 (c , F ′))

=⇒ 1
2WT−1(c , F )+ 1

2WT−1(c ′, F ′) = 1
2WT−1(c ′, F )+ 1

2WT−1(c , F ′)

=⇒WT−1(c , F ) =WT−1(c , F ′)+WT−1(c ′, F )−WT−1(c ′, F ′)≡ u 1(c )+u 2(F ).

Linearity and continuity of u 1(·) and u 2(·) are evident.
Next, we show that u 1(·) and u 2(·) from (B.3) are such that it is without loss of gener-

ality to set

WT−1(c , FT−1) = u (c )+δ

∫

ST

U r (FT−1(sT ))d mT−1, FT−1 ∈ (C ×C∞)S ,

for some mT−1 ∈∆(ST ). Take any c and define � on (C ×C∞)S by

F �G ⇐⇒ (c , F )�T−1 (c ,G ). (B.4)

We verify that � satisfies the Anscombe–Aumann axioms. Order, Continuity, and In-
dependence are immediate. By Risk Preference and nonconstancy of u (·), there exist
c ′, c ′′ ∈ C such that for any ~c ∈ C∞, (c ′,~c ) 6∼ (c ′′,~c ), and thus � satisfies the Anscombe–
Aumann nondegeneracy condition. State Independence applied twice yields (F−sT , c ′)�
(F−sT , c ′′) =⇒ (F−s ′T , c ′) � (F−s ′T , c ′′) for all c ′, c ′′ ∈ C and sT , s ′T ∈ ST . Thus there exists
mT−1 ∈ ∆(ST ) and v : C ×C∞ −→ R, nonconstant, continuous, and linear, such that �
restricted to (C ×C∞)S is represented by w (·), where

w (FT−1) =

∫

ST

v (FT−1(sT ))d mT−1, FT−1 ∈ (C ×C∞)S .

Since u 2(·) is continuous, linear and (by (B.4)) ordinally equivalent to w (·), it follows that
u 2(·) = a w (·)+b for some a > 0. By Risk Preference, it is without loss of generality to set
v (`) =

∑∞
0 δ

τu (`τ) =U r (`) for each `∈C ×C∞. Thus,

WT−1(c , FT−1) = u 1(c )+a

∫

ST

U r (FT−1(sT ))d mT−1+b , FT−1 ∈ (C ×C∞)S .

Again by Risk Preference, it is without loss of generality to set u 1(·) = u (·), a = δ, and
b = 0. State Independence, Risk Preference, and the nonconstancy of u (·) imply that
mT−1 has full support.

To complete the proof of (B.2), extend the representation WT−1(·) of �T−1 on
CT−1 × (C ×C∞)S to CT−1 ×D1. We show that for every sT , the preference �T−1|sT on
M (C ×C∞) is strategically rational, that is, for any M , N ∈M (C ×C∞), M �T−1|sT N im-
plies M ∼T−1|sT M ∪N . Given Order, Continuity, Independence, and Set-Betweenness,
the preference �T−1|sT has a (U , V ) representation by Kopylov (2007); given Risk Prefer-
ence, State Independence, and Sophistication, �T−1|sT is non-trivial in that there exists
{`,`′} ∈ M (C ×C∞) such that {`,`′} �T−1|sT {`′}. By Risk Preference, the restriction of
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�T to C ×C∞ is represented by the function ` 7−→ ∑∞
0 δ

τu (`τ) and thus satisfies the
vNM axioms. So by Sophistication and Lemma B.2, U + V is ordinally equivalent to
` 7−→∑∞0 δτu (`τ). But by State Independence and Risk Preference, U is ordinally equiv-
alent to ` 7−→∑∞

0 δ
τu (`τ). Thus, V must be constant or ordinally equivalent to U . In

either case,�T−1|sT must be strategically rational. Hence, for any M ∈M (C ×C∞), there
exists `∈M that is �T -maximal in M , and for any c , sT and H ∈D1,

(c , [H−sT , M ])∼T−1 (c , [H−sT ,{`}]).

This allows us to extend the representationWT−1(·) of�T−1 on CT−1×(C×C∞)S to CT−1×
D1 in the appropriate manner, completing the proof of (B.2).

As the induction hypothesis, suppose that for some t < T and every τ satisfying
t ≤τ< T −1, the restriction of �τ+1 to Cτ+1×DT−τ−1 is represented by

Wτ+1(c , Fτ+1) = u (c )+δ

∫

Sτ+2

Uτ+2(Fτ+1(sτ+2), sτ+2)d mτ+1 (c , Fτ+1)∈Cτ+1×DT−τ−1,

where mτ+1 has full support, Uτ+2(·, sτ+2) :M (Cτ+2 ×DT−τ−2) −→ R1 is nonconstant,
continuous, and linear and is defined recursively via

Uτ+2(Mτ+2, sτ+2)

= max
(c ,Fτ+2)∈Mτ+2

�

u (c )+δ

∫

Sτ+3

Uτ+3(Fτ+2(sτ+3), sτ+3)d pτ+2

+
1−ατ+2

ατ+2

�

u (c )+δ

∫

Sτ+3

Uτ+3(Fτ+2(sτ+3), sτ+3)d qτ+2

��

− max
(c ′,F ′τ+2)∈Mτ+2

1−ατ+2

ατ+2

�

u (c ′)+δ
∫

Sτ+3

Uτ+3(F ′τ+2(sτ+3), sτ+3)d qτ+2

�

,

and the boundary condition

UT−1(M T−1, sT ) =U r (M T−1), M T−1 ∈M (C ×C∞).

Moreover,

ατ+2 ∈ (0, 1], pτ+2,qτ+2 ∈∆(Sτ+2), each pτ+2 has full support,

and mτ+2 =ατ+2pτ+2+(1−ατ+2)qτ+2.

We constructWt having the appropriate form and representing�t .21 The argument
is divided into a series of steps.

21For t = 0, the measure m0 over S1 that we construct can be denoted instead by p0, as in the desired
representation.
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S 1. Define the “convex hull” of contingent menus.

For any mixture space, we have the usual notion of convex hull of a set M —the small-
est convex (mixture-closed) set containing M . However, a mixture space framework is
not adequate because, for example, M (CT ×CT ) is not a mixture space: λ[λ′M + (1−
λ′)M ′] + (1−λ)M ′ 6= λλ′M + (1−λλ′)M ′ if M and M ′ are not convex . More generally,
because αM +(1−α)M 6=M in general, the “convex hull” of any M need not contain M .
In fact, we are interested in the convex hull of contingent menus. Thus we define co(Ft )
for any Ft inCt and we do so by backward induction.

Since CT ×C∞ is a mixture space, the “convex hull of M T−1 ∈M (CT ×C∞)” has the
usual meaning—the smallest convex set containing M T−1. For any contingent menu
FT−1 in D1, define its convex hull co(FT−1) as the contingent menu that maps each sT

into co(FT−1(sT )). Let

D1 = {co(F ′T−1) : F ′T−1 ∈D1} ⊂D1.

ThenD1 is a mixture space.
For the inductive step, suppose that co(·) has been defined on DT−t−1, and that

DT−t−1 = {co(F ′t+1) : F ′t+1 ∈DT−t−1} ⊂DT−t−1

is a mixture space. Let Ft ∈DT−t , s t+1 ∈St+1, and

N = {(c t+1, co(Ft+1)) : (c t+1, Ft+1)∈ Ft (s t+1)}.

Since C t+1 ×DT−t−1 is a mixture space, the smallest convex subset of C t+1 ×DT−t−1

containing N is well-defined. We define co(Ft )(s t+1) to be that set. This defines co(Ft ).
Note that it lies inDT−t = {co(F ′t ) : F ′t ∈DT−t }, and that the latter is a mixture space.

S 2. Each �t satisfies Indifference to Randomization, that is,

(c , Ft )∼t (c , co(Ft )). (B.5)

P. For t = T −1, since C ×C∞ is a mixture space, the preference�T−1 restricted to
CT−1×D1 =CT−1× (M (C ×C∞))ST satisfies IR by Order, Continuity, and Independence
(see Dekel et al. 2001, Lemma 1).22

However, C t ×DT−t is not a mixture space if t < T − 1. Fortunately, we can invoke
Kopylov (2007) to prove (B.5).23 He extends the GP theorem to a domain, consisting of
hierarchies of menus, that corresponds to our setting when the state space S is a single-
ton and when consumption occurs only at the terminal time. His arguments are readily
adapted to accommodate the multiplicity of states and the presence of intermediate
consumption. Ã

22Their result is formulated for preference defined on menus of lotteries, but the same argument can be
used for menus of any compact metric mixture space. The contingent nature of menus in our case is of no
significance because mixtures are defined statewise.

23We are grateful to Igor Kopylov for pointing out this line of argument.
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S 3. The order �t restricted to C t ×DT−t can be represented by cWt (·) having the form

cWt (c , F ) = u ∗t (c )+
∑

st+1

U ∗t+1(F (s t+1), s t+1), (B.6)

where u ∗t (·) and U ∗t+1(·, s t+1) are nonconstant, continuous, and linear on Ct and
M (C t+1×DT−t−1) respectively, and where

U ∗t+1(M , s t+1) =U ∗t+1(co(M ), s t+1) for M ∈M (C t+1×DT−t−1). (B.7)

P. To prove this, restrict attention first to C t ×DT−t . Each F in DT−t maps St+1

into M c (C t+1 ×DT−t−1), the collection of convex (and closed) subsets of the mixture
space C t+1×DT−t−1. ButM c (C t+1×DT−t−1) is a mixture space. Since �t satisfies Or-
der, Continuity, and Independence on C t ×DT−t , it admits a utility representation there
by some cWt : C t ×DT−t → R1 having the form (B.6); additivity across c and F can be
established as in (B.3), while the additive separability across states follows as in Kreps
(1988, Propn. 7.4), for example. Use (B.7) to extend (B.6) to all of C t ×DT−t . Indifference
to Randomization (Step 2) implies that cWt (·) represents �t on C t ×DT−t . Ã

Let �t |st+1 onM (C t+1×DT−t−1) be the preference represented by U ∗t+1(·, s t+1).

S 4. �t |st+1 satisfies the GP axioms suitably translated toM (C t+1×DT−t−1).

Thus by GP’s theorem and the extension provided by Kopylov (2007),24

U ∗t+1(M , s t+1) = max
(c ,F )∈M

�

UG P
t+1(c , F, s t+1)+V G P

t+1 (c , F, s t+1)
	− max

(c ′,F ′)∈M
V G P

t+1 (c
′, F ′, s t+1),

for some UG P
t+1(·, s t+1) and V G P

t+1 (·, s t+1), continuous and linear functions on C t+1×DT−t−1.
The subscript t indicates that these functions may depend also on the history s t

1 under-
lying �t .

S 5. For some A(s t+1)> 0,

UG P
t+1(c , F, s t+1)+V G P

t+1 (c ,F, s t+1)

= A(s t+1)
�

u (c )+δ

∫

St+2

Ut+2(Ft+1(s t+2), s t+2)d m t+1

�

.
(B.8)

P. By Risk Preference and State Independence, for any c , H , s t+1 there exist `,`′ ∈
Lt+1 such that

(c , [H−st+1 ,{`}])�t (c , [H−st+1 ,{`′}]) and `�t+1 `
′.

24GP work with a domain of menus of lotteries. Their theorem would apply directly if we had adopted the
larger domain obtained by replacing (4) with Ft : St+1 −→M (∆(C t+1 ×DT−t−1)). However, adding an extra
layer of lotteries can be avoided by invoking Kopylov, suitably extended to accommodate a finite (nonsin-
gleton) state space and intermediate consumption. (His Temporal Set-Betweenness axiom is satisfied by
our preference �t |st+1 , by Lemma B.4 and Set-Betweenness.)
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It follows from Sophistication that

(c , [H−st+1 ,{`,`′}])�t (c , [H−st+1 ,{`′}]).

In particular, the preference �t |st+1 onM (C t+1 ×DT−t−1) satisfies {`,`′} �t |st+1 {`′}. By
Step 4 this preference has a (UG P

t+1, V G P
t+1 ) representation, and thus by Sophistication,

Order, Continuity, and Independence for �t+1, Lemma B.2 implies that UG P
t+1(·, s t+1) +

V G P
t+1 (·, s t+1) represents �t+1. By the induction hypothesis, �t+1 is represented also by
Wt+1(·), and since both functions are continuous and linear, they must be cardinally
equivalent. Thus (B.8) follows. Ã

S 6. Let Vt+1(c , F, s t+1) = (1/A(s t+1))V G P
t+1 (c , F, s t+1). Then

Vt+1(c , F, s t+1) =w t+1(c , s t+1)+
∑

st+2

vt+1(F (s t+2), s t+1, s t+2), (B.9)

where w t+1(·, s t+1) and each vt+1(·, s t+1, s t+2) are continuous and linear on C t+1 and
M (C t+2×DT−t−2) respectively.

P. The function M 7−→Vt+1(c , [F−st+2 , M ], s t+1) gives the (temptation) utility of the
indicated consumption and contingent menu pair as a function of the menu M provided
in state s t+2. Similarly for the function M 7−→U t+1(c , [F−st+2 , M ], s t+1), where

U t+1(c , F, s t+1) =
1

A(s t+1)
UG P

t+1(c , F, s t+1).

Recall the order �t |st+1,st+2 defined prior to Lemma B.3. For any given c and F , it is rep-
resented by

L 7−→max
M∈L

�

U t+1(c , [F−st+2 , M ], s t+1)+Vt+1(c , [F−st+2 , M ], s t+1)
	

−max
M ′∈L

Vt+1(c , [F−st+2 , M ′], s t+1),

for any closed L ⊂ M (C t+2 ×DT−t−2). By Risk Preference, State Independence, and
Lemma B.4, U t+1(c , [F−st+2 , ·], s t+1) is nonconstant, and so by Lemma B.3, �t |st+1,st+2 is
strategically rational. By Lemma B.1(i), if Vt+1(c , [F−st+2 , ·], s t+1) is nonconstant then it is
ordinally equivalent to U t+1(c , [F−st+2 , ·], s t+1)+Vt+1(c , [F−st+2 , ·], s t+1), which by Step 5 is
ordinally equivalent to Ut+2(·, s t+2). Thus, if Vt+1(c , [F−st+2 , ·], s t+1) is nonconstant, then
for all M , M ′ ∈M (C t+2×DT−t−2),

Vt+1(c , [F−st+2 , M ], s t+1)≥Vt+1(c , [F−st+2 , M ′], s t+1) (B.10)

⇐⇒Ut+2(M , s t+2)≥Ut+2(M ′, s t+2)

⇐⇒Ut+2(co(M ), s t+2)≥Ut+2(co(M ′), s t+2)

⇐⇒Vt+1(c , [F−st+2 , co(M )], s t+1)≥Vt+1(c , [F−st+2 , co(M ′)], s t+1),
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where use has been made of (B.7). On the other hand, if Vt+1(c , [F−st+2 , ·], s t+1) is con-
stant, then the equivalence of the first and last lines is clear. We conclude that for every
F , c , and s t+2,

Vt+1(c , [F−st+2 , M ], s t+1) =Vt+1(c , [F−st+2 , co(M )], s t+1).

Repeated application of this equality for all states in St+2 yields

Vt+1(c , F, s t+1) =Vt+1(c , co(F ), s t+1),

a form of indifference to randomization for Vt+1. Thus one can argue as in Step 3 to
derive (B.9). Ã

S 7. For some γ(s t+1) ≥ 0, continuous linear function w (·, s t+1) on C t+1 and qt+1 ∈
∆(St+2),

V G P
t+1 (c , F, s t+1) = A(s t+1)

�

w t+1(c , s t+1)+γ(s t+1)

∫

St+2

Ut+2(M , s t+2)d qt+1(s t+2)
�

.

P. We begin by providing structure on each vt+1(·, s t+1, s t+2) in (B.9): we show that

vt+1(·, s t+1, s t+2) = a (s t+1, s t+2)Ut+2(·, s t+2)+b (s t+1, s t+2), (B.11)

for some a (s t+1, s t+2) ≥ 0. Given (B.9), we can refine (B.10) into the statement
that if vt+1(·, s t+1, s t+2) is nonconstant, then vt+1(·, s t+1, s t+2) is ordinally equivalent to
Ut+2(·, s t+2). Given continuity and linearity of both functions, (B.11) holds for some
a (s t+1, s t+2)> 0. If vt+1(·, s t+1, s t+2) is constant, then (B.11) holds with a (s t+1, s t+2) = 0.

Define γ(s t+1) and the measure qt+1 over St+2 by

γ(s t+1) =
∑

St+2

a (s t+1, s t+2)≥ 0,

qt+1(s t+2) =







a (s t+1, s t+2)
γ(s t+1)

if γ(s t+1)> 0

m t+1(s t+2) otherwise.

Then

Vt+1(c , F, s t+1) =w t+1(c , s t+1)+γ(s t+1)

∫

St+2

Ut+2(M , s t+2)d qt+1(s t+2)+k ,

where k =
∑

St+2

b (s t+1, s t+2). Set k = 0 without loss of generality. Ã

S 8. For some 0<αt+1(s t+1)≤ 1,

V G P
t+1 (c , F, s t+1) = A(s t+1)(1−αt+1(s t+1))

�

u (c )+δ

∫

St+2

Ut+2(F (s t+2), s t+2)d qt+1

�

. (B.12)



Theoretical Economics 3 (2008) Non-Bayesian updating: a theoretical framework 225

P. By Risk Preference and State Independence, UG P
t+1(`, s t+1) is ordinally (and

hence cardinally) equivalent to the continuous linear function ` 7−→∑T+1
t+1 δ

τ−(t+1)u (`τ).
Thus without loss of generality

UG P
t+1(`, s t+1) = A(s t+1)αt+1(s t+1)

�T+1
∑

t+1

δτ−(t+1)u (`τ)
�

for some αt+1(s t+1)> 0. By Step 5,

UG P
t+1(`, s t+1)+V G P

t+1 (`, s t+1) = A(s t+1)
�T+1
∑

t+1

δτ−(t+1)u (`τ)
�

.

Thus, V G P
t+1 (`, s t+1) = A(s t+1)(1−αt+1(s t+1))

∑T+1
t+1 δ

τ−(t+1)u (`τ), and by Step 7,

w t+1(`t+1, s t+1)+γ(s t+1)
T+1
∑

t+2

δτ−(t+2)u (`τ)

= (1−αt+1(s t+1))
�

u (`t+1)+δ
T+1
∑

t+2

δτ−(t+2)u (`τ)
�

=⇒ w t+1(`t+1, s t+1)− (1−αt+1(s t+1))u (`t+1)

= [(1−αt+1(s t+1))δ−γ(s t+1)]
T+1
∑

t+2

δτ−(t+2)u (`τ).

Since u (·) is nonconstant, we have (1 − αt+1(s t+1))δ = γ(s t+1) and w t+1(`t+1, s t+1) =
(1−αt+1(s t+1))u (`t+1). If γ(s t+1) = 0, then δ > 0 implies w t+1(`t+1, s t+1) = 0, which
yields (B.12) with αt+1(s t+1) = 1. On the other hand, if γ(s t+1) > 0, then δ > 0 implies
(B.12) with αt+1(s t+1)< 1. Ã

S 9. The unique measure p t+1 over St+2 satisfying m t+1 =αt+1p t+1+(1−αt+1)qt+1 is
a probability measure with full support and furthermore

UG P
t+1(c , F, s t+1) = A(s t+1)αt+1(s t+1)

�

u (c )+δ

∫

St+2

Ut+2(F (s t+2), s t+2)d p t+1

�

. (B.13)

P. Steps 5 and 8 yield (B.13), given that p t+1 satisfies m t+1 = αt+1p t+1+
(1−αt+1)qt+1. We show next that p t+1 is a probability measure with full support. The
definition of p t+1 implies that

∑

st+2

p t+1(s t+2) = 1. To see that p t+1(s t+2) > 0 for all s t+2,

note that Ut+2(·, s t+2) is nonconstant (by the induction hypothesis) and that for any
s t+1, s t+2, c ′, c , M ′, M , F , and G ,

Ut+2(M ′, s t+2)≥Ut+2(M , s t+2)⇐⇒ (c , [F−st+2 , M ′])�t+1 (c , [F−st+2 , M ])

⇐⇒∗ (c ′, [G−st+1 ,{(c , [F−st+2 , M ′])}])�t (c ′, [G−st+1 ,{(c , [F−st+2 , M ])}])
⇐⇒UG P

t+1(c , [F−st+2 , M ′], s t+1)≥UG P
t+1(c , [F−st+2 , M ], s t+1)

⇐⇒Ut+2(M ′, s t+2)p t+1(s t+2)≥Ut+2(M , s t+2)p t+1(s t+2),

where the equivalence⇐⇒∗ is implied by Lemma B.4. Ã
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S 10. Complete the inductive step.

Since A t (s t+1)αt+1(s t+1) > 0 for all s t+1, we have
∑

st+1
A t (s t+1)αt+1(s t+1) > 0. Con-

sider the positive affine transformation of cWt defined by

Wt (c , F ) =
δ

∑

st+1
A t (s t+1)αt+1(s t+1)

cWt (c , F )

=
δ

∑

st+1
A t (s t+1)αt+1(s t+1)

u ∗t+1(c )

+
δ

∑

st+1
A t (s t+1)αt+1(s t+1)

∑

st+1

U ∗t+1(F (s t+1), s t+1),

for all (c , F )∈C t ×DT−t . Obviously,Wt (·) represents �t on C t ×DT−t . Define

u t+1(c )≡ δ
∑

st+1
A t (s t+1)αt+1(s t+1)

u ∗t+1(c ),

Ut+1(M t+1, s t+1)≡ 1

A t (s t+1)αt+1(s t+1)
U ∗t+1(M , s t+1),

m t (s t+1) =
A t (s t+1)αt+1(s t+1)

∑

st+1
A t (s t+1)αt+1(s t+1)

> 0 for each s t+1.

Then m t has full support and

Wt (c , F ) = u t+1(c )+δ

∫

St+1

Ut+1(F (s t+1), s t+1)d m t (s t+1), Ft ∈DT−t ,

where

Ut+1(M t+1, s t+1)

= max
(c ,Ft+1)∈M t+1

�

u (c )+δ

∫

St+2

Ut+2(Ft+1(s t+2), s t+2)d p t+1

+
(1−αt+1)
αt+1

�

u (c )+δ

∫

St+2

Ut+2(Ft+1(s t+2), s t+2)d qt+1

��

− max
(c ′,F ′t+1)∈M t+1

(1−αt+1)
αt+1

�

u (c ′)+δ
∫

St+2

Ut+2(F ′t+1(s t+2), s t+2)d qt+1(s t+2)
�

.

It remains to show that u t+1(·) = u (·). By Risk Preference and the representation
Wt (·), the following functions are ordinally equivalent:

(c ,`) 7−→ u (c )+δ
�T+1
∑

t+1

δτ−(t+1)u (`τ)
�

(c ,`) 7−→ u t+1(c )+δ
�T+1
∑

t+1

δτ−(t+1)u (`τ)
�

.
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Since both are continuous linear functions, they must be cardinally equivalent. An ar-
gument analogous to that used in Step 8 yields the desired result, and completes the
inductive step.

We now have a representation for �0 on C ×DT for each T . It remains to extend the
representation to C ×C . Note that DT ⊂DT+1 for each T . Thus each representation on
C ×DT+1 induces a representation also on C ×DT . We proceed by showing: (i) consis-
tency of the representations of �0 obtained above, (ii) a (unique) continuous extension
to C ×C , and (iii) the extension has the appropriate functional form (5)–(7). The last
step simultaneously derives the desired representation of (�t ) via Lemma B.2.

To show (i), consider the representations (p0, (p t ,qt ,αt )T1 ) and (p ′0, (p ′t ,q ′t ,α′t )
T+1
1 ) of

�0 on C×DT and C×DT+1, respectively. We need to show that p0 = p ′0 and for all 0< t ≤
T , p t = p ′t , qt = q ′t , and αt = α′t . This can be proved by adapting the argument used in
Epstein (2006, Corollary 3.3). The uniqueness part of the Anscombe–Aumann theorem
ensures p0 = p ′0. Further, if �0 exhibits a preference for commitment conditional on a
history of length t − 1 ≤ T , then it must be that p t = p ′t ,qt = q ′t , and αt = α′t . If there
is no such preference for commitment, then the non-uniqueness of the representation
permits us to set p t = p ′t ,qt = q ′t , and αt = α′t without loss of generality. Proceeding
in this way, we obtain (p0, (p t ,qt ,αt )∞1 ) such that �0 has the desired representationW0 :
C ×∪∞1 DT →R.

For (ii), we exploit the denseness indicated in Theorem A.1(iv). First, observe
that W0(·) is bounded above by W0(`) = (1 − δ)−1 maxc∈C u (c ) and below by W0(`) =
(1−δ)−1 minc∈C u (c ), and in particular, each (c , F ) ∈C ×C is ranked between the risky
streams `,` ∈ L . By Continuity and Risk Preference it follows that each (c , F ) ∈ C ×C
is indifferent to some unique mixture of `,`, which we denote by `λ(c ,F )` ∈ L . Since
L ⊂ C × ∪∞1 DT , this allows us to define an extension of W0(·) to all of C ×C by set-
ting W0(c , F ) = W0(`λ(c ,F )`). To see that this extension is continuous, without loss of
generality let W0(`) = 1 and W0(`) = 0 so that in fact W0(c , F ) = λ(c ,F ) and suppose
(cn , Fn ) → (c , F ) and, by way of contradiction, λ(cn ,Fn ) 6→ λ(c ,F ). Then for some ε-ball
B (λ(c ,F ),ε) around λ(c ,F ), there are infinitely many n such that λ(cn ,Fn ) 6∈ B (λ(c ,F ),ε). Let
(cm , Fm ) denote the corresponding subsequence and note that (cm , Fm )→ (c , F ). Since
{λ(cm ,Fm )} is a subsequence in the unit interval, it has a convergent subsequence {λ(c i ,Fi )}
with a limit different from λ(c ,F ); denote by (c i , Fi ) the corresponding subsequence of
(cm , Fm ). Then Continuity implies that (c , F ) = lim(c i , Fi )∼ lim`λ(c i ,Fi )` 6= `λ(c ,F )`. How-
ever, (c , F ) ∼ `λ(c ,F )` for a unique λ(c ,F ), a contradiction. Thus we have a continuous
extension ofW0(·) to C ×C . Since the latter is compact, the extension is uniformly con-
tinuous and unique.

For (iii), uniform continuity ofW0 is the key. It implies uniform continuity of U1(·, s1)
on M (C ×∪∞1 DT ), and also of U1(·) and V1(·) on C ×∪∞1 DT ; as a result the latter two
functions can be extended uniquely to continuous functions on C ×C . Argue induc-
tively. The details are tedious but straightforward.

This completes the proof of sufficiency. The proof for uniqueness is similar to that
in Epstein (2006), and thus is omitted.
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